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e-Companion

EC.1. Introduction

We present additional material in this e-companion. In §EC.2, we give the proof of Theorem 4. In

§EC.3, we present detailed simulation results for the M/M/s + GI model. In §EC.4, we present

additional experimental results for non-exponential service-time distributions. In §EC.5, we present

simulation results substantiating the heavy-traffic limits of §5, for the GI/M/s + M model, with

alternative interarrival-time distributions and alternative values of the abandonment rate α. We

present additional experimental results in the supplement to the main paper, available on the

authors’ webpages, Ibrahim and Whitt (2008).

EC.2. Proof of Theorem 4

We now prove the convergence in distribution in (35). The proof follows the general approach used

to prove Theorem 6.4 of Talreja and Whitt (2008), exploiting stochastic-process limits in order to

obtain the desired one-dimensional limit in R. As in (6.37) of Talreja and Whitt (2008), we use the

continuous mapping theorem with the composition map to treat random time changes. We start

with the joint convergence

(ŴQ,s(t), N̂s(t), Ŵs(∞))⇒ (B(d(t)), Ĝ(t),N(0, σ2
w)) in D2×R (EC.1)

for the processes defined in (18), (33) and (27), where the limits are mutually independent.

For the M/M/s+M model, we can obtain the joint convergence from the individual limits estab-

lished above, because we can regard the component processes on the left as mutually independent.

That requires some comment, however. First in time we have the waiting time for the last customer

to enter service, which is distributed asymptotically the same as Ws(∞). Then we have the buildup

of the queue behind this customer until this customer starts service, given by N̂s(t). Finally, we

have the remaining times between successive departures after the new arrival enters the system, as

given by ŴQ,s(t), which involves independent exponential random variables. These are mutually

independent with reference to the designated arrival at one fixed time, for whom we are doing the
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estimation. The processes are well defined as independent random elements of D, but they only

correctly apply to describe our system at a single time, as stated in the final one-dimensional limit

in (35). (In the case of the G/M/s+M model, we assume that the joint limit of (N̂s(t), Ŵs(∞)) is

the same as if these were independent.)

Assuming the limit in (EC.1), since N̄s converges to a deterministic limit, we can append the

limit for N̄s to get

(ŴQ,s(t), N̂s(t), N̄s(t), Ŵs(∞))⇒ (B(d(t)), Ĝ(t), a(t),N(0, σ2
w)) in D3×R. (EC.2)

We can now apply the continuous mapping theorem with composition to perform a random time

change with N̄s to obtain the limit

ŴQ,s(N̄s(t))≡
√

s
(
WQ,s(Ns(t))− c(N̄s(t))

)
⇒B(d(a(t))) in D as s→∞, (EC.3)

jointly with the limit in (EC.2), where B is the given standard Brownian motion and a(t) is defined

in (32). We can now apply a random-time-change argument one more time with Ws(∞) to obtain

the limit

Ẑs ≡
√

s
(
WQ,s(Ns(Ws(∞)))− c(N̄s(Ws(∞)))

)
⇒B(d(a(w))) d= N(0, d(a(w))) in R (EC.4)

as s→∞, again jointly with the limit in (EC.2), where again the limit involves the same Brownian

motion B.

We obtain the desired limit in (35) by writing

ŴLES,s(Ws(∞))≡
√

s (WLES,s(Ws(∞))−Ws(∞))≡ Ẑs + Ŷs (EC.5)

for Ẑs in (EC.4) and

Ŷs ≡
√

s
(
c(N̄s(Ws(∞)))−Ws(∞)

)
(EC.6)

and establishing a limit for Ŷs in (EC.6) within the framework of the initial limits in (EC.2). In

order to make a connection to the given limits for (N̂s(t), Ŵs(∞)) in (EC.2), we exploit a Taylor

series expansion for the functions c(t) and a(t) in (19) and (32). Note that

c(q) = w≡ 1
α

ln (ρ), a(w) = q≡ λ−µ

α
and d(q) =

q

λµ
. (EC.7)
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Hence, d(a(w)) = d(q) = q/(λµ).

