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e use heavy-traffic limits and computer simulation to study the performance of alternative real-time delay
estimators in the overloaded GI/GI/s+ GI multiserver queueing model, allowing customer abandonment.

These delay estimates may be used to make delay announcements in call centers and related service systems.
We characterize performance by the expected mean squared error in steady state. We exploit established approx-
imations for performance measures with a nonexponential abandonment-time distribution to obtain new delay
estimators that effectively cope with nonexponential abandonment-time distributions.
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1. Introduction

We investigate alternative ways to estimate, in real
time, the delay (before entering service) of an arriving
customer in a service system with customer abandon-
ment. We do this primarily so that delay announce-
ments can be made to arriving customers. Delay
announcements can be helpful when queues are invis-
ible to customers, as in call centers; see Gans et al.
(2003) and Aksin et al. (2007) for background on call
centers.

Comparing alternative delay estimators is com-
plicated. Naturally, we would like to have a delay
estimator that is effective. We quantify the effec-
tiveness of a delay estimator by the mean squared
error (MSE). Because the estimator typically depends
on state information, we use the expected MSE,
considering the steady-state distribution of the state
information, which we estimate via simulation by
computing the average squared error (ASE), averag-
ing over a large number of customers in steady state.
A lower expected MSE (or ASE) corresponds to a
more effective delay estimator.

But, we would also like to have a simple delay esti-
mator, which can be easily implemented in a real-life
system, i.e., one that uses information that is read-
ily available. Alternative delay estimators differ in the
type and amount of information that their implemen-
tation requires. For example, this information may
involve the model, the system state upon arrival,
or the history of delays in the system. An impor-
tant insight, which applies broadly, is that simplicity
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and ease of implementation are often obtained at the
expense of statistical precision.

Our main contributions are (i) to propose new,
effective, and simple ways to do better delay esti-
mation in overloaded, many-server queues with cus-
tomer abandonment; (ii) to establish heavy-traffic
limits that generate approximations for the expected
MSE of some delay estimators; and (iii) to describe
results of simulation experiments evaluating alterna-
tive delay estimators. We obtain more effective delay
estimators by exploiting approximations for perfor-
mance measures in many-server queues with a nonex-
ponential abandonment-time distribution, from Whitt
(2005, 2006).

1.1. Queueing Model

We study the performance of alternative real-time
delay estimators by considering the steady-state
behavior of an overloaded GI/GI/s 4+ GI queueing
model, allowing customer abandonment. This model
has independent and identically distributed (ii.d.)
interarrival times with mean A™' and a general dis-
tribution. We only use the ii.d. assumption for the
interarrival times when simulating the model; it is
not required for the implementation of our delay esti-
mators. Service times are ii.d. with mean u~' and
a general distribution. Each arriving customer will
abandon if he is unable to start service before a ran-
dom time with mean a~! and a general distribution.
Abandonments times are i.i.d.; the arrival, service,
and abandonment processes are all mutually indepen-
dent. There is unlimited waiting space and arriving
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customers are served in order of arrival; i.e., we use
the first-come-first-served service discipline. The traf-
fic intensity is p= A/su.

We focus on overloaded scenarios, in which the
arrival rate exceeds the maximum possible total ser-
vice rate. Customer abandonment makes the system
stable in this case. (That can be proved by bound-
ing the model above by the GI/GI/cc model obtained
by removing all servers; then the abandonment times
can be thought of as service times. For more on the
stability of the GI/GI/co model, see p. 178 of Whitt
1982.) We consider overloaded systems because we
are primarily interested in estimating delays when
they are large. Many call centers are overloaded some
of the time, especially service-oriented ones in which
emphasis is placed on efficiency rather than on qual-
ity of service.

1.2. Queue-Length-Based and
Delay-History-Based Delay Estimators

We consider both queue-length-based and delay-
history-based delay estimators. Queue-length-based
delay estimators exploit system-state information
including the queue length (number of waiting cus-
tomers) seen upon arrival. In contrast, delay-history-
based estimators only exploit information about
recent customer delay history in the system. These
delay estimators are appealing because they are
easy to interpret, and because they are simple and
robust, applying to a broad range of models, with-
out requiring knowledge of the model or its parame-
ters; e.g., number of servers, mean service time, and
arrival rate.

1.3. Customer Response to Delay Announcements
We envision our delay estimates being used to make
delay announcements to arriving customers: Each
delayed customer, upon arrival, is given a single-
number delay estimate of that customer’s delay until
he can start service. Customers typically respond to
delay announcements, and their response alters sys-
tem performance. For example, some customers may
elect to balk, upon arrival, in response to a delay
announcement. As a result, the arrival rate to the
system would become state dependent. Moreover,
customers who decide to stay may have different
abandonment behavior in response to the announce-
ment. They may become increasingly impatient if
they have to wait more than their announced delay.
As a result, the abandonment distribution of cus-
tomers in queue would depend on their elapsed
waiting time. Changes in system performance alter,
in turn, the delay estimates given. As discussed by
Armony et al. (2009), studying customer responses
to delay announcements requires an equilibrium

analysis. However, it is not clear whether an equilib-
rium exists, or how to fully characterize it. There may
even be multiple equilibria.

Here, we do not directly consider customer
response. We think of our delay estimates being based
on model information obtained after equilibrium has
been reached (with the announcements being used).
More generally, we regard our work as an essential
first step toward studying the performance impact
of delay announcements in the GI/GI/s + GI model.
It is not hard to see how the delay estimation meth-
ods of this paper can be applied to the more com-
plicated setting involving customer response. Indeed,
the delay-history-based estimators directly account
for customer response because they depend on the
history of delays in the system, which in turn is
affected by customer response.

The queue-length-based estimators can also be
extended to account for changes in customer
behavior. For example, we could use an iterative
simulation-based algorithm to develop approxima-
tions of the equilibrium steady-state performance of
the GI/GI/s 4+ GI model with delay announcements.
During each iteration, we would give real-time delay
estimates to arriving customers, and model their
response. We would then reestimate model parame-
ters that are affected by customer response, and feed
these new estimates into the subsequent iteration. The
algorithm would continue until the observed differ-
ence between successive estimates of model param-
eters is negligible. It is significant that our proposed
queue-length-based estimators apply directly to the
successive iterations of this algorithm, because the
queueing model in each iteration is a GI/GI/s +
GI model with a different set of parameters. There
remains, however, to determine appropriate regular-
ity conditions under which this algorithm terminates,
i.e.,, under which there exists a unique equilibrium in
the system.

