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Abstract

This paper is a sequel to our 2010 paper in this journal in which we established heavy-traffic
limits for two-parameter processes in infinite-server queues with an arrival process that satisfies
a FCLT and i.i.d. service times with a general distribution. The arrival process can have a
time-varying arrival rate. In particular, a FWLLN and a FCLT were established for the two-
parameter process describing the number of customers in the system at time t that have been
so for a duration y. The present paper extends the previous results to cover the case in which
the service times are weakly dependent. The deterministic fluid limit obtained from the new
FWLLN is unaffected by the dependence, whereas the Gaussian process limit (random field)
obtained from the FCLT has a term resulting from the dependence. Explicit expressions are
derived for the time-dependent means, variances and covariances for the common case in which
the limit process for the arrival process is a (possibly time scaled) Brownian motion.

Key words: infinite-server queues, two-parameter processes, time-varying arrivals, martingales,

weakly dependent service times, φ-mixing, S-mixing, functional central limit theorems, Gaussian

(random field) approximation, generalized Kiefer process
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1 Introduction

This paper is a sequel to Pang and Whitt (2010), in which we established heavy-traffic limits for the

stochastic processes describing performance of the Gt/GI/∞ infinite-server (IS) model, allowing

a non-Poisson arrival process with time-varying arrival rate and a non-exponential service-time

distribution. Extending Krichagina and Puhalskii (1997), we established heavy-traffic limits for two-

parameter stochastic processes, such as {Qe(t, y) : t ≥ 0, 0 ≤ y ≤ t} and {Qr(t, y) : t ≥ 0, y ≥ 0},

where Qe(t, y) represents the number of customers in the system at time t with elapsed service

times less than or equal to y, and Qr(t, y) represents the number of customers in the system at

time t with residual service time strictly greater than y. Moreover, we showed that these limit

processes are Markov processes. A key assumption was that the arrival process satisfy a functional

central limit theorem (FCLT), which includes many cases with dependence among the interarrival

times. Including time-varying arrival rates is important too, because that allows applications to

approximate the performance of large-scale service systems, which usually have time-varying arrival

rates; see Green et al. (2007).

In the present paper we establish new heavy-traffic limits that extend our previous results by

allowing the service times to be weakly dependent; we refer to our model as Gt/G
D/∞ queue.

Roughly, weak dependence means that the dependence among the service times is limited so that

the CLT remains valid, but the variability constant in the CLT is affected by the cumulative

correlations; see §4.4 of Whitt (2002). In the present context, weak dependence among the service

times is especially interesting, because, as shown by Krichagina and Puhalskii (1997) and Pang and

Whitt (2010), in the iid case the service times affect the heavy-traffic limit through the sequential

empirical process (see (2.5) below) rather than the conventional CLT.

We are motivated to study dependence among service times by several applications. First,

in hospitals, several patients can have similar medical conditions, requiring similar treatment.

That occurs with seasonal or epidemic diseases and with multi-person transportation accidents,

as with cars or trains. Second, in technical support customer contact centers, new products may

have defects that lead to many customers calling with similar needs. These patients or customers

will have service requests that are highly dependent upon each other. Third, service times can

be affected by common events in the service mechanism. For instance, service interruptions are

inevitable in many large-scale service systems, e.g., Pang and Whitt (2009), and interruptions can

cause all service times to become longer or stimulate the servers to interact with each other in order

2



to reduce the effect.

There has been considerable work on IS models. Since we already reviewed earlier work on IS

queues in Pang and Whitt (2010), here we only discuss models with dependent service times. Very

few articles have studied the IS models with dependent interarrival times and dependent service

times. Falin (1994) considers the Mk/G/∞ batch arrival queue with heterogeneous dependent

demands. Liu and Templeton (1993) give explicit formulas for the autocorrelation in IS queues

with batch arrivals including dependence structure. Our paper is evidently the first to establish

heavy-traffic limits for IS models with dependent service times. These limits are useful, not only to

yield direct approximations for large-scale queues when the arrival rate is high, but also they aid in

establishing associated many-server heavy-traffic limits for queues with finitely many-servers; e.g.,

see Liu and Whitt (2011).

We analyze this Gt/G
D/∞model in the heavy-traffic regime by scaling up the arrival rates while

fixing the service-time distributions. We consider the two-parameter stochastic process {Qe(t, y) :

t ≥ 0, 0 ≤ y ≤ t}, where Qe(t, y) represents the number of customers in the system at time t with

elapsed service times less than or equal to y. (As shown in Pang and Whitt (2010), equivalent

results can be obtained for the process Qr(t, y), and thus we only focus on Qe(t, y) here.) We

prove a functional weak law of large numbers (FWLLN, Theorem 3.1) and an FCLT (Theorem

3.2) for this process jointly with the departure process from the system. The FWLLN limits are

simple deterministic two-parameter functions and the FCLT limits are continuous two-parameter

Gaussian processes (random fields). Propositions 3.2 and 3.3 provide explicit variance formulas for

the Gaussian limit processes when the arrival limit process is a Brownian motion (BM). Dependence

among the service times has no impact upon the fluid limit (the mean), but has a clear impact

upon the variances; we study this impact further in Pang and Whitt (2011a, 2011b).

In order to allow dependence among the service times, we exploit previous FCLT’s for the

sequential empirical process of weakly dependent random variables satisfying the φ-mixing or S-

mixing conditions, by Berkes and Philipp (1977) and Berkes, Hörmann and Schauer (2009), respec-

tively. One key step in proving our limits is to show that the sequential empirical processes with

the underlying weakly dependent service times converge in distribution to a continuous general-

ized Kiefer process, in the space of DD ≡ D([0,∞)D([0,∞),R)) endowed with the Skorohod J1

topology, see Theorem 2.1. The previous results were established in the space of D([0, 1]× [0, 1],R)

endowed with the generalized Skorohod topology by Bickel and Wichura (1971) and Straf (1971).

Here we need to extend the convergence to the larger space DD because the two-parameter queueing
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process Qe(t, y) are not in the space D([0, T ]× [0, T ],R).

To establish the FCLT limit of Qe(t, y) under the assumptions of service times satisfying φ-

mixing or S-mixing conditions, we employ the same approach as Pang and Whitt (2010) by proving

the tightness of the processes together with the convergence of their finite-dimensional distribu-

tions. However, the methods to prove tightness and convergence of finite-dimensional distributions

here are completely different from those in Pang and Whitt (2010). Before, following Krichagina

and Puhalskii (1997), we were able to apply a semimartingale decomposition for the sequential

empirical processes with underlying iid random variables and standard Kiefer processes. However,

now we do not have an analogous semimartingale decomposition for sequential empirical processes

with underlying weakly dependent random variables and generalized Kiefer processes. Instead, we

construct martingale difference sequences from the weakly dependent sequences, see §4.3.

Here is how the rest of this paper is organized. In §2, we give the detailed model description

and assumptions. We also establish some preliminary results including the FCLT for the sequential

empirical processes with underlying weakly dependent sequences in DD, see Theorem 2.1, and the

representation of the process Qen in terms of the sequential empirical processes, Lemma 2.1. In

§3, we state our main results, the FWLLN in §3.1, the FCLT in §3.2, and the characterization of

Gaussian properties in §3.3. We collect the proofs for the main results in §4. In §4.1, we prove

Theorem 2.1; in §4.2, we prove the Gaussian characterization of the FCLT limits; in §4.3, we prove

the FCLT. We draw conclusions in §5.

2 The Model and Preliminaries

2.1 The Model Assumptions

We consider a sequence of Gt/G
D/∞ queueing models indexed by n and then let n→∞, where the

arrival rate increases in n. We assume the system starts empty at time 0. As in Pang and Whitt

(2010), we would analyze other initial content separately, which can be done because capacity is

unlimited. For the nth system, the ith customer arrives at the time τni with the service time ηi and

receives service upon arrival. Let An ≡ {An(t) : t ≥ 0} be the arrival counting process in the nth

system. We assume that the sequence of arrival processes satisfies a FCLT as in Pang and Whitt

(2010). All single-parameter continuous-time processes are assumed to be random elements in the

function space D ≡ D([0,∞),R) with the Skorohod J1 topology (Billingsley (1999), Whitt(2002)).

Assumption 1: FCLT for arrivals. There exist: (i) a continuous nondecreasing deterministic

real-valued function ā on [0,∞) with ā(0) = 0 and (ii) a stochastic process Â in D with continuous
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sample paths, such that

Ân(t) ≡ n−1/2(An(t)− nā(t))⇒ Â(t) in D as n→∞. (2.1)

As an immediate consequence of Assumption 1, we have the associated FWLLN

Ān ≡ n−1An(t)⇒ ā(t) in D as n→∞. (2.2)

The Standard Case. The standard case concerns a stationary model in which the limit of

the arrival process FCLT is Brownian motion. In the assumed arrival FWLLN, ā = λt, t ≥ 0, for

some positive constant λ. The limit in the FCLT is Â =
√
λc2

aBa, i.e., a Brownian motion (BM),

where c2
a is variability parameter, which for a renewal arrival process is the squared coefficient of

variation (SCV) of an interarrival times, and Ba is a standard BM.

