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Abstract

We study a stochastic network with two service stations in series, each equipped with in-
finitely many servers, together with a probabilistic and time-dependent splitting mechanism
after service completions at the first station. External arrivals enter the system at the first
station according to a general arrival process with time-varying arrival rate, assumed to satisfy
a functional central limit theorem (FCLT). The service-time distributions are allowed to be
non-exponential. At each station, the service times are identically distributed but allowed to be
weakly dependent. We establish heavy-traffic limits (first a FWLLN and then a FCLT refine-
ment) for the two-parameter stochastic processes {(Q5(¢,y), Q5(t,y)) : t > 0,0 <y < t}, where
Q5 (t,y), I = 1,2, represents the number of customers in the I*h service station at time ¢ with
elapsed service times less than or equal to y. The FCLT limit is a continuous two-parameter
Gaussian processes (random field). We give explicit formulas for the time-dependent means and
variances of the resulting Gaussian approximation when the arrival limit process is a Brownian
motion.

Key words: stochastic network, infinite-server queues, two-parameter processes, time-varying
arrivals, time-dependent splitting of counting processes, martingales, weakly dependent service
times, ¢-mixing, S-mixing, functional central limit theorems, Gaussian (random field) approxima-

tion, generalized Kiefer process



1 Introduction

This paper is a sequel to Pang and Whitt (2010), in which we established heavy-traffic limits for the
stochastic processes describing performance of the G;/GI /oo infinite-server (IS) model, allowing
a non-Poisson arrival process with time-varying arrival rate and a non-exponential service-time
distribution. Extending Krichagina and Puhalskii (1997), we established heavy-traffic limits for
two-parameter stochastic processes, such as {(Q°(t,y) : t > 0,0 <y < t}, where Q°(¢,y) represents
the number of customers in the service station at time ¢ with elapsed service times less than or
equal to y. A key assumption was that the arrival process satisfy a functional central limit theorem
(FCLT), which includes many cases with dependence among the interarrival times.

In the present paper we establish new heavy-traffic limits that extend our previous results in
three ways: First, we consider two IS systems in series. Second, in addition to time-varying arrivals,
we consider time-varying stochastic splitting after service completion at the first station, allowing
only some of the customers to continue on to the second station. Both of the first two features are
depicted in Figure 1. Third, in addition to allowing the non-exponential service-time distributions
we considered before, we allow the service times at each station to be weakly dependent. However,
here we require that the service times at the two stations be mutually independent. Thus, we call

our model a G;/GP /oo 2% GP /oo queueing network.
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Figure 1: Two Infinite-Server Queues with Time-Dependent Splitting



It is significant that the features we consider make it possible to directly treat more general
models. First, the analysis extends to recursively treat more than two stations in series and more
general feed-forward networks. The analysis also covers feedback to the same station, because we
can represent the content of one station with a single direct feedback, with time-varying feedback
probability, as the sum of the contents of two stations in series in the model we consider.

We are motivated by potential applications in service systems. First, we are motivated to
consider network structure because many service systems, such as hospitals, directly have such
network structure. In healthcare, patients often need to visit several units consecutively or revisit
a medical unit several times in order to get the proper treatment; e.g., see the abalysis of an urgent
care center considered by Jiang and Giachetti (2006). In manufacturing, defective products after
the first-time processing can sometimes be reprocessed to reach the production standard. Owur
model captures the possibility of second-time service requests in these examples and also of the
time-varying feature for these requests.

There is also strong motivation for network structure from traditional customers contact centers,
which are designed to have only a single service experience, because customers may not get their
needs met during their first service experience. Customers often need to call back one or more
times before their needs are met. Thus, there is concern about having first-call resolution, see de
Véricourt and Zhou (2005), and there is a need to understand performance when it is not achieved.
Call centers often have an Interactive Voice Response (IVR) system so that some customers will
complete their service at IVR but others will go through the series of IVR and agents, see Khudyakov
et al. (2010) for a Markovian model of M/M/N/N £ M/M/S queues with iid splitting.

We are motivated to study dependence among service times by several applications. First, in
hospitals, several patients can have similar medical conditions, requiring similar treatment. That
occurs with seasonal or epidemic diseases and with multi-person transportation accidents, as with
cars or trains. Second, in customer contact centers, new products may have defects that lead to
many customers calling with similar needs. These patients or customers will have service requests
that are highly dependent upon each other. Third, service times can be affected by common events
in the service mechanism. For instance, service interruptions are inevitable in many large-scale
service systems, e.g., Pang and Whitt (2009), and interruptions can cause all service times to
become longer or stimulate the servers to interact with each other in order to reduce the effect.
Moreover, there is empirical evidence in call centers that service times can be dependent, see Brown

et al. (2005).



We analyze this stochastic network model in the heavy-traffic regime by scaling up the arrival
rates while fixing the service-time distributions. We consider the two-dimensional two-parameter
stochastic processes {(Q5(t,v),Q5(t,y)) : t > 0,0 < y < t}, where Qf(t,y), | = 1,2, represents

the number of customers in the ['!

service station at time ¢ with elapsed service times less than
or equal to y. We prove a functional weak law of large numbers (FWLLN, Theorem 3.1) and a
functional central limit theorem (FCLT, Theorem 3.2) for these processes jointly with the departure
processes from both service stations and the split arrival process entering the second service station.
The FWLLN limits are simple deterministic two-parameter functions and the FCLT limits are
continuous two-parameter Gaussian processes (random fields). The weak dependence among service
times has no impact on the fluid limits, but the time-dependent splitting after service completion
at the first service station plays a prominent role in the fluid limits. Propositions 3.2 and 3.3
provide explicit variance formulas for the Gaussian limit processes when the arrival limit process is
a Brownian motion (BM). Dependence among the service times has no impact upon the fluid limit
(the mean), but has a clear impact upon the variances; we study this impact further in Pang and
Whitt (2011). Our analysis here shows that the methodology in Pang and Whitt (2010) can be
extended to analyze networks of queues with the extra features of splitting and dependence among
the service times.

In order to allow dependence among the service times, we apply previous FCLT’s for the se-
quential empirical process of weakly dependent random variables, exploiting results by Berkes and
Philipp (1977) and Berkes, Hérmann and Schauer (2009). As in Pang and Whitt (2010), one key
step in proving our limits is to show that the sequential empirical processes with the underlying
weakly dependent service times converge in distribution to a continuous generalized Kiefer process,
in the space of Dp endowed with the Skorohod J; topology, see Theorem 2.1. The previous results
were established in the space of D(]0, 1] x [0, 1], R) endowed with the generalized Skorohod topology
by Bickel and Wichura (1971) and Straf (1971). Here we need to extend the convergence to the
larger space Dp because the two-parameter queueing processes (Qf(t,y), Q5(t,y)) are not in the
space D([0,T] x [0,T],R?).

Time-dependent splitting of general counting processes is an important feature of our model,
applied here to the departure process from the first station. We prove a FWLLN (Theorem 4.1)
and a FCLT (Theorem 4.2) in §4.2 for the general setting. We assume that the splitting events are
conditionally independent, given the arrival process, but our framework allows for weakly dependent

splitting; the proofs apply results for martingale difference sequences, e.g., Theorem 6 in Rootzén



(1980). Time-varying demand patterns have been well studied, see Green, Kolesar and Whitt
(2007). Our results show the joint effects of time-varying arrivals and time-varying splitting.

There has been considerable work on IS models and associated networks of IS models. Since
we already reviewed earlier work on IS queues in Pang and Whitt (2010), here we only discuss
networks. Much has been done for stationary models, but some also has been done for time-varying
arrival rates. Much has also been done for the exact queueing model, but some also has been done
on heavy-traffic approximations. We first discuss explicit results for stationary models. In that
context, Boxma (1984) studied a tandom of M /G /oo queues and obtained the joint time-dependent
distribution of queue lengths and residual service times at each queue. Mechata and Deivamoney
Selvam (1984) studied the covariance structure of a tandom of M;/G /oo queues. Schmidt (1987)
considered a tandom of GI/G /oo queues with renewal arrivals and obtained the generating function
of the joint customer-stationary distribution of the successive number of customers a randomly
chosen customer finds at his arrival epochs at two queues of the system. For a single IS model, Liu
and Templeton (1993) give explicit formulas capturing complex structure including dependence.

For explicit results about networks of IS queues with time-varying arrival rates, we refer to
Massey and Whitt (1993) and Nelson and Taaffe (2004). The second paper is notable for providing
an algorithmic approach to treat non-Poisson arrival processes and non-exponential (i.i.d.) service
times. By focusing on the relatively simple fluid and Gaussian approximations, our approach is
quite different. Previous heavy-traffic limits for Markovian service systems with time-varying arrival
rates were obtained by Mandelbaum et al. (1998). They treat finite-capacity systems as well as
infinite-capacity systems, but the model is Markovian. For a different asymptotic perspective,
Zajic (1998) obtained the large deviations principle and moderate deviations principle for the joint
distribution of the queue-length processes and departure processes for tandem M;/G /oo queues via
Poissonized empirical processes.

Here is how the rest of this paper is organized. In §2, we give the detailed model description
and assumptions. We also establish some preliminary results including the representation of the
queue-length process in terms of the sequential empirical processes, Lemma 2.1. In §3, we state
our main results, the FWLLN in §3.1, the FCLT in §3.2, and the characterization of Gaussian
properties in §3.3. We collect the proofs for the main results in §4. In §4.1, we prove Theorem 2.1
for the convergence of sequential empirical processes with underlying weakly dependent sequences
in Dp. In §4.2, we state and prove our FWLLN and FCLT results for time-dependent splitting

of general counting processes. In §4.3, we prove some results for the characterization of the FCLT



limits; the rest are given in the appendix. In §84.4 and 4.5, we prove the FWLLN and FCLT.

2 Model Description and Preliminaries

2.1 The Model Assumptions

We consider a sequence of stochastic networks as depicted in Fig. 1 indexed by n and then let
n — oco. We assume the system starts empty at time 0. As in Pang and Whitt (2010), we would
analyze other initial content separately, which can be done because capacity is unlimited. For the
n' system, the ith customer arrives at the time 7,y with the service time 7;,1 and receives service
upon arrival. Upon completing service at the time ¢y = 7y + 1,1, the customer will leave the
system or continue to receive a service of length 7,2 at the second station. The departure time
from the system for the it customer &7 is either equal to opy or 0y = 7" + i1 + mi2. If the ith
customer decides to leave the system after service completion at service station 1, we set 9;'y = co.

In order to count the number of customers that receive service at the second station, we define
the sequence {7}, : k > 1} and the associated sequence {5};’2 ik > 1}, where

Tio =0} 1, j1=min{i >1: 4§y < oo},
Tho =07 1, Jy=min{i > ji_1+1:8 <oo}, k=23,..

and

52}72 = 82,2 + 77jk,27 k= 1,2,

We also define a sequence of random variables {¢]* : ¢ > 1} for each n by

" 0, if &'=0y, (i.e, &'y =00),
G = . n n’l ( 722 ) (2.1)

L, if 6 =480y, (e, &'y <o00),

and the associated partial sum process Z,, = {Z, ) : kK > 0} defined by
Znp=C +--+¢, forall k>1, Z,0=0. (2.2)

We next define several sequences of counting processes: for new arrivals to the first station,
Ap1 = {Ap1(t) : t > 0}; for service completions at the first station D,,; = {D,1(t) : ¢t > 0}, for
customers continuing in the system to receive service at the second station, Ay, 2 = {Ap2(t) : t > 0};
for service completions at the second station, D, 2 = {Dy2(t) : t > 0}; and for the total departure
process D,, = {D,(t) : t > 0}, including departures from both service stations 1 and 2. Formally,

these are defined by

Ani(t) = max{k>0:70; +-- -+ 7 <t} (2.3)

)
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max{k > 0:6q; +-- -+ <t}

Dn71(t)
Anat) = Zopo= D, G =max{k>0:7y+ -+ 7y <t}
i=1
Dyo(t) = max{k >0:85y+ - +0p, <t}

D,(t) = Dpai(t) — Ana(t) + Dp2(t)

where 70 = 6} = 7y = 65, = 0.
We assume that the sequence of arrival processes into service station 1 satisfies a FCLT.
Assumption 1: FCLT for arrivals. There exist: (i) a continuous nondecreasing determin-
istic real-valued function @; on [0, 00) with a@;(0) = 0 and (ii) a stochastic process A; in D with

continuous sample paths, such that

Api(t) =n " Y2(A,1(t) —na(t)) = Ai(t) in D as n— oco. (2.4)

As an immediate consequence of Assumption 1, we have the associated FWLLN
Api=n"tA,1(t) = a(t) in D as n— . (2.5)

We will allow the service times in each service station to be weakly dependent and consider
two types of weak dependence for stationary stochastic sequences: ¢-mixing and S-mixing. The
¢-mixing is a common condition for weakly dependent stationary sequence, see Billingsley (1999)
and Whitt (2002). Here we restate the definition of S-mixing, first introduced by Berkes, Hérmann
and Schauer (2009). A stationary stochastic sequence {z; : ¢ > 1} is called S-mixing if (i) for any
i,m > 1, there exists a random variable x;,, such that P(|z; — Zin| > Bm) < €, for some constant
sequences [, — 0 and €, — 0 as m — oo; (i7) for any disjoint intervals I, ..., I, of positive integers
and any positive integers my, ..., m,, the vectors {Tjm, : ¢ € I1 },...,{Tim, : i € I} are independent
provided that the separation between I,» and I, 1 < r',r” < r, is greater than m,. +m,. Berkes,
Hormann and Schauer (2009) show that neither of the two mixing condition includes the other,
but the S-mixing condition is relatively easy to verify because it is restricted to random sequences
{x; : i > 1} with representations that x; = ¥ (y;, yit1,...) for iid sequences {y; : i > 1} and Borel
measurable functions ¢ : RN — R.

Assumption 2: weakly dependent service times. We assume that the successive service
times at the first service station {n;; : ¢ > 1} are weakly dependent and constitute a one-sided

stationary sequence, and the same for the service times at the second service station {n;2:j > 1}



(where this sequence now refers to only those that enter service at the second station). We also
assume that the two sequences are independent. For [ = 1,2, we also assume that 7;;’s have the

same continuous c.d.f. F; and p.d.f. f; with F;(0) =0, and E[nil] < 0o, and

o

S (E(Emral LD Y? <00, k=12,
=1

where Fi; = o{n;i;: 1 <i < k}. We let

oo
w = Elm 012 =Var(m,) + QZCOU(mJ,nHM) <oo, l=1,2
i=1

Moreover, we assume that one of the following two types of mixing conditions holds for both

{771',1 12> 1} and {77]‘72 17> 1}:
(i) (¢-mixing) Define
$ug =sup{|P(B|4) — P(B)|: A € ]:fn,lvP(A) >0,B ¢ girz—}—k,l’m >1}, [=1,2,

where G ; = o{n;; i > k} for [ = 1,2. The two sequences satisfy the ¢-mixing condition:
[e.e]
Zﬁbk,l <oo, 1=1,2.
k=1

(ii) (S-mixing) Each of the two sequences is S-mixing.

The splitting process after completing service at the first service station can be time-dependent.
We are primarily thinking of stochastically independent and time-dependent splitting, but we
present a more general framework that allows weak dependence in §4.2. We also consider its
special case of iid constant splitting.