We write

Ŷs ≡
√

s
(
c(N̄s(Ws(∞)))−Ws(∞)

)
≡ Ŷs,1 + Ŷs,2 + Ŷs,3, (EC.8)

where

Ŷs,1 ≡
√

s
(
c(N̄s(Ws(∞))− c(a(Ws(∞)))

)
,

Ŷs,2 ≡
√

s (c(a(Ws(∞)))− c(a(w))) ,

Ŷs,3 ≡
√

s (c(a(w))−Ws(∞)) , (EC.9)

Using a Taylor series expansion of c, we see that

Ŷs,1− c′(a(w))
√

s
(
N̄s(Ws(∞))− a(Ws(∞))

)
⇒ 0, (EC.10)

where c′(a(w)) = 1/λ. By Theorem 3,

Ŷs,1 ⇒
1
λ

Ĝ(w) d= N(0, σ2
n(w)/λ2) as s→∞. (EC.11)

Using a Taylor series expansion of c ◦ a, noting that a′(w) = µ, we get

Ŷs,2− c′(a(w))a′(w)
√

s (Ws(∞)−w))⇒ 0, (EC.12)

so that, by Theorem 2,

Ŷs,2 ⇒
µ

λ
N(0, σ2

w) as s→∞. (EC.13)

Similarly, using the relation c(a(w)) = c(q) = w and replacing c(a(w)) by w, we get

Ŷs,3−
√

s (w−Ws(∞))⇒ 0, (EC.14)

so that, by Theorem 2 again,

Ŷs,3 ⇒N(0, σ2
w) as s→∞, (EC.15)

where the limiting random variables N(0, σ2
w) in (EC.13) and (EC.15) are identical. By these

constructions, we obtain convergence of the vector (Ŷs,1, Ŷs,2, Ŷs,3) jointly with the initial limits
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in (EC.2) and thus also jointly with Ẑs in (EC.4). The processes Ŷs,i are each asymptotically

equivalent to processes that are simple functions of the processes in the original limit (EC.2).

Hence,

Ŷs ≡ Ŷs,1 + Ŷs,2 + Ŷs,3 ⇒N

(
0,

σ2
n(w)
λ2

+
(λ−µ)2σ2

w

λ2

)
. (EC.16)

We can thus obtain the limit from (EC.4)–(EC.6), (EC.8), (EC.9) and (EC.16) by adding the

normal components.

EC.3. Simulation Results for the M/M/s+GI Model

In this section, we present tables of simulation results (point and 95% confidence interval estimates)

quantifying the performance of the alternative delay estimators in the M/M/s + GI model. The

corresponding plots are shown and discussed in §6. For the abandonment-time distribution, we

consider M , H2, and E10 distributions. We consider alternative values of s ≥ 100, and vary the

arrival rate, λ, to keep the traffic intensity, ρ, fixed for alternative values of s (ρ = 1.4). We let the

abandonment rate, α, be equal to 1.

With exponential abandonments, Table EC.1 shows that, consistent with theory, QLm is the

best possible delay estimator, under the MSE criterion. The QLm
r and QLr estimators are nearly

identical, with QLm
r slightly outperforming QLr. They are both nearly as efficient as QLm. Consis-

tent with (38), the LES estimator performs worse than QLm, but not greatly so: The relative error

between the simulation estimates for ASE(LES)/ASE(QLm) and the numerical value, 2, given by

(38) is less than 1% throughout. Consistent with (29), the NI estimator is less efficient than QLm:

The relative error between the simulation estimates for ASE(NI)/ASE(QLm) and the numerical

value, 3.5, given by (29) is less than 1% throughout. The QL estimator performs significantly worse

than all the other estimators, particularly for large values of s. The ratio ASE(QL)/ASE(QLm)

ranges from about 3 when s = 100 to nearly 16 when s = 1000.

With hyperexponential abandonments, Table EC.2 shows that QLap is the best delay estimator.