Here we emphasize that the assumption in (2.1) on the arrival processes An includes the cases

where the interarrival times are correlated, see Theorem 4.4.1 and 7.3.2 of Whitt (2002). In the

standard case, the variability parameter c2
a will capture the correlation effect among inter arrival

times.

We will allow the service times to be weakly dependent and consider two types of weak de-

pendence for stationary stochastic sequences: φ-mixing and S-mixing. The φ-mixing is a common

condition for weakly dependent stationary sequence, see Billingsley (1999) and Whitt (2002). Here

we restate the definition of S-mixing, first introduced by Berkes, Hörmann and Schauer (2009). A

stationary stochastic sequence {xi : i ≥ 1} is called S-mixing if (i) for any i,m ≥ 1, there exists

a random variable xim such that P (|xi − xim| ≥ βm) ≤ εm for some constant sequences βm → 0

and εm → 0 as m→∞; (ii) for any disjoint intervals I1, ..., Ir of positive integers and any positive

integers m1, ...,mr, the vectors {xim1 : i ∈ I1},...,{ximr : i ∈ Ir} are independent provided that the

separation between Ir′ and Ir′′ , 1 ≤ r′, r′′ ≤ r, is greater than mr′ + mr′′ . Berkes, Hörmann and

Schauer (2009) show that neither of the two mixing condition includes the other, but the S-mixing

condition is relatively easy to verify because it is restricted to random sequences {xi : i ≥ 1}

with representations that xi = ψ(yi, yi+1, ...) for iid sequences {yi : i ≥ 1} and Borel measurable

functions ψ : RN → R.

Assumption 2: weakly dependent service times. We assume that the successive service

times {ηi : i ≥ 1} are weakly dependent and constitute a one-sided stationary sequence. We also

assume that ηi’s have the same continuous c.d.f. F and p.d.f. f with F (0) = 0, and E[η2
1] < ∞,
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and
∞∑
i=1

(E[(E[ηi+k|Fsk ])2])1/2 <∞, k = 1, 2, ...,

where Fsk ≡ σ{ηi : 1 ≤ i ≤ k}. We let

µ ≡ E[η1], σ2 ≡ V ar(η1) + 2
∞∑
i=1

Cov(η1, η1+i) <∞.

Moreover, we assume that one of the following two types of mixing conditions holds for both

{ηi : i ≥ 1}:

(i) (φ-mixing) Define

φk ≡ sup{|P (B|A)− P (B)| : A ∈ Fsm, P (A) > 0, B ∈ Gsm+k,m ≥ 1},

where Gsk = σ{ηi : i ≥ k}. The two sequences satisfy the φ-mixing condition:

∞∑
k=1

φk <∞.

(ii) (S-mixing) Each of the two sequences is S-mixing.

2.2 Preliminaries

Let Qen(t, y) represent the number of new arrivals in the system at time t in the nth model that

have elapsed service times less than or equal to y, 0 ≤ y ≤ t. Then we can express Qen(t, y) as

Qen(t, y) =

An(t)∑
i=An(t−y)

1(τni + ηi > t), t ≥ 0, 0 ≤ y ≤ t, (2.3)

Note that Qen(t, t) counts the total number of customers receiving service in the system at time t.

Evidently, we have the balance equation

An(t) = Qen(t, t) +Dn(t), t ≥ 0,

where Dn ≡ {Dn(t) : t ≥ 0} is the departure process in the nth system.

The processes Qen and their limits (after scaling) to be established lie in the space DD ≡

D([0,∞), D([0,∞),R)), where D ≡ D([0,∞), S), for a separable metric space S, is the space of

all right-continuous S-valued functions with left-limits in (0,∞); see Billingsley (1999) and Whitt
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(2002) for background. We will be using the standard Skorohod J1 topologies on both D spaces in

DD. For a discussion of DD, see Talreja and Whitt (2008) and Pang and Whitt (2010).

Following Krichagina and Puhalskii (1998) and Pang and Whitt (2010), we can rewrite the

random sum in (2.3) as integrals with respect to the random field

Qen(t, y) = n

∫ t

t−y

∫ ∞
0

1(s+ x > t)dK̄n(Ān(s), x), t ≥ 0, 0 ≤ y ≤ t, (2.4)

where the two-parameter random fields K̄n in DD are defined by

K̄n(t, x) ≡ 1

n

bntc∑
i=1

1(ηi ≤ x), t ≥ 0, x ≥ 0. (2.5)

The integral in (2.4) is well defined as a Stieltjes integral for functions of bounded variation as

integrators.

These two-parameter random fields are often called sequential empirical processes. For the case

of iid service times for IS queues, the FWLLN and FCLT for such random fields is discussed in

Pang and Whitt (2010). Here, for weakly dependent service times, the corresponding FCLT was

established by Berkes and Philipp (1977) for φ-mixing sequences and by Berkes, Hörmann and

Schauer (2009) for S-mixing sequences, where the convergence is in the space of D([0, 1]× [0, 1],R)

with the generalized Skorohod J1 topology on two-parameter processes (Bickel and Wichura (1971)

and Straf (1971)). Here we first extend their results to the space DD with the Skorohod J1 topology

on both D spaces (recall that the space D([0, 1] × [0, 1],R) ⊂ D([0, 1], D([0, 1],R))). The proof is

in §4.1.

For a sequence of random variables {ξk : k ≥ 1}, each uniformly distributed on [0, 1], let

γk(x) ≡ 1(ξk ≤ x)− x and

Γ(x, y) = E[γ1(x)γ1(y)] +
∞∑
k=2

(
E[γ1(x)γk(y)] + E[γ1(y)γk(x)]

)
, x, y ∈ [0, 1]. (2.6)

Let the diffusion-scaled sequential empirical processes Ûn(t, x) be defined by

Ûn(t, x) ≡ 1√
n

bntc∑
k=1

γk(x), t ≥ 0, x ∈ [0, 1]. (2.7)

Theorem 2.1 (FCLT in DD for the sequential empirical process with weakly dependent random

variables) Let {ξk : k ≥ 1} be a weakly dependent stationary sequence of random variables uniformly

distributed on [0, 1], either (i) φ-mixing or (ii) S-mixing. Assume that

∞∑
i=1

‖E[ξi+k|Fk]‖L2 =

∞∑
i=1

(E[(E[ξi+k|Fk])2])1/2 <∞ (2.8)
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where Fk ≡ σ{ξi : 1 ≤ i ≤ k} for each k ≥ 1. Then, the series Γ(x, y) in (2.6) converges absolutely

and

Ûn ⇒ Û in D([0,∞), D([0, 1],R)) as n→∞, (2.9)

for Ûn in (2.7), where Û is a generalized Kiefer process (continous two-parameter Gaussian process)

with E[Û(t, x)] = 0 and E[Û(t, x)Û(s, y)] = (t∧s)Γ(x, y) with Γ(x, y) defined in (2.6) for any t, s ≥ 0

and x, y ∈ [0, 1]. Moreover, the convergence is uniform in the second parameter x ∈ [0, 1].

The convergence in (2.9) implies that the fluid-scaled sequential processes satisfy the FWLLN:

Ūn(t, x) ≡ 1

n

bntc∑
k=1

1(ξk ≤ x)⇒ ū(t, x) ≡ tx, in D([0,∞), D([0, 1],R)) as n→∞ (2.10)

Moreover, in Theorem 2.1, when the sequence {ξk} is iid, the limit process Û becomes a standard

Kiefer process, where Γ(x, y) = x ∧ y − xy for x, y ∈ [0, 1].

Theorem 2.1 for uniform random variables implies associated results for the random variables

ηi, using the fact that F (ηi) is distributed the same as ξi, implying that 1(ηi ≤ x) = 1(F (ηi) ≤

F (x)
d
= 1(ξi ≤ F (x)). Thus, the two-parameter random fields in (2.5) satisfy the FWLLN:

K̄n ⇒ k̄ in DD as n→∞,

where k̄(t, x) = tF (x), and the convergence is uniform over sets of the form [0, T ]× [0,∞) and there

is uniformity in the second argument x over [0,∞). Define the scaled processes

K̂n(t, x) ≡
√
n(K̄n(t, x)− k̄(t, x)) =

1√
n

bntc∑
i=1

(1(ηi ≤ x)− F (x))
d
= Ûn(t, F (x)), t, x ≥ 0,

where Ûn(t, x) is defined in (2.7). This implies that the FCLT for K̂n holds; in particular,

K̂n ⇒ K̂ in DD as n→∞, (2.11)

where K̂ is a time-changed generalized Kiefer process

K̂(t, x) = Û(t, F (x)), t, x ≥ 0,

independent of Â, with mean 0 and covariance

E[K̂(t, x)K̂(s, y)] = (t ∧ s)ΓK(x, y), t, s, x, y ≥ 0, (2.12)

ΓK(x, y) = [F (x) ∧ F (y)− F (x)F (y)] + ΓcK(x, y) <∞, (2.13)
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ΓcK(x, y) =
∞∑
k=2

(
E[γ̄1(x)γ̄k(y)] + E[γ̄1(y)γ̄k(x)]

)
<∞, (2.14)

for each x, y ≥ 0, where γ̄k(x) ≡ 1(ηk ≤ x)− F (x) for k ≥ 1.