1.4. Actual and Potential Waiting Times

As in Baccelli et al. (1984) and Garnett et al. (2002), we
need to distinguish between the actual and potential
waiting times of a given delayed customer in a queue-
ing model with customer abandonment. A customer’s
actual waiting time is the amount of time that this
customer spends in queue, until he either abandons
or joins service, whichever comes first. A customer’s
potential waiting time is the delay he would expe-
rience, if he had infinite patience (quantified by his
abandon time). For example, the potential waiting
time of a delayed customer who finds n other cus-
tomers waiting ahead in queue upon arrival, is the
amount of time needed to have n 4 1 consecutive
departures from the system (either service comple-
tions or abandonments from the queue). In this study,
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we estimate the potential waiting times of delayed
customers.

1.5. Quantifying Performance:

Average Squared Error (ASE)
In our simulation experiments, we quantify the per-
formance of a delay estimator by computing the ASE,
defined by

k
ASE= % d(pi—e), 1
i=1
where p; > 0 is the potential waiting time of delayed
customer i, ¢; is the delay estimate given to cus-
tomer i, and k is the number of customers in our sam-
ple. In our simulation experiments, we measure p; for
both served and abandoning customers. For abandon-
ing customers, we compute the delay experienced,
had the customer not abandoned, by keeping him
“virtually” in queue until he would have begun ser-
vice. Such a customer does not affect the waiting time
of any other customer. The ASE should approximate
the expected MSE in steady state.

1.6. Mean Squared Error (MSE)

Let W, (n) represent a random variable with the con-
ditional distribution of the potential delay of an arriv-
ing customer, given that this customer must wait
before starting service, and given that the queue
length at the time of his arrival, f, not counting
himself, is Q(t) = n. (In this framework, the event
“Q(t) =0" corresponds to all servers being busy and
our arriving customer being the first in queue.) Let
o.(n) be some given single-number delay estimate
that is based on the queue length, n. Then, the MSE
of the corresponding delay estimator is given by

MSE = MSE(0q, (1)) = E[(W (1) — o1 (1))*].

The MSE of a queue-length-based delay estimator is a
function of n, the number of customers seen in queue
upon arrival. By looking at the ASE, we are looking
at the expected MSE averaging over all 7, where the
arrival must wait, in steady state. It is known that
the conditional mean, E[W,(#)], minimizes the MSE.
Unfortunately, it is often difficult to find a closed-form
expression for this mean, so we develop approxima-
tions of it.

1.7. Root Relative Squared Error

In addition to the ASE, we quantify the performance
of a delay estimator by computing the root relative
average squared error (RRASE), defined by

RRASE = — YASE @)

(1/k) X
using the same notation as in (1). The denominator
in (2) is the average potential waiting time of cus-
tomers who must wait. For large samples, the RRASE

should agree with the expected root relative mean
squared error (RRMSE), in steady state. The RRASE
and RRMSE are useful because they measure the
effectiveness of an estimator relative to the mean, so
that they are easy to interpret.

1.8. Related Literature

This paper is an extension of Ibrahim and Whitt
(2009), which studies the performance of a wide
range of alternative real-time delay estimators in
the GI/M/s queueing model (without abandonment),
both analytically and numerically using computer
simulation. That paper in turn builds on Whitt (1999)
and Armony et al. (2009). Whitt (1999) discusses the
possibility of making reliable delay estimations by
exploiting information about the current state of the
system. Armony et al. (2009) discuss the motivation
for the last-to-enter-service delay estimator, whose
performance we study here, and changes in customer
behavior that result from such an announcement.
Related literature is already discussed there.

Very recent papers on delay estimation include
Jouini et al. (2007), Guo and Zipkin (2007), and Allon
et al. (2007). For a review of the growing literature on
delay estimation and delay announcements, see §2 of
Jouini et al. (2007).

1.9. Organization of the Paper

The remainder of this paper is organized as fol-
lows: In §2, we describe a no-information (NI) delay
estimator in the efficiency-driven many-server heavy-
traffic limiting regime, which serves as a useful refer-
ence point. In §3, we define new queue-length-based
delay estimators, and discuss relevant results. In §4,
we briefly describe alternative delay-history-based
delay estimators; a more complete description can be
found in Ibrahim and Whitt (2009). In §5, we estab-
lish heavy-traffic limits for several delay estimators in
the G/M/s+ M model. In §6, we present simulation
results for the M/M/s + GI model. In §7, we make
concluding remarks and describe managerial insights.
In 85, we postpone one long proof of a result (The-
orem 4) to the e-companion', where we also present
additional supporting material. Supplementary mate-
rial is provided in the online supplement, which is
available at http://www.columbia.edu/~ww2040/.

2. A Theoretical Reference Point

An important theoretical reference is the many-server
heavy-traffic limit for the number in the system in
the Markovian M/M/s + M queue with customer
abandonment, in the efficiency-driven (ED) regime, as
discussed in Garnett et al. (2002), Whitt (2004), and

! An electronic companion to this paper is available as part of the on-
line version that can be found at http://mansci.journal.informs.org/.
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Talreja and Whitt (2009). That limit describes how
the model behaves as the arrival rate A and number
of servers s increase, whereas the individual service
rate u and individual abandonment rate « remain
unchanged, with the traffic intensity held fixed at a
value p = A/su > 1. (There are also some results for
the more general G/GI/s+ GI model in the ED regime
in Zeltyn and Mandelbaum 2005 and Whitt 2006.)
Let W,(c0) represent the steady-state waiting time
as a function of s in the ED regime, and let = denote
convergence in distribution. Whitt (2004) shows that

1
Wi(0) = w=—In(p)>0 ass— oo, (3)
o

whereas Theorem 6.1 of Zeltyn and Mandelbaum
(2005) (Theorem 5) and Theorem 6.4 of Talreja and
Whitt (2009) show that

Vs(W,(00) —w) = N(0,1/au) ass— oo, (4)

where N(m, 0?) denotes a normal random variable
with mean m and variance 0. These limits lead to the
deterministic fluid approximation W,(oc) ~ w and the
stochastic refinement W, (c0) ~ N(w, 1/sau).

The deterministic fluid approximation w in (3) and
the steady-state mean E[W,(oc)] it approximates are
candidate NI estimators, 6y, paralleling the NI esti-
mator for the GI/M/s model considered as a refer-
ence point in Ibrahim and Whitt (2009). In fact, the
NI estimator is much more appealing now, because
it is much more effective with customer abandon-
ment than without. Based on the limits aforemen-
tioned (plus appropriate uniform integrability, which
can also be established), we have

1
MSE(60y;) ~ Var(W,(c0)) ~ o —0 ass—>o. (5)

Unlike in the GI/M/s model, here the squared coef-
ficient of variation (SCV, variance divided by the
square of the mean), c¥;, is asymptotically negligible
as well, because here E[W,(0)] > w > 0 as s — oo.
(For the GI/M/s model considered in Ibrahim and
Whitt 2009, ¢Z; — 1 as p 1 1 for all s.) The limit in (5)
implies that any reasonable estimator should be effec-
tive in the ED regime as s gets larger. We will want
to see that our proposed estimators outperform NI as
well as become effective as s increases.