The QLr estimator performs nearly the same as QLap and is only slightly outperformed. The QLm

estimator, which is optimal for the GI/M/s+M model, is now outperformed by QLr, particularly
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Efficiency of the estimators in the M/M/s+M model with ρ = 1.4 and α = 1.0
s ASE[θQLm ] ASE[θQLm

r
] ASE[θQLr ] ASE[θQL] ASE[θLES] ASE[θNI ]

100 2.867× 10−3 2.869× 10−3 3.130× 10−3 8.693× 10−3 5.772× 10−3 1.00× 10−2

±1.76× 10−5 ±1.78× 10−5 ±1.89× 10−5 ±3.20× 10−5 ±2.79× 10−5 ±5.97× 10−5

300 9.587× 10−4 9.601× 10−4 1.039× 10−3 5.602× 10−3 1.922× 10−3 3.351× 10−3

±6.86× 10−6 6.92× 10−6 ±6.41× 10−6 ±2.64× 10−5 ±1.50× 10−5 ±6.03× 10−5

500 5.761× 10−4 5.661× 10−4 6.224× 10−4 5.017× 10−3 1.153× 10−3 2.038× 10−3

±1.94× 10−6 ±3.86× 10−6 ±2.94× 10−6 ±2.41× 10−5 ±9.99× 10−6 ±2.26× 10−5

700 4.104× 10−4 4.201× 10−4 4.440× 10−4 4.682× 10−3 8.166× 10−4 1.441× 10−3

±1.82× 10−6 2.839× 10−4 ±2.71× 10−6 ±2.40× 10−5 ±5.78× 10−6 ±1.57× 10−5

1000 2.892× 10−4 2.839× 10−4 3.136× 10−4 4.492× 10−3 5.752× 10−4 1.019× 10−3

±3.48× 10−6 ±3.86× 10−6 ±3.09× 10−6 ±1.54× 10−5 ±6.91× 10−6 ±3.00× 10−5

Table EC.1 Point and confidence interval estimates of the ASEs - average square errors - of the estimators

when s is large (e.g., ASE(QLm)/ASE(QLap) is close to 2 when s = 1000). The LES estimator

performs worse than QLm when s = 100, but is nearly identical to QLm when s = 1000. The NI

estimator performs worse than LES, but not as bad as QL. Once more, QL is the least efficient

delay estimator: The ratio ASE(QL)/ASE(QLap) ranges from about 2 when s = 100 to about 10

when s = 1000.

With Erlang abandonments, Table EC.3 shows that QLap is, once more, the best possible delay

estimator, except when s is very large (e.g., s = 700 or s = 1000). The QLr estimator performs

worse than QLap for relatively small values of s, but slightly outperforms QLap for relatively large

values of s. The NI estimator is more competitive in this model, than in the previous two models. It

is nearly as efficient as QLap, particularly when s is large. The LES estimator also fares well, but is

slightly outperformed by QLap, QLr and NI. The QLm estimator performs significantly worse than

QLap when s is large (e.g., when s = 1000, ASE(QLm)/ASE(QLap) ≈ 9). Finally, QL is yet again

the least effective estimator for this model. The ratio ASE(QL)/ASE(QLap) ranges from about 15

when s = 100 to about 93 when s = 1000.
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Efficiency of the estimators in the M/M/s+H2 model with ρ = 1.4 and α = 1.0
s ASE[θQLap ] ASE[θQLm ] ASE[θQLr ] ASE[θQL] ASE[θLES] ASE[θNI ]

