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Motivated by interest in making delay announcements in service systems, we study real-time delay estimators in many-
server service systems, both with and without customer abandonment. Our main contribution here is to consider the

realistic feature of time-varying arrival rates. We focus especially on delay estimators exploiting recent customer delay
history. We show that time-varying arrival rates can introduce significant estimation bias in delay-history-based delay
estimators when the system experiences alternating periods of overload and underload. We then introduce refined delay-
history estimators that effectively cope with time-varying arrival rates together with non-exponential service-time and
abandonment-time distributions, which are often observed in practice. We use computer simulation to verify that our
proposed estimators outperform several natural alternatives.
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1. Introduction
We investigate alternative ways to estimate, in real
time, the delay (before entering service) of an arriving
customer in a service system with time-varying ar-
rival rates. We consider time-varying arrival rates
because arrival processes to service systems, in real
life, typically vary significantly over time.

Our delay estimators may be used to make delay
announcements. Delay announcements may be espe-
cially helpful when delays are sometimes long, as in a
hospital emergency department (ED). In many cases
waiting customers are unable to accurately estimate
their own delay, and would therefore gain from delay
announcements. That is typically true with invisible
queues, as occur in call centers; see Aksin et al. (2007)
for background on call centers.

1.1. Delay-History-Based Estimators
In this paper, we examine alternative estimators based
on recent customer delay history in the system. As in
Armony et al. (2009), a candidate delay estimator
based on recent customer delay history is the delay of
the last customer to have entered service, before our
customer’s arrival at time t, denoted by the last cus-
tomer to enter service (LES). That is, letting w be the
delay of the last customer to have entered service, the
corresponding LES delay estimate is yLES(t, w) � w.
Armony et al. (2009) studied delay announcements in
many-server queues with customer abandonment,

focusing on customer response to the announcements,
leading to balking and new abandonment behavior.
They developed ways to approximately describe the
equilibrium system performance using LES delay an-
nouncements.

Closely related to LES is the elapsed waiting time of
the customer at the head of the line (HOL), assuming
that there is at least one customer waiting at the new
arrival epoch. The HOL delay estimator was men-
tioned as a candidate delay announcement by Nakibly
(2002). For a detailed discussion of the HOL and LES
estimators, see Ibrahim and Whitt (2009a, b). Experi-
ence indicates that the LES and HOL estimators have
very similar performance. In complex systems, the
LES delay is more likely to be observable than the
HOL delay, because arrival and service completion
times are more likely to be known than the experience
of customers who have not yet completed their ser-
vice; e.g., customers may have abandoned and that
might not be known. Nevertheless, here we focus on
HOL, because it is easier to analyze. However, we do
so with the understanding that similar results will
hold for LES.

1.2. Motivation For Delay-History-Based Estimators
We now briefly explain why it is important to study
the performance of delay-history-based estimators; for
more discussion, see section 1 of Ibrahim and Whitt
(2009a). First, delay-history-based estimators are
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currently used in service systems. For one example,
the US Citizenship and Immigration Service (USCIS)
publishes the arrival time of the most recently com-
pleted application to give an idea about upcoming
delays. For another example, the HOL estimator was
used as an announcement in an Israeli bank studied
by Mandelbaum et al. (2000).

Second, delay-history-based estimators are appeal-
ing for complicated service systems. For one example,
there may be multiple customer classes with multiple
service pools. For another example, with web chat,
servers typically serve several customers simulta-
neously, different servers may participate in a single
service, and there may be interruptions in the service
times, as the customers explore material on the web in
between conversations with agents. For yet another
example, consider ticket queues studied by Xu et al.
(2007). Upon arrival at a ticket queue, each customer
is issued a numbered ticket. The number currently
being served is displayed. The queue length (QL) is
not known to ticket-holding customers or even to
system managers, because they do not observe cus-
tomer abandonments. Even in systems with no
customer abandonment, we may not know the QL
in the system at a new arrival epoch. In a ticket queue
(as at a supermarket), a ticketed customer may elect to
go and do other shopping and plan to come back later
to get in line. (Customers may also abandon, but that
does not have to be the case.) Customers with tickets
could return to the queue at some point in time and
‘‘preempt’’ customers who are already in line (e.g., if
they have a lower numbered ticket). Now, suppose
that there is a new arrival at the station. It is unclear
whether ticketed customers (currently doing some
other shopping) will return quickly enough to be in-
serted before that new arrival. Therefore, the QL
cannot be determined at the new arrival epoch. Nev-
ertheless, it is possible to determine who the LES (or
HOL) customer is, and to know his/her delay.

Delay-history-based estimators are appealing, from a
practical perspective, whenever the QL is not known,
but also because they do not depend on the model and
use very little information about the system. They are
robust because they respond automatically to changes
in system parameters (e.g., number of servers, mean
service time, and arrival rate).