3. Queue-Length-Based

Delay Estimators
In this section, we describe alternative estimators
based on the queue length seen upon arrival to the
system. The information needed for the implementa-
tion of each of these queue-length-based estimators is
summarized in Table 1.

Table 1 Summary of Information Required for
Implementation of Each Queue-Length
Based Delay Estimator
Information about the model
aL Q). s, u
aLr at), s, p, a
aL, Qt), s, w, F(x), A
QaL, Q). s, p, a
aL,, Qt), s, w, F(x), A

3.1. Simple Queue-Length-Based Delay
Estimator (QL)

For a system having s agents, each of whom on aver-
age completes one service request in u~! time units,
we may predict that a customer, who finds n cus-
tomers in queue upon arrival, will be able to begin
service in (n+1)/su minutes. Let QL refer to this sim-
ple queue-length-based estimator, commonly used in
practice. Let the estimator, as a function of #, be

oL (n) = (1 +1) /5. (6)

The QL estimator is appealing because of its sim-
plicity and ease of implementation: it uses informa-
tion about the system that usually is readily avail-
able. In Ibrahim and Whitt (2009), the performance
of QL is studied in the GI/M/s model, where there
is no customer abandonment. For that model, W (1)
is the time necessary to have exactly n + 1 consec-
utive departures from service (service completions).
But, the times between successive service comple-
tions, when all servers are busy, are i.i.d. random vari-
ables distributed as the minimum of s exponential
random variables, each with mean !, which makes
them ii.d. exponential with mean 1/su. The optimal
delay estimator, using the MSE criterion, is the one
announcing the conditional mean, E[W,(n)]. But, fol-
lowing the analysis above, E[W(1)] = 0 (1) in (6).
Hence, QL is optimal for the GI/M/s model, under
the MSE criterion. Extensive simulation experiments
in Ibrahim and Whitt (2009) show the superiority of
QL in that simple idealized setting.

When there is customer abandonment, the QL
estimator overestimates the potential delay, because
customers in queue may abandon before entering ser-
vice, and QL fails to take that into account. That is
confirmed by our simulation results in §6, but we
now analytically quantify the effect for the Markovian
M/M/s+ M model. To do so, we use the steady-state
fluid approximations to the M/M/s+ M model in the
ED regime discussed in §2. In the steady-state fluid
limit, all served customers wait the same determinis-
tic amount of time w in (3) and they all see the same
number of customers, g, in queue upon arrival. From
(2.26) of Whitt (2004),

7="L(p-1). @)
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In the fluid limit,

+1 1 1
17~ T = Z(p—1)>w=—In(p).
S su o« a

OoL(9) =

Consistent with intuition, we see that QL overesti-

mates w. Indeed,
Oa(q) —w _ (p—l)/a—ln(p)/oz; )

w In (p)/a

e.g., there is 10% relative error when p =1.2, 19% rela-
tive error when p =1.4, and much greater error when
p is larger. (Exploiting the asymptotic expansion of
the logarithm: In(1+8) ~ 6 — §?/2 when § is small,
we can obtain the simple rough approximation to (8)
of (p—1)/(3—p) ~ (p—1)/2 when p is slightly greater
than 1.)

Motivated by the simple form of the QL delay
estimate, g (1) in (6), we now propose modified
queue-length-based delay estimators that account for
customer abandonment, and that are also easy to
implement in practice.

3.2. Markovian Queue-Length-Based

Delay Estimator (QL,,)
As in Whitt (1999), this estimator QL, approxi-
mates the GI/GI/s+ GI model by the corresponding
GI/M/s + M model with the same service-time and
abandon-time means. For the GI/M/s+ M model, we
have the representation

Wo(n) =2, )

where the Y; are independent random variables
with Y; being the minimum of s exponential random
variables with rate u (corresponding to the remaining
service times of customers in service) and i exponen-
tial random variables with rate a (corresponding to
the abandonment times of the remaining customers
waiting in line). That is, Y; is exponential with rate
su + ia. (Because Wy(n) is the sum of independent
exponential random variables, it has a hypoexponen-
tial distribution.) Therefore,

o1

E[WQ(TI)] = ZE[Y’] = Z sy + io’
i=0 i=0

(10)

The QL,, estimator given to a customer who
finds n customers in queue upon arrival is 6 (1) =
E[Wg(n)]. Under the MSE criterion, QL,, is the best
possible in the GI/M/s + M model, but we find
that it is not always so good for the more general
GI/GI/s + GI model. Nonexponential service-time
and abandonment-time distributions are commonly
observed in practice; see Brown et al. (2005), and
Mandelbaum and Zeltyn (2004, 2007). It is there-
fore important to propose other queue-length-based

delay estimators that effectively cope with nonex-
ponential distributions. Approximations are needed
because direct mathematical analysis is difficult. Next,
we propose two queue-length-based delay estimators,
QL, and QL,,, exploiting approximations for perfor-
mance measures in many-server queues with a nonex-
ponential abandonment-time distribution, developed
in Whitt (2005, 2006).

3.3. Simple-Refined Queue-Length-Based Delay
Estimator (QL,)

We now propose a simple refinement of QL by mak-
ing use of the steady-state fluid approximations to
the general G/GI/s + GI model, in the ED limiting
regime, as developed by Whitt (2006). For that pur-
pose, let F be the cumulative distribution function
(cdf) of the abandon-time distribution, and let F¢ be
the complementary cdf associated with F. (That is,
Fe(t) =1 — F(t), for all t.) In this steady-state fluid
limit, the deterministic waiting time w and the deter-
ministic queue length g are given by Equations (3.6)
and (3.7) of Whitt (2006), which we restate. Because
“rate in” = AF¢(w) = s = “rate out”, we have

pF¢(w) =1. (11)

The associated equation for g is

g=A[ F@ydc=spu [ CFwd. (12)

In the fluid limit, QL estimates a customer’s delay as
the deterministic quantity:

g+1._4 ¢
0 = N — = Fe(x)dx.
) ="~ o=r [ F@ax
For QL,, we propose computing the ratio g =
w/(q/sp) = wsp/q (after solving numerically for w
and g), and using it to refine the QL estimator. That
is, the new delay estimate is

o, (1) = B % O (n) = Bl +1)/sp.

The QL, estimator is appealing because it is only a
minor modification of the QL estimator, but performs
much better in models with customer abandonment,
as we show in §6. In particular, it is remarkably effec-
tive with nonexponential abandonment-time distribu-
tions. Note that in addition to s, n, and u, we need to
know p or, equivalently, A, and the abandonment-time
cdf F to implement QL,.