100 1.859× 10−3 2.100× 10−3 2.032× 10−3 4.662× 10−3 3.866× 10−3 6.503× 10−3

±6.52× 10−6 ±5.54× 10−6 ±6.31× 10−6 ±1.83× 10−5 ±8.10× 10−6 ±3.85× 10−5

300 6.116× 10−4 7.933× 10−4 6.599× 10−4 2.593× 10−3 1.236× 10−3 2.165× 10−3

±4.64× 10−6 ±7.62× 10−6 ±8.82× 10−6 ±2.25× 10−5 ±1.76× 10−5 ±2.09× 10−5

500 3.695× 10−4 5.367× 10−4 3.921× 10−4 2.205× 10−3 7.331× 10−4 1.311× 10−3

±2.19× 10−6 ±2.12× 10−6 ±2.47× 10−6 ±9.97× 10−6 ±5.41× 10−6 ±1.03× 10−5

700 2.630× 10−4 4.257× 10−4 2.802× 10−4 2.024× 10−3 5.250× 10−4 9.378× 10−4

±1.43× 10−6 ±1.89× 10−6 ±1.00× 10−5 ±2.35× 10−6 ±2.52× 10−6 ±1.07× 10−5

1000 1.833× 10−4 3.474× 10−4 1.978× 10−4 1.900× 10−3 3.691× 10−4 6.533× 10−4

±1.55× 10−6 ±1.43× 10−6 ±6.90× 10−7 ±5.93× 10−6 ±3.00× 10−6 1.14× 10−5

Table EC.2 Point and confidence interval estimates of the ASEs - average square errors - of the estimators

Efficiency of the estimators in the M/M/s+E10 model with ρ = 1.4 and α = 1.0
s ASE[θQLap ] ASE[θQLm ] ASE[θQLr ] ASE[θQL] ASE[θLES] ASE[θNI ]

100 5.388× 10−3 9.400× 10−3 6.317× 10−3 8.097× 10−2 8.810× 10−3 6.077× 10−3

±1.54× 10−5 ±3.48× 10−5 4.51× 10−5 ±2.47× 10−4 ±3.91× 10−5 ±2.63× 10−5

300 1.955× 10−3 7.211× 10−3 2.139× 10−3 7.211× 10−2 2.933× 10−3 2.040× 10−3

±5.13× 10−6 ±3.86× 10−5 ±1.83× 10−5 ±3.301× 10−4 ±3.22× 10−5 ±2.23× 10−5

500 1.244× 10−3 6.746× 10−3 1.293× 10−3 7.049× 10−2 1.760× 10−3 1.288× 10−3

±1.54× 10−5 ±2.68× 10−5 ±1.35× 10−5 ±2.48× 10−4 ±2.44× 10−5 ±2.61× 10−5

700 9.572× 10−4 6.584× 10−3 9.319× 10−4 6.975× 10−2 1.241× 10−3 9.966× 10−4

±8.31× 10−6 ±1.43× 10−6 ±1.00× 10−5 ±1.00× 10−5 ±2.35× 10−6 ±1.30× 10−5

1000 7.369× 10−4 6.454× 10−3 6.694× 10−4 6.902× 10−2 8.830× 10−4 8.242× 10−4

±1.96× 10−5 ±1.70× 10−5 ±1.13× 10−5 ±1.68× 10−4 ±1.28× 10−5 ±1.17× 10−5

Table EC.3 Point and confidence interval estimates of the ASEs - average square errors - of the estimators

EC.4. Simulation Results for the M/GI/s+M Model

In this section we present simulation results quantifying the performance of the alternative delay

estimators with non-exponential service-time distributions; i.e., we consider the M/GI/s + M

model. In this model, QLap coincides with QLm, so we do not include separate results for it. For

the service-time distribution, we consider D, E10, and LN(1,1) (lognormal with mean and variance
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equal to 1) distributions. We let µ = α = 1.0, and vary λ, for alternative values of s, to keep ρ = 1.4.

Corresponding tables with estimates of the 95% confidence intervals, and additional simulation

results for the M/GI/s+M model, are presented in the supplement, Ibrahim and Whitt (2008).