Assumption 3: stochastically independent and time-dependent splitting. Let the
splitting probability be specified by a deterministic function p € D([0, 00), [0, 1]), independent of n,
such that p is piecewise-smooth, by which we mean that in any interval [0, 7], there exist finitely
many time points 0 < ¢; < --- < t;, < T such that on each subinterval (t;_1,t;), the function
p(t) has a continuous derivative p(t), both p and its derivative p have left and right limits at each
endpoint of the subinterval. Let both p and p be right continuous. We also require that, almost

surely, the discontinuity points ¢; do not coincide with any departure time from the first station.



Moreover, the sequence {¢* : i > 1} is a sequence of mutually conditionally independent random

variables given FZ  for each n, and
B¢ | Fh] =p(rh), i>1, (2.6)

where F7 = {F}'; : k > 1} be the filtration generated by the service completion times at the
first service station, i.e., Fi'; = o{dfy : 1 < i <k} VN =o{rly,my1 1 <i <k} VAN and

Flo1=o{rl,ni1 i > 1}V sN with N being the null set. =

Definition 2.1 For the piecewise smooth function p € D([0,00),[0,1]) defined in Assumption 2,
and for any function f € D([0,T],R) that is continuous at the time points 0 < t; < --- <t < T,

we define the integral

/ ' F(s)dn(s)

/0 F()p(s)ds + 3" 1(tx € 0.1) f(t) Ip(te) — plte—)), (2.7)

k=1
for each t € [0,T].

The Standard Case
The standard case concerns a stationary model in which the limit of the arrival process FCLT

is Brownian motion.

(i) In the assumed arrival FWLLN, a; = Ait, t > 0, for some positive constant A;. The limit

in the FCLT is A; = )\102713%1, i.e., a Brownian motion (BM), where 6271

is variability
parameter, which for a renewal arrival process is the squared coefficient of variation (SCV)

of an interarrival times, and B, is a standard BM.

(ii) Assume that ¢!"’s are iid, with distribution P({}’ =1) =1—p > 0 and P(¢(" =0) = p > 0 for

some constant p € [0, 1].

2.2 Preliminaries

Let @7, 1(t,y) represent the number of new arrivals in the first service station at time ¢ in the nth
model that have elapsed service times less than or equal to y, and Qfl’z(t,y) be the number of
customers in the second service station that have elapsed service times less than or equal to vy,
0 <y <t. Then we can express ], ; and @, 5 as

An,l(t)
Quilty)= > 1 +ma>t), t>0, 0<y<t, (2.8)
’L'=An71(t—y)



and
An’g(t)

colty)= D Liy+mia>t), t>0, 0<y<t. (2.9)
j:An,Q(t*y)

Note that @, 1 (¢,t) counts the total number of new arrivals in the first service station, and Qy, 5(t, )
counts the total number of customers in the second service station. Evidently, we have the balance

equation

Ana (t) = QZ,I(@ t) + QfL,Z (t,t) + Dn(t), t=>0.

The processes (7, ; and @, o and their limits (after scaling) to be established lie in the space
Dp = D(]0,00),D([0,00),R)), where D = D([0,00),S5), for a separable metric space S, is the
space of all right-continuous S-valued functions with left-limits in (0, co); see Billingsley (1999) and
Whitt (2002) for background. We will be using the standard Skorohod .J; topologies on both D
spaces in Dp. For a discussion of Dp, see Talreja and Whitt (2008) and Pang and Whitt (2010).

Following Krichagina and Puhalskii (1998) and Pang and Whitt (2010), we can rewrite the

random sums in (2.8) and (2.9) as integrals with respect to the random fields by

t o]
Qna(ty) = n/ / 1(s+x>t)dKy1(Ana(s),z), t>0, 0<y<t, (2.10)
t—y J0

and

t 00
Qf’b,Z(tv y) = n/ / 1(3 +x> t)dkn,Z([ln,Q(S)a l’), t > 07 0< Yy <t (211)
t—y J0

where (Ap1, An2) =n "1 (An1, An2), the two-parameter random fields (K, 1, Ky 2) in D% = Dp X
Dp are defined by

1 [nt] 1 [nt]

Kna(t,z) = - Y 1(mig <), Kpalt,a)= - Y lma<a), t=0, x>0 (2.12)
i=1 j=1

The integrals in (2.10) and (2.11) are well defined as Stieltjes integrals for functions of bounded
variation as integrators.

These two-parameter random fields are often called sequential empirical processes. For the case
of iid service times for IS queues, the FWLLN and FCLT for such random fields is discussed in
Pang and Whitt (2010). Here, for weakly dependent service times, the corresponding FCLT was
established by Berkes and Philipp (1977) for ¢-mixing sequences and by Berkes, Hérmann and
Schauer (2009) for S-mixing sequences, where the convergence is in the space of D([0,1] x [0, 1], R)
with the generalized Skorohod .J; topology on two-parameter processes (Bickel and Wichura (1971)
and Straf (1971)). Here we first extend their results to the space Dp with the Skorohod J; topology

10



on both D spaces (recall that the space D([0,1] x [0,1],R) c D([0, 1], D(][0,1],R))). The proof is
in §4.1.

Theorem 2.1 (FCLT in Dp for the sequential empirical process with weakly dependent random
variables) Let {& : k > 1} be a weakly dependent stationary sequence, either (i) ¢-mizing or (i7)

S-mizing. Assume that & ’s are uniformly distributed on [0,1], and

Y NEEklFillle = D (BIEEk|F]))? < 00 (2.13)
=1 =1

where Fr, = 0{&; : 1 <1i < k} for each k > 1. Then, the series
D(z,y) = Em@n@)] + Y (Em@n@)] + En@w@)]) <oo, ayel1]  (2.14)
k=2

converges absolutely, where y,(x) = 1(& < x) — x, and the diffusion-scaled sequential empirical

processes Uy (t,x) defined by
Lt

. 1
Up(t,x) = —= > w(z), t>0, xel0,1] (2.15)

converge
U,=U in D([0,00),D([0,1],R)) as n— oo, (2.16)

where U is a generalized Kiefer process (continous two-parameter Gaussian process) with E[U(t, x)] =

0 and E[U(t,x)U(s,y)] = (tAs)I'(z,y) with'(x,y) defined in (2.14) for anyt,s > 0 and z,y € [0, 1].

Moreover, the convergence is uniform in the second parameter z € [0, 1].

The convergence in (2.16) implies that the fluid-scaled sequential processes satisfy the FWLLN:
1 Lnt]
Un(t,2) = = > 1(& < x) = t(t,z) =tz, in D([0,00),D([0,1,R)) as n o0  (2.17)

n
k=1

Moreover, in Theorem 2.1, when the sequence {{} is iid, the limit process U becomes a standard
Kiefer process, where I'(z,y) = 2 Ay — a2y for x,y € [0, 1].
Thus, the two-parameter random fields in (2.12) satisfy the FWLLN:

(Kn,lyf{n,2) = (E‘l,lz}g) n D% as mn — 00,

where ki(t,x) = tF(x), ko(t,r) = tFy(x), and the convergence is uniform over sets of the form
[0,T] x [0,00) and there is uniformity in the second argument x over [0,00). Define the scaled

processes

Roalta) = ViKai(t.) = Rfta) = = >~ (10ns < ) = F@) L Dot B@). 6> 0,



for [ = 1,2, where
[nt]
Upa(t, ) = Z (u<z)—z), t>0, €01, =12,
f
with {&; : @ > 1} being weakly dependent and stationary satisfying either ¢-mixing or S-mixing
conditions with uniform distribution on [0,1] for each | = 1,2, and & 1’s and & 2’s also being
mutually independent. Here we require the joint convergence of (Uml, Un’z) in DIQD, and this is

direct since they are independent and so are their limits. Hence,

(Up1,Unz2) = (U1, Uz) in D% as n— oo,

)

where U; and Uy are independent generalized Kiefer processes with E[U(t,2)] = E[Us(t,z)] = 0,
E[U(t,)U1(s,y)] = (t A s)T1(z,y) and E[Us(t, z)Us(s,y)] = (t A s)[a(z,y) for each t,s > 0 and

x,y > 0, where

L, y) = Bna@miw)] + Y (Ebv@ @] + B @]), 1=12  (218)
k=2

and v (z) = 1(ng; < x) — Fi(x) for I = 1,2. This implies that the FCLT for (K1, Kp2) holds
(Kp1, Kn2) = (K1,K2) in D} as n— o, (2.19)
where K and K> are independent time-changed generalized Kiefer processes

Kl(t,ﬂj) = ﬁl(t,F()(:C)), f(g(t, ac) = UQ(t,FQ(x)), t,a: > O,

independent of Aj, with mean 0 and covariances

E[f(l(t, af:)f(l(s,y)] =({tANs)Try(z,y), =12, ts,2,y>0, (2.20)

Lru(z,y) = [Fi(z) A Fi(y) — Fi(@) Fi(y)] + T (2, y) < oo, (2.21)

i@ y) = 3 (Ena@) (@) + Ena(y)wma(@)]) < oo, (2.22)
k=2

for each z,y > 0.

In the case of iid service times, Ul(t,x) is the standard Kiefer process for each [ = 1,2, and
Ui(t,z) = Wi(t,x) — xW;(t, 1) for standard Brownian sheet W;, and W; and Wy are independent,
so that K7 and Ko are standard Kiefer processes with the second parameter having time changes
by service-time distributions, I ;(x,y) = Fi(z) A Fi(y) — Fi(z)Fi(y).

Then we obtain the following representation of the processes @, ; and @7, 5. The proof follows
from the same argument as Lemma 2.1 in Pang and Whitt (2010) and thus is omitted. Let as be
the fluid limit for /_1”,2 = A, 2/n to be established and define Amg = \/ﬁ(/_ln,g —as).

12



Lemma 2.1 (Queue-length representation by sequential empirical processes) The processes Q;l

and Qy, 5 defined in (2.8)and (2.9), respectively, can be represented as

Qna(t,y) Zn/ F{(t — s)da (s) + V(X5 1 (t,y) + X5 o(t,y)), (2.23)
t—y
and .
Qna(ty) = n/ Fy(t — s)dag(s) + Vr(Y$ 1 (ty) + Yiea(t,y)), (2.24)
t—y
where
Caty) = [ Filt - 9ddu(s) (2.25)
t—y

= Aua®) = At =)~ [ Ani)drg =)

o(t,y) = / / 1(s + > t)dRp (s, x) = / / 1(s +x < t)dRp (s, ), (2.26)
t—y t—y

Vit = [ F=sddua) (227)

t

= Apa(t) — F5(y)Ana(t v An2< —)dF5(t — s),

ot y) / / (s + > t)dRpa(s, x) / / (s +x < t)dRna(s, ), (2.28)
t—y -y

with the integrals in (2.25)-(2.28) all defined as Stieltjes integrals for functions of bounded variation
as integrators, and

1 An l(t)
Rn,l(tyx) = Kn,l(An,l(t);x) = =

\/ﬁ FYi,l(x)

s
1=

= \/ﬁKnl(Anl(t) :C) - An,l(t)F‘l(:U) - \/ﬁal(t)}?l('%% l= 17 2. (229)

[y

3 Main Results

In this section, we will present the main results, the heavy-traffic FWLLN and FCLT limits for the
joint queue-length processes at the two service stations. We will also discuss characterizations of

the limit processes.
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3.1 FWLLN Limits

We first define the LLN-scaled processes associated with (Dy, 1, Ay 2, Dy.2, Dy, Qs Q;,Z):

A e — . —1 e e
(Dn,laAn,27Dn 27-Dn7 n17 n72) =N (Dn,hAn,QaDn,?anaQn,lv n,2)'

By Lemma 2.1, these LLN-scaled processes can be represented as

t
_ 1 A~ A~
Qi,l(t7y) = / Flc(t - S)da’l(s) + \/H(ngl(t,y) + XZ,Q(t7y))7 t> 07 0< Yy <t (31)
t—y

t

_ 1 . N

Qna(t, 2) = / Fy(t = s)daz(s) + —=(Y1(t, 2) + Yyo(t,2), £20, 0<z<Ht, (32)
9 tiy \/ﬁ b b
Dpa(t) = Any(t) — Q5 y(t,1), 1=1,2, t>0, (3.3)
nDnJ(t)
Anp(t)=n"" > ¢ t>0, (3.4)
=1

Dy(t) = Dpa(t) — Apa(t) + Dpoa(t), t>0. (3.5)

The FWLLN limits for these processes are given in the following theorem. The proof for the
Xe

convergence of the processes (Qfl 1, @n, ») simply follows from tightness of the processes Xe 12

n,1»

Yn 1 Y o to be established as a main component in proving the FCLT limits. The convergence
of the processes Amg follows from Theorem 4.1 for time-dependent split counting processes. The
convergence of other processes follows from applying the continuous mapping theorem (CMT).

Thus, the proof for the following theorem is omitted.

Theorem 3.1 (FWLLN with weakly dependent service times and time-dependent splitting) Under

Assumptions 1 - 3,

(D1, An2, D2, Dny Q5 1, Q5 0) = (dy,a2,da,d,q5,G5) in D*x D}, as n—oo  (3.6)

where the limits are all deterministic functions,

t

qi(t,y) = Fy(t—s)dai(s), t>0, 0<y<t, (3.7)

-y
Qi) = Gy (1) — ot 1) = /Flt—sdal() >0, (3.9)
ax(t) = /0 p()d(di (s)) = /0 p(s) /0 fi(s — wydar (w)ds, >0, (3.9)
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t
= / F5(t—s)p /fls—udal( )ds, t>0, 0<y<t, (3.10)
-y

bt = ax(t) - @) /th—s)dag()

t
_ /th—s /fls—udal()d t>0, (3.11)
0

0y () — as(t) + da(t) = / (1— F5(t — s)p(s))d(da(s))

Q|
—~
~
=
I

¢
= /(1—F2 (t—s)p /fls—udal( )ds, t>0. (3.12)
0

We remark that the weak dependence among service times does not affect the fluid limits, which
are the same as the case of iid service times, while the impact of the time-dependent splitting
mechanism for customers completing service at the first station is captured in the fluid limits. In
particular, the arrival rate at the second service station, as in (3.9), is affected only by the time-

dependent splitting, but not by the weak dependence of service times in the first service station.

Corollary 3.1 (FWLLN in the standard case) In the standard case, the limits in (3.6) simplify as

follows,

t Y
qi(t,y) = )\1/ Fy(t —s)ds = )\1/ Fy(s)ds = g5 (oc0,y), (3.13)

t—y 0

- t t
di(t) =X\ | Fi(t —s)ds = )\1/ Fi(s)ds, t>0, (3.14)

0 0

- t
Gs(t) = pdi () = Aip / Fi(s)ds, >0, (3.15)
0
t y
sty = )qp/ F5(t —s)Fi(s)ds = )qp/ F5(s)Fi(t —s)ds, t>0, 0<y<t,
t—y 0
= (Mp/p2)Foe(y), y =0, as t— oo, (3.16)
t
do(t) = )qp/ Fy(t— $)Fy(s)ds, 1> 0, (3.17)
0
- t
d(t) = /\1/ (1 —pF5(t—s))Fi(s)ds, t>0, (3.18)
0

where Fy ¢ is the stationary-excess (or residual-lifetime) cdf associated with the service-time cdf Fs,
defined by Fs.(x) = po fo Fs(s)ds for each x > 0. Moreover, the long-run average rates for the
counting processes Dy, 1, An2, Dy o and Dy, are given by A1, A\ip, \ip, and A1, respectively, and the

total queue lengths at the two service stations have steady-state values \1/p1, and A\ip/us.
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3.2 FCLT Limits

We first define the FCLT-scaled processes associated with (Dy, 1, Ap 2, Dpn2, Dy, Qs QZ’Q):

Dni =vVn(Dpy —d1), Ana=n(Ans—a2),
Dn,? \/H(Dn,Q - JZ): Dn = \/E(Dn - J)’
Afz,1 \/’E(Qaeml — 1), n2 = Vn(Qs, 2~ @), (3.19)

where di, @, da, d, @1 and ¢ are defined in Theorem 3.1. By Lemma 2.1, the processes Q1 and

e
Qn.2 can be represented as

Q5alty) = Xei(ty) + Xio(ty), t>0, 0<y<t, (3.20)
0ot y) =Y (ty) +Yis(ty), t>0, 0<z<t, (3.21)

and it is clear that
Dpn(t) = Dpi(t) — Apa(t) + Dya(t), t>0. (3.22)

The limits of the processes Xﬁg(t,y) and Y;’Q(t,y) are given as mean-square integrals of the
time-changed generalized Kiefer processes K1(t,z) and Ka(t,z) in (2.19). Here we first give the

definitions of their limits.