In the case of iid service times, Û(t, x) is the standard Kiefer process, and U(t, x) = W (t, x)−

xW (t, 1) for standard Brownian sheet W , so that K̂ is a standard Kiefer process with the second pa-

rameter having a time change by the service-time distribution, ΓK(x, y) = F (x)∧F (y)−F (x)F (y).

Then we obtain the following representation of the processes Qen. The proof follows from the

same argument as Lemma 2.1 in Pang and Whitt (2010) and thus is omitted.

Lemma 2.1 (Queue-length representation by sequential empirical processes) The processes Qen de-

fined in (2.3) can be represented as

Qen(t, y) = n

∫ t

t−y
F c(t− s)dā(s) +

√
n(X̂e

n,1(t, y) + X̂e
n,2(t, y)), (2.15)

where

X̂e
n,1(t, y) =

∫ t

t−y
F c(t− s)dÂn(s) (2.16)

= Ân(t)− F c(y)Ân(t− y)−
∫ t

t−y
Ân(s−)dF c(t− s),

X̂e
n,2(t, y) =

∫ t

t−y

∫ ∞
0

1(s+ x > t)dR̂n(s, x) = −
∫ t

t−y

∫ ∞
0

1(s+ x ≤ t)dR̂n(s, x), (2.17)

with the integrals in (2.16) and (2.17) defined as Stieltjes integrals for functions of bounded variation

as integrators, and

R̂n(t, x) = K̂n(Ān(t), x) =
1√
n

An(t)∑
i=1

γi(x)

=
√
nK̄n(Ān(t), x)− Ân(t)F (x)−

√
nā(t)F (x). (2.18)

3 Main Results

In this section, we will present the main results, the heavy-traffic FWLLN and FCLT limits for the

queue-length process, and also give explicit Gaussian characterizations of the limit processes.

3.1 FWLLN Limits

We first define the LLN-scaled processes (D̄n, Q̄
e
n) ≡ n−1(Dn, Q

e
n). By Lemma 2.1, these LLN-scaled

processes can be represented as

Q̄en(t, y) =

∫ t

t−y
F c(t− s)dā(s) +

1√
n

(X̂e
n,1(t, y) + X̂e

n,2(t, y)), t ≥ 0, 0 ≤ y ≤ t, (3.1)
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D̄n(t) = Ān(t)− Q̄en(t, t), t ≥ 0. (3.2)

The FWLLN limits for these processes are given in the following theorem. The proof for the

convergence of the processes Qen simply follows from tightness of the processes X̂e
n,1 and X̂e

n,2 to be

established as a main component in proving the FCLT limits. The convergence of other processes

follows from applying the continuous mapping theorem (CMT). Thus, the proof for the following

theorem is omitted.

Theorem 3.1 (FWLLN with weakly dependent service times) Under Assumptions 1 - 2,

(Ān, D̄n, Q̄
e
n)⇒ (ā, d̄, q̄e) in D2 ×DD as n→∞ (3.3)

where the limits are all deterministic functions,

q̄e(t, y) =

∫ t

t−y
F c(t− s)dā(s), t ≥ 0, 0 ≤ y ≤ t, (3.4)

d̄(t) = ā(t)− q̄e(t, t) =

∫ t

0
F (t− s)dā(s), t ≥ 0, (3.5)

We remark that the weak dependence among service times does not affect the fluid limits, which

are the same as the case of iid service times.

Corollary 3.1 (FWLLN in the standard case) In the standard case, the limits in (3.3) simplify as

follows,

q̄e(t, y) = λ

∫ t

t−y
F c(t− s)ds = λ

∫ y

0
F c(s)ds = (λ/µ)Fe(y) ≡ q̄e(∞, y), (3.6)

d̄(t) = λ

∫ t

0
F (t− s)ds = λ

∫ t

0
F (s)ds, t ≥ 0, (3.7)

where Fe is the stationary-excess (or residual-lifetime) cdf associated with the service-time cdf F ,

defined by Fe(x) = µ
∫ x

0 F
c(s)ds for each x ≥ 0, and d̄′(t) = λF (t)→ λ as t→∞.

3.2 FCLT Limits

We first define the FCLT-scaled processes associated with (Dn, Q
e
n):

D̂n ≡
√
n(D̄n − d̄), Q̂en ≡

√
n(Q̄en − q̄e), (3.8)

where d̄ and q̄e are defined in Theorem 3.1. By Lemma 2.1, the processes Qen can be represented

as

Q̂en(t, y) = X̂e
n,1(t, y) + X̂e

n,2(t, y), t ≥ 0, 0 ≤ y ≤ t, (3.9)
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and it is clear that

D̂n(t) = Ân(t) + Q̂en(t, t), t ≥ 0. (3.10)

The limit of the processes X̂e
n,2(t, y) are given as mean-square integrals of the time-changed gener-

alized Kiefer process K̂(t, x) in (2.11). Here we first give the definition of the limit.

Definition 3.1 The two-parameter process X̂e
2 , written as

X̂e
2(t, y) =

∫ t

t−y

∫ ∞
0

1(s+ x > t)dK̂(ā(s), x) = −
∫ t

t−y

∫ ∞
0

1(s+ x ≤ t)dK̂(ā(s), x), (3.11)

is defined by a mean-square integral, i.e.,

lim
k→∞

E[(X̂e
2(t, y)− X̂e

2,k(t, y))2] = 0, t ≥ 0, 0 ≤ y ≤ t, (3.12)

with

X̂e
2,k(t, y) =

∫ t

t−y

∫ ∞
0

1k,t,y(s, x)dK̂(ā(s), x), t ≥ 0, 0 ≤ y ≤ t, (3.13)

1k,t,y(s, x) ≡
k∑
i=1

[1(ski−1 < s ≤ ski )1(t− ski < x ≤ t)] (3.14)

t − y = sk0 < sk1 < · · · < skk = t and max1≤i≤k |ski − ski−1| → 0 as k → ∞. Write X̂e
2(t, y) =

l.i.m.k→∞X̂
e
2,k(t, y)

Theorem 3.2 (FCLT with weakly dependent service times) Under Assumptions 1-2,

(Ân, D̂n, Q̂
e
n)⇒ (Â, D̂, Q̂e) in D2 ×DD as n→∞, (3.15)

where

Q̂e(t, y) ≡ X̂e
1(t, y) + X̂e

2(t, y), t ≥ 0, 0 ≤ y ≤ t, (3.16)

X̂e
1(t, y) =

∫ t

t−y
F c(t− s)dÂ(s) = Â(t)− F c(y)Â(t− y)−

∫ t

t−y
Â(s)dF c(t− s), (3.17)

X̂e
2 is defined in (3.11)

D̂(t) = Â(t)− Q̂e(t, t) =

∫ t

0
F (t− s)dÂ(s)− X̂e

2(t, t)

=

∫ t

0
Â(s)dF c(t− s)− X̂e

2(t, y), (3.18)

where Â is given in Assumption 1, X̂e
1 and D̂ take the first expression in (3.17) and (3.18) respec-

tively if Â is a BM and the second if Â is a general Gaussian process.
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We remark about the impact of weak dependence of service times upon various processes.

Weak dependence of service times affects the FCLT limits of the number of customers in the

system and departure process, in particular, in the X̂e
2 term with K̂ capturing the effect, see its

covariance formula ΓcK(x, y) in (2.14). These effects are all captured in the variance formulas for

these processes when the arrival limit process is a BM, see Propositions 3.2 and 3.3.

Special Case I: EARMA(1,1) Service Times. Jacobs and Lewis (1977) proposed an ap-

proach to generate a stationary sequence of dependent random variables from a sequence of iid

exponential random variables, the so-called EARMA(1,1) sequence, and Jacobs (1980) applied

such stationary sequences to study single server queues with dependent service and interarrival

times. The stationary EARMA(1,1) sequence satisfies the φ-mixing condition, see Jacobs (1980).

We apply this to the IS and many-server models with dependent service times and conducted

simulations to evaluate their performance in Pang and Whitt (2011a).

Special Case II: Batch Arrivals. Suppose that at each arrival time τni , i = 1, 2, ..., there are a

random number Bi of service requests entering the system at the same time, where {Bi : i = 1, 2, ...}

is a sequence of iid random variables with a common distribution. Let pB,k = P (Bi = k) and∑∞
k=1 pB,k = 1. Suppose that E[Bi] =

∑∞
k=1 kpB,k < ∞ and E[B2

i ] =
∑∞

k=1 k
2pB,k < ∞. The

stationary excess distribution of Bi is given by p∗B,k = (E[Bi])−1
∑∞

j=k pB,j for k = 1, 2, ..., and

E[B∗i ] = (E[B2
i ] + E[Bi])/(2E[Bi]).