EC.4.1. Results for the M/D/s+M model

Figures EC.1 and EC.2 show that all delay estimators do not perform well in this model. The NI

estimator, which uses no information at all beyond the model, is the most effective delay estimator,

when s≥ 300. (For s = 100, QLm slightly outperforms NI.) But even the NI estimator is not very

accurate: The RRASE for NI is roughly equal to 25% for all values of s considered. This suggests

that our procedures for estimating delays perform relatively poorly when the service times are

deterministic. The ASE’s for QLm, QLr, QL, and LES do not vary much in this model; e.g.,

ASE(QLm) varies little about 0.01, for all values of s considered. Figure EC.2 shows that, unlike

previous models, the accuracy of the estimators does not improve as the number of servers increases.

Alternative delay estimation procedures, appropriate for deterministic service times, remain to be

investigated.

EC.4.2. Results for the M/E10/s+M model

Simulation results with an E10 distribution (SCV = 0.1) for the service times, suggest that the

proposed delay estimators remain effective, even with very low variability in the service times.
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Figures EC.3 and EC.4 show that QLm is the most effective delay estimator for this model. The

QLr estimator is nearly identical to QLm, particularly when s is large enough (s≥ 300). Once more,

the relative accuracy of the delay estimators improves as s increases. The RRASE for QLm ranges

from approximately 13% when s = 100 to approximately 4% when s = 1000. The LES estimator is

relatively accurate as well: The RRASE of LES ranges from approximately 21% when s = 100 to

approximately 7% when s = 1000. The NI estimator does not perform as well as LES, nor as bad as

QL. The QL estimator is the least efficient estimator: The ratio ASE(QL)/ASE(QLm) ranges from

approximately 4 when s = 100 to approximately 22 when s = 1000. Consistent with §5, Figure EC.4

shows that all estimators, except QL, have an ASE which is inversely proportional to the number of

servers, but mathematical support for the estimators has yet to be provided with non-exponential

service-time distributions.

EC.4.3. Results for the M/LN(1,1)/s+M model

We consider the lognormal distribution for the service times because there is empirical evidence

suggesting a remarkable fit of the service-time distribution to the lognormal distribution; e.g., see

Brown et al. (2005). Table EC.4 shows that QLm is the most effective delay estimator for this model.

The RRASE for QLm ranges from approximately 14% when s = 100 to approximately 5% when
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Efficiency of the estimators in the M/LN(1,1)/s+M model with ρ = 1.4 and α = 1.0
s ASE[θQLm ] ASE[θQLr ] ASE[θQL] ASE[θLES] ASE[θNI ]

100 2.359× 10−3 2.596× 10−3 8.207× 10−3 5.248× 10−3 9.089× 10−3

±7.00× 10−6 ±9.02× 10−6 ±4.45× 10−5 ±2.37× 10−5 ±4.80× 10−5

300 7.810× 10−4 8.506× 10−4 5.394× 10−3 1.716× 10−3 3.032× 10−3

±5.14× 10−6 ±5.68× 10−6 3.36× 10−5 ±1.25× 10−5 ±5.30× 10−5

500 4.663× 10−4 5.0685× 10−4 4.836× 10−3 1.029× 10−3 1.826× 10−3

±2.04× 10−6 ±2.12× 10−6 ±2.085× 10−5 ±7.29× 10−6 ±8.10× 10−6

700 3.346× 10−4 3.635× 10−4 4.615× 10−3 7.438× 10−4 1.290× 10−3

±2.71× 10−6 ±3.37× 10−6 ±1.77× 10−5 ±6.47× 10−6 ±1.12× 10−5

1000 2.340× 10−4 2.548× 10−4 4.443× 10−3 5.290× 10−4 8.942× 10−4

±1.84× 10−6 ±2.81× 10−6 ±2.54× 10−5 ±5.90× 10−6 ±2.46× 10−5

Table EC.4 Point and confidence interval estimates of the ASEs - average square errors - of the estimators

s = 1000. The QLr estimator is slightly less efficient than QLm: The ratio ASE(QLr)/ASE(QLm)

ranges from approximately 1.1 when s = 100 to approximately 1.08 when s = 1000. The LES

estimator is relatively accurate as well: The RRASE of LES ranges from approximately 26% when

s = 100 to approximately 7% when s = 1000. The NI estimator does not perform as well as LES,

nor as bad as QL. The QL estimator is the least efficient estimator: the ratio ASE(QL)/ASE(QLm)

ranges from approximately 4 when s = 100 to approximately 19 when s = 1000.