Definition 3.1 The two-parameter processes Xg and 1726 written as

Xe(t,y) /t y/ (s 4+ 2 > )dRy (@ (s /t y/ (s 4+ 2 < Dk (@ (s), ), (3.23)
and
YE(t,y) /t y/ 1(s 4z > t)dKy(aa(s /t y/ 1(s 4 z < t)dKy(ag(s), z), (3.24)

are defined by mean-square integrals, that is,

lim B(X5(ty) - X5.(69)) =0, lim B(VE(ty) — Viu(t.9)Y =0, t20, 0<y<t,

(3.25)
with
X§ it y) = /t /oo 1piy(s,2)dK (a1(s),x), t>0, 0<y<t, (3.26)
o k
1pty(s,z) = Z[l(sf,l <s<sH1(t—sF <z <t) (3.27)
=1

t—y=sf <sh <. <sF=tand maxi<;<k|sF —sF 1| = 0 as k — oo, and similarly for }A/;k(t,y)

Write X;(t,y) = l.i.m.k%oof(ik(t,y) and Yf(t,y) = l.i.m.kﬁoof/;’k(t,y) .
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Theorem 3.2 (FCLT with weakly dependent service times and time-dependent splitting) Under

Assumptions 1-3,

(Dn,laAnQ?-Dn,Qa-Dn? )¢ ) ) = (ﬁ17A27ﬁ27D7QT7Q§) m D4 X D2D as n — o9, (328)

n,ly ¥n,2
where
Qi(t,y) = X{(ty) + X5(t,y), QS(t,y) = Yi(t,y) +Ys(t,y), t>0, 0<y<t, (329

Xiltw) = [ Fit = 9ddis) = i)~ Fi) A=) - [ AdF =), (330

Yi(ty) = Ao(t) — F{(y) Aot —y) — | Ax(s)dF5(t - s),
XS is defined in (3.23) and Y§ in (3.24),
Di(t) = Ai(t)—Q5(t,t) = | Fi(t—s)dAi(s) — X5(t,t)

= /ll(s)de(t —5)— X'Qe(t, Y), (3.31)

0
p(t)Da(t) - Ot Dy(s)dpl(s). (3.32)
Dat) = As(t) — OS5t 1) = /0 Ao(8)AFS(t — 5) — VE(t 1), (3.33)
D(t) = Dy(t) — Ay(t) + Da(t), (3.34)

where Ay is given in Assumption 1, X¢ and Dy take the first expression in (3.30) and (3.31)
respectively if Ay is a BM and the second if A isa general Gaussian process, and Bs is a standard

BM, independent of 1211, Ky and K.

We remark about the impact of weak dependence of service times and time-dependent splitting
mechanism upon various processes. Weak dependence of service times in the first service station
affects its queue-length, in particular, in the Xze term with K capturing the effect, see its covariance
formula 'y ; (2, y) in (2.22). The arrival process into the second service station is affected by both
weak dependence of service times and the time-dependent splitting. The queue-length process at

the second service station is affected by three factors, weak dependence of service times at the
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first station and at the second station, and time-dependent splitting. If we only consider two
service stations in series without splitting, by considering the second station alone, the arrival
process entering the second station is simply Dy, the departure process from the first queue. Weak
dependence of service times in the first station affects the departure process Dy in the term X§ in
(3.31). These effects are all captured in the variance formulas for these processes when the arrival

limit process is a Brownian motion, see Propositions 3.2 and 3.3.

Special Case I: EARMA(1,1) Service Times. Jacobs and Lewis (1977) proposed an ap-
proach to generate a stationary sequence of dependent random variables from a sequence of iid
exponential random variables, the so-called EARMA(1,1) sequence, and Jacobs (1980) applied
such stationary sequences to study single server queues with dependent service and interarrival
times. Here we apply to the IS setting with dependent service times.

We construct the two sequences of service times at the two service stations, {n;; : ¢ > 1},
[ = 1,2, from the following mutually independent sequences of iid random variables, {7;; : i > 1}
as a sequence of iid exponential random variables with mean Mfl, {1y i > 1} as a sequence of
iid random variables with P(t;; =0) = o; € (0,1) and P(¢;; = 1) =1 — oy, and {g;; : i > 1} as
a sequence of iid random variables with P(p;; =0) = 5 € (0,1) and P(p;; = 1) = 1 — ;. Define

Nig = g +Vi&i—1g, g = Bi&i—g ey t=1,2,.. (3.35)

with §y; being an independent random variable with mean ,ufl for each [ = 1,2. Then, by Jacobs
and Lewis (1977), for each { = 1,2, {n;1 : ¢ > 1} is a stationary sequence of dependent exponential

random variables with mean ul_l and correlation

Corr(m g meg) = B 21 — ) (1 = B) + (1 —«w)Br), k=2,3,... (3.36)

Thus, each pair (11,7%,), k = 2,3, ..., is a bivariate exponentially distributed random variable with

mean (ul_l,,ul_l) and covariance matrix [0y, : 1,7 = 1,2] with

Ol = Onl22 = 1y (3.37)

and
Ot =onio1 =B 21— a)(au(l = B) + (1 —a)B)py (3.38)
Let Fi;(-,-), k=2,3,...,l = 1,2, be the joint distribution function of each pair (1, 7,) with the

covariance structure in (3.37) and (3.38). Then the covariance I', ,(z,y) in (2.22) can be written
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as

o
Fiea(@y) = Y (Fual,y) + Fuly.2) =20 —e ) (1 =) <00 (3.39)
k=2
u
Special Case II: Batch Arrivals.  Suppose that at each arrival time 7, 2 = 1,2, ..., there are a

random number B; of service requests entering the system at the same time, where {B; : i = 1,2, ...}
is a sequence of iid random variables with a common distribution. Let pgj = P(B; = k) and
S psk = 1. Suppose that E[B;] = S°52 kpgxr < oo and E[BZ] = Y22, k?psx < oo. The
stationary excess distribution of B; is given by pp, = (E[B;])~* Zj:k ps; for k= 1,2,..., and
E[Bf] = (E[B]] + E[B])/ 2E[Bi]) -

For the arrivals in the ¢t" batch, the service requirements {nil,l,m%l, ...,771-61_,;} are correlated
at the I*™® station, [ = 1,2, but mutually independent for the two stations (if the service requests
will occur at the second station) and moreover, for any i*" and ;' batches of arrivals, the service
requirements {1, 1, iy 1, s Nig, 1} and {1, 1,755,015 o T 1} are independent. Then, the covariance

function Iy ;(x,y) in (2.22) becomes

cle) = 3 [pis 3 (B a@ma)) + o, st

=1 k=2
= > [psa Y- (Fuale ) + By, 2) - 2R(@)Fi()) . (3.40)
=1 k=2

where 7;, ;(z) = 1(n;,; < z) — Fi(z) for each service requirement k = 1,...,B; in the i*! batch,
and Fj, (z,y) is the joint distribution function for each pair (1;, ;,7;,,) of the i*® batch. Note that
the job 1 in batch ¢ is not necessarily the first job in the batch, but instead an arbitrary job in
the batch, and thus we use the stationary-excess batch size distribution. For a comparison of the
difference between the first job delay and an arbitrary job delay in a batch for single-server queues,
see Whitt (1983).

Suppose, in addition, that the dependence between any two service requests among the arrivals
in a batch is the same, that is, Fij(z,y) = Fy(z,y) for each pair (n;, 1,7, 1) of the " batch. Then

the covariance function I'}; ;(x,y) in (3.40) can be simplified

Puw,y) = (Fiw,y)+ Fiy,2) - 2R (@) Fi(y) ) (BIB]] - 1). (3.41)
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3.3 Characterizing the FCLT Limit Processes

In this section, we give the characterizations of the limit processes in Theorem 3.2. First, we give
the Gaussian property of the processes XS and 1726 defined in Definition 3.1. Recall that these

processes do not involve the limit process A.

Proposition 3.1 (Gaussian property of X§ and fff ) The two-parameter processes XS and }726 m

(3.30) are well-defined continuous Gaussian processes with mean 0 and covariances

N N t1/N\to
EIX3(t1,y1) X3 (2, y2)] = / (Fl(tl Ntg — ) — Fi(t1 — s)Fi(ta — s)
(tr—y1)V(t2—y2)
TG 1 (= 5,2 = 8) ) dan (s), (3.42)

and

t1/A\t2

E[Y$(ty,y1)Ys (t2,52)] = /

(t1—y1)V(t2—y2

%2 (tt — s,t2 — 3))]9(8) /08 Ji(s — U)dc_h(u)}ds. (3.43)

: [(Fz(tl Nty — S) — Fg(tl — S)Fg(tg — 8)

Proposition 3.2 (Gaussian property with time-varying arrivals) Under Assumptions in Theorem
3.2, if, in addition, A(t) = 1/02713[1,1(@1(75)), where By 1 is a standard BM, a;(t) = fg A1(s)ds

and 02,1 is the SCV of the interarrival times, then the limit processes are all continuous Gaussian

Di(t) £ N(0,03, (1), As(t) = N(0,0%,(1)),  Da(t) < N(0,0%,(t),
Qi(t.y) EN(0,03, (1), Q5(ty) < N0, 0B, . (1,y)), (3.44)
where
o3 (b y) = /t iy M (8)(FE(t = ) + (g~ DS (t — 8))° + Tia(t = st —5) s, (3.49)

o3 (1) = /0 M (s) (Filt = )+ (y — D~ )° + T (t = 5.0 —5))ds,  (3.46)

t t
00, c(ty) = 0%, (1) + (F5(y)) ok, (t —y) + /t t Ca, (u, v)dF5(t — u)dF5(t — v) (3.47)
-y -y
t
_QFZC(y)CAz (t7 t— y) -2 CA2 (t, S)dF2C(t - S)
t—y
t
12F5(y) [ Caylt —y, 9)aFs(t — 5)

t—y

20



+/ (F5(t = 5) = (Fs(t — ))* + Ticalt — s, — 5) ) pls) /0 fils — A (u)duds,

t—y

o, (t) = /0 /0 Cia, (u, v)dFE(t — w)dFS(t — v) (3.48)

—l—/o (FQC(t —5)— (F§(t—s))* + Lot —s,t — s))p(s) /OS fi(s — u)A1(uw)duds,

o4, (t) = p(t)QO’%l(t)ﬂL/ 0/231(5)@(5)—229(15)/ Cp, (t,s)dp(s)
0 0
+/0 p(s)(l—p(s))/o fi(s —u)A1(u)duds, (3.49)
with
Cpultit) = &, /0 Y M) FL( — $)F (t — 5)ds, (3.50)

t1/N\t2
+/ M) (F(t At = 5) = Fi(ta = )Ff(ta = 5) + T (b — 5,12 — 5) ) d,
0

Caltiots) = pleplta)C, (1) + [ ! OtQ Oy (. 0)dp(u)dp(v)
“pltn) [ Oy 1,0)apt0)  ptt2) [ Oy, 2ot
0 0
n /0 ) = p(s)) /0 Fu(s — W (w)duds. (3.51)

Proposition 3.3 (Gaussian property in the standard case) Under Assumptions in Theorem 3.2

and in the standard case, (3.44) holds with

Thoeltn) = M [ (PR )+ () - DOFEE - 9)° + iyt = s, 9))ds

Y /0 ’ (FE(s) + (¢ = DFF(3)) + T (s, 9) ) ds, (3.52)
2 = M /0 (Fi(s) + (1~ (P (5)) + D (s ) ) ds (3.53)
0.2
tim 220 3[R0 + (20~ DEOP +Tia0)] = e (350
B0 =170b, (0 450~ 9 [ Fi(o)is (3.55)
i ,242(t) . 2 9
Jim == =p(1 = p)As + p Aicay, (3.56)
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t
o3 (ty) = p)\l/ (Bt =)+ Diealt — 5.t — ) Fy(s)ds
-y

t ot
+p2)\1{/t_y/ty FQC(t—u\/v)FQC(t—u/\v)(fl(u\/v—u/\v)

+(c2 1) /0“/\” filu—s)fi(v— s)ds))dudv

+/tiy /tiy Ff(t—u)Ff(t—v)[/OuM (af;ur%’l(s — U, s —v)>ds}dudv}

LN W /Oy (FQC(S) + F%z(s,s))ds
P2\ /y/y Ff(u\/v)Ff(u/\v)(fl(u\/v—u/\v)
+(c2 1) / fi( s—u)fl(s—v)ds)>dudv

/ / F5(u)F5(v /OO <8§;u (s—u,s—v))ds}dudv}

b = v [ (16 + (6~ DR — [ (B —0)F e
_Q/OtFQC(t—u)<F1(t—u)+ / h u—sFl(t—s))ds>d

—I—/Ot/OtFQC(t—v)Ff(t—u)(fl(u\/v—u/\v)
+(c§1 - 1) /UM filu—s)fi(v— 3))ds)du} dv

/ / / D (u 8,v—3)>ds}f2(t—u)fg(t—v)dudv}

+p(1 —p)At ; F2(t — 5)?Fy(s)ds

+p/\1/0 (Ff(t —5) — (FS(t—s))* + CRo(t — st — s))Fl(s)ds,

and
b, (t)

lim =p(l —p)A1 +p*\icl ).

4 Proofs

4.1 Proof of Theorem 2.1

(3.57)

(3.58)

(3.59)

We first showing the convergence of the finite-dimensional distributions (f.d.d.’s) and then we show

tightness of {U,, : n > 1} in the space D([0, c0), D(]0,1],R)).

For the convergence of f.d.d.’s, we can apply Theorem 1 of Berkes and Philipp (1977) under the

¢-mixing condition and Theorem A of Berkes, Hormann and Schauer (2009) under the S-mixing

22



condition to deduce that, for 0 <t <ty < -+ < ty,
(Un(tl7')v'--aUn(tka')) = (U(tl’)vaﬁ(tlﬁ)) in D([O’ 1]5R)k as n — 00, (41)

where the k elements in the limit are random elements in the functional space D([0,1],R). Then,

by those two theorems above, for each ¢;, we have that for each x, 1,...,2¢

iJt;
(0n(t1’ xtlJ)? ceey ﬁn(tl’ 5Ut1,jti)7 Ty ﬁn(tka xth)? ) Un(tlﬁ xtk,jtk)) (4-2)
= (U(tlaxt1,1)7"'7U(t17$t1,jti)7"' 7U<tk71'tk,1)7"'7ﬁ(tk7$tk,jtk)) in Rjtl+.‘.+jtk as n — oQ.