To fully understand a complex service system, we
need to study it in detail. However, to help develop
a service science, we are systematically studying
various delay estimators in controlled environments,
i.e., in structured models, starting with GI/M/s and
extending to GI/GI/s (non-exponential service times),
GI/GI/s1GI (abandonment with non-exponential pa-
tience distributions) in Ibrahim and Whitt (2009a, b)
and now Mt/GI/s and Mt/GI/s1GI (time-varying
arrival rates).

1.3. The Case of a Stationary Arrival Process
In Ibrahim and Whitt (2009a, b), we studied the per-
formance of the LES and HOL delay estimators in
many-server systems, both with and without cus-
tomer abandonment, by studying conventional
stationary queueing models. In Ibrahim and Whitt
(2009a), we studied the performance of HOL in the
GI/M/s queueing model, which has a renewal arrival
process, s homogeneous servers, an unlimited waiting
room, and the first-come-first-served service disci-
pline. The service times are independent of the arrival
process, and independent and identically distributed
(i.i.d.) exponential random variables.

We showed that HOL is an effective estimator in the
GI/M/s model. As a frame of reference, we considered
the classical delay estimator based on the QL which
multiplies the QL plus one times the mean interval be-
tween successive service completions, ignoring customer
abandonment. For this special idealized model with i.i.d.
exponential service times and no customer abandon-
ment, the QL estimator is provably the most effective
estimator, under the mean squared error (MSE) criterion;
see section 4. The HOL estimator performs worse than
QL, because it does not exploit QL information. Never-
theless, we showed that the difference in performance
need not be too great, particularly when the arrival pro-
cess has low variability. Because the model is highly
structured, we were able to obtain analytical results.

In Ibrahim and Whitt (2009b), we considered the
GI/GI/s1GI model, which includes independent se-
quences of i.i.d. service times and abandonment times
with general distributions. As one would expect, QL
can overestimate customer delay when there is signifi-
cant customer abandonment in the system. We showed
that QL performs poorly in a heavily loaded GI/GI/
s1GI model, while HOL remains an effective estimator.

When customer abandonment is a serious issue, it is
possible to refine the QL-based delay estimator by using
the exact expected conditional delay, given the QL, in
the G/M/s1M model; we denote this by QLm. How-
ever, for non-exponential service-time and abandonment
distributions, the delay-history-based estimators can
also outperform this refined QL-based estimator QLm,
even when the QL and the model are known; e.g., see
figures 1–4 of Ibrahim and Whitt (2009b).

However, we do not mean to suggest that the QL
does not provide useful information when it is known.
Indeed, our best estimator for the GI/GI/s1GI model is
an approximation-based estimator, referred to as QLap,
which exploits the QL as well as model parameters; we
also will make use of QLap here for the Mt/GI/s1GI
model in section 8.

1.4. Time-Varying Arrival Rates
In this paper, we study the performance of the HOL
estimator with time-varying arrival rates. We do so
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primarily because arrival rates typically vary signifi-
cantly over time in real-life service systems.

The HOL estimator can perform poorly when the
delays vary systematically over time, as can occur when
there are alternating periods of significant overload and
underload. Then the delay of a new arrival may not be
like the HOL delay. To demonstrate potential problems
with the HOL estimator, we plot simulation sample
paths of HOL delay estimates given, and actual delays
observed, as a function of time, in simulation runs from
two different heavily loaded many-server systems. In
Figure 1, we consider the stationary M/M/100 model
with traffic intensity r5 0.95 and mean service time
5 minutes; in Figure 2, we consider the Mt/M/100 model
with sinusoidal arrival rates, again with traffic inten-
sity r5 0.95, but now defined as the long-run average,
and mean service time 5 minutes. We consider a daily

cycle, so that there is one peak during the day. We let
the relative amplitude be a5 0.5. (The ratio of the
peak arrival rate to the average arrival rate is 11a.)
We measure time and, thus, the delays in units of
mean service times. The overall plotted time interval
of length 500 mean service times is slightly less than
2 days, so we see two peaks.

For Figure 2, we deliberately chose an extreme case
in which the system alternates between extreme over-
load and underload, while the number of servers
remains fixed. In that setting, the maximum delays
themselves are about 40 mean service times or 200
minutes, about 60 times greater than in the stationary
environment. Delay estimation tends to be especially
important with such large delays. Figure 2 shows that,
with time-varying arrival rates, the HOL curve is
clearly shifted to the right of the actual-delay curve;
i.e., there is a time lag between the HOL estimates and
the actual delays observed, leading to big errors.

Figure 2 also shows a third plot, the plot of a refined
HOL estimator, denoted by HOLr , which we develop in
section 4. Clearly, it eliminates the time lag; visually the
HOLr plot falls on top of the actual delays. The ratio of
the average squared errors ASE(HOL)/ASE(HOLr), de-
fined in section 3, is about 95 in Figure 2. (If we would
reduce the relative amplitude from 0.5 to 0.1, then the
ratio would be only 1.3; it then requires careful analysis
to see the improvement provided by HOLr over HOL;
see Ibrahim and Whitt [2009c] for the plot.)