EC.5. Simulations Results for the GI/M/s+M Model

In this section, we present simulation results quantifying the performance of the alternative delay

estimators with non-exponential interarrival-time distributions; i.e., we consider the GI/M/s+M

model. For the interarrival-time distribution, we consider D and H2 distributions.

We also consider different abandonment rates; specifically we let α = 0.2 and α = 5.0. As indicated

by Formulas (3) and (7), the queue length and delay tend to be inversely proportional to α. Thus,

changing α from 1.0 to 0.2 or 5.0 tends to change congestion by a factor of 5. The system is very

heavily overloaded when α = 0.2, but relatively lightly loaded when α = 5.0.

We consider the same values of s as before and we let µ = 1. We vary λ to get a fixed value of ρ
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(ρ = 1.4), for alternative values of s. Additional simulation results for the GI/M/s+M model are

presented in the supplement, Ibrahim and Whitt (2008).

EC.5.1. Results for the D/M/s+M model with α = 0.2

Table EC.5 compares the efficiencies of the alternative delay estimators in the D/M/s+M model

with α = 0.2. Consistent with theory, QLm is the optimal delay estimator for this model, under the

MSE criterion. The RRASE of QLm ranges from approximately 35% when s = 100 to approximately

11% when s = 1000. The QLr estimator is slightly less efficient than QLm: ASE(QLr)/ASE(QLm)

is less than 1.05 for all values of s considered. The LES estimator is slightly less accurate, with an

RRASE ranging from approximately 40% when s = 100 to approximately 13% when s = 1000. The

NI estimator is less accurate than LES, but not as bad as QL. The QL estimator is, once more,

the least effective estimator: The ratio ASE(QL)/ASE(QLm) ranges from approximately 8 when

s = 100 to approximately 71 when s = 1000.

Tables EC.6 and EC.7 substantiate (39) and (29) of §5, that compare the performances of QLm,

LES and NI in the D/M/s + M model. Consistent with (39), Table EC.6 shows that the perfor-

mance of LES is close to that of QLm, when the arrival process is deterministic. The simulation

estimates of ASE(LES)/ASE(QLm), for alternative values of s, are remarkably close to the numer-

ical value, approximately 1.286, predicted by (39); the relative error (RE) observed is less than

1% for all values of s considered. Consistent with (29), Table EC.7 shows that the performance of

NI is worse than that of LES and QLm. The simulation estimates of ASE(NI)/ASE(QLm) are also

remarkably close to the numerical value, 2.25, predicted by (29); the RE observed is less than 4%

for all values of s considered.

EC.5.2. Results for the H2/M/s+M model

Table EC.8 compares the efficiencies of the alternative delay estimators in the H2/M/s+M model

with α = 5.0, which makes the model more lightly loaded. Consistent with theory, QLm is the

optimal delay estimator for this model, under the MSE criterion. The RRASE of QLm ranges from

approximately 8% when s = 100 to approximately 2% when s = 1000.
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Efficiency of the estimators in the D/M/s+M model with ρ = 1.4 and α = 0.2
s ASE[θQLm ] ASE[θQLr ] ASE[θQL] ASE[θLES] ASE[θNI ]