For the arrivals in the ith batch, the service requirements {ηi1 , ηi2 , ..., ηiBi
} are correlated, and

moreover, for any ith and jth batches of arrivals, the service requirements {ηi1 , ηi2 , ..., ηiBi
} and

{ηj1 , ηj2 , ..., ηjBj
} are independent. Then, the covariance function ΓcK(x, y) in (2.14) becomes

ΓcK(x, y) =

∞∑
i=1

[
p∗B,i

i∑
k=2

(
E[γ11(x)γ1k(y)] + E[γ11(y)γ1k(x)]

)]
=

∞∑
i=1

[
p∗B,i

i∑
k=2

(
Fk(x, y) + Fk(y, x)− 2F (x)F (y)

)]
, (3.19)

where γik(x) = 1(ηik ≤ x) − F (x) for each service requirement k = 1, ...,Bi in the ith batch, and

Fk(x, y) is the joint distribution function for each pair (ηi1 , ηik) of the ith batch. Note that the job

1 in batch i is not necessarily the first job in the batch, but instead an arbitrary job in the batch,

and thus we use the stationary-excess batch size distribution. For a comparison of the difference

between the first job delay and an arbitrary job delay in a batch for single-server queues, see Whitt
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(1983). It is easy to see that such sequences of service times form a stationary sequence satisfying

the φ-mixing condition and the S-mixing condition.

Suppose, in addition, that the dependence between any two service requests among the arrivals

in a batch is the same, that is, F (x, y) = Fk(x, y) for each pair (ηi1 , ηik) of the ith batch. Then the

covariance function ΓcK(x, y) in (3.19) can be simplified as

ΓcK(x, y) =
(
F (x, y) + F (y, x)− 2F (x)F (y)

)
(E[B∗1]− 1). (3.20)

In Pang and Whitt (2011b), we study this special model in more detail.

3.3 Characterizing the FCLT Limit Processes

In this section, we give the Gaussian characterizations of the limit processes in Theorem 3.2. First,

we give the Gaussian property of the process X̂e
2 defined in Definition 3.1. Recall that this process

does not involve the limit process Â. In §4.2, we will prove Proposition 3.1. The Gaussian property

of Q̂e(t, y) is then simply obtained by combining the Gaussian property of X̂e
1 together with that

of X̂e
2 since X̂e

1 and X̂e
2 are independent. The Gaussian property of X̂e

1 follows from applying Ito’s

isometry property, see Karatzas and Shreve (1991).

Proposition 3.1 (Gaussian property of X̂e
2 ) Under Assumptions 1 and 2, the two-parameter

process X̂e
2 in (3.11) is a well-defined continuous Gaussian process with mean 0 and covariance

E[X̂e
2(t1, y1)X̂e

2(t2, y2)] =

∫ t1∧t2

(t1−y1)∨(t2−y2)

(
F (t1 ∧ t2 − s)− F (t1 − s)F (t2 − s)

+ΓcK(t1 − s, t2 − s)
)
dā(s), (3.21)

Proposition 3.2 (Gaussian property with time-varying arrivals) If, in addition to the Assumptions

in Theorem 3.2, Â(t) =
√
c2
aBa(ā(t)), where Ba is a standard BM, ā(t) =

∫ t
0 λ(s)ds and c2

a is a

constant (the variability parameter), then the limit processes are all continuous Gaussian processes

with

Q̂e(t, y)
d
= N(0, σ2

Q,e(t, y)), D̂(t)
d
= N(0, σ2

D(t)), t ≥ 0, 0 ≤ y ≤ t, (3.22)

where

σ2
Q,e(t, y) =

∫ t

t−y
λ(s)

(
F c(t− s) + (c2

a − 1)(F c(t− s))2 + ΓcK(t− s, t− s)
)
ds, (3.23)

σ2
D(t) =

∫ t

0
λ(s)

(
F (t− s) + (c2

a − 1)(F (t− s))2 + ΓcK(t− s, t− s)
)
ds. (3.24)
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Proposition 3.3 (Gaussian property in the standard case) If, in addition to the Assumptions in

Theorem 3.2, we have the standard case, then (3.22) holds with

σ2
Q,e(t, y) = λ

∫ t

t−y

(
F c(t− s) + (c2

a − 1)(F c(t− s))2 + ΓcK(t− s, t− s)
)
ds

= λ

∫ y

0

(
F c(s) + (c2

a − 1)(F c(s))2 + ΓcK(s, s)
)
ds = σ2

Q,e(∞, y), (3.25)

σ2
D(t) = λ

∫ t

0

(
F (s) + (c2

a − 1)(F (s))2 + ΓcK(s, s)
)
ds, (3.26)

and

lim
t→∞

σ2
D(t)

t
= lim

t→∞
λ
[
F (t) + (c2

a − 1)(F (t))2 + ΓcK(t, t)
)]

= λc2
a. (3.27)

We observe from Propositions 3.2 and 3.3 that the dependence among service times affects

the variance functions of the number of customers in the system and the departure process by

simply adding an additional term involving ΓcK to the expressions in the case of iid service times.

Moreover, in the standard case, the variability of the departure process is not affected by the

dependence among service times, which is the same as the variability of the arrival process, c2
a, as

shown in (3.27).

4 Proofs

4.1 Proof of Theorem 2.1

We first show the convergence of the finite-dimensional distributions (f.d.d.’s) and then we show

tightness of {Ûn : n ≥ 1} in the space D([0,∞), D([0, 1],R)).

For the convergence of f.d.d.’s, we can apply Theorem 1 of Berkes and Philipp (1977) under the

φ-mixing condition and Theorem A of Berkes, Hormann and Schauer (2009) under the S-mixing

condition to deduce that, for 0 ≤ t1 < t2 < · · · < tk,

(Ûn(t1, ·), ..., Ûn(tk, ·))⇒ (Û(t1, ·), ..., Û(tk, ·)) in D([0, 1],R)k as n→∞, (4.1)

where the k elements in the limit are random elements in the functional space D([0, 1],R). Then,

by those two theorems above, for each ti, we have that for each xti,1, ..., xti,jti ,

(Ûn(t1, xt1,1), ..., Ûn(t1, xt1,jti ), · · · , Ûn(tk, xtk,1), ..., Ûn(tk, xtk,jtk )) (4.2)

⇒ (Û(t1, xt1,1), ..., Û(t1, xt1,jti ), · · · , Û(tk, xtk,1), ..., Û(tk, xtk,jtk )) in Rjt1+···+jtk as n→∞.
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We next show the tightness of {Ûn : n ≥ 1} in D([0,∞), D([0, 1],R)) by applying the tightness

criteria in Theorem 6.2 in Pang and Whitt (2010). First, the stochastic boundedness of {Ûn : n ≥ 1}

in D([0,∞), D([0, 1],R)) follows easily from the convergence in D([0, 1]2,R) under either the φ-

mixing condition or the S-mixing condition.

Then, it suffices to show that

lim
ϑ→0

lim sup
n→∞

sup
κn

P

(
sup
t≤ϑ

dJ1(Ûn(κn + t, ·), Ûn(κn, ·)) ≥ ς

)
= 0 (4.3)

where {κn : n ≥ 1} is a sequence of uniformly bounded stopping times with respect to the natural

filtration Gn ≡ {Gn(t) : t ∈ [0, T ]} with Gn(t) = σ{Ûn(s, ·) : 0 ≤ s ≤ t} ∨ N satisfying the usual

conditions (complete, increasing and right continuous). Due to the fact that the Shokorod J1 metric

for any two functions in D is less than the uniform metric (§3.3, Whitt (2002)), and moreover, by

easily observing that

P

(
sup
t≤ϑ

sup
x∈[0,1]

∣∣∣Ûn(κn + t, x)− Ûn(κn, x)
∣∣∣ ≥ ς)

≤ 2P

(
sup
t≤ϑ

sup
x∈[0,1/2]

∣∣∣Ûn(κn + t, x)− Ûn(κn, x)
∣∣∣ ≥ ς) ,

we only need to prove that

lim
ϑ→0

lim sup
n→∞

sup
κn

P

(
sup
t≤ϑ

sup
x∈[0,1/2]

∣∣∣Ûn(κn + t, x)− Ûn(κn, x)
∣∣∣ ≥ ς) = 0. (4.4)

The sequence {γk(x) : k ≥ 1} for each x ∈ [0, 1] is stationary and ergodic, because {ξk : k ≥ 1}

is stationary and ergodic under either the φ-mixing condition or the S-mixing condition, and

moreover,

E[γk(x)] = 0, E[γk(x)2] = x(1− x) ≤ 1

4
, for all x ∈ [0, 1].