3.4. Exponential Abandonment Case (QL!)

We now propose a modification of QL, which does
not depend on p. It is based on assuming that the
abandonment-time cdf F is exponential. Using the
corresponding values of w and g for the GI/M/s+ M
model, given respectively by (3) and (7), we obtain the
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ratio B=1In(p)/(p—1). From (7), we get p=1+aq/su,
yielding
In (1+ ag/sp)
aq/sp
The corresponding delay estimate, as a function
of n, is given by

B=

In(14an/sw) » n+1

HQL;"(”) =B x HQL(n) = an/sp s

Thus, the implementation of QL!" requires knowledge
of n, s, u, and «, but not of p or, equivalently, A.
It approximates the abandonment-time distribution
by the exponential distribution. We will see that QL
performs nearly the same as QL,, which is good
when the abandonment is nearly exponential, but not
necessarily otherwise.

3.5. Approximation-Based Queue-Length Delay
Estimator (QL,,)

Our most promising estimator QL,, draws on the

approximations in Whitt (2005): it approximates the

GI/GI/s+ GI model by the corresponding GI/M/s +

M(n) model, with state-dependent Markovian aban-

donment rates.

We begin by describing the Markovian approxima-
tion for abandonments, as in §3 of Whitt (2005). As
an approximation, we assume that a customer who
is jth from the end of the queue has an exponential
abandonment time with rate a;, where «; is given by

aj=h(j/A), 1<j<k; (13)

k is the current queue length, and & is the
abandonment-time hazard-rate function, defined as
h(t) = f(t)/F(t), t = 0, where f is the correspond-
ing density function (assumed to exist). Having «;
depend on h instead of F is convenient, because
it is natural to estimate F via h; e.g., see Brown
et al. (2005). From (13), we see that the estimator
QL,, depends on the abandonment distribution hav-
ing a relatively smooth density. We assume that is
the case.

We now explain the derivation of (13). If we knew
that a given customer had been waiting for time ¢,
then the rate of abandonment for that customer, at
that time, would be h(t). The goal is to produce, as
an approximation, abandonment rates that depend on
a customer’s position in queue, and on the length of
that queue. We therefore need to estimate the elapsed
waiting time of that customer, given the available
state information. To that end, assume that the queue
length at an arbitrary time is k, and consider the cus-
tomer, C ir who is jth from the end of the line, 1 <j <k.
If there were no abandonments, then there would
have been exactly j—1 arrival events since C; arrived.

Assuming that abandonments are relatively rare com-
pared to service completions, a reasonable estimate is
that there have been j arrival events since C; arrived.
Because a simple rough estimate for the time between
successive arrival events is the reciprocal of the arrival
rate, 1/A, the elapsed waiting time of C/- is approxi-
mated by j/A and his abandonment rate by (13). The
associated total abandonment rate from the queue in
that system state is 6, = Z;‘:l @ = Z;;l h(j/A), k=1,
and 6,=0.

For the GI/M/s + M(n) model, we need to make
further approximations to describe the potential wait-
ing time of a customer who finds n other customers
waiting in line, upon arrival. We have the approxi-
mate representation:

n

Wo(n) ~ 3 X;, (14)

i=0

where X, _; is the time between the ith and (i+ 1)st
departure events. There is no difficulty for the first
departure: X, is the minimum of s exponential ran-
dom variables with rate u (corresponding to the
remaining service times of customers in service),
and n exponential random variables with rates «;,
1<j<mn, (corresponding to the abandonment times
of the remaining customers waiting in line). That is,
X, has an exponential distribution with rate su +
Z;Izl aj = S/“L + 6n'

The distribution of the remaining X;s is more com-
plicated. Because individual customers have different
abandonment rates that, in our framework, depend
on how long these customers have been waiting in
line, we need to consider the dynamics of the system
over time to determine, after each departure, who are
the remaining customers and what are their individ-
ual abandonment rates (to compute the resulting total
abandonment rate). To simplify matters, we propose a
further approximation, which is a slight modification
of the argument in §7 of Whitt (2005).

The following describes our process. As a further
approximation, we assume that successive departure
events are either service completions, or abandon-
ments from the head of the line. We also assume that
an estimate of the time between successive departures
is 1/A. As a result of these extra assumptions, we
approximate the X;s in (14) by exponential random
variables. Let X,,_;, which is the time between the Ith
and (I + 1)st departure events, have an exponential
distribution with rate su + 8, — 6,. This is appropriate
because it is the minimum of s exponential random
variables with rate u (corresponding to the remaining
service times of customers in service), and n — I expo-
nential random variables with rates «;, [+1<i<wmn
(corresponding to the abandonment times of the cus-
tomers waiting in line).
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The QL,, delay estimator given to a customer who
finds n customers in queue upon arrival is

“ 1
Oy (N)=) ——F7.
QLM( ) ;S,U«-I-iin—ﬁn,i

(15)
Because QL,, coincides with QL,, in the GI/GI/s+ M
model, it is the optimal delay estimator in the
GI/M/s + M model, under the MSE criterion. But,
in contrast to QL,,, this new queue-length-based esti-
mator also performs remarkably well in the gen-
eral GI/GI/s+ GI model. The simulation experiments
of §6 suggest that QL,, is uniformly superior to all
other delay estimators, in all models considered.

We emphasize that all queue-length-based estima-
tors apply equally well to steady-state and transient
settings. They differ in the amount of information
that their implementation requires. It is significant
that QL, QL,,, and QL are all independent of the
arrival process. For these three estimators, the arrival
process can be arbitrary, even nonstationary. The QL,
and QL,, estimators require knowledge of the arrival
rate A, which requires some degree of stationarity.
(There should not be too much variation over time.)

4. Candidate Delay-History-Based

Delay Estimators

In this section, we briefly describe alternative delay
estimators based on recent customer delay history in
the system. For a more detailed description, includ-
ing performance approximations and refinements, see
Ibrahim and Whitt (2009). We emphasize that delay-
history-based estimators apply directly to more com-
plex settings, such as models including customer
response to delay announcements.

4.1. Last-To-Enter-Service (LES) Delay Estimator
As in Armony et al. (2009), a candidate delay esti-
mator based on recent customer delay history is the
delay of the last customer to have entered service,
prior to our customer’s arrival. That is, letting w be
the delay of the last customer to have entered service,
the corresponding LES delay estimate is 6;y5(w) = w.
As discussed in Whitt (1999), the possibility of mak-
ing reliable delay estimations is enhanced by exploit-
ing information about the current state of the system.
Thus, we anticipate that queue-length-based estima-
tors should be more effective than LES. Nevertheless,
simulation experiments in §6 show that LES is rela-
tively accurate in all models considered.