We next show the tightness of {U,, : n > 1} in D([0,00), D([0,1],R)) by applying the tightness
criteria in Theorem 6.2 in Pang and Whitt (2010). First, the stochastic boundedness of {U,, : n > 1}
in D([0,00), D([0,1],R)) follows easily from the convergence in D([0, 1]?,R) under either the ¢-
mixing condition or the S-mixing condition.

Then, it suffices to show that

—0 n—ooo  kn t<

lim lim sup sup P <sup Ay, (Un(kin +t,-), Up(Kin, ) > g) =0 (4.3)
D

where {k,, : n > 1} is a sequence of uniformly bounded stopping times with respect to the natural
filtration G, = {Gn(t) : t € [0,T]} with G,(t) = o{Up(s,-) : 0 < s < t} VN satisfying the usual
conditions (complete, increasing and right continuous). Due to the fact that the Shokorod J; metric
for any two functions in D is less than the uniform metric (§3.3, Whitt (2002)), and moreover, by

easily observing that

P (Sup sup

Un(/fn + t,l’) - Un(ﬁnaw)‘ >g
1<9 2€0,1]

< 2P |(sup sup ‘Un(/{n+t,x) — Un(nn,x)‘ >q |,
t<9 z€[0,1/2]

we only need to prove that

lim lim sup sup P (sup sup  |Up(kn +t,x) — 0n(/€n,$)’ > g) =0. (4.4)

=0 n—oco  kn t<9 z€[0,1/2]

The sequence {7y (z) : k > 1} for each = € [0,1] is stationary and ergodic, because {{; : k > 1}
is stationary and ergodic under either the ¢-mixing condition or the S-mixing condition, and
moreover,

Elp(x)] =0, Elyw(x)?]=z(1-z)< -, forall z¢€l0,1].

.
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We now construct a martingale difference sequence from the sequence {y;(-) : £ > 1}. We follow
the idea in the proof of Theorem 19.1 in Billingsley (1999). Let F = {Fj : k¥ > 1} be the natural
filtration generated by the sequence {{ : k > 1}, defined by Fj, = 0{&; : i < k}. Define

ZE Yrri(2)|Fe], x€[0,1], k=1,2,.. (4.5)
and
Fk(x) = yi(x) + A(x) — p—1(x), x€]0,1], k=1,2,... (4.6)

Then, the sequence {J;(z) : k > 1} for each = € [0,1] is a martingale difference sequence, because

for each k > 1,

Elfpn (@) Fe] = Bl (@) + a1 (2) — n (@) Fi]
= Bl @) + B[ Y Bbwsi(@)|Funl| Fe| - EG(@)|Fd
=1
= Elnr1(@)|F] + Y Elyesi4i(@)| Fe] — Z Elypyi(2)| Fi)
i=1

= Bl (@)[F] = Elyea (2)| Fi] = 0,

and B[54(z)
Define the processes U, = {U,(t,x) : t,z > 0} by
G
Un(t, z) \f Z’yk (4.7)
Then it follows that for each t > 0 and = € [0,1], (see the proof of Theorem 19.1 in Billingsley
(1999))

] < oo since B3k (z)|] < oo by (2.13).

Lnt]
10 (t, ) — Un(t,2)|| 12 = \FZ —A—1(2)]| =0 as n— . (4.8)
L2
Hence, for each z € [0,1], &, and n > 1, the process {Up, (kn +t,2) — Up(kin, x) : t > 0} defined

by

) ) | Lot
Un(tin +t,2) — Un(kin, z) = % Z Yi(@) (4.9)
k=|nkrn|+1

is a locally square integrable martingale with respect to the filtration {G,, 4+ : t > 0} by Doob’s
sampling theorem. The difference between ﬁn(mn +t,x)— Un(nn, x) and Un(mn +t,x)— ﬁn(mn, x)

is asymptotically negligible as n — oo because for ¢t < 1 small,

1 [n(kn+t)] 1 [n(kn+t)]
7n Z (u(x) — (@) = 7n Z (Fk(@) = Ar—1(z))
k=|nkn|+1 L2 k=|nkn]+1 12
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—0 as n — oo.

1 . .
= H\/ﬁ(’YLn(linth)J () = Ypnsn (2))

L2
Thus, it suffices to show that
lim limsupsup P | sup sup |Up(kn +t,2) — Un(ﬁn,x)‘ >¢| =0. (4.10)
—0 n—oo Ky t<d z€[0,1/2]

For each z € [0,1], k, and n > 1, the process {Uy(kn + t, %) — Up(kn,x) : t > 0} is a locally
square integrable martingale with respect to the filtration {G., 4 : t > 0}, and then, by Doob’s

maximal inequality,

P (sup sup  |Up(kin +t,2) — Un(kin, x)‘ > §>
t<9 z€[0,1/2]
1 a . 2] 1 et 2
< —<E| sup |Up(kn+9,2)—U,(k ,:c)‘ = —E | sup —= ()
2 x€[0,1/2] ! ) n(tn ¢? z€[0,1/2] Vn k:[%]+1 (

Then, it is obvious that for each fixed n and k, {7x(x) : € [0, 1]} is a square integrable martingale,

and so is {Up(kn + t,2) — Up(kn, x) : © € [0,1]}, and thus, by Doob’s maximal inequality again,

P (sup sup Un(/in +tx)— Un(lﬂn,l‘)‘ > g)
t<9 2€[0,1/2]
) | lnlent)] 1
< P NG k_LZJH%u/z) < §—2(19 +1/n)M,

where M, = > 72, E[7(1/2)?] < oo. This upper bound goes to zero as ¥ — 0 and n — oo and
thus, (4.10) holds. The proof is complete. =

4.2 Time-Dependent Splitting

In this section, we obtain an FWLLN and an FCLT for counting processes split from one counting
process with a stochastically independent but time-dependent splitting mechanism. This generalizes
standard iid splitting of counting processes, as in Theorem 9.5.1 in Whitt (2002).

Let A = {A(t) : t > 0} be the original counting process with event times {7; : i« > 1} where
71 <Te<---,and A(t) = max{n >0:19+71+--+7, <t} with 7o = 0. Suppose that the process
A is split into m counting processes (Ai, ..., Ap,), where A; = {A;(t) : t > 0} for j =1,...,m. Let
X; ; be a random variable taking values 0 and 1, indicating if the ith event in A is split into the
process Aj, that is, X; ; = 1 if ; becomes an event time for A; and X;; = 0 otherwise. Then, we

can write

®)
Ai(t) =D Xy, t>0. (4.11)
=1

25



Let F = {F; : i > 0} be the filtration generated by the event times {r;}: F; =o{n : I <i} VN
with N being the null set and let Foo = o{7; : 4 > 1} VN = o{A(t) : t > 0} VN. We consider a
sequence of such counting processes and their split processes indexed by n and let n — oo.

We consider time-dependent splitting probabilities. Let these splitting probabilities be specified
by a vector of functions p = (p1, ..., pm) in D([0, 00), [0, 1]™), such that the following three conditions
hold:

(1) 32721 pj(t) < 1 for each t > 0.

(7i) p is piecewise-smooth, as specified in Assumption 3. Moreover, we require that

{ti:i=1,.myN{m;:i>1}=0 wp.l (4.12)

5

for all n.
(#4i) the sequence {X,,;; : ¢ > 1} for each n and j = 1, ...,m is a sequence of mutually conditionally

independent random vectors given F;, o, and
E[Xn,i,j’]:n,i] = pj(Tn,i)a 7 Z 1, j = 1, ey M. (413)

The final condition about the discontinuity points in (i7) is automatically satisfied if the stochas-
tic processes A, are continuous in probability, as in the case of a renewal process, where the time
between renewals has a continuous cdf. Condition (iii) can be relaxed to allow the sequence
{Xnij —pj(Tni-1) : i > 1} with 7,0 = 0 to be a Fy-martingale difference sequence (m.d.s.) for

each j =1,...,m, that is,

EXpnij—pj(Tni-1)|Fni-1] =0, i>1. (4.14)

Define the following fluid-scaled processes

A, =n"tA,, A, j=n"tAy, j=1,.,m. (4.15)

Theorem 4.1 (FWLLN for time-dependent splitting processes) Suppose that there exists a contin-

uous nondecreasing deterministic function a > 0 such that

A, =a in D([0,00),Ry) as n — oo, (4.16)

and a wvector of deterministic functions p = (p1,...,pm) € D([0,00),[0,1]™) and a sequence of
random variables {Xp;j:1> 1,5 =1,...,m} taking values 0 or 1 for each n that satisfy the above
conditions (i) — (iii). Then,

(Ana, - Apm) = (a1, ...,am) in D™ as n — oo, (4.17)

26



where

t t
o) = [ mda) =) = [ adny(s) t20. F=Tim (@18
and the last integral is understood as in (2.7). If, in addition, a(t) is absolutely continuous with the

almost everywhere derivative a(t), then a;(t) in (4.18) can also be expressed as
t
a;(t) = / pj(s)a(s)ds, t>0, j=1,...,m. (4.19)
0

Proof. By (4.11), for each j =1,...,m and t € [0,T] \ {t1, ..., tm},

B 1 nAn(t) 1 nAn(t) B ¢ -
An,j(t) = - Z Xnjij = - Z Xnjij +/O pj(S)dAn(S) (4.20)
=1 i=1

where )N(nyi,j = Xnij; — F[Xnij|Fni]. It is easy to see that {ij : i > 1} is a martingale
difference sequence with respect to the filtration F,,. Thus, the first term in (4.20) converges to
0 by the FWLLN for m.d.s.’s. (Theorem 2.13 in Hall and Heyde (1980), note that E[X,;;] = 0
and E[Xg,i,ﬂ]:n,i] = pj(Tn,i)(1 =pj(Tn,)) < oo w.p.1 and fOij(s)(l —pj(s))ds < oo for each T' > 0

so that the m.d.s. is in L2) For the second term in (4.20), since A, (t) is increasing with finite

variation, we can apply integration by parts,
t - - t
| pdints) = A0~ [ Au(e)dny(o)

= An(t)p;(t) —/0 An()pj(s)ds =y 1(tx € [0,8]) An(t) (py(tr) — pj(te—)),  (4:21)
k=1

where the second line follows from the definition of the integral in the last term of the first line as
in (2.7). We remark that a key assumption for this integral definition to be valid is that there is
no common discontinuity of A,, and p; w.p.1 (condition (ii)).

Consider the mapping ¢ : D[0,T] — DI[0,T] defined by

2(t) = P)(t) = /0 p;(3)da(s)

= x(t)p;(t) —/0 w(s)pj(s)ds — Y Lty € [0, )a(te)(p;(te) — ps(te—)),  (4.22)

k=1
where z is continuous. Then it is evident that the mapping ¢ is continuous in the Skorohod Jy
topology. So by the CMT, we obtain the convergence in (4.17). =

Define the diffusion-scaled processes

An(t) = Vn(An(t) —a(t), An;(t) =vVn(A,;(t) —aj(t), j=1,..m, t>0.(4.23)
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Theorem 4.2 (FCLT for time-dependent splitting processes) Under the assumptions of Theorem

4.1, if in addition, there exists a stochastic process A with continuous sample path such that
Ay = A in D(0,00),R) as n— oo, (4.24)

jointly with (4.16) with the Skorohod product topology. Then,

~ A ~

(Ana, ...,fln’m) = (A1,....,Ay) in D™ as n— oo, (4.25)
where the convergence is joint with (4.16) and (4.24), and for each j =1,...,m,

a0 = B ([ me0-penis )+ [ i) (4.26)

t

A~

= 5 ([ o0 - me)dols) ) + (040 - [ As)ano),

where B = (B4, ..., By) is a standard m-dimensional BM independent of A, if A(t) 4 cqoBg(a(t))
for a standard BM independent of B and c? being the SCV of interarrival times of A, /lj (t) takes

the first expression in (4.26) and the second term

/Otpj(S)dfl(s) £ ¢Ba(a;(t)) = caBa (/Otpj(s)da(s)> , t>0, (4.27)

with a;(t) given in (4.18), or if A(t) is a Gaussian process, flj(t) takes the second expression in

(4.26) with the last integral understood as in (2.7).

Proof. Fix T > 0. We will prove the limits hold in D([0,7],R™), which then easily extends to
D([0,00),R™). By (4.23) and (4.21), we obtain

nAn(t)
1
An(t) = Vo~ > Xnaj—ai(t)
=1

1 nAp(t)

= Vn " Z [Xnsij — ElXni i Fnill +/ pj(s)dAn(s) — a;(t)
=1 0

1 nAp(t) ) ; R
= 7= ; Xnij+ /0 p;(s)dA,(s). (4.28)
For the first term in (4.28), we apply the FCLT for m.d.s.’s, Theorem 6 in Rootzén (1980). To
check the conditions, first, choose ¢, = A,(T") + 1 so that the sequence {(, : n > 1} is a sequence
of F-stopping times such that ¢, > A, (T) w.p.1 and second, since |Xn,i’j| < 1 w.p.1, it follows that

Elmax;<i<¢, | Xn,ij/v/n|] — 0 as n — oo for each j = 1,...,m. Moreover, by (4.16), we have

nAp(t)

Z (Xn7i7j/\/ﬁ)2 j=1..m]| = </0 pi(s)(1 —pj(s))da(s) : j =1, ,m) , (4.29)

i=1
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in D([0,T],R™) as n — oco. Thus, by Theorem 6 in Rootzén (1980),

;ﬁn%ﬂfcw i=1,.m | = <Bj </Otpj(s)(1 —pj(s))da(s)> = 1m> (4.30)

in D([0,T],R™) as n — oo for standard m-dimensional Brownian motion B = (Bjy, ..., By,).

For the convergence of the second term in (4.28), since A, is the difference of two monotone
functions, it is of bounded variation and we can represent the integral in the final term of (4.28)
using integration by parts, paralleling (4.21), with A, instead of A,. In that framework, we can
then apply the CMT with the mapping ¢ in (4.22). =

4.3 Proofs of Characterizations of the Limit Processes

Proof of Proposition 3.2. First, since the process K is continuous Gaussian, the process X;k
defined in (3.26) and (3.27) is also continuous Gaussian for each & > 1, and thus the limit as £ — oo

is also Gaussian. Next, we want to calculate
E[(X5(t1, 1) — X5(t2,2))?) = Jim E(X5 (11, 51) — X5 4 (t2,42))] (4.31)

for each t; < t9 and y; < yo.