100 1.436× 10−2 1.492× 10−2 1.192× 10−1 1.863× 10−2 3.266× 10−2

±9.78× 10−5 ±9.40× 10−5 ±1.57× 10−4 ±1.64× 10−4 ±5.33× 10−4

300 4.798× 10−3 5.005× 10−3 1.071× 10−1 6.172× 10−3 1.056× 10−2

±5.99× 10−5 ±6.08× 10−5 ±1.41× 10−4 ±7.45× 10−5 ±1.92× 10−4

500 2.865× 10−3 2.966× 10−3 1.044× 10−1 3.672× 10−3 6.641× 10−3

±5.43× 10−5 ±5.24× 10−5 ±1.071× 10−4 ±6.67× 10−5 ±2.933× 10−4

700 2.091× 10−3 2.170× 10−3 1.033× 10−1 2.691× 10−3 4.802× 10−3

±2.39× 10−5 ±1.90× 10−5 ±1.53803× 10−4 ±3.23× 10−5 ±2.26× 10−4

1000 1.435× 10−3 1.507× 10−3 1.026× 10−1 1.859× 10−3 3.030× 10−3

±1.15× 10−5 ±1.52× 10−5 ±1.20× 10−4 ±2.06× 10−5 ±1.05× 10−4

Table EC.5 Point and confidence interval estimates of the ASEs - average square errors - of the estimators

Comparison of the efficiency of LES and QLm in the D/M/s+M model with ρ = 1.4 and α = 0.2
s ASE[θQLm ] ASE[θLES] ASE[θLES]/ASE[θQLm ] Predicted ratio by (38) RE (%)

100 1.436× 10−2 1.863× 10−2 1.297 1.286 0.885
±9.78× 10−5 ±1.642× 10−4

300 4.798× 10−3 6.172× 10−3 1.286 1.286 0.0421
±5.99× 10−5 ±7.45× 10−5

500 2.865× 10−3 3.672× 10−3 1.281 1.286 -0.329
±5.43× 10−5 ±6.67× 10−5

700 2.091× 10−3 2.691× 10−3 1.287 1.286 0.107
±2.39× 10−5 ±3.23× 10−5

1000 1.435× 10−3 1.859× 10−3 1.296 1.286 0.765
±1.15× 10−5 ±2.05× 10−5

Table EC.6

In this more lightly loaded setting, the ASE’s of all the estimators are relatively low, being

smaller than for the M/M/s + M model with α = 1.0 in Table EC.1 by a factor of about 4,

despite having c2
a = 4.0 instead of c2

a = 1.0. However, the lighter loading makes the ED heavy-traffic

approximations less appropriate.

The QLr estimator is less efficient than QLm: ASE(QLr)/ASE(QLm) ranges from approximately
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Comparison of the efficiency of NI and QLm in the D/M/s+M model with ρ = 1.4 and α = 0.2
s ASE[θQLm ] ASE[θNI ] ASE[θNI ]/ASE[θQLm ] Predicted ratio by (28) RE (%)

100 1.436× 10−2 3.266× 10−2 2.275 2.25 1.09
±9.78× 10−5 ±5.33× 10−4

300 4.798× 10−3 1.056× 10−2 2.201 2.25 -2.18
±5.99× 10−5 ±1.92× 10−4

500 2.865× 10−3 6.641× 10−3 2.318 2.25 3.01
±5.43× 10−5 ±2.933× 10−4

700 2.091× 10−3 4.802× 10−3 2.297 2.25 2.08
±2.39× 10−5 ±2.26× 10−4

1000 1.435× 10−3 3.130× 10−3 2.111 2.25 -3.08
±1.15× 10−5 ±1.05× 10−4

Table EC.7

Efficiency of the estimators in the H2/M/s+M model with ρ = 1.4 and α = 5.0
s ASE[θQLm ] ASE[θQLr ] ASE[θQL] ASE[θLES] ASE[θNI ]