We now construct a martingale difference sequence from the sequence {γk(·) : k ≥ 1}. We follow

the idea in the proof of Theorem 19.1 in Billingsley (1999). Let F ≡ {Fk : k ≥ 1} be the natural

filtration generated by the sequence {ξk : k ≥ 1}, defined by Fk ≡ σ{ξi : i ≤ k}. Define

γ̂k(x) ≡
∞∑
i=1

E[γk+i(x)|Fk], x ∈ [0, 1], k = 1, 2, ... (4.5)

and

γ̃k(x) ≡ γk(x) + γ̂k(x)− γ̂k−1(x), x ∈ [0, 1], k = 1, 2, .... (4.6)
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Then, the sequence {γ̃k(x) : k ≥ 1} for each x ∈ [0, 1] is a martingale difference sequence, because

for each k ≥ 1,

E[γ̃k+1(x)|Fk] = E[γk+1(x) + γ̂k+1(x)− γ̂k(x)|Fk]

= E[γk+1(x)|Fk] + E
[ ∞∑
i=1

E[γk+1+i(x)|Fk+1]
∣∣∣Fk]− E[γ̂k(x)|Fk]

= E[γk+1(x)|Fk] +
∞∑
i=1

E[γk+1+i(x)|Fk]−
∞∑
i=1

E[γk+i(x)|Fk]

= E[γk+1(x)|Fk]− E[γk+1(x)|Fk] = 0,

and E[|γ̃k(x)|] <∞ since E[|γ̂k(x)|] <∞ by (2.8).

Define the processes Ũn ≡ {Ũn(t, x) : t, x ≥ 0} by

Ũn(t, x) =
1√
n

bntc∑
k=1

γ̃k(x). (4.7)

Then it follows that for each t ≥ 0 and x ∈ [0, 1], (see the proof of Theorem 19.1 in Billingsley

(1999))

‖Ũn(t, x)− Ûn(t, x)‖L2 =

∥∥∥∥∥∥ 1√
n

bntc∑
k=1

(γ̂k(x)− γ̂k−1(x))

∥∥∥∥∥∥
L2

→ 0 as n→∞. (4.8)

Hence, for each x ∈ [0, 1], κn and n ≥ 1, the process {Ũn(κn + t, x)− Ũn(κn, x) : t ≥ 0} defined

by

Ũn(κn + t, x)− Ũn(κn, x) ≡ 1√
n

bn(κn+t)c∑
k=bnκnc+1

γ̃k(x) (4.9)

is a locally square integrable martingale with respect to the filtration {Gκn+t : t ≥ 0} by Doob’s

sampling theorem. The difference between Ûn(κn + t, x)− Ûn(κn, x) and Ũn(κn + t, x)− Ũn(κn, x)

is asymptotically negligible as n→∞ because for t < ϑ small,∥∥∥∥∥∥ 1√
n

bn(κn+t)c∑
k=bnκnc+1

(γ̃k(x)− γk(x))

∥∥∥∥∥∥
L2

=

∥∥∥∥∥∥ 1√
n

bn(κn+t)c∑
k=bnκnc+1

(γ̂k(x)− γ̂k−1(x))

∥∥∥∥∥∥
L2

=

∥∥∥∥ 1√
n

(γ̂bn(κn+t)c(x)− γ̂bnκnc(x))

∥∥∥∥
L2

→ 0 as n→∞.

Thus, it suffices to show that

lim
ϑ→0

lim sup
n→∞

sup
κn

P

(
sup
t≤ϑ

sup
x∈[0,1/2]

∣∣∣Ũn(κn + t, x)− Ũn(κn, x)
∣∣∣ ≥ ς) = 0. (4.10)
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For each x ∈ [0, 1], κn and n ≥ 1, the process {Ũn(κn + t, x) − Ũn(κn, x) : t ≥ 0} is a locally

square integrable martingale with respect to the filtration {Gκn+t : t ≥ 0}, and then, by Doob’s

maximal inequality,

P

(
sup
t≤ϑ

sup
x∈[0,1/2]

∣∣∣Ũn(κn + t, x)− Ũn(κn, x)
∣∣∣ ≥ ς)

≤ 1

ς2
E

[
sup

x∈[0,1/2]

∣∣∣Ũn(κn + ϑ, x)− Ũn(κn, x)
∣∣∣2] =

1

ς2
E

 sup
x∈[0,1/2]

 1√
n

bn(κn+ϑ)c∑
k=bnκnc+1

γ̃k(x)

2 .
Then, it is obvious that for each fixed n and k, {γ̃k(x) : x ∈ [0, 1]} is a square integrable martingale,

and so is {Ũn(κn + t, x)− Ũn(κn, x) : x ∈ [0, 1]}, and thus, by Doob’s maximal inequality again,

P

(
sup
t≤ϑ

sup
x∈[0,1/2]

∣∣∣Ũn(κn + t, x)− Ũn(κn, x)
∣∣∣ ≥ ς)

≤ 1

ς2
E

 1√
n

bn(κn+ϑ)c∑
k=bnκnc+1

γ̃k(1/2)

2 ≤ 1

ς2
(ϑ+ 1/n)Mγ

where Mr =
∑∞

k=1E[γ̃k(1/2)2] < ∞. This upper bound goes to zero as ϑ → 0 and n → ∞ and

thus, (4.10) holds. The proof is complete.

4.2 Proof of Proposition 3.1

First, since the process K̂1 is continuous Gaussian, the process X̂e
2,k defined in (3.13) and (3.14) is

also continuous Gaussian for each k ≥ 1, and thus the limit as k →∞ is also Gaussian. Next, we

want to calculate

E[(X̂e
2(t1, y1)− X̂e

2(t2, y2))2] = lim
k→∞

E[(X̂e
2,k(t1, y1)− X̂e

2,k(t2, y2))2] (4.11)

for each t1 ≤ t2 and y1 ≤ y2.

Define for t1 ≤ t2 and x1 ≤ x2,

∆K(t1, t2, x1, x2) ≡ K̂(ā(t2), x2)− K̂(ā(t1), x2)− K̂(ā(t2), x1) + K̂(ā(t1), x1). (4.12)

Then, for t1 ≤ t2 and x1 ≤ x2,

E[(∆K(t1, t2, x1, x2))2]

= E[K̂(ā(t2), x2)2] + E[K̂(ā(t1), x2)2] + E[K̂(ā(t2), x1)2] + E[K̂(ā(t1), x1)2]

−2E[K̂(ā(t2), x2)K̂(ā(t1), x2)]− 2E[K̂(ā(t2), x2)K̂(ā(t2), x1)]

+2E[K̂(ā(t2), x2)K̂(ā(t1), x1)] + 2E[K̂(ā(t1), x2)K̂(ā(t2), x1)]
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−2E[K̂(ā(t1), x2)K̂(ā(t1), x1)]− 2E[K̂(ā(t2), x1)K̂(ā(t1), x1)]

= ā(t2)ΓK(x2, x2) + ā(t1)ΓK(x2, x2) + ā(t2)ΓK(x1, x1) + ā(t1)ΓK(x1, x1)

−2ā(t1)ΓK(x2, x2)− 2ā(t2)ΓK(x2, x1) + 2ā(t1)ΓK(x2, x1) + 2ā(t1)ΓK(x2, x1)

−2ā(t1)ΓK(x2, x1)− 2ā(t1)ΓK(x1, x1)

= (ā(t2)− ā(t1))[ΓK(x2, x2) + ΓK(x1, x1)− 2ΓK(x2, x1)]

= (ā(t2)− ā(t1))(F (x2)− F (x1))(1 + F (x1)− F (x2))

+(ā(t2)− ā(t1))[ΓcK(x2, x2) + ΓcK(x1, x1)− 2ΓcK(x2, x1)] (4.13)

and for t1 ≤ t2 and x1 ≤ x2, t′1 ≤ t′2 and x′1 ≤ x′2 and t2 < t′1,

E[∆K(t1, t2, x1, x2)∆K(t′1, t
′
2, x
′
1, x
′
2)] = 0 (4.14)

We choose the same set {ski : 0 ≤ i ≤ k} for t1 ≤ t2 and y1 ≤ y2 so that t2 − y2 = sk0 < · · · <

skk = t2 for each k ≥ 1. Without loss of generality, assume that t2 − y2 < t1 − y1. Then, we can

write

X̂e
2,k(t1, y1)− X̂e

2,k(t2, y2) =
k∑
i=1

∆K(ski−1, s
k
i , t1 − ski , t2 − ski ), (4.15)

and by (4.13) and (4.14), we obtain

E[(X̂e
2,k(t1, y1)− X̂e

2,k(t2, y2))2] =

k∑
i=1

E[(∆K(ski−1, s
k
i , t1 − ski , t2 − ski ))2]

=
k∑
i=1

(ā(ski )− ā(ski−1))
[
(F (t2 − ski )− F (t1 − ski ))(1 + F (t1 − ski )− F (t2 − ski ))

+[ΓcK(t2 − ski , t2 − ski ) + ΓcK(t1 − ski , t1 − ski )− 2ΓcK(t2 − ski , t1 − ski )]
]
. (4.16)

Thus,

E[(X̂e
2(t1, y1)− X̂e

2(t2, y2))2]