Define for t; < t9 and z1 < z9,
AK,l(tl,tQ,xl,xQ) = Rl(él(tg),xz) — IA(1<C_I,1(t1), xg) — Kl(@l(tg),:(}l) + Rl(él(tl),.%l). (4.32)

Then, for tl § tg and T § 9,

= E[Ki(a1(ty), z2)?] + E[K1(a1(t1), 22)%] + E[K1(ay(t2), #1)?] + E[K1(a1(t1), 21)?]

a1 (t1) 1 (x2, x2) — 2a1(t2) T 1 (22, x1) + 261 (81) T 1 (22, 1) + 261 (t1) Tk 1 (22, 21)
—2a1(t1) T 1 (22, 1) — 2a1 (61) T 1 (21, 21)
= (ai(t2) —a1(t1))[Cr(x2, z2) + Tk a(z1,21) — 20k 1 (22, 21)]

= (a1(t2) —ar(ha)) (Fr(22) — Fi(20)) (1 + Fi(z) — Fi(z2))

29



+(a1(tz) — a1 (t1)) L1 (z2, 22) + T 1 (21, 21) — 20% 1 (22, 21)] (4.33)
and for t; <ty and x1 < x9, t) < t, and 2} <} and to < t],
E[AKJ(tla t27 xy, xQ)AK,l(tllv t/2> ;U/h $,2)] =0 (434)

We choose the same set {sf :0 <i <k} for t; <ty and y; < yo so that ty — ys = slg < e <
sﬁ = to for each k > 1. Without loss of generality, assume that to — yo < t; — y1. Then, we can

write

Xfa(t1.n) = X5 (b2, 2) = ZAKl S;p, st — sy ty — s)), (4.35)

and by (4.33) and (4.34), we obtain
R R k
E[(Xg,k(t17y1> _Xs,k(t27y2))2] = Z [(AKl( Si— 17317t1 kth _Sf))Q]
i=1

k
> (@ (sh) - @1(8571))[(1’1( 2 —sp) — Fi(ty — sf))(1+ Fi(ty — s7) — Fi(ta — 7))
i=1
D1 (b2 — 8§ ta — s§) + Ty (b1 — st — sF) = 20% 1 (ta — sF .t — sP)]|. (4.36)
Thus,

E[(X5(t1,y1) — X5(t2,92))%]

= /t 2 [(Fl(tQ —u) — Fi(ty —u)(1+ Fi(t; —u) — Fi(ta —u))

2—Y2

+[F%’1(t2 —u,tg — u) + F?(,l(tl —u,t; — U) — 21—‘%,1(1:2 —u,t;] — u)]} da (u) (437)

for each t1 < t9 and y; < yo with to5 — y2 < t1 — y1. The continuity property of Xg(t, y) in both ¢
and y w.p.1 follows from (4.37) by applying Chebyshev’s inequality and the continuity of a;. The

covariance of Xze(t, y) follows from a similar argument. The proof is completed. =

4.4 Proofs for the FWLLN

Proof of Corollary 3.1. We only need to remark on the long-run average rate for D,, 5. First,

J t
tim 20—y i /0 fo(t = 5)Fi(s)ds,
and then,
t t t
/ holt—s)Fi(s)ds = / Fu(s)dFS(t — ) = Fy(t) — / FE(t — $)dFy(s)
0 0 0
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=  F(t) - /Ot (fl(s) - /05 fa(s — u)fl(u)du>ds

= [ [ 5t o

= h / ol — w) i (w)duds
= /Ooo /uoo fo(s — u)dsfi(u)du = /000 /000 fa(s)ds fi(u)du = 1.

4.5 Proofs for the FCLT

Proof of Theorem 3.2 Here we outline the main steps to prove the joint convergence of the
processes in (3.28). Once we prove the convergence of Qfljl, the convergence of ﬁml follows from
applying the CMT to the addition mapping, and the convergence of /lng follows from applying
the time-dependent splitting of counting processes in Theorem 4.2. Once the convergence of Qfﬂ
is proven, the convergence of both lA)mg and D,, will follow from again the CMT to the addition
mapping. Thus, The main task is to prove the joint convergence of an and Qfﬂ For both
processes, the convergence of Xﬁl and er1 follows from applying CMT to the following mapping
¢:DxD— Dp
t

o, 2)(t,y) = 2(t) — 2(y)a(t —y) - / A=), by 20 (4.38)
where x,z € D. The continuity of the mapping ¢ in the Skorohod J; topology follows from a
similar argument as in the proof of Lemma 6.1 in Pang and Whitt (2010), and thus, is omitted.
Then, it suffices to prove the joint convergence of Xﬁz and Y;Q We will take two steps: tightness

(Lemma 4.1) and convergence of f.d.d.’s (Lemma 4.2). =

Lemma 4.1 (Tightness) Under the assumptions of Theorem 3.2, the processes {(A, 1, X1 Xﬁ’%
Dy, Ap o, }77571,17,?72, Dpo) :n > 1} are tight in D x D3 x D? x D% x D, and so are the processes

{(An,hthlyDn,laAn,%QfL,Q)Dn,Z) n 2 1}

Proof. The tightness of the processes {A,; : n > 1} and {X’le : n > 1} follows from the
Assumption 1, and the convergence of Xf;l from applying the CMT to the mapping in (4.38).
For the tightness of {XEQ :n > 1}, we first construct a martingale difference sequence from

the sequence {n;1 : ¢ > 1}. As in the proof of Theorem 2.1, we follow the idea in the proof of
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Theorem 19.1 in Billingsley (1999). Let F; = {Fj; : k > 1} be the natural filtration generated by
the sequence {n;1 : ¢ > 1}, defined by F1 = o{n;1 : i < k} VN. Define

1 (@) =Y Elyprin (@) Fral, >0, k>1, (4.39)
i=1
and
() = Y1 (@) + a1 (r) = p—11(x), >0, k>1, (4.40)
where
Yea1(z) =1y < z) — Fi(z) = —(2(ng1 > =) — Fi(z)), >0, k>1 (4.41)

Then, it is easy to check that for each z > 0, the sequence {J;1(x) : kK > 1} is a martingale

difference sequence. Define

1
Kpi(t,z) = —=)» Awa(z), t,x>0, (4.42)
Vi
and _
) . 1 [nAn1(2)]
Ryi(t,z) = Kp1(Ap1,2) = 7 Ve (x), t,z>0. (4.43)
E——

Moreover, define the processes szﬁ by
Xnolt,y) = / / 1(s+z>t)dRy1(s,z), t>0, 0<y<t (4.44)
t—y JO

We now show that the difference between Xﬁz and Xﬁg becomes negligible as n — oco. By the

definitions of Xfw and X¢,. we have

n,29
~ A~ t o0 ~ A
Koty - Xiptn) = [ [ 164> 0d(Ror(s0) - Ruslso) (@9
t—y J0
where _
) X 1 [nAn,1(s)]
Rpi(s,2) — Rpa(s,z) = —= (Y1 (z) = Ap—1,1(2)). (4.46)
\/ﬁ k=1
By Assumption 2,
E[(Ak1(2))%] = E[(fk-11(x))*] <00, k>1, x>0, (4.47)
and similar to (4.8),
1
— Zﬁlk 1(x) = Ag—11(x))|] —0 as n—oo, for t,z>0. (4.48)
vn Pl o ’ o
- 12
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By Assumption 1, 4,1 = @ with @ being a deterministic and continuous function, it follows that

~ N

E[(Ru1(s,2) — Rpa(s,2))?)] =0 as n—o00, for sa>0, (4.49)

and thus,
E[(X5o(ty) = X5o(ty)?] =0 as n—o0, for t,y>0. (4.50)

Therefore, it suffices to prove the tightness of the processes {Xfﬂ :n > 1} in Dp.

We observe that the processes X oo in (4.44) can be written as

~ 1 An’l(t)
coltby)=—= Y Aualt—1). (4.51)
vn
1=Ap,1(t—y)

We will apply Theorem 6.2 in Pang and Whitt (2010) to prove the tightness property of {X’ﬁyz :
n > 1}. First, we show the stochastic boundedness of X;Q. It suffices to show the stochastic

boundedness of

n,1(t)
na(t) T Z 1(t— 7" (4.52)
i=0

since for each ¢ and y, XZQ(t, y) < XZ, (t). We will show that for any 7" > 0,

L—o00 n—o0

lim lim P (Sup | X5 o (t)] > L) =0. (4.53)
t<T
For any constant L > 0, we can write

P <sup X, (0)] > L) <P(A,1(T+1)>L)+P (sup Kot (A1 () ALt —74)] > L) (4.54)
t<T t<T

where K, 1(t, ) is defined in (4.42). By the Assumption 1, the sequence of processes {4, 1 : n > 1}
is tight, and thus
lim limsup P(A, (T +1) > L) = 0. (4.55)

L—oco n—oo

Since {7x,1(x) : kK > 1} in an ergodic martingale difference sequence for each = > 0, by the Lenglart-

Rebolledo inequality (see, e.g., p.30 in Karatzas and Shreve (1991)), for any constant L

P <sup (K1 (Ap1 () ALyt — 7)) > L) <L/L+P (<K’n,l(An,1( YALT —7)) > L) (4.56)

t<T
where ) .
o v (A (AD)]
(Kna1(An1(T) AN LT —114)) = - z; E[Fia (T — 7)), (4.57)
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and B
[n(An,1(2))]

1 t
- Eia(t — 7'17?1)2] = / EFia(t— s)Q]dél(s) < oo as n — oo. (4.58)
0

=1

We can choose L large (but fixed) so that

lim lim P (sup |Kn1(Api(t) ALt — 71| > L) =0, (4.59)
L—o00n—00 t<T ’
and thus (4.53) is proved.
We next show that for any ¢ > 0
lim lim sup sup P (sup Ay, (Xpno(kn +1t,-), Xno(kn, ) > g) =0, (4.60)

—0 n—ooco  kKn t<y

where {k, : n > 1} is a sequence of uniformly bounded stopping times with respect to the filtration

H, = {H,(t) : t > 0} and with upper bound x*, where
Ho(t)=o{nii <s—71:1<i<Ap1(1),0<s <t} V{Ay1(5): 0< s <t} VN (4.61)

and H,, satisfies the usual conditions. It suffices to show that for any ¢ > 0

lim lim sup sup P | sup sup Xn’g(/ﬁn +t,y) — X’ng(/{n, y)’ >¢ | =0. (4.62)
920 nooo  kn t<9 y€[0,TA(kn-+t)]

For each n, Ky, y > 0 and t < ¥ small, by (4.51)

Xnﬂ(’in + t7 y) - XTLQ(K?"H y)

An,l(ﬂn“l‘t) An,l(“n)

1 . 1 .
= T > ’Yi,l(“n+t_7i7?1>_ﬁ Yo Al =)
1=An,1(kn+t—y) i=An,1(kn—y)
1 An,l(ﬁn‘i’t) 1 An,l(ﬁn)
= 7 Z Yip(kn +t—71) — NG Z Vi (Fn — 7i11)
i:An,1(5n+t_y) i:An,l(’fn"‘t_y)

1 An,l("@n'f‘t_y)
~n > Fialkn— 1)
1=An1(kn—y)
1 Ap 1 (kntt) 1 An,1(kn)
= X ubmert—d)- s 3 [l ) e i)
i=An,1(kn)+1 i=Ap 1(kn+t—y)
1 Ap1(kn+t—y)

—ﬁ Z Vi1 (Fn — znl) (4.63)

7::An,l (any)

3

Then, for any L > 0, we have

P (Sup sup ‘Xn,z(ron +t,y) — Xn,z(fimy)‘ > <)
£<0 y€[0,TA(Kn+t)]
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< P(Apa(s*+1)>1L)
1 n(An,1(kn+t)AL)
+P | sup|— E Yii(kn +t — TiT,Ll) > <
t<d v i=n(An,1(kn)AL)+1
H(Anﬂl(lﬁn)/\L)
> Fialin = 0) = Fia (i + ¢ = 7) || > ¢
i=n(An,1 (R +t—y)AL)

+P | sup sup
t<9 ye[0,TA(rn+1)]

Rl

n(An’l Knt+t—y)AL)

2. ik =1 > < | - (4.64)

i=n(An,1(kn—y)AL)

+P | sup sup
t<9 ye[0,TA(kn+t)]

Bl

By Assumption 1, we have

lim limsup P (A, (k" +1) > L) = 0. (4.65)

L—co nooo

For the second term on the right hand side of (4.64),

1 n(An,l(nn—l-t)/\L)
P | sup 7 Z Fip(kn +t—=74)| > ¢
t<v i=n(An,1(kn)AL)+1
1 n(An,1(Kn+t)AL)
< P|sup|— Fia(kn —7i1)| >
t<v \/ﬁi:n(Anyl(nn)/\L)—i—l
n(An,l(nn+t)AL)
+P W m > i (fn +t = 71) = Yip(kn — 7)) > <] . (4.66)

i=n(An,1(kn)AL)+1
For each n and ¢ > 0, by Lenglart-Rebolledo inequality, the first term on the right hand side of
(4.66) satisfies

1 n(An’l(nnth)/\L)
P | sup

— > Yia(kn — 71| > <
<o |V i=n(An.1 (Rn)AL)+1

c 1 n(An,1(kn+9)AL)
< E‘FP <\/ﬁ Z '?i,l(’fn—ﬂ??l)>>§~
i=n(An,1(kn)AL)+1
Cop (1S st - (467
= -+ - Vi1 (n — 75" >< .
o " i=n(Ap,1(kn)AL)+1 !
where
1 n(An,1(kn+9)AL) 1 n(An,1(£)AL)
FRED DR 2 CRTCE G L S E[(Fia(t = /1)) (4.68)
i=n(Ap 1 (R )AL)+1 SASTATs—t<O ™ s (4,1 (s)AL)+1

and thus, by (4.58) and choosing ¢ arbitrarily small, we have that for any ¢ > 0,
n(/_lml(mn—l—t)/\L)

lim limsupsup P | sup |— Z Yi1(kn —T1i1)| > | =0. (4.69)
90 oo ke t<v \/ﬁi:n(AnJ(Nn)/\L)-i-l
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Since for each n and 4, {%;1(x) : © > 0} is a square integrable martingale with respect to the
filtration G = {G(t) : t > 0} where G(t) = o{1(n;1 <z):0<z <t,i=1,2,...} , then by Doob’s
maximal inequality, for any ¢ > 0,

P (sug H’i,l(’{n +t— 7'@‘7?1) - ﬁi,l(/{n - T;}l)| > C]
t<

< ¢PE[Fia(hn +9 — 1) = Vit (kn — 71))°] = 0 as 9 — 0. (4.70)

Moreover,

[n(An,1(t))] t
1 3 5 . 3 5 _
- > El(Fip(t+0—1) =31t —7/1))%] = /0 E[(Fia(t+9 = s) = Fi1(t — s))*]day (s) < oo.