4.2. Other Delay-History-Based Delay Estimators

We can consider alternative delay-history-based esti-
mators, in addition to LES. Closely related is the
elapsed waiting time of the customer at the head of

the line (HOL), assuming that there is at least one
customer waiting at the new arrival epoch.

Another alternative delay estimator is the delay of
the last customer to have completed service (LCS).
We naturally would want to consider this alternative
estimator if we only learn customer delay experience
after service is completed. That might be the case
for customers and outside observers. Under some cir-
cumstances, the LCS and LES estimators will be sim-
ilar, but they typically are very different when s is
large, because the last customer to complete service
may have experienced his waiting time much before
the last customer to enter service, since customers
need not depart in order of arrival.

Thus, we are led to propose other candidate delay
estimators based on the delay experience of cus-
tomers that have already completed service. RCS is
the delay experienced by the customer that arrived
most recently (and thus entered service most recently)
among those customers who have already completed
service. We found that RCS is far superior to LCS
when s is large.

Through analysis and extensive simulation exper-
iments, we conclude that the LES and HOL estima-
tors are very similar, with both being slightly more
accurate than RCS and much more accurate than LCS.
Here, we only discuss LES.

5. Heavy-Traffic Limits for Several
Estimators in G/M/s+ M

Because we are considering overloaded systems with
p > 1, it is natural to develop analytical approxima-
tions for the mean-squared errors of our estimators by
considering stochastic-process limits in the ED many-
server heavy-traffic limiting regime, as specified in §2.
As before, we add a subscript s to indicate the depen-
dence upon s and then let s — oo.

In this section, we establish several limits for the
G/M/s + M model in the ED regime. Throughout
this section we assume that the arrival process sat-
isfies a functional central limit theorem (FCLT). Let
A,(t) count the number of arrivals in the interval [0, ]
in model s. We assume that A (t) = A(st) for some
given arrival process A with arrival rate A. Let A(t)=
A,(t)/s = A(st)/s for t = 0. Let D = D([0, o), R) be
the function space of all right continuous real-valued
functions with left limits, endowed with the usual
Skorohod (J;) topology; e.g., see Whitt (2002). We
assume that A satisfies a functional weak law of large
numbers and an FCLT refinement:

A(t) = A inD and
V(A (t) = At) = J/AC2B(t) inDass— oo,

where B is a standard Brownian motion. That condi-
tion will be satisfied if A is a renewal process with

(16)



1736

Ibrahim and Whitt: Delay Estimations with Abandonments
Management Science 55(10), pp. 1729-1742, ©2009 INFORMS

an interarrival-time distribution having finite first and
second moments. As usual, the arrival process affects
the limits for the other random quantities (the esti-
mators) only via the two normalization constants A
and ¢2. When A is a renewal counting process, ¢? is
the SCV of an interarrival time.

We start by considering the Markovian estima-
tor QL,,, which is the best possible estimator for the
G/M/s+ M model, under the MSE criterion. It does
not depend on the arrival process. Recall that the
waiting time for an arrival that finds n customers in
queue upon arrival is given by (9). We will apply the
following lemma, which is Lemma 6.1 of Talreja and
Whitt (2009).

LemMma 1. For the G/M/s+ M model in the ED many-
server heavy-traffic regime,

E[Wg, s(Lst])] = c(t),

and

sVar(Wy .(lst]) — d(t)  (17)

Wo,«(t) = Vs(Wo (st]) — c(t)) = B(d(t))

in D as s— oo, (18)

where B is a standard Brownian motion, and ¢ and d are
the deterministic real-valued functions:

c(t)zlln(l—i-a—t) and d(t)= (19)
a 0 ®

(k+at)

As a consequence of the stochastic-process limit
in (18), we obtain the one-dimensional limit

Vs(Wo,([st]) —c(t)) = N(0,d(t)

in R as s — oo for each f. (20)

As a further consequence, we obtain the following
result for the best-possible estimators 0y (). We
use a random time change by the fluid limit

QS(OO) — /\_/*L
S

= q= > ass— o0, (21)

Qu(0) =

from Theorem 2.3 of Whitt (2004) or Theorem 6.1 of
Talreja and Whitt (2009).

TaEOREM 1. For the G/M/s + M model in the ED
many-server heavy-traffic regime,

sMSE(GQLm'S(LstJ)) = sVar(Wy (([st])) — d(t)

ass— oo (22)
for each t > 0, where d(t) is given in (19) and

SMSE(fqr,, . (Qs(00))) = sVar(Wy, ((Qs(c)))

= d(q)z%z as s — oo. (23)

As a consequence (after establishing appropriate
uniform integrability to get convergence of moments
from convergence in distribution, which is not dif-
ficult at this point), we get associated convergence
of moments from the convergence in distribution
in (23), i.e.,

SE[MSE(OQLM(QS(OO)))] —d(g) ass—oo. (24)
From either (23) or (24), we get the approximation

A—p
sApa’

E[MSE(fg, (Q.(o))] > (25)

Note that the FCLT normalization constant ¢ does
not appear in (23)—(25). Other estimators that do
not exploit knowledge of the queue length will fare
worse, largely according to ¢2. First, we can apply
an extension of Theorem 6.4 of Talreja and Whitt
(2009) to describe the asymptotic behavior of the no-
information estimator W,(oc). We extend the result
for the M/M/s + M model to the G/M/s + M
model, which is not difficult, reasoning as in §7.3
of Pang et al. (2007). First, we can extend Theo-
rem 6.1 of Talreja and Whitt (2009) in that way to
get an ED stochastic-process limit for the queue-
length process in the G/M/s + M model, getting
an Ornstein-Uhlenbeck diffusion-process limit with
infinitesimal mean w(x) = —ax and an infinitesimal
variance o?(x) = A(c? + 1), which in turn leads to
a limit for the steady-state queue lengths. We then
apply that result to get a generalization of the limit
for the steady-state waiting time in Theorem 6.4 of
Talreja and Whitt (2009).

THEOREM 2. For the G/M/s + M model in the ED
many-server heavy-traffic regime,
A(c2+1)
2a

as s — oo (26)

B.(00) = 3(0.() ) = N(o,

and
W,(00) =/5(W,(00) —w) = N(0,02) ass—o0, (27)
where o2 =1/ap + (¢ — 1)/2 e, with w in (3) and g

in (21).

Note that the variance terms in Theorem 2 simplify
when ¢ = 1. We immediately obtain the limit for the
MSE of the NI estimator, assuming appropriate uni-
form integrability. The NI estimator can be either the
mean steady-state waiting time E[W,(oc)] or the fluid
limit w, because of the fluid limit in (3).