=

∫ t2

t2−y2

[
(F (t2 − u)− F (t1 − u))(1 + F (t1 − u)− F (t2 − u))

+[ΓcK(t2 − u, t2 − u) + ΓcK(t1 − u, t1 − u)− 2ΓcK(t2 − u, t1 − u)]
]
dā(u) (4.17)

for each t1 ≤ t2 and y1 ≤ y2 with t2 − y2 < t1 − y1. The continuity property of X̂e
2(t, y) in both t

and y w.p.1 follows from (4.17) by applying Chebyshev’s inequality and the continuity of ā. The

covariance of X̂e
2(t, y) follows from a similar argument. The proof is completed.
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4.3 Proofs for the FCLT

Proof of Theorem 3.2 Here we outline the main steps to prove the joint convergence of the

processes in (3.15). Once we prove the convergence of Q̂en, the convergence of D̂n follows from

applying the CMT to the addition mapping. Thus, The main task is to prove the convergence

of Q̂en, for which the convergence of X̂e
n,1 follows from applying CMT to the following mapping

φ : D ×D → DD

φ(x, z)(t, y) = x(t)− z(y)x(t− y)−
∫ t

t−y
x(s)dz(t− s), t, y ≥ 0 (4.18)

where x, z ∈ D. The continuity of the mapping φ in the Skorohod J1 topology follows from a

similar argument as in the proof of Lemma 6.1 in Pang and Whitt (2010), and thus, is omitted.

Thus, it suffices to prove the joint convergence of X̂e
n,1 and X̂e

n,2. We will take two steps: tightness

(Lemma 4.1) and convergence of f.d.d.’s (Lemma 4.2).

Lemma 4.1 (Tightness) Under the assumptions of Theorem 3.2, the processes {(Ân, X̂e
n,1, X̂

e
n,2,

D̂n : n ≥ 1} are tight in D×D2
D×D, and so are the processes {(Ân, Q̂en, D̂n) : n ≥ 1} in D×DD×D.

Proof. The tightness of the processes {Ân : n ≥ 1} and {X̂e
n,1 : n ≥ 1} follows from the Assump-

tion 1, and from applying the CMT to the mapping in (4.18).

For the tightness of {X̂e
n,2 : n ≥ 1}, we first construct a martingale difference sequence from the

sequence {ηi : i ≥ 1}. As in the proof of Theorem 2.1, we follow the idea in the proof of Theorem

19.1 in Billingsley (1999). Let F ≡ {Fk : k ≥ 1} be the natural filtration generated by the sequence

{ηi : i ≥ 1}, defined by Fk = σ{ηi : i ≤ k} ∨ N . Define

γ̂k(x) ≡
∞∑
i=1

E[γk+i(x)|Fk], x ≥ 0, k ≥ 1, (4.19)

and

γ̃k(x) ≡ γk(x) + γ̂k(x)− γ̂k−1(x), x ≥ 0, k ≥ 1, (4.20)

where

γk(x) ≡ 1(ηk ≤ x)− F (x) = −(1(ηk > x)− F c(x)), x ≥ 0, k ≥ 1. (4.21)

Then, it is easy to check that for each x ≥ 0, the sequence {γ̃k(x) : k ≥ 1} is a martingale difference

sequence. Define

K̃n(t, x) ≡ 1√
n

bntc∑
k=1

γ̃k(x), t, x ≥ 0, (4.22)
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and

R̃n(t, x) = K̃n(Ān, x) =
1√
n

bnĀn(t)c∑
k=1

γ̃k(x), t, x ≥ 0. (4.23)

Moreover, define the processes X̃e
n,2 by

X̃e
n,2(t, y) ≡

∫ t

t−y

∫ ∞
0

1(s+ x > t)dR̃n(s, x), t ≥ 0, 0 ≤ y ≤ t. (4.24)

We now show that the difference between X̂e
n,2 and X̃e

n,2 becomes negligible as n → ∞. By the

definitions of X̂e
n,2 and X̃e

n,2, we have

X̃e
n,2(t, y)− X̂e

n,2(t, y) =

∫ t

t−y

∫ ∞
0

1(s+ x > t)d(R̃n(s, x)− R̂n(s, x)), (4.25)

where

R̃n(s, x)− R̂n(s, x) =
1√
n

bnĀn(s)c∑
k=1

(γ̂k(x)− γ̂k−1(x)). (4.26)

By Assumption 2,

E[(γ̂k(x))2] = E[(γ̂k−1(x))2] <∞, k ≥ 1, x ≥ 0, (4.27)

and similar to (4.8),∥∥∥∥∥∥ 1√
n

bntc∑
k=1

(γ̂k(x)− γ̂k−1(x))

∥∥∥∥∥∥
L2

→ 0 as n→∞, for t, x ≥ 0. (4.28)

By Assumption 1, Ān ⇒ ā with ā being a deterministic and continuous function, it follows that

E[(R̃n(s, x)− R̂n(s, x))2]→ 0 as n→∞, for s, x ≥ 0, (4.29)

and thus,

E[(X̃e
n,2(t, y)− X̂e

n,2(t, y))2]→ 0 as n→∞, for t, y ≥ 0. (4.30)

Therefore, it suffices to prove the tightness of the processes {X̃e
n,2 : n ≥ 1} in DD.

We observe that the processes X̃e
n,2 in (4.24) can be written as

X̃e
n,2(t, y) =

1√
n

An(t)∑
i=An(t−y)

γ̃i(t− τni ). (4.31)

We will apply Theorem 6.2 in Pang and Whitt (2010) to prove the tightness property of {X̃e
n,2 :

n ≥ 1}. First, we show the stochastic boundedness of X̃e
n,2. It suffices to show the stochastic

boundedness of

X̌e
n,2(t) =

1√
n

An(t)∑
i=0

γ̃i(t− τni ) (4.32)
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since for each t and y, X̃e
n,2(t, y) ≤ X̌e

n,2(t). We will show that for any T > 0,

lim
L→∞

lim
n→∞

P

(
sup
t≤T
|X̌e

n,2(t)| > L

)
= 0. (4.33)

For any constant Ľ > 0, we can write

P

(
sup
t≤T
|X̌e

n,2(t)| > L

)
≤ P (Ān(T + 1) > Ľ) + P

(
sup
t≤T
|K̃n(Ān(t) ∧ Ľ, t− τni )| > L

)
(4.34)

where K̃n(t, x) is defined in (4.22). By Assumption 1, the sequence of processes {Ān : n ≥ 1} is

tight, and thus

lim
Ľ→∞

lim sup
n→∞

P (Ān(T + 1) > Ľ) = 0. (4.35)

Since {γ̃k(x) : k ≥ 1} in an ergodic martingale difference sequence for each x ≥ 0, by the Lenglart-

Rebolledo inequality (see, e.g., p.30 in Karatzas and Shreve (1991)), for any constant L̃

P

(
sup
t≤T
|K̃n(Ān(t) ∧ Ľ, t− τni )| > L

)
≤ L̃/L+ P

(
〈K̃n(Ān(T ) ∧ Ľ, T − τni )〉 > L̃

)
, (4.36)

where

〈K̃n(Ān(T ) ∧ Ľ, T − τni )〉 =
1

n

bn(Ān(T )∧Ľ)c∑
i=1

E[γ̃i(T − τni )2], (4.37)

and

1

n

bn(Ān(t))c∑
i=1

E[γ̃i(t− τni )2]⇒
∫ t

0
E[γ̃i(t− s)2]dā(s) <∞ as n→∞. (4.38)

We can choose L̃ large (but fixed) so that

lim
L→∞

lim
n→∞

P

(
sup
t≤T
|K̃n(Ān(t) ∧ Ľ, t− τni )| > L

)
= 0, (4.39)

and thus (4.33) is proved.