=1
(4.71)
as n — oo and the limit in (4.71) goes to 0 as ¥ — 0. Thus, it follows that for each ¢ > 0,
n(An,1(kn+t)AL)
lim lim supsup P | sup |— Z Fia(kn +t—71) = Yia(kn —71)]| > ] =0
=0 n—oo  knp t<d \/ﬁi:n(ﬁnyl(nn)/\L)-i-l
(4.72)

For the third term in (4.64), a similar argument applies by observing that for any y € [0, A
("in + t)]a

n(An 1(kn)AL)

1 - -
- 3 % m = ) = T (o + £ = 7))

i:n(/_lml (kn+t—y)AL)

n(An,1(kn)AL)

> 5. m = 74) = it (s + £ = 7%)| (4.73)

The last term in (4.64) follows from the same argument as in the first term in (4.66). Thus, (4.62)
is proven, and tightness of the processes {)foh2 :n > 1} is proven in the space Dp, which implies
the tightness of {X52 :n > 1}

By the tightness of {bel :n > 1} and {X;Q :m > 1}, we obtain the tightness of {Q%l in > 1}
in Dp, which implies tightness of {1521 :n > 1}, and thus tightness of{thl :n > 1} . By the
splitting definition of A, 5 in (2.3) and their scaled processes A, in (3.4) and A, in (3.19), the
processes {12122 :n > 1} are tight, which also implies that Amg = ao in D. Then, the proof of
tightness of the processes {f’nel :n > 1} and {Y;Q :n > 1} follows from a similar argument as
for {Xﬁl :n > 1} and {XEQ :n > 1}. Thus, the processes {Q%1 :m > 1} are tight in Dp and
{15572 :n > 1} are tight in D. Finally, the joint tightness of all these processes in the product space
follows from! tightness of each sequence of processes in their own space (Theorem 11.6.7, Whitt

(2002)). This completes the proof. =
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Lemma 4.2 (Convergence of finite dimensional distributions) Under the assumptions of Theorem

~ A~

3.2, the finite dimensional distributions of the processes (Ap 1, X,‘il, )A(S’Q, lA)nyl, flmg, Yne?l, Yyo, Dng)
converge in distribution to those of the processes (/11, Xf,f(f, Dl,Ag,Yf,fff, ]:)2)

Proof. As in the proof of tightness, we mainly focus on the proof for the convergence of the
f.d.d.’s of the processes Xﬁg to those of X§.
First, we write the processes Xﬁ2 and )7152 defined in (2.26) and (2.28), respectively, as the

limit of mean square integrals, as in (3.26) for X;,

(ot y) = limgeXE ok (ty), and Yio(ty) = Limp oYy, (t,y), (4.74)
where
R t [e%s) R k
Xpokty) = / / 1t y(s,2)dRy (s, x) = Z Ap 1(3?_1, skt — sk t)
t—y JO i=1 ’
k
= > A, (Apa(siy)s Apa(sh),t = s7,) (4.75)
i=1
t o) R k
Yn2k(t)y) = / 1k7t,y(87x)an2(87x) _ZAR,L (Sifhsfvt_si?vt)
t—y J0 =1 7
k
= i (Ana(si1), Ana(sh), t — s7,t) (4.76)
i=1

with 15 ,(s,z) defined in (3.27) for t —y = s < s < --- < s} = ¢ and maxj<;<x |sF —sF ;| = 0

as k — oo, and
A}?ml(‘s?flv Sf? t— 3?? t) = Rn,l@f? t) - Rn,l(si'ib t) - le(Sf, l— Sf) + le(si’il, l— Sf) (4'77)

Similarly, for X'Qe and Yf, we write them as limits of mean square integrals of X;k and }Affk,

respectively,
R t o) R k
X5t y) = / / Lty (s, 2)dK (@ (), 2) = Y Ap (ar(sh ), an(sf),t — s}, t) (4.78)
t—y J0 i=1
R t 0 R k
Yyt y) = / / Lity(s, 2)dKo(aa(t), 2) = Y Ag (ax(sy ), a(sh),t — sf,t) (4.79)
t—y J0 i=1

We prove the convergence of f.d.d.’s of XZQ and Y7f2 to those of X§ and Y jointly by using the
convergence of (K, 1, Kn2) = (K1, K2) in D% in (2.19). Define the processes Xe o and YneQ’k by

k
Xeonty)=> Ag

i=1

(ar(si1), aa(sf),t — sf.t) (4.80)
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k
Voan(ty) =3 Ag(@(sio), az(si),t — s, 0) (4.81)

i=1
Then, by the convergence of ( n1s Knyz) = (Kl, Kg) in DIQD and the continuity of a; and as, we
can conclude that the joint convergence of f.d.d.’s of (A1, Xn L Xn 2k Apo, Yn 1 Yn o %) converge
in distribution to those of the processes (1211, Xf, ng, A,, YI ,YQk) as n — oo.

Now it suffices to show that the difference between (sz,zk:’ Yne&k) and ()A(f;’z’k, YTka) is asymp-
totically negligible in probability as n — oo for each k, and the difference between (Xf;&k, ?ne’?’ i)
and (X&Q, Yneg) is asymptotically negligible in probability as n — oo and k — oco. Here we only
focus on processes in the first service station since the argument is similar for those in the second
service station. We will next show that for any € > 0,

lim P ( sup | XEok(ty) — XE okt y)| > e> =0, T>0, (4.82)
n—00 0<t<T,0<y<t

and

hm lim sup P(]Xan(t y) — 572(t,y)] >e)=0, t>0, 0<y<t. (4.83)

k—00 n—oo

We obtain (4.82) from the convergence of A, 1 => @ in (2.4), the continuity of @;, and the
convergence IA(,M = K in (2.19) and the continuity of the generalized Kiefer limit process Ky It

remains to show (4.83). For that, we define the processes X¢, , for each k and n by

t [e’s) k
Xeoplty) = /t /O 1k,t,y(sjg;)an,1(s,x):ZA%(S’“ Lsh ot — skt
-y i=1

k
= D Ag (Ana(siy), Apa(s),t = sf,t) (4.84)

i=1
where f(ml and le are defined in (4.42) and (4.43), respectively, and the partition of interval
[t —y,t] and 1, ,(s, ) are the same as in (4.75)-(4.77). (4.48) and (4.49) imply that the processes
Xe 2k and X;Q,k are asymptotically negligible as n — oo for each k, and moreover, (4.50) implies

that X n2 N (4.44) and X n.2 are asymptotically negligible as n — oo. Thus, it suffices to show the

following in order to prove (4.83),
hm hmsupP(]Xan(t y) — 272(t,y)| >e)=0, t>0, 0<y<t €e>0. (4.85)
k—00 n—oo

By (4.84) and (4.44), we have

) — X5 a(t,y)

X k
/ / [1hty(s,2) — (s +x > t)]dRy 1 (s, 2)
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Aml(t)

1 -
= = Z 551(7'@'7?17 1i,1)(t,y), (4.86)
Vv
Z=Anyl(t7y)

where Bﬁl(Tfl,ni,l)(t,y) is defined by

k

/szl( 11777’61 )(t,y) = Zl 71 < 3?)651(7'@??17%1): (4.87)

7j=1
351(7'51’772'71) = Vi1 (7" Ti, 10 T, 1) +’Yzl( Ti, 15 7, 1) — Yiz 11 (7 1,10 Thi— 1,1), (4.88)
Fia(rimin) = 1t — s <y <t —7) — (Fi(t — 7)) — Fu(t — s5)), (4.89)

and
o0

'Yzl 11’7711 = ZE’YH-ml z+m17771+m 1)|Jrz 1] (490)

m=1

It is clear that by construction, for each i,n,t,y,k, the sequence {Bfl(ﬁ‘l,m,l) i > 1} is a
martingale difference sequence, and so is the sequence {Bfl(ﬁll,ni71)(t,y) : ¢ > 1}. Moreover,

E[ﬁzkl( 213772 1)(ta y)] = E[ zkl( 117771 1)] =0 and E[( ~51(Tz}1777i,1)(t7y))2] < 00, and

[nt]
1 . .
7 > Gin(min) = Ficra (T mionn))| =0 as n— oo, (4.91)
L p

Then, we have that for any L > 0 and € > 0,

(|Xn2k; (t,y) na(ty)] > €)
n(Anl(t)/\L)

< P(A 551(11777z1)(t7?/) > €
Ani( t y)AL)
~ 1 n(An 1(OAL)
< P(A’ml(t) 2 < sz,l(Tz??lv ni,l)(ta y>>
Ani( t y)AL)
< P(An,l(t)

1 n(An,l(t)AL)

k
1
ety > shoy < 7 < SB[ (i (1 mi)] (4.92)
i=n(An1(t—y)AL) j=1

1 1 n(Ap,1(t)AL) k 2
+€7E n Z Zl(§1<%1<s)(%1(z1ﬂ7@1) Vi 117811 Mi-1,1)
i:n(Anyl(tfy)/\L) Jj=1
By Assumption 1, for each ¢ > 0, the first term in (4.92),
lim limsup P(A,1(t) > L) = 0. (4.93)

L= pnooo
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For the second term on the right side of (4.92),
~ n 2 n n
El(Fia(rfmin)] = (Fut—1) — Fi(t = si)[L— (Fu(t — 7)) — Fu(t — s5))]
< FRi(t—1) - Fi(t—s}), (4.94)

which implies that

E n Z 1(sj_y <7y < Sﬁ)E[(’inyl(Ti?l’mvl))z]

1 n(An,l(t)/\L) k
L i=n(A,1(t—y)AL) j=1
1 - :
< B\ D (Pt = s5_1) = Fa(t = s))) (n(An1(sj) A L) = n(Ani(sj-1) A L))
L ‘7:1
< B | (Aua(s) A D)~ (na(sy-1) A D) (1.95)
1<5<k

Thus, by Assumption 1 and the continuity of @;, and by (4.93), we have
n(An1(t)AL) k

> Do Lsj <Al < SHE[(Fi1 (71 m51)) ]

lim limsup £

ko0 nvoo N (A1 (—y)AL) =1
< lim limsup F [max ((Apa(sj) AL) — (Apa(sj—1) A L))] = 0. (4.96)

For the last term on the right side of (4.92), we apply (4.91). Thus, (4.85) is proven and so is

(4.83). The convergence of f.d.d.’s of Y;z to those of Yy follows from a similar argument. =
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5

Appendix: Calculation of o7, (t,y) and o7, (t)

By (3.47), we have

t1Ato
CDl (tl,tg) == )\16(21’1/ Fl(tl - S)Fl(tQ - S)dS (51)
0

t1A\t2
+)\1/ (Ff(tl Nty —s) — FE(t) — 8)FE(ta — 8) + Ty (b1 — 8,15 — s))ds,
0

Cayltiots) = p°Cpy(t1, 1) +p(1 — )\ /0 " Fi(s)ds (5.2)
7B e:1) 5:3)
) + (F -0+ [ [ Caunari i)
25 (=) =2 [ Cats)iFs(e—
+265(0) [ Cule = ws)drs(e—s)
FpAL /t iy (FS(t =) — (F(t = ) + T olt — 5.1 — )) Fa(s)ds

p(lp))\l/o Fl(s)ds+p2>\1q2l71/0 F1(5)2ds+p2>\1/ (Ff(s)—(Ff(s))2+I‘§<71(s,s))ds

0
-y

HFS(y))2p(1 — p)\ /

t—y
Fi(s)ds + (F§(4) "0 M2, / Fy(s)%ds
0 0

HEWPN [ (R~ (F6)? T 5. ds

+ /tty /:y [P2 (Alcil /O“/\” Fi(u—s)Fi(v—s)ds

+1 /Ou ’ (Ff(u ANv—s8) = Fi(u—s)Ff(v—s5)+ T (u—sv— s))ds)
(1 = p)ht /O " Fl(s)ds} AFS(t — w)dFS(t — v)

t—y
Fi(t—s)Fi(t —y — s)ds

285 (y) [p* (Mics
0
-y

+1 / (Ff(t —y—8) =t —s)F{(t—y—5) + T (t st —y— s))ds)

0

t—y
o= [ R
0

t s

—2/ [p2 ()\1662171 / Fi(t —u)Fi(s — u)du
t—y 0

+A1 /08 <Ff(3 —u) = Fy(t —u)F{(s —u) + Ty 1 (t —u,s — u))du)
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+p(1— p)As /0 B (uw)du] dF5 (¢ — 5)

+2F5(y) /tjy [PQ (Awi; /Ot—y Fi(t —y —u)Fi(s — u)du

+A1 /Ot—y (Ff(t —y—u) = Ff(t —y—u)Ff(s —u) + T (t —y —u,s — u))du)

(1 = p)ht /O o Fl(u)du} dFS(t — s)

+pA; /t i (Fg(t — ) = (F5(t — 8))% + T ot — s, — s))Fl(s)ds

— pi-pn [ " Fus)ds + 7 /O (Fu(s) + (¢~ D) + (s s))

HEPP0 -0 [ Fs 50N [ (RO - DEE)? Tl ds
/t y/t ; )\10 1/ " Fi(u—s)Fi(v—s)ds

+A\1 /0 (Fl (uAv—s) = F{(u—s)Ff(v—s)+T%q(u—s0v— 8))d5)

(1 — ) /0 . Fl(s)ds} AFS(t — u)dFS(t — v)

—2F5(y) [A1P2 /Ot—y (Fl(t — )+ (2 - DR(t—s)Fit—y—s)+ D%, (t—st—y— s)>ds)

w-on [ RG]

—2 /;y {)\11)2 /05 <F1(t —u)+ (03,1 — DRt —u)Fi(s —u) + T (t —u,s — u))du)

(= p1 [ R Fs(e—s)

r2r5) [ [ [ (Rl =+ (s~ DR -y~ w0l )+ T -y = s =)o)

+p(1 — PN /O o Fl(u)du} AFS(t — s)

+pAr /tty (F;(t 6 (F§(t— )% 4+ TSt — 5.t s))Fl(s)ds

Terms with the coefficient p(1 — p)A;:

/OtFl( )ds + (F5(y /Ot ypl ds+/ty/ty / ds dF2 (t — u)dF5(t — v)
—2F5(y) /Ot ’ Fi(s)ds — Q/t_y [/0 1(u )du}sz(t s) + 2F5(y )/:y [/Ot yFl(U)du}de(t—s)

= /t Fi(s)ds + (F5(y))? /t_y Fi(s)ds — 2F5(y) ) Fi(s)ds
0 0

0
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_|_

T

ty < /tvy | /0 Fy (s)ds| dF5 (¢ — u)) dFs5(t - v) + /:y ( /vt | /0 Fi(s)ds| dF5 (t = u) ) AF5(t — v)
(

}
2 Fe(t — s)( B u)du>) [:ty +2 /tiy FE(t — s)Fy(s)ds + 2FS(y) ( /Oty i) (u)du) (1— F(y))
-y

/N

t ’ - t—y t
— | Fi(s)ds — (Ff(y))Z/ Fi(s)ds + 2F5(y) Fi(s)ds + 2/ F5(t — s)Fi(s)ds
0 t—y

0

Il
S—

t

u v
+ (Fgct—u/Flsds
t—y u=t—y

0

_ tv F§(t — u)ﬂ(u)du) dF5(t —v)

_l’_

ﬁq\“

t—y t

Fi(s)ds — (F5(y)) /0_ Fi(s)ds + 2F5(y) Fi(s)ds +2 | F3(t —s)Fi(s)ds

0 t—y

_l’_

Y -y

<F2 -0 / s)ds — F5(y )/OtyF (s)ds — /U F5(t — u)Fl(u)du>dF20(t —v)
+ [

/ Fi(s ds} (1 — FS(t —v))dFS(t — v)

t—y

\\T

Fi(ods = (F5)? [ Fioyds+ 25 [ Rds+2 [ Fi(e-9R()ds

-y

~F-F5) [ R [ ([ Fe- ok -
t—y t—y

n /;y [/0 Fl(s)ds} dFS(t — v)

_ —/0 Fl(s)ds+F§(y)/OyFl(s)ds—i—Z/t FS(t — 5)F1(s)ds

-y

/:yFQC(t—u)Fl( u)du ) F5(t - U))‘t +/tin§(t—v)Ff(t—v)Fl(v)dv

\ Fi(s)ds) F(t — v)) )Z_t_y _ /t - 0RE)w
t t—y t
= —/0 Fi(s)ds + F5(y) /0 Fi(s)ds + Q/t_y F5(t — s)Fi(s)ds
- /t_ F5(t — u)Fy(u)du + /t_ (F5(t —v))?Fy(v)dv
+ | Fis)ds ~ F5to) /0 ' Bi(s)ds — /t_y FS(t — v) Fy (v)dv

_ /t_ (FE(t — 0))2F) (v)d (5.4)

Terms with the coefficient p?\; except the double integrals and without the covariance function
I

/0 Fi(s) + (2, — 1)Fy()2)ds + (FS(y))? /0 IR () + (24 - DE(s)ds
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—2F5(y)/0 _y[Fl(t — )+ (ciy — DEFi(t = s)Fi(t —y — s)]ds

9 /t (/S[Fl(t )+ (&~ Dt~ w)Fi (s — w)du) dF5 (1 — 5)

t—y 0

2850) [ ([ 1R =0+ (= DB — Rl -y - wldu)aFs(e - )