COROLLARY 1. In the setting of Theorem 2, assuming
necessary uniform integrability,

c2—1
2
as s — oo. (28)

1
SMSE(fy; ) = sVar(W,(x)) - — +
ap
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Combining the limits in (23) and (28), we obtain the
following:

COROLLARY 2. In the setting of Theorem 2, assuming
necessary uniform integrability,

MSE (6, )
E[MSE(6qr,, ,(Qs(c0)))]

20+ p(c2—1)
2(A— )

as s — co. (29)

>1

We now establish corresponding results for the
delay-history-based estimator LES. We exploit the fact
that we can represent W g(w) in terms of the ran-
dom variable Wq (1) in (9) and a net-input process
N, ={N,(t): t = 0} over the interval [0, w], i.e.,

N;(w)
WLES,s(w) ~ WQ,s(Ns(w)) = Z Xs, ir (30)
i=0
where N,(w) counts the number of arrivals in the
interval [0, w] who do not abandon, in system s. For-
mula (30) is not an exact relation because it does not
account for the state change since the last customer
entered service, but that change is clearly asymp-
totically negligible in the ED many-server limiting
regime.

It is significant that the net-input stochastic pro-
cess N, has the structure of the number in system in
a G/M/oo infinite-server system, starting out empty,
with arrival rate A, = As and individual service rate
equal to our abandonment rate a. The Markovian
M/M /o special case is very well studied; e.g., see
Eick et al. (1993). In particular, it is well known that
N, (t) has a Poisson distribution for each s and t with

E[N,(1)] = %(1 —et), t>0. (31)

The heavy-traffic limit for more general infinite-
server models, starting out empty, was established
by Borovkov (1967), as reviewed on p. 176 of Whitt
(1982).

THEOREM 3 (BorOVKOV 1967). For the G/M /oo mod-
els under consideration, with arrival rate A\, = As and ser-
vice rate «,

N,(t) =

() = a(t)zi(l—e’“')
s @

inDass— oo (32)
and
N.(t) =V5(N,(H) —a(t) = G(t)
inDass— oo, (33)

where G = {G(t): t > 0} is a Gaussian stochastic process
with

G N, o2(t)), where
_ (34)
w2 =at) + XD o),
2

for a(t) defined in (32) and c2 in (16).

We apply Theorem 3 to establish the following
results for LES. To go beyond the M/M /s + M model
to treat the more general G/M/s + M model, we add
an extra assumption here. We assume that the limits
for N, in (33) and for W,(co) in (27) hold jointly with
independent limits. That holds automatically if the
arrival process has independent increments (which
is covered by the M case), because the evolution
of N, occurs after the arrival of the customer with the
observed LES waiting time W,(o0). For renewal pro-
cesses, that joint convergence with independent lim-
its should also hold because the interarrival times are
iid. and the arrivals are very fast. We add this con-
dition to the general FCLT assumed in (16). We prove
the following result in the e-companion.

THEOREM 4. For the G/M/s + M model in the ED
many-server limiting regime (assuming the extra assump-
tion immediately above and the necessary uniform integra-
bility for the moment convergence), as s — oo,

bues W) = W) = w=(in(2)),
WLES,S(WS(OO)) = \/E(WLES,S(I/VS(OO)) —W(0)) (35)
= N(O, O-I%ES)/
SE[MSE(6, gs, s (W,(0)))] — O-I%ES/ (36)

where

otas = d(a(w)) + 22 4 (A‘—"‘)a

22 A
=2d(q) + W (37)

for a2 in Theorem 2, o2(t) in (34), a(w) = q and d(q) =
q/Au.

CoROLLARY 3. Consider the setting of Theorem 4. For
the M/M/s + M model,

E[MSE(6y s, s(Ws(=)))]

EIMSE(y. (Q.o] 2 ®° 7 09
For the D/M /s + M model,
EIMSE(ps (W] (0

E[MSE(qr,, . (Qs(00)))]

as s — oo. (39)

For the more general G/M/s+ M model,
E[MSE(_gs, s (W;(o0)))]

E[MSE(0q. (0] | (HES Q)

m,s

as s — oo, (40)
where
r(LES,QL,)=2 (=2 o0r <2)
ifand only if c2=1(>1o0r <1).
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From (39), we see that QL,, is only slightly better
than LES in the D/M/s+ M model when p=A/u is
only slightly greater than 1. Combining the MSE ratio
limits in Theorems 1 and 4, we obtain the following:

COROLLARY 4. For the M/M/s+ M model in the ED
many-server limiting regime,
EIMSE(Oes (W(eo))] _ 2(p—1)
MSE(O,s) p

(41)

so that LES is asymptotically more (less) efficient than NI
ifp<2(p>2).

We conclude this section by stating a CLT for the
steady-state waiting time, and thus the NI delay estima-
tor, in the M/M/s + GI model in the ED regime, which
is Theorem 6.1 (e) of Zeltyn and Mandelbaum (2005).

THEOREM 5 (ZELTYN AND MANDELBAUM 2005). For
the M/M/s + GI model in the ED regime, where the
abandonment-time cdf F has density f, W,(c0) = w for w
in (11) and

Vs(Wy(o0) —w) = N(O,1/Af(w)) ass—>oo. (42)

6. Simulation Results for
the M/M/s+ GI Model

In this section, we present simulation results quan-
tifying the performance of the alternative queue-
length-based delay estimators of §3, and of the LES
delay estimator, with exponential and nonexponen-
tial abandonment-time distributions; i.e., we consider
the M/M/s + GI model. For the abandonment-time
distribution, we consider M (exponential) and E,,
(Erlang, sum of 10 exponentials) distributions. In the
e-companion, we also consider the H, distribution
(hyperexponential with SCV equal to 4 and balanced
means). We use a Poisson arrival process because this
model is commonly used in practice. We briefly dis-
cuss other models in §6.5.

6.1. Description of the Experiments

We vary the number of servers, s, but consider only
relatively large values (s > 100), because we are inter-
ested in large service systems. We let the service rate,
u, be equal to 1. We do this without loss of gener-
ality, because we are free to choose the time units in
our system, and this assumption amounts to measur-
ing time in units of mean service time. We also let
the abandonment rate, «, be equal to 1 because that
seems to be a representative value. We also consider
a=0.2 and a =5.0 in the e-companion. We vary A to
get a fixed value of p, for alternative values of s. We
let p = 1.4 in all models. This value is chosen to let our
systems be significantly overloaded. Because of aban-
donment, the congestion is not extraordinarily high.
For example, with s = 100 servers and exponential

Figure 1 ASE in the M /M /s + M Model with p =1.4
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abandonments, the mean queue length is about g ~

(p—1)s/a =~ 40, whereas the average potential waiting

time is about w =~ q/sp ~ 0.4/u (less than half a mean

service time).

Our simulations are steady-state simulations. The
simulation results are based on 10 independent repli-
cations of five million events each, where an event
is either a service completion, an arrival event, or
an abandonment from the system. In this section, we
show plots of simulation estimates. Corresponding
tables with 95% confidence intervals appear in the
e-companion.