We next show that for any ς > 0

lim
ϑ→0

lim sup
n→∞

sup
κn

P

(
sup
t≤ϑ

dJ1(X̃n,2(κn + t, ·), X̃n,2(κn, ·)) > ς

)
= 0, (4.40)

where {κn : n ≥ 1} is a sequence of uniformly bounded stopping times with respect to the filtration

Hn ≡ {Hn(t) : t ≥ 0} and with upper bound κ∗, where

Hn(t) ≡ σ{ηi ≤ s− τni : 1 ≤ i ≤ An(t), 0 ≤ s ≤ t} ∨ {An(s) : 0 ≤ s ≤ t} ∨ N (4.41)

and Hn satisfies the usual conditions. It suffices to show that for any ς > 0

lim
ϑ→0

lim sup
n→∞

sup
κn

P

(
sup
t≤ϑ

sup
y∈[0,T∧(κn+t)]

∣∣∣X̃n,2(κn + t, y)− X̃n,2(κn, y)
∣∣∣ > ς

)
= 0. (4.42)
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For each n, κn, y > 0 and t < ϑ small, by (4.31)

X̃n,2(κn + t, y)− X̃n,2(κn, y)

=
1√
n

An(κn+t)∑
i=An(κn+t−y)

γ̃i(κn + t− τni )− 1√
n

An(κn)∑
i=An(κn−y)

γ̃i(κn − τni )

=
1√
n

An(κn+t)∑
i=An(κn+t−y)

γ̃i(κn + t− τni )− 1√
n

An(κn)∑
i=An(κn+t−y)

γ̃i(κn − τni )

− 1√
n

An(κn+t−y)∑
i=An(κn−y)

γ̃i(κn − τni )

=
1√
n

An(κn+t)∑
i=An(κn)+1

γ̃i(κn + t− τni,1)− 1√
n

An(κn)∑
i=An(κn+t−y)

[
γ̃i(κn − τni )− γ̃i(κn + t− τni )

]

− 1√
n

An(κn+t−y)∑
i=An(κn−y)

γ̃i(κn − τni ). (4.43)

Then, for any L > 0, we have

P

(
sup
t≤ϑ

sup
y∈[0,T∧(κn+t)]

∣∣∣X̃n,2(κn + t, y)− X̃n,2(κn, y)
∣∣∣ > ς

)
≤ P

(
Ān(κ∗ + 1) > L

)
+P

sup
t≤ϑ

∣∣∣∣∣∣ 1√
n

n(Ān(κn+t)∧L)∑
i=n(Ān(κn)∧L)+1

γ̃i(κn + t− τni )

∣∣∣∣∣∣ > ς


+P

sup
t≤ϑ

sup
y∈[0,T∧(κn+t)]

∣∣∣∣∣∣ 1√
n

n(Ān(κn)∧L)∑
i=n(Ān(κn+t−y)∧L)

[
γ̃i(κn − τni )− γ̃i(κn + t− τni )

]∣∣∣∣∣∣ > ς


+P

sup
t≤ϑ

sup
y∈[0,T∧(κn+t)]

∣∣∣∣∣∣ 1√
n

n(Ān(κn+t−y)∧L)∑
i=n(Ān,1(κn−y)∧L)

γ̃i(κn − τni )

∣∣∣∣∣∣ > ς

 . (4.44)

By Assumption 1, we have

lim
L→∞

lim sup
n→∞

P
(
Ān(κ∗ + 1) > L

)
= 0. (4.45)

For the second term on the right hand side of (4.44),

P

sup
t≤ϑ

∣∣∣∣∣∣ 1√
n

n(Ān(κn+t)∧L)∑
i=n(Ān(κn)∧L)+1

γ̃i(κn + t− τni )

∣∣∣∣∣∣ > ς


≤ P

sup
t≤ϑ

∣∣∣∣∣∣ 1√
n

n(Ān(κn+t)∧L)∑
i=n(Ān(κn)∧L)+1

γ̃i(κn − τni )

∣∣∣∣∣∣ > ς


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+P

sup
t≤ϑ

∣∣∣∣∣∣ 1√
n

n(Ān(κn+t)∧L)∑
i=n(Ān(κn)∧L)+1

[γ̃i(κn + t− τni )− γ̃i(κn − τni )]

∣∣∣∣∣∣ > ς

 . (4.46)

For each n and ς̃ > 0, by Lenglart-Rebolledo inequality, the first term on the right hand side of

(4.46) satisfies

P

sup
t≤ϑ

∣∣∣∣∣∣ 1√
n

n(Ān(κn+t)∧L)∑
i=n(Ān(κn)∧L)+1

γ̃i(κn − τni )

∣∣∣∣∣∣ > ς


≤ ς̃

ς
+ P

〈 1√
n

n(Ān(κn+ϑ)∧L)∑
i=n(Ān(κn)∧L)+1

γ̃i(κn − τni )

〉
> ς̃


=

ς̃

ς
+ P

 1

n

n(Ān(κn+ϑ)∧L)∑
i=n(Ān(κn)∧L)+1

E[(γ̃i(κn − τni ))2] > ς̃

 (4.47)

where

1

n

n(Ān(κn+ϑ)∧L)∑
i=n(Ān(κn)∧L)+1

E[(γ̃i(κn − τni ))2] ≤ sup
s,t≤Υ∧T,|s−t|<ϑ

1

n

n(Ān(t)∧L)∑
i=n(Ān(s)∧L)+1

E[(γ̃i(t− τni ))2] (4.48)

and thus, by (4.38) and choosing ς̃ arbitrarily small, we have that for any ς > 0,

lim
ϑ→0

lim sup
n→∞

sup
κn

P

sup
t≤ϑ

∣∣∣∣∣∣ 1√
n

n(Ān(κn+t)∧L)∑
i=n(Ān(κn)∧L)+1

γ̃i(κn − τni )

∣∣∣∣∣∣ > ς

 = 0. (4.49)

Since for each n and i, {γ̃i(x) : x ≥ 0} is a square integrable martingale with respect to the

filtration G ≡ {G(t) : t ≥ 0} where G(t) = σ{1(ηi ≤ x) : 0 ≤ x ≤ t, i = 1, 2, ...} , then by Doob’s

maximal inequality, for any c > 0,

P

(
sup
t≤ϑ
|γ̃i(κn + t− τni )− γ̃i(κn − τni )| > c

]
≤ c−2E

[
(γ̃i(κn + ϑ− τni )− γ̃i(κn − τni ))2

]
→ 0 as ϑ→ 0. (4.50)

Moreover,

1

n

bn(Ān(t))c∑
i=1

E[(γ̃i(t+ ϑ− τni )− γ̃i(t− τni ))2]⇒
∫ t

0
E[(γ̃i(t+ ϑ− s)− γ̃i(t− s))2]dā(s) <∞. (4.51)

as n→∞ and the limit in (4.51) goes to 0 as ϑ→ 0. Thus, it follows that for each ς > 0,

lim
ϑ→0

lim sup
n→∞

sup
κn

P

sup
t≤ϑ

∣∣∣∣∣∣ 1√
n

n(Ān(κn+t)∧L)∑
i=n(Ān(κn)∧L)+1

[γ̃i(κn + t− τni )− γ̃i(κn − τni )]

∣∣∣∣∣∣ > ς

 = 0 (4.52)
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For the third term in (4.44), a similar argument applies by observing that for any y ∈ [0, T ∧

(κn + t)],

1√
n

n(Ān(κn)∧L)∑
i=n(Ān(κn+t−y)∧L)

∣∣∣γ̃i(κn − τni )− γ̃i(κn + t− τni )
∣∣∣

≤ 1√
n

n(Ān(κn)∧L)∑
i=0

∣∣∣γ̃i(κn − τni )− γ̃i(κn + t− τni )
∣∣∣. (4.53)

The last term in (4.44) follows from the same argument as in the first term in (4.46). Thus, (4.42)

is proven, and tightness of the processes {X̃e
n,2 : n ≥ 1} is proven in the space DD, which implies

the tightness of {X̂e
n,2 : n ≥ 1}.

By the tightness of {X̂e
n,1 : n ≥ 1} and {X̂e

n,2 : n ≥ 1}, we obtain the tightness of {Q̂en : n ≥ 1}

in DD, which implies tightness of {D̂e
n : n ≥ 1}. Finally, the joint tightness of all these processes in

the product space follows from tightness of each sequence of processes in their own space (Theorem

11.6.7, Whitt (2002)). This completes the proof.

Lemma 4.2 (Convergence of finite dimensional distributions) Under the assumptions of Theorem

3.2, the finite dimensional distributions of the processes (Ân, X̂
e
n,1, X̂

e
n,2, D̂n,1) converge in distribu-

tion to those of the processes (Â, X̂e
1 , X̂

e
2 , D̂).

Proof. As in the proof of tightness, we mainly focus on the proof for the convergence of the

f.d.d.’s of the processes X̂e
n,2 to those of X̂e

2 .

First, we write the processes X̂e
n,2 defined in (2.17) as the limit of mean square integrals, as in

(3.13) for X̂e
2 ,

X̂e
n,2(t, y) ≡ l.i.m.k→∞X̂

e
n,2,k(t, y), (4.54)

where

X̂e
n,2,k(t, y) ≡

∫ t

t−y

∫ ∞
0

1k,t,y(s, x)dR̂n(s, x) =
k∑
i=1

∆R̂n
(ski−1, s

k
i , t− ski , t)

=

k∑
i=1

∆K̂n
(Ān(ski−1), Ān(ski ), t− ski , t) (4.55)

with 1k,t,y(s, x) defined in (3.14) for t − y = sk0 < sk1 < · · · < skk = t and max1≤i≤k |ski − ski−1| → 0

as k →∞, and

∆R̂n
(ski−1, s

k
i , t− ski , t) = R̂n(ski , t)− R̂n(ski−1, t)− R̂n(ski , t− ski ) + R̂n(ski−1, t− ski ). (4.56)
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Similarly, for X̂e
2 , we write them as limits of mean square integrals of X̂e

2,k,

X̂e
2,k(t, y) ≡

∫ t

t−y

∫ ∞
0

1k,t,y(s, x)dK̂(ā(t), x) =
k∑
i=1

∆K̂(ā(ski−1), ā(ski ), t− ski , t). (4.57)

We prove the convergence of f.d.d.’s of X̂e
n,2 to those of X̂e

2 by using the convergence of K̂n ⇒ K̂

in D2
D in (2.11). Define the processes X̌e

n,2,k by

X̌e
n,2,k(t, y) ≡

k∑
i=1

∆K̂n
(ā(ski−1), ā(ski ), t− ski , t). (4.58)

Then, by the convergence of K̂n ⇒ K̂ in D2
D and the continuity of ā, we can conclude that the

joint convergence of f.d.d.’s of (Ân, X̂
e
n,1, X̌

e
n,2,k) converge in distribution to those of the processes

(Â, X̂e
1 , X̂

e
2,k) as n→∞.