/0 Fi(s) + (24 — 1)Fi(s)2)ds + (FS())? /0 VIR + (& — 1)F (s)]ds

9FS(y) /0 VIR 8+ (2~ DE(E— $)Fi(t—y — 5)ds

t

_2(( /OS[F1 (t =)+ () = )Fy(t— u)Fy(s — u)]du) Fe(t — s))

s=t—y

+2/t Fe(t — s)ds</s[F1(t )+ (¢~ DE(E — ) Fy(s — u)ldu)

t—y 0

v2650) ([T — 0+ (@~ DR R -y = ) F5(e - )|

s=t—y
t

~2F5(y) | (- )ds /0 CIR(s —w) + (24— DFi(s — u)Fi(t —y - w)]du)

/0 Fi(s) + (24 — 1)Fi(s)2)ds + (FS())? /D VIR + (4 — 1) F (s)]ds
9FS(y) /0 VIR 8) 4 (24— DE(E— $)Fi(t -y — $)ds
2 [~ + ()~ D)l
0
2B5) [ IR0 + (- DR - R -y - ulda

42 / t Fg(t_s)([Fl(t—s)+(cgl —1)F1(t—s)F1(0)]ds)

t—y

+2(c2, — 1) /t Fe(t — 8)(/8 Pt —u)fi(s — u)du)ds

t—y 0

L2FS(y) /O VIR -0 (@)~ DR - wF (- y —w)du

t—y

(RS (y))? /0 Fi(t—y—w) + (24— DEt —y — u)Fi(t — y — u)ldu

~2r5) [ 5= ( [ 16—+ (@0~ DAG = WA -y~ wlde)ds

- / Fi(s) + (4 — 1)Fi(s)%)ds — (FS())? / VIR + (&4 — 1 F (s)]ds
+2(C§,1 —-1) /t

t—y

Fy(t — s)(/os Fi(t—u)fi(s— u)du)ds
t

~2r5) [ F5e=9( [ 16—+ (@0~ DAG = wAE -y~ ulde)ds
t—y
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2F5) [ IR0 + (= DR )R-y -l
2 FS(t — s)Fy(t — s)ds
" / St — $)Fi(t —s)

The double integral term with the coefficient p?\; and without the covariance function I'“:

/ty/ty / (u—s)Fi(v—s)ds

+/ (F1 (wAv) — 8) — F(u— s)F(v — s))ds) AFS(t — u)dFE(t — v)

/ / /Flu s)Fi(v — s)ds
t—y Jt—y

/(Fl(u §) — FS(u — 8)F(v — s))ds)dFQ(t WAFS(t — )

/ / /Flu s)F1(v — s)ds

t—y

+ / (FS(v — 8) — F(u — s)FI(v—s))ds)de(t—u)de(t—v)
0

— /;y [(/Ou(ﬂ(v —8)+ (2 — D)Fi(u—s)Fi(v— S))dS)Ff(t B u)) v

u=t—y

~ :y Fe(t — u)du</0u(F1(v )+ (G~ DE(u— ) (v - 9)ds) [dF5(t —v)

+/:y [((/OU(Fl(“ —8)+(c2y — ) Fi(u—s)Fi(v— 5))ds)F26(t — u)) '

Uu=v

_ /Ut Fe(t— u)du(/ov(Fl(u 9+ (&1~ DEiu— )i (v — ))ds) [dF5(t —v)

= [ (e =o( [ ¢+ @ - nEeps)
5[ B0+ (= DF - )R-y - o))

— F5(t —u)Fi(v —u)du
t—y

_ /tv (F;(t - u)((cz’l -1) /OU filu —s)Fi(v— 5)d8>>du} dF5(t —v)

)
+/;y [/Ov(Fl(t— 1 (2, — DF(t— $)Fi(v - 5))ds
“Fi(t=0) [ (o= 8) + (&) - DR 5P)ds
t 0 v
- [ (Fste=w( | (= 9)+ (@~ D= 5)Fio = 5)ds) Jdu]aF5(2 = o)

= —F5(y) /tjy </0ty(F1(v —s)+ (0371 —1DF(v—s)F(t—y— s))ds)dFQC(t —v)
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- /tiy /:y F5(t —u)Fy(v — u)dudF5(t — v)

_(62,1 —1) /tiy /:y <cm(t —u) /Ou filu—s)Fi(v— s)ds)duszc(t — )

+/:y [/O”(Fl(t —8)+ (a1 — DF(t—s)Fi(v— S))ds} AFS(t — v)

_ /tiy {/vt (Ff(t — u)(/ov(fl(u —s)+ (62,1 — 1 fi(u—s)F(v— S))ds))du} dFS(t —v)

t

B[RO+ - D@ Ry - )is) G- )]

v=t—y

#F50) [ Fsa=o)( [ (o= + (i~ DAl - Ry - 9)ds)do
t—y

t

_K/v F5(t —u)Fy (v — U)d“)Ff(t_v)”

o[,

+[(/ (Fi(t = 5) + (¢ = DFL(t = 8)Fi (v = ))ds ) B (t ”>”t

0

:t—y

/v F5(t —u)Fy(v— u)du)

/tt F§(t / (Fi(t—s)+ (2, —1)Fi(t—s)Fi(v— ))ds}

K /U <F2t u( flu s)F(v— s)ds))du)FQ(t v)”t:t_y
2

+(can 1)/ttyF2(t v)dy [/tvy<F2t—u/f1 U—S)F1(U—s)ds)du]
_([/vt(Fgc(t—U)</o[fl(u—s)+( 1= Dfi(u—s)Fi(v— S)ds))du}FQt U) .

),
+/:yF§(t—v)dv[/Jt(F;(t—u)</0”[fl(u_s)+( 1= Dfi(u—s)Fi(v—s)] ))du}

_F(y) /0 VRt —8) £ (B~ DE(t— s)Fi(t —y — 5))ds

t

HEEWP [ (Bl =y =9+ (- DR -y - sP)ds
+F5) [ B0 [ (-9 + (i~ DA - DR -y - s)ds)dy
- /t F5(t —u)Fi(t —u)du

t—y

t

+ . Ff(t—v)(/: Ff(t—u)fl(v—u)du)dv
# [ 9+ @4 DR s

0
~F{() /0 (Fy(t— )+ (2, — DE(t - )Fi(t — y — 5))ds
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t
- F5(t —v)Fi(t —v)dv
t—y

—(c2, - 1) /tiy F5(t — v)(/ov Fi(t—s)fi(v— s)ds)dv
_(C?L’1 -1) /tiy F5(t — u)(/ou filu—s)Fy(t — s)ds)du
- | iy(cm(t ([ o= 9Fi0 - s)as)do

(2, - 1) /ttyFQC(t—v)[/tv (Fg(t—u) /Oufl(u—s)fl(v—s)ds)du}du

y

+F5(y) /tiy (Fgc(t - u)(/ot—y(fl(u —5)+ (6271 - fi(u—s)Fi(t—y— 8))ds))du
_ /tty(cm(t - v))2</”(f1 (v=5)+ (o — Dfi(v—s)Fi(v— 3))ds) dv

0
t

+ F;(t—u)[/vt (F;(t—u)(fl(u—u)ﬂcg,l—1)/0Uf1(u—s)fl(v—s)ds))du}dv

t—y

— 2Ry /0 PRt 8) 4 (R — DE(t— s)Fi(t—y — 5))ds

(FS () /0 C(Rt—y—9) (B~ DE(t—y - 5)?)ds

285) [ Fie=o( [ (o= 9+ @y = DAl = ) File—y - s)ds)do

t—y

—l-/ot(Fl(t —s)+ (0271 —1)Fi(t - 5)2)d5

-2 t F5(t —v)Fi(t —v)dv — t F$(t —v))2Fy(v)dv
/ty St — 0)Fy(t - v) /ty< $(t— )2 Fi(v)
—2(c2 1 1)/t_y<F§(t—u)/O fl(u—s)Fl(t—s)ds>du

+/tty Fy(t — v)[/tvy (cm(t—U) (fl(v —u)+(ch, — 1)/0u fi(u—s)fi(v— s)ds))du}dv

t

+ F5(t —v) [/vt (Ff(t —u) (fl(u — )+ (6211 —1) /OU filu—s)fi(v— s)ds))du}dv

t—y
The terms with the coefficient p?\; and with the covariance function I'“:
t—y

/ T4 (s, 8)ds + (F())? / T 4 (s, 5)ds

0

/ty/ty / Pialu—s,v - S)ds)sz(t w)dFs(t — v)
—2F5(y )/0 DG (t—s,t—y—s)ds— 2/;3/(/ Pﬁﬂ(t—u,s—u)du)dpg(t_s)

0

t t—y
+2F5(y) / ( / Diea(t =y = u,s = w)du ) dF5(t - s)
t—y 0
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t t—y t—y
- / T4 (s, 8)ds + (FS())? / TS, (s, 5)ds — 2F5(y) / TS (6 — 5.t~y — s)ds
0 0 0
t v u
+/ (/ [/ r;“(u—s,v—s)ds}ng(t—u))ng(t—v)
t—y NJt—y LJo ’

. / ([ vt = sov— syis]arste - )arste -

_2(F26(t—s)(/(]sf‘%l(t—u,s—u)du))‘t +2/ttyF20(t—s)ds(/sf%’l(t—u,s—u)du)

s=t—y 0

t—y "
+2F5(y) (/ T (t—y—u,s— u)du) F§(t — s)‘ t
0 s=t—y

t t—y
—2F5(y) / F5(t — s)ds (/ Pt —y—u,s— u)du)
t—y 0

t t—y t—y
- /0 TS, 1 (s, 8)ds + (F5(y))? /0 TS 1 (5. 8)ds — 2F5(y) /0 TS (t— 5.t —y — 5)ds

+/tty </th [/O“F%,l(U— S,U—S)ds}dFQC(t—u))dFQC(t_v)

t t v
+/ </ [/ F1(u—s,v— s)ds} dFs(t — u))dFQC(t — )
t—y v 0
t t—y
—2/ Lt —ut —u)du + 2F5(y) / Pt —ut —y —u)du
0 0

t s
+2/ F35(t — s)ds(/ F%l(t—u,s—u)du)
t—y 0 '

t—y

r2rs)( [Tt —y =t = i) ~ 28500 [ Tl —y =t -y - i)

t t—y

—2F§(y)/t F§(t - s)ds(/o Dhea(t—y — s — u)du)
-y

t—

= —/Ot TG (s, 8)ds — (Ff(y))z/0 yF%J(s,s)ds—|—2F2C(y)(/0t_yf%71(t—y—u,t_u)du)
+ /t_y (/:y [/Ou Piai(u—sv— s)ds} dFs5(t — u))dFQC(t — )

4 / ([ tatumso—spas]arse - w)ars—)

t

+2 F5(t — s)ds</ Lot —u, s — u)du)
0

t—y

t t—y
—2F5(y) / F5(t — s)ds (/ F%yl(t -y —u,s— u)du)
t—y 0

t—y t—y

- - / D (5, 5)ds - <F5<y>>2/0

+/ ([/Our%,xu .0 = 8)ds| F(t = w)|

u=t—y

D (s, )ds + 2F5 () /

Pt —y—ut— u)du)
0
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_/:y F5(t - u)du{/o“rigl(u — 5,0 — s)dstpg(t — )

+/— ([ ] meatuso—s)as] Bste -]

U=v

o] [t v o

t S

+2/ Fe(t — s)ds(/ TS (t— u,s — u)du)

t—y 0 ’

t t—y
—2F5(y) / F5(t — s)ds (/ Pt —y—u,s— u)du)
t—y 0

t t—y t—y

- [ Thatas = (F@)R [ T s 250 [ Tl -y wt - w)

t v t—y
—i—/ ([/ I‘%J(v—s,v—s)ds]FQC(t—v) —FQC(y)/ Lt —y—s,v—s)ds
t—y 0 0

_/:yFQC(t_U)du[/o F%’l(u—sjv—s)dstFf(t—v)

—i—/tiy ([/OUF%J(t — 8,0 — s)ds} - [/OUI‘%J(U — 85,0 — s)ds}FQC(t — )
_/Ut F5(t — u)du[/ov Dheq(u—s,v— s)dstFZC(t —0)

+2 /:y Fe(t — s)ds(/os T 1 (t— 1,5 — u)du)

—2F5(y) /tiy Fﬁ(t—s)ds(/ot_y F%l(t—y—u,s—u)du)

t—

[ Tt = #5007 [ T pis 28500 Tieat - -t - wyia)
+2 /ty F5(t — s)ds(/os L (t—u,s— u)du)

_2F(y) /t;, F5(t — )d /Ot_y Dt =y — uys — w)du)

+ /tiy <[/Ov Fgq(v—sv— s)ds] F5(t — U))dFQC(t —0)

—Fs5(y) /tty (/Ot—y It —y—sv— s)ds) dF5(t —v)

_ /tiy ( :y F5(t —u)d, [/Ou F1(u—s,v— s)ds])szc(t — )

+ /tty </Ov Lot —s,v— s)ds)dFQC(t — )

L () it - sco -] oarse -

o1



/ty /th u) /FK1U 8,V — s)ds])dFQC(t_U)

/0 FKl(s s)ds — (F5(y )) /Ot I‘Kl(s s)ds + 2F5(y )(/Dtyf%,l(t—y—u,t—u)du)

t s
+2/ Ff(t—s)ds(/ F%l(t—u,s—u)du)
t—y 0 '
t t—y
—2F5(y) / F§(t — s)d, (/ Dhea(t—y = s — u)du)
t—y 0
‘t

([ [ Tealo = s0 = sias|Bse - o)) 5t -]

- [ e[ o= o] —0)

~m ([ Tiealt —y — sv0 - s)as) B0~ )

v=t—y

t t—y
+F5(y) / F5(t — v)dv(/ I‘%’l(t —y—8,v— s)ds)
t—y 0

~( /t”y F5(t —w)d| /0 Dl — 5,0 — s)ds| ) F (¢ ~ ”>‘it_y
—i—/tingc(t—v)dU( :ngc(t—u)du[/Ourg(vl(u_571,_8)613])

v t
—l—(/ Lt —s,v— s)ds)FQC(t - v)‘
0

v=t—y

_ /tty </Ov La(t—sv— s)ds)dFQC(t —0)
_([/0 Dla(v — 5,0 — s)ds| E5(t — v)) F5(t )
-|-/tty <[/OU Deq(v—s,0— s)ds] Fs5(t — U))dFQC(t - )
_(/vt Fs(t — u)du[/ov Phq(u—s,v— s)dsDFf(t — U)‘i:ty
o[ mste—o( [ e wa] [ - so-aa)
- / T4 (s, 9)ds — (F () / T (5, 9)ds + 2F5 (o) /
+2 /tty F35(t — s)ds(/os Lot —u, s — u)du)

t t—y
—2FS(y) / FE(t — 5)ds ( / TS (t—y —u,s — u)du)
t—y 0

‘ t

v=t—y

Pt —y—ut— u)du)

[ Tt st = s — ()7 [ Vst —y— st -y - s)ds
_/tinzC(t—v)(dv[/()vr%l(v—s,v—s)ds]Ff(t—U)+ [/Ovp%yl(v—s,v—s)ds]fg(t—v)dv>
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w5 ([Tt —y— st o) + E50) ([ Tiealt -y sty - o)is)
+F5(y) /tinf(t—v)dv(/Ot—yr%’l(t_y_,g?v—s)ds)
_</tin§(t—u)du{/0uF§(jl(u— s,t—s)dSD