6.2. Results for the M/M/s+ M Model

In this model, QLup coincides with QL,,. Therefore,
we do not include separate results for QL,,. Consis-
tent with the theory in §3, Figure 1 shows that QL,,
is the best possible, under the MSE criterion. The
RRASE for QL,, ranges from about 14% for s =100 to
about 4% when s =1,000. We see that the accuracy
of this estimator improves as the number of servers
increases. Note that all estimators are relatively accu-
rate for this model, with the exception of QL. For
example, the RRASE of LES ranges from about 22%
for s =100 to about 7% for s =1,000. Figure 2 shows
that s x ASE(QL,,), the ASE of QL,, multiplied by the
number of servers s, is nearly constant for all val-
ues of s considered. In particular, Figure 2 shows that
s x ASE(QL,,)) =~ (A — p)/(Apa), as in (25) of §5. The
relative error between the simulation estimates for
ASE(QL,,) and the numerical value given by (25) is
less than 1% throughout.

The QL' estimator is nearly identical to QL,,. This
can be easily explained: When the number seen in
queue upon arrival, 1, is large, 6, (1) can be approx-
imated by an integral (limit of the Riemann sum)

0, n %f
o, (M~ | e

n

dx =In(sp + an) —In (su)

1
= —In(1+an/sw).
a
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Figure 2 s x ASE in the /M /s + M Model with p =1.4
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On the other hand, we have that

i () (5]

In(1+ an/su).

~

Q|r

So that, for large n, the two estimators QL,, and QL
should perform nearly the same.

The LES estimator performs worse than QL,
and QL,. The ratio ASE(LES)/ASE(QL,,) is close to 2
for all values of s, which provides support to (38).
This is consistent with the results in Ibrahim and
Whitt (2009) for the GI/M /s model, without customer
abandonment. Figure 2 shows that s x ASE(LES) =~
o, consistent with (36). Indeed, the relative error
between the simulation estimates and the numerical
value given by (37) is less than 1% throughout.

The NI estimator performs worse than LES: The
ratio ASE(NI)/ASE(LES) is close to 1.75 throughout.
The relative error between the simulation estimates
for ASE(NI)/ASE(LES) and the numerical value given
by (41) is less than 2% throughout. Figure 2 shows
that s x ASE(NI) ~ 1/apu, as in (28), with ¢ = 1. The
relative error between the simulation estimates for
ASE(NI) and the numerical value given by (28) is less
than 2% throughout.

The QL estimator performs significantly worse than
the other three estimators and its performance gets
worse as s increases. The ratio ASE(QL)/ASE(QL,,)
ranges from about 3 when s =100 to about 16 when
s=1,000. Figure 2 shows that s x ASE(QL) is mono-
tone increasing in s. This shows the need to go beyond
QL when customer abandonment is included.

6.3. Results for the M/M/s+ E;, Model
Figure 3 shows that QL,, is the best possible delay
estimator for this model, except when s is very

Figure 3  ASE in the M/M/s + E,, Model with p=1.4
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large (e.g., s =700 or s =1,000). The correspond-
ing RRASE ranges from about 10% when s =100 to
about 3% when s =1,000. The QL, estimator per-
forms worse than QL,, for smaller values of s, but
slightly outperforms QL,, for larger values of s. The
ratio ASE(QL,)/ASE(QL,,) ranges from about 2 when
s=100 to about 0.9 when s =1,000.

In contrast to previous cases, NI is the second or
third most effective delay estimator here, depending
on the number of servers. It performs nearly as well
as QL,,, particularly when s is large. This confirms
that NI can be a competitive delay estimator, with cus-
tomer abandonment. The NI estimator is especially
appealing because it does not use any information
beyond the model.

The LES estimator also fares well. The correspond-
ing RRASE ranges from about 14% when s =100 to
about 3% when s =1,000. Figure 4 shows that s x
ASE(LES) equals a constant, for all values of s. It is
significant that LES is the only estimator with this
property here, unlike the previous two models.

The QL,, estimator, which was nearly identical to
QL,, before, now performs worse: the corresponding
RRASE ranges from about 14% when s =100 to about
10% when s =1,000.

QL,, is relatively effective when s = 100 but
becomes significantly worse than QL,, when s =
1,000 (in that case, the ratio of respective ASE’s
is close to 9). The QL estimator is consistently the
least effective delay estimator in this model too: the
ratio ASE(QL)/ASE(QL,,) ranges from about 15 when
s =100 to about 95 when s =1,000. That is why the
corresponding ASE curve is not even included in
Figures 3 and 4.

6.4. Results for Other Models
We consider more general interarrival-time and
service-time distributions in the e-companion and
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Figure 4 s x ASE in the M/M/s + E,, Model with p =1.4 GI/GI/s + GI queueing model, allowing customer
. . . . . . . . . abandonment. We considered both queue-length-
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the online supplement (http://www.columbia.edu/
~ww?2040/). For the interarrival-time distribution, we
consider M, D, and H,; i.e., we consider the GI/M/s+
M model. Our simulation results for this model sub-
stantiate the heavy-traffic limits of §5, which quan-
tify the performances of some delay estimators in the
GI/M/s+ M model; e.g., see Theorems 1, 2, and 4.

For the service-time distribution, we consider H,,
D, E, E,;, and E, (sum of 4, and 2 exponentials,
respectively). We also consider LN(1,1) (lognormal
with mean and variance equal to 1), because there
is empirical evidence suggesting a good fit of the
service-time distribution to the lognormal distribu-
tion; see Brown et al. (2005). These additional simula-
tion results are consistent with those aforementioned,
with one notable exception. There is a significant
increase in ASE for all estimators with deterministic
(constant) service times, with performance tending to
be independent of s. In fact, the NI estimator is best
here. That indicates a need for new methods for this
special case. However, even very low variability in
the service times, e.g., the E,, distribution with SCV
equal to 0.1, is enough for our delay estimators to be
relatively accurate; see the e-companion.

We also consider different combinations of service-
time and abandon-time distributions. We do not
consider D abandonment times because our QL,, esti-
mator requires a density; see (13). Constant service
times cause a problem in all cases, but otherwise
the estimators perform well; e.g., there is no diffi-
culty when both the service times and abandonments
are Ey.

7. Conclusions
In this paper, we studied the performance of alter-
native real-time delay estimators in the overloaded

based and delay-history-based delay estimators.
Queue-length-based estimators exploit system-state
information, including the queue length seen upon
arrival. In contrast, delay-history-based estimators
have the advantage of not relying on any model or
system-state information: their implementation only
exploits customer delay history in the system. We
also considered the NI delay estimator, exploiting no
information beyond the model. We established heavy-
traffic limits for the expected MSE’s of QL,,, LES,
and NI in the G/M/s + M model, in the ED many-
server heavy-traffic limiting regime. For nonexponen-
tial service-time and abandonment-time distributions,
we used computer simulation to study the perfor-
mance of the candidate delay estimators.