100 7.193× 10−4 1.059× 10−3 2.217× 10−3 2.393× 10−3 3.101× 10−3

±2.63× 10−6 ±4.47× 10−6 ±1.01× 10−5 ±6.72× 10−6 ±1.42× 10−5

300 2.008× 10−4 2.675× 10−4 7.240× 10−4 7.569× 10−4 1.169× 10−3

±7.85× 10−7 ±1.28× 10−6 ±2.63× 10−6 ±2.70× 10−6 ±5.82× 10−6

500 1.167× 10−4 1.495× 10−4 4.792× 10−4 4.540× 10−4 7.624× 10−4

±7.05× 10−7 ±8.78× 10−7 ±2.68× 10−6 ±1.71× 10−6 ±6.07× 10−6

700 8.277× 10−5 1.042× 10−4 3.856× 10−4 3.280× 10−4 5.714× 10−4

±4.12× 10−7 ±6.52× 10−7 ±2.50× 10−6 ±1.27× 10−6 ±4.72× 10−6

1000 5.733× 10−5 7.141× 10−5 3.184× 10−4 2.302× 10−4 4.0951× 10−4

±2.48× 10−7 ±2.44× 10−7 ±1.34× 10−6 ±1.19× 10−6 ±4.15× 10−6

Table EC.8 Point and confidence interval estimates of the ASEs - average square errors - of the estimators

1.5 when s = 100 to approximately 1.25 when s = 1000. The LES estimator is less accurate, with

an RRASE ranging from approximately 14% when s = 100 to approximately 4% when s = 1000.

The QL estimator performs slightly worse than LES: The ratio ASE(QL)/ASE(QLm) ranges from

about 3 when s = 100 to about 5 when s = 1000. The NI estimator is the least efficient estimator

for this model.
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Comparison of the efficiency of LES and QLm in the H2/M/s+M model with ρ = 1.4 and α = 5.0
s ASE[θQLm ] ASE[θLES] ASE[θLES]/ASE[θQLm ] Predicted by (39) RE (%)

100 7.193× 10−4 2.393× 10−3 3.326 4.143 -19.7
±2.63× 10−6 ±6.72× 10−6

300 2.008× 10−4 7.569× 10−4 3.769 4.143 -9.03
±7.85× 10−7 ±2.70× 10−6

500 1.167× 10−4 4.540× 10−4 3.891 4.143 -6.09
±7.05× 10−7 ±1.71× 10−6

700 8.277× 10−5 3.280× 10−4 3.962 4.143 -4.36
±4.12× 10−7 ±1.27× 10−6

1000 5.733× 10−5 2.302× 10−4 4.014 4.143 -3.10
±2.48× 10−7 ±1.19× 10−6

Table EC.9

Comparison of the efficiency of NI and QLm in the H2/M/s+M model with ρ = 1.4 and α = 5.0
s ASE[θQLm ] ASE[θNI ] ASE[θNI ]/ASE[θQLm ] Predicted ratio by (28) RE (%)

100 7.193× 10−4 3.101× 10−3 4.310 7.25 -40.5
±2.63× 10−6 ±1.42× 10−5

300 2.008× 10−4 1.169× 10−3 5.821 7.25 -19.7
±7.85× 10−7 ±5.82× 10−6

500 1.167× 10−4 7.624× 10−4 6.533 7.25 -9.89
±7.05× 10−7 ±6.07× 10−6

700 8.277× 10−5 5.714× 10−4 6.904 7.25 -4.78
±4.12× 10−7 ±4.72× 10−6

1000 5.733× 10−5 4.0951× 10−4 7.143 7.25 -1.48
±2.48× 10−7 ±4.15× 10−6

Table EC.10

Tables EC.9 and EC.10 substantiate (40) and (29) of §5, that compare the performances of

QLm, LES and NI in the H2/M/s + M model. Consistent with (40), Table EC.9 shows that the

performance of LES is significantly worse than that of QLm, when the arrival process is highly

variable. The simulation estimates of ASE(LES)/ASE(QLm), for alternative values of s, are close

to the numerical value, approximately 4.143, predicted by (40), especially for large values of s; the
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RE observed ranges from approximately −20% for s = 100 to approximately −3% when s = 1000.

We observe a relatively poor performance of the approximation in (40) when the number of servers

is small. That is understandable because the system is not very heavily loaded when α = 5.0.

Consistent with (29), Table EC.10 shows that the performance of NI is much worse than that of

QLm, when the arrival process is highly variable. The approximation in (29) performs poorly when

s = 100 (RE ≈−40%) but becomes remarkably accurate when s = 1000 (RE ≈−1.5%).
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