Now it suffices to show that the difference between X̌e
n,2,k and X̂e

n,2,k is asymptotically negligible

in probability as n → ∞ for each k, and the difference between X̂e
n,2,k and X̂e

n,2 is asymptotically

negligible in probability as n→∞ and k →∞. We will next show that for any ε > 0,

lim
n→∞

P

(
sup

0≤t≤T,0≤y≤t
|X̌e

n,2,k(t, y)− X̂e
n,2,k(t, y)| > ε

)
= 0, T > 0, (4.59)

and

lim
k→∞

lim sup
n→∞

P (|X̂e
n,2,k(t, y)− X̂e

n,2(t, y)| > ε) = 0, t ≥ 0, 0 ≤ y ≤ t. (4.60)

We obtain (4.59) from the convergence of Ān ⇒ ā in (2.1), the continuity of ā, and the conver-

gence K̂n ⇒ K̂ in (2.11) and the continuity of the generalized Kiefer limit process K̂. It remains

to show (4.60). For that, we define the processes X̃e
n,2,k for each k and n by

X̃e
n,2,k(t, y) ≡

∫ t

t−y

∫ ∞
0

1k,t,y(s, x)dR̃n(s, x) =

k∑
i=1

∆R̃n
(ski−1, s

k
i , t− ski , t)

=

k∑
i=1

∆K̃n
(Ān(ski−1), Ān(ski ), t− ski , t) (4.61)

where K̃n and R̃n are defined in (4.22) and (4.23), respectively, and the partition of interval [t−y, t]

and 1k,t,y(s, x) are the same as in (4.55)-(4.56). (4.28) and (4.29) imply that the processes X̃e
n,2,k

and X̂e
n,2,k are asymptotically negligible as n → ∞ for each k, and moreover, (4.30) implies that

X̃e
n,2 in (4.24) and X̂e

n,2 are asymptotically negligible as n → ∞. Thus, it suffices to show the

following in order to prove (4.60),

lim
k→∞

lim sup
n→∞

P (|X̃e
n,2,k(t, y)− X̃e

n,2(t, y)| > ε) = 0, t ≥ 0, 0 ≤ y ≤ t, ε > 0. (4.62)
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By (4.61) and (4.24), we have

X̃e
n,2,k(t, y)− X̃e

n,2(t, y) =

∫ t

t−y

∫ ∞
0

[1k,t,y(s, x)− 1(s+ x > t)]dR̃n(s, x)

=
1√
n

An(t)∑
i=An(t−y)

β̃ki,1(τni , ηi)(t, y), (4.63)

where β̃ki (τni , ηi)(t, y) is defined by

β̃ki (τni , ηi)(t, y) =

k∑
j=1

1(skj−1 < τni ≤ skj )β̌ki (τni , ηi), (4.64)

β̌ki (τni , ηi) = γ̌i(τ
n
i , ηi) + ˆ̌γi(τ

n
i , ηi)− ˆ̌γi−1(τni−1, ηi−1), (4.65)

γ̌i(τ
n
i , ηi) ≡ 1(t− skj < ηi ≤ t− τni )− (F (t− τni )− F (t− skj )), (4.66)

and

ˆ̌γi(τ
n
i , ηi) ≡

∞∑
m=1

E[γ̌i+m(τni+m, ηi+m)|Fi]. (4.67)

It is clear that by construction, for each i, n, t, y, k, the sequence {β̌ki (τni , ηi) : i ≥ 1} is a martingale

difference sequence, and so is the sequence {β̃ki (τni , ηi)(t, y) : i ≥ 1}. Moreover, E[β̃ki (τni , ηi)(t, y)] =

E[β̌ki (τni , ηi)] = 0 and E[(β̃ki (τni , ηi)(t, y))2] <∞, and∥∥∥∥∥∥ 1√
n

bntc∑
i=1

(ˆ̌γi(τ
n
i , ηi)− ˆ̌γi−1(τni−1, ηi−1))

∥∥∥∥∥∥
L2

→ 0 as n→∞. (4.68)

Then, we have that for any L > 0 and ε > 0,

P (|X̃e
n,2,k(t, y)− X̃e

n,2(t, y)| > ε)

≤ P (Ān(t) > L) + P

∣∣∣∣∣∣ 1√
n

n(Ān(t)∧L)∑
i=n(Ān(t−y)∧L)

β̃ki (τni , ηi)(t, y)

∣∣∣∣∣∣ > ε


≤ P (Ān(t) > L) +

1

ε2
E

〈 1√
n

n(Ān(t)∧L)∑
i=n(Ān(t−y)∧L)

β̃ki (τni , ηi)(t, y)

〉
≤ P (Ān(t) > L)

+
1

ε2
E

 1

n

n(Ān(t)∧L)∑
i=n(Ān(t−y)∧L)

k∑
j=1

1(skj−1 < τni ≤ skj )E
[(
γ̌i(τ

n
i , ηi)

)2] (4.69)

+
1

ε2
E

 1

n

n(Ān(t)∧L)∑
i=n(Ān(t−y)∧L)

k∑
j=1

1(skj−1 < τni ≤ skj )(ˆ̌γi(τ
n
i , ηi)− ˆ̌γi−1(τni−1, ηi−1))

2 .
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By Assumption 1, for the first term in (4.69), we have, for each t ≥ 0,

lim
L→∞

lim sup
n→∞

P (Ān(t) > L) = 0. (4.70)

For the second term on the right side of (4.69),

E
[(
γ̌i(τ

n
i , ηi)

)2]
= (F (t− τni )− F (t− skj ))[1− (F (t− τni,1)− F (t− skj ))]

≤ F (t− τni )− F (t− skj ), (4.71)

which implies that

E

 1

n

n(Ān(t)∧L)∑
i=n(Ān(t−y)∧L)

k∑
j=1

1(skj−1 < τni ≤ skj )E
[(
γ̌i(τ

n
i , ηi)

)2]
≤ E

 1

n

n(Ān(t)∧L)∑
i=n(Ān(t−y)∧L)

k∑
j=1

1(skj−1 < τni ≤ skj )(F (t− τni )− F (t− skj ))


≤ E

 1

n

k∑
j=1

(F (t− skj−1)− F (t− skj ))(n(Ān(sj) ∧ L)− n(Ān(sj−1) ∧ L))


≤ E

[
max

1≤j≤k
((Ān(sj) ∧ L)− (Ān(sj−1) ∧ L))

]
. (4.72)

Thus, by Assumption 1, the continuity of ā and (4.70), we have

lim
k→∞

lim sup
n→∞

E

 1

n

n(Ān(t)∧L)∑
i=n(Ān(t−y)∧L)

k∑
j=1

1(skj−1 < τni ≤ skj )E
[(
γ̌i,1(τni , ηi)

)2]
≤ lim

k→∞
lim sup
n→∞

E

[
max

1≤j≤k
((Ān(sj) ∧ L)− (Ān(sj−1) ∧ L))

]
= 0. (4.73)

For the last term on the right side of (4.69), we apply (4.68). Thus, (4.62) is proven and so is

(4.60).

5 Conclusion

In this paper we have studied the Gt/G
D/∞ infinite-server model with arrival process satisfying

a FCLT (Assumption 1), allowing time-varying arrival rates and correlated interarrival times, and

dependent service times that form a stationary sequence satisfying either the φ-mixing condition

or the S-mixing condition (Assumption 2). We have established a FWLLN and a FCLT for the

process Qe(t, y), which represents the number of customers in the system at time t with elapsed

service time less than or equal to y, together with the departure process. We have shown that the
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dependence among service times does not affect the fluid limits, but does affect the limit process

in the FCLT. As in Pang and Whitt (2010), for the service times a prominent role is played by the

generalized Kiefer process. We have characterized the Gaussian property of these processes and

shown that the variance formulas have an additional term to indicate the impact of dependence

among service times. However, this additional term is quite complicated. Consequently, we have

further studied the formula obtained here in order to better understand the engineering impact of

dependence among the service times in Pang and Whitt (2011a, 2011b). There it is shown how

the dependence might be modeled and how the performance impact of the dependence can be

calculated.

There remain many open problems to investigate. It remains to study the case in which the

interarrival times and service times are correlated with each other. It also remains to establish

corresponding many-server heavy-traffic limits for queueing models with only finitely many servers.

Finally, it remains to investigate networks of IS and many-server queues with dependence structure.
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