7.1. Managerial Insights

Our starting point is the notion that it is often desir-
able to make delay announcements to arriving cus-
tomers in service systems. We consider how reliable
real-time delay estimates can be made.

As a frame of reference, we considered the classical
delay estimator based on the queue length, QL, which
multiplies the queue length plus one times the mean
interval between successive service completions. The
QL estimator is straightforward, and is commonly
used in practice. We observed that it is the most
accurate delay estimator, under the MSE criterion, in
the GI/M/s queueing model, without customer aban-
donment. Whenever the actual service system is well
modeled by a GI/M/s queueing model and the sys-
tem state is known accurately at each time, there is
little motivation for considering other delay estima-
tors besides the standard QL estimator.

Intuitively, we should expect that, when there is sig-
nificant customer abandonment while waiting in line,
the QL estimator will overestimate the delay because
many customers in queue may abandon before enter-
ing service, and QL fails to take that into account.
Consistent with intuition, we showed in §6 that QL
makes consistent estimation error when there is sig-
nificant customer abandonment; e.g., see Figures 1
and 2. Motivated by the simple form of the QL
delay estimate, 6 (1) in (6), we proposed modified
queue-length-based delay estimators that account for
customer abandonment and are also easy to imple-
ment in practice.

The Markovian queue-length-based estimator, QL,,,
is a variant of QL that accounts for customer aban-
donment by assuming that waiting customers have
iid. exponential abandonment times with rate a.
It also assumes that service times are ii.d. with an
exponential distribution. In §3, we showed that QL,,
is the most accurate estimator, under the MSE cri-
terion, in the GI/M/s + M model. We established
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heavy-traffic limits that generated an approximation
for the expected MSE of QL,, in the GI/M/s + M
model in §5.

In practice, the QL,, estimator is effective when-
ever the abandonment-time and service-time distribu-
tions in the actual service system are well modeled by
an exponential distribution. The abandonment rate «,
which is required for the implementation of QL,,, can
be estimated from system data as the ratio of the pro-
portion of abandoning customers to the average wait-
ing time in the queue; see §5 of Garnett et al. (2002).
The average waiting time in the queue and the pro-
portion of abandoning customers are fairly standard
system data outputs. In the context of call centers, for
example, they can be easily obtained from the auto-
matic call distributor’s data.

However, QL, is not always so good for the
more general GI/GI/s + GI model. In Figures 3
and 4, we showed that it can be inferior to
all other estimators (except QL) with a nonex-
ponential abandonment-time distribution. Because
nonexponential service-time and abandonment-time
distributions are commonly observed in practice, it is
important to propose other queue-length-based delay
estimators that effectively cope with nonexponen-
tial distributions. Approximations are needed because
direct mathematical analysis is difficult.

We proposed the simple-refined QL, estimator,
which multiplies the QL estimate by a model-
dependent constant, based on fluid approximations
in the ED heavy-traffic limiting regime. Simulation
results in §6 and the e-companion show that QL, per-
forms remarkably well. The QL, estimator is com-
petitive whenever the actual service system is large
and overloaded, i.e.,, whenever the fluid approxima-
tions are appropriate. The QL, estimator performs
significantly better than QL, (and QL) when the
abandonment-time distribution is not nearly exponen-
tial; e.g., see Tables EC.2 and EC.3 in the e-companion.

Our most promising delay estimator is the
new approximation-based estimator, QL,,. Simulation
results in §6 and the e-companion show that QL,,
is consistently the most effective estimator (with the
exception of D service; see the e-companion). It is a
variant of QL,, that assumes abandonment times are
independent, exponential, with state-dependent aban-
donment rates. The QL,, estimator coincides with
QL,, in the setting of the GI/M/s + M model, and is
thus the most accurate for that model, under the MSE
criterion. It also performs remarkably well for nonex-
ponential abandonment-time distributions.

The QL,, delay estimate, OQLW(n) in (15), requires
knowledge of the abandonment-time hazard-rate
function, h. That is convenient from a practical point
of view, because it is relatively easy to estimate haz-
ard rates from system data; see Brown et al. (2005).

It is significant that QL, and QL,, require knowl-
edge of the arrival rate, A, which requires some degree
of stationarity. These estimators should be effective
whenever the arrival rate in the actual service system
does not vary too rapidly.

Unlike without abandonments, the NI estima-
tor, announcing the deterministic heavy-traffic fluid
limit w of the waiting time, is an effective estima-
tor in the overloaded GI/GI/s 4+ GI model. It is best
possible for D service, but not otherwise. Neverthe-
less, it is remarkably effective, especially when the
abandonment-time distribution has low variability.
The NI estimator is a competitive estimator whenever
the actual service system is large and overloaded, and
the service and abandonment times are not highly
variable.

Finally, we considered the LES estimator, which is
appealing because it only depends on the history of
delays in the system. Intuitively, we should expect
that LES will perform worse than queue-length-based
estimators when the queue length and model param-
eters are known, because it does not exploit informa-
tion about system state. Simulation shows that this is
usually true. Nevertheless, the LES estimator is quite
effective in all models considered. In §5, we showed
that the expected MSE of LES in the GI/M/s + M
model increases with the squared coefficient of varia-
tion of the interarrival times, ¢2. The practical signifi-
cance of this result is that reliability of LES increases
as the variability in the arrival process decreases.

In practice, LES has the advantage of robust-
ness: it responds automatically to changes in sys-
tem parameters, because it does not depend on those
parameters. That is important because real-life sys-
tems are often quite complicated. For one example,
there may be multiple customer classes and multi-
ple service pools with some form of skill-based rout-
ing; see Gans et al. (2003). For a second example, the
number of servers and mean service times may be
time varying, in part because the servers are humans
who serve in different shifts and may well have dif-
ferent service-time distributions. Delay-history-based
estimators may be preferred in such scenarios.

7.2. Future Research Directions

In ongoing work, we have begun studying the delay
estimation problem with both customer abandonment
and time-varying arrival rates. A natural model for
capturing time-dependent arrivals is the nonhomo-
geneous Poisson process. Experience indicates that
it is appropriate for most real service systems. Such
a process is completely characterized by its arrival-
rate function. We are developing delay estimators
that effectively cope with time-varying arrivals, and
studying the performance of these estimators by
using computer simulation.
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As discussed in §6.4, it remains to carefully examine
the case of deterministic service times. As discussed
in §1.3, it remains to carefully consider the effect of
customer response to delay announcements.

8. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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