+/ij5(t—v)dU( ' Ff(t—u)du[/(]ul“ﬁﬂ(u—s,v—s)ds])

t—y
t t—y
—i—/ Ff(,l(t—s,t—s)ds—cm(y)/ Fga(t—s,t—y—s)ds
0 0

_/tinQC(t—v)dU</OvF‘j(,1(t—s,v—s)ds)
—([/Otf%,l(t—&t—s)ds} +(F5(y>)2[/0tyr%,l(t—y—s,t—y—s)ds
+ /tty FS(t — v)dv<[/ov T 1 (v — 8,0 — s)ds] Fe(t — v))

+F5(y )(/ttyFQC(t u)dy, [/t_yFKl(u s, t— y—s)dsD

+/ F5(t — vd(/FQt u)d /FKlu S0 — s)ds])
/ F5(t — vd(tyFQ /FK1U S, U — S)ds])
—i—/ F5(t — vd(/tFQt u)d /I‘Klu S, — s)ds])
/ F5(t — vd(t F5(t /dFKlu S, U — s)ds]du)
+/ F5(t — vd(/FQt u) /dI‘Klu S0 — s)ds]du)
/tty F5(t —wv) <F2 (t— U)[/o dul'f (v — 5,0 — s)ds] dv)
+/ttyF2(t—U)(/:ny(t—u)[/oudvduf‘jﬂ(u—s,v—s)ds]du)dv
— /tty F3(t —v) <F20(t —v) [/OU dul'f 1 (v — 5,0 — s)ds} dv)
Jr/ttyFQ(tv)(/vth(tu)[/OvdvduF‘j(J(us,vS)dS]dU)dv

/t y_Fz(t v)(/j F5(t — u)[/o dvdufiﬂ(u—S,U—s)ds]du)du

t
+ F5(t—v) / F5(t —u) / dvdufﬁgl(u—s,v—s)ds]du)dv
-y
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t t uAv
= / / F5(t —u)F5(t — v) [/ dyd % 1 (u — 5,0 — s)ds} dudv
t—y Jt—y 0 '

Now combining all the terms, we obtain

Tt (t,Y)

p(1— P\ /t_ (FS(t — 5))°Fi (s)ds
+pn{ - / " (St - )2 Fav)dv
t—y

t

+ Ff(t—v)[/:y (Fg(t—u)(fl(v—u)ﬂcg—1)/0uf1(u—s)fl(v—s)ds))du}dv

t—y

+/tty F5(t —wv) {/Ut (Ff(t —u) (fl(u —v)+(c2 1) /0” filu—s)fi(v— s)ds))du}dv
+ tiy /tiy F5(t —u)F5(t —v) [/Ou/\v dpdu Lk 1 (0 — 8,0 — s)ds} dudv}
+pAs /tty (FS(t—5) = (F5(t = ) + Tcalt = s,t = 5) ) Fy(s)ds
p(1—p)\ /tiy(Ff(t — 5))2Fy(s)ds
P { - /; (S (t - v))? Fy(v)do
—i—/:y/tjy (Ff(t—u\/v)Ff(t—u/\v)(fl(u\/v—u/\v)

+(c2 1) /OW\U filu—s)fi(v— s)ds))dudv
+ /t:y /tiy F5(t —u)F5(t —v) [/Ou/\v dpdy L% 1 (0 — 8,0 — s)ds} dud’u}
ph /:y (F;(t —5) = (F5(t— )2 + T o(t — 5,1 — s))Fl(s)ds
A /t i (FS(t — 5))*Fi(s)ds
+p2)\1{/tty/tty (Ff(t—u\/v)Ff(t—u/\v)(fl(u\/v—u/\v)

+(c2 1) /Ou/\v filu—s)fi(v— s)ds))dudv
+ /tiy /tjy F5(t —u)F5(t —v) [/Oum dydul'fe 1 (u — 8,0 — s)ds} dudv}
oM /t ; (FS(t — 8) — (F5(t — ) + i alt — 5.1 — ) Fi(s)ds

t
PAi / (F;(t —8) + Dot — 5,8 — s))Fl(s)ds
-y

o4



t t
+p2)\1{/ (Ff(t—u\/v)Ff(t—u/\v)(fl(u\/v—u/\v)
t—y Jt—y

+(c2 -1) /Ou/\v filu—s)fi(v— s)ds))dudv

uAv

+/t /t F5(t —u)F5(t —v) [/0 dpdy L% 1 (0 — 8,0 — s)ds} dudv}
t—yy t—y
1200, p)\l/o (Ff(s) +P§(72(S,S)>d8
p2A1{/0y/0y (Fg(uvU)F;(um)(fl(uvU—u/\v)
+(c2 -1 /OO fils —u)fi(s —v)d ))dudv

//F2 VFE (v /vddFKl(s u, s — v)ds}dudv}

The limit as ¢ — oo is derived as follows:

/t F5(t — U)[/v (FQ(t u)(fﬂv—u)%—(cil—1)/0uf1(u—s)fﬂv—s)ds))du}dv

/oy /ty F5(t —u) f1 (t—w—u)+ (cg’l — 1)/0uf1(u—s)fl(t—w—s)ds>)du}dw
—(z=t—u) /pr2 wy (F2( )<f1(1' w) + (c2 1—1)/0t_xf1(t—x—s)f1(t—w—s)ds))dm}dw
—(z=t— /pr2 /wy fl T —w) 1 -1) /:fl(z—x)fﬂz—w)dz))dm}dw
tovoo, /0ng /wy )(filw = w) 11)/:of1(zx)fl(zw)dZ))dw]dw

/tt Fy(t—wv / F5(t — u)(fl(u—v)—#—(cg’l—1)/0vf1(u—s)fﬂv—s)ds))du}dv}

Y

/0 Fs(w /t_ F5(t —u) w))+(c§71—1) /Ot—w fl(u—s)fﬂt—w—s)ds))du}dw}
(o=t /pr2 /Ow )(fi(w — ) 1—1)/;wfl(t—:c—s)fl(t—w—s)ds))dm]dw}
_(o=t-9) /0F2( )/0 )(fi(w =) 1_1)/wtf1(z—x)fl(z—w)ds))dx}dw}

Calculation of o2 Do
By (3.48) and (5.2),

~—

+

o3, (1) = /O /0 Cia, (1, 0)AFE(t — w)dFS(t — v)

+ph /O (F;(t — ) — (F§(t — )% + T ot — 5,1 — s))Fl(s)ds,
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_ 2A1// / Fy(u—s)Fy (v — )ds

+0% 1 (u—s,v — s)ds]dFQ(t w)dFs(t — v)

p(1 — p)\l// / Fi(s ddeQt w)dF5(t —v)

+p/\1/0<F2(t )~ (B5(t — ) + Ticalt — 5.t — )} Fy()ds,

/Ot/ot / Fi(u— 8)Fi(v — s)ds

uA\v
+/ (Ff(uhNv—35)— F(u—s)Ff(v— 3))ds]dF2(t u)dFs(t —v)
0

¢
/{ /Flu $)F1(v — s)ds
0

Fe(u— ) — Fo(u— s)Fe(o — s))ds]dFQ(t w)dFS(t — )

t
// 021 Flu s)F1(v — s)ds
0 0

(Flv s) — Ff(u—s)F{(v— s))ds}dFQ(t w)dF5(t —v)

S—

+

S—

_|_

_l’_

c\

/t /v [/“(Fl(v —8)+ (= DFi(u—s)Fi(v— s))ds} dFS(t — u)dFS(t — v)
Yt
—I—/O /v {/0 (Fi(u—s)+ (63,1 —1)Fi(u—s)Fi(v— s))ds} dF§(t — u)dFS(t —v)

t

HFQ —u) /Ov(Fl(u —s)+ (0371 —1)F(u—s)Fi(v— s))ds}

U=v

+

Fe(t— )du[/ov(Fl(u ) (D (- $)Fi(v— ))ds] | dB5 (¢~ o)
/O | [ -0) [ i)+ (0 - DR

F5(— ) (Fi(w —u) + (g — 1) /Ou Fi(u = )Py (0 — )ds ) du] dF5 (1 — v)
H/OU(Fl(t —8) (21 — 1) Fy(t — 5)Fy (v — s))ds}

Fstt =) [ (R(s)+ (e = DFa(s)ds]

—

o6



Fi(t—u)| /0 (il 5) + (g~ D )Fy(v - 5)ds]| du dF (2~ v)
/0 FE(t — ) (Fl(v —u)+ (2, —1) /Ou Filu—s)Fy(v — s))ds) du} dFS(t — )
'/Ov(Fl(t $) + (2 —1)Fi(t— s)Fy(v — s))ds} AFS(t — v)

/tFQt w) / (f1(u— s)+(cg’1fl)fl(ufs)Fl(v75))ds]du}de(tfv)

/~

—(Fs(t - v)/o FE(t — u) (Fl(v—u) + (2, - 1) /Ou fl(u—s)Fl(v—s))ds)du>‘t
+/Ot FE(t — v)d, [/O FE(t — u) (Fl(v —u)+ (2, — 1) /Ou Fi(u—s)Fi(v— s))ds)du}

+ [Fg(t ) /OU(Fl(t —§) 4 (2y — V)Fi(t — 8)Fy (v — s))ds} (t

t

S~

F(t—v)d, | /O (Rt — )+ (2, ~DE(t — $)Fi (0 5))ds]

~[es =) [ #5000+ (6 - DAt - R - s

v=0

_|_

/tFQt v)d /F2t ) / (Fi(u = 8)+ (&~ Dfi(u— 5)Fy(o — 5))ds] du

o

/tFQ F1t u) + (c 1—1/f1 u—s)Fl(t—s))ds>du

0

_|_

(c21—1>/ (FE(t —v) / fil — s)Fy(o — s)ds ) dv

—|—/OtF2 ) /Oth u) (Ao —w)+ (&~ 1) /0 i = ) v — 5))ds ) du do
+ [ (B = 5) + (6= DFG - )R- 9)ds

—/OtFQC(t—v)Fl(t—v)dv

@0 [ B [ R )l sdsde

-/ (st - o [ 0 =9+ (i = DA - DR - s)ds]ac

+ [ B [ B [0+ @0 [ A= )il - o]

/ (Fi(s) + (¢ = 1P (s — | (Bt = 0) P ()

—2/F2 (Flt w) al—l/uflu—sFl(t—s))d>du

/F2tU/F2tu (2, — 1/f1 dsdu}d
0

o7



+ [ Bt [ B [0+ @0 [ A= )il = o]

/Ot /ot [/0 P (u—s,0— s))ds}de(t—u)ng(t_v)
0

t ot urv
= / / F5(t —u)F5(t —v) / dvduf%yl(u—s,v—s)ds}dudv
0 0
t s
+/ F%J(s,s)ds—Q/ Ff(t—s)(/ dSF%l(t—u,s—u)du)ds
0 0

0

t gt purv
//[/ Fi(s ds dFQt w)dFs(t — v)
0 JO 0
t
// /F ds dFQt u)dFs(t —v) // / ds dFQt w)dFs(t — v)
0 JO 0

/t [F2(t v/ ds—/o Fy(t —u)Fy(u )du}dFQ(t_v)

[en]

t

+

o~

e }1 FE(t — v))dFS(t — v)
0

|
/0 /0F1 ds ngt v) /Ot[/OUF;(tu)Fl(u)du}dpg(tv)

t
/ /th u)Fy(u dudFQt v)
0 0

/t Fylt — ) Fi(u / F§(t - ) Fa(t — o) Fy (v)dv

0

- [

Combining the terms for 02, , we obtain

bt = P [ (B + G~ DF (o) — [ (B = 0)Fi e
—z/oth( )(Fl(t ) + (c /flu s)Fy(t — s))d)du
+/0tF§(t—v) /0 FS(t — u) 2, —1) / filu ds du]dv
/tFQ(t v)[/tFQ(t u)[fl(u—v) a71—1/0flu—sfl(v—s))ds}du}dv
// / TS 1 (u— 8,0 — s))ds}fz(t—u)fg(t—v)dudv]
+p(1 —p)At / Fy(t — s)2Fy(s)ds
tohe [ (50— 5) = (F5(0 = o) + Tl = sst = 9)) (o),

o8



= p’)\ [/Ot(Fl(s) + (0(21,1 — 1)F1(s)%)ds — /Ot(FQC(t —))2F (v)dv
9 /Ot FE(t — u) (Fl(t —u)+ (2, —1) /Ou Filu— $)Fi(t — s))ds)du
t rt uAv
/ / F5(t —v)F5(t — u)(fl(u Vo—uAv)+ (CZ’1 - 1)/0 filu—s)fi(v— s))ds)du}dv
/ / / Fi(u—s U*S))d5:|f2(t*U)fg(t*’())dudv]
+p(1 — ))\1/0 Fy(t — 5)°Fy(s)ds
oM /Ot (F;(t —8) = (F§(t— )2 + T o(t — 5,1 — s)>F1(s)ds,

For the limit as t — oo,

1 t

lim — [ (Fi(s)+ (2, — 1)Fi(s)*)ds
t—o0 0 )

= lim F(t) + (A —DFO)*=1+ (2, —1)=c2,
_)OO 2 I k)

i = [ (st — o) Ry (0)do = Tim - [ (FS(s)2Fy(t — s)ds

t—oo t 0 t~>oot 0

= lim [ (F§(s))®fi(t — s)ds = lim (Ff(s))2de(t —35)

t—o00 0 t—o00 0
= Jim [(F5(1))* - F{(t) - /0 Fi(t = )d(F§(s))?]

= lim 2/0 Fy(t — s)F5(s) fa(s)ds

A
_ tlggoz/ot [F (5) fuls) —/Sf1 (s — u) F§ u) fa(u)du] ds

- tlim[ FE(1)? + FE(0 —2//f15—uF2 )fal )duds]
_ 1—2/O /0 Fuls — u) FE(u) fa(u)duds

_ 1_2/000 /uoo Fu(s — w)dsFE(u) fa(u)du

- 1—2/OOOF§(u)fd(u)du:1—1:0

t

tim [ F5( ) (Fi(t—w) + (&~ 1) /Ou frl = $)Fy(t — s)ds ) du

t—oo t 0

= lim % F5(v) (Fl(v) + (cz’l - 1)/0 B filt —v—s)Fi(t — s)ds)dv

t—o00 0
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2
t—oo t 0 € ’
= i (BORO + 1) [ BORE-0Row)
t—o0 a, 0
t
= Jm (@ - DAE [ Far-o
= 0
1/t 1/t
lim = [ Fy(t—s)?Fi(s)ds = lim = [ Fy(v)*Fi(t —v)dv
t—oo t O t—o0 0
= thm FQ( V2 fi(t —v)dv = thm th(v)Qde(t —v)
—00 — Jo

= lim [FQ() _/ Ff(t—v)dFQ(v)z}

= 1—hrn/ 2F2 fg /f1 S—UdFQ

= 1—thm Fy(t) —//f1s—vdF21) ds}
- o Jo
= /OOO/OSfl(S_”)dF2(”)2d3:/OOO/UOOﬁ(S—v)ddeQ(U)?:1

1 t
lim = [ Fy(t — s)F5(t — s)Fi(s)ds

1 t t
lim — [ Fy(s)F5(s)Fi(t — s)ds = lim / Fy(s)Fy
t—o00 0

t—oo t Jo
lim [ Fy(s)F5(s)dFE(t — 5) = Jim [FQ(t)FQC(t) .

t—00 0

()1t = 5)ds
| Fi(e = () F5(9))

lim t(f()—QFg /fls—u d(Fy(u) F5 (u) )ds = 0

t—o0 0
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