In this paper, we not only show that HOL may not be
an effective estimator with time-varying arrivals, par-
ticularly when the system alternates between phases of
underload and overload, but we also develop refine-
ments of the HOL estimator that remain effective for
time-varying arrival rates. Through analysis and sim-
ulation, we show that these new estimators perform
remarkably well with time-varying arrival rates, far
better than HOL.

However, the improved performance of the refined
HOL estimators comes at the expense of exploiting more
information about the system, such as the arrival rate, the
number of servers, and the mean service time. That re-
quirement greatly reduces the advantage over QL-based
delay estimators. Indeed, our strategy for obtaining the
refined HOL estimators involves two steps: (i) repre-
senting or approximating the expected conditional delay
given the QL and (ii) estimating the QL, given the ob-
served HOL delay and the model parameters. Hence, the
refined HOL estimators are valuable only when the QL is
not known. However, such cases are not uncommon, as
in web chat and ticket queues, when we directly observe
arrivals and service completions, but not the queue, be-
cause we do not observe customer abandonments.

Because our refined estimators exploit more infor-
mation about the system, we also investigate (i) how
our refined estimators perform if the extra information
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is known imperfectly, because it too must be estimated,
and (ii) how this additional information can be esti-
mated in real time. We propose estimation procedures
for alternative system parameters, and quantify the
estimation error resulting from those procedures. These
additional experiments show that the refined estimators
can be useful in practice.

1.5. Literature Review, Contributions, and
Organization
The literature on delay announcements is large and
growing. In broad terms, there are two main areas
of research. The first area studies the effect of delay
announcements on system dynamics; e.g., see Whitt
(1999b), Armony and Maglaras (2004), Guo and
Zipkin (2007), Armony et al. (2009), Allon et al. (2009),
and references therein. The second area studies alter-
native ways of estimating customer delay in service
systems; e.g., see Nakibly (2002), Whitt (1999a), Jouini et
al. (2007), and Ibrahim and Whitt (2009a, b). For a more
detailed review, see section 2 of Jouini et al. (2007).

This paper falls in the second main area of research.
Our main contributions are the following: (i) to show
that time-varying arrival rates can cause estimation
bias for delay-history-based delay estimators, (ii) to
propose new and easily implementable delay estima-
tors, based on the history of delays in the system, that
effectively cope with time-varying arrivals and gen-
eral service-time and abandon-time distributions, (iii)
to provide analytical results quantifying the perfor-
mance of some delay estimators, and (iv) to describe
results of a wide range of simulation experiments
evaluating alternative delay estimators, with time-
varying arrivals.

The rest of this paper is organized as follows: In
section 2, we describe the modeling framework. In
section 3, we describe measures quantifying the per-
formance of our candidate delay estimators. In section
4, we introduce a new delay estimator for the Mt/GI/s
model. In section 5, we provide analytical results for
the performance of this estimator in the Mt/M/s
model. In section 6, we present simulation results
showing that it is effective in the Mt/GI/s model. In
section 7, we propose ways of obtaining the additional
system information required for implementing the new
delay estimator of section 4. In section 8, we develop a
new delay estimator for the Mt/GI/s1GI model. In
section 9, we present simulation results showing that it
is effective. We make concluding remarks in section 10.
Additional material appears in Ibrahim and Whitt
(2009c), available on the authors’ web pages.

2. The Framework
We consider many-server queueing models with time-
varying arrival rates, both with and without customer
abandonment. We model the arrival process as a

non-homogeneous Poisson process, which is the ac-
cepted model for capturing time-varying arrivals. It is
completely characterized by its deterministic arrival-
rate function l � fl(u):�1ouo1g. There is statis-
tical evidence suggesting that a non-homogeneous
Poisson process is a good fit for the arrival process to a
call center; see Brown et al. (2005). We adopt this
model for arrivals, although we recognize its short-
comings. For example, this model does not reproduce
an essential feature of call center arrivals, which is the
overdispersion of the number of arrivals relative to
the Poisson distribution (i.e., the variance is larger
than the mean); see Avramidis et al. (2004). Moreover,
the arrival rate in a real-life system is often not known
with certainty. Therefore, it could be assumed to be a
random variable; see Jongbloed and Koole (2001). It is
natural, however, to begin an investigation in a rel-
atively tractable setting, for which we are able to
obtain analytical results. Our results provide useful
background for similar studies in even more compli-
cated settings.

In sections 4–6, we consider the Mt/GI/s model,
which has a non-homogeneous Poisson arrival pro-
cess, i.i.d. service times distributed as a random
variable S with a general distribution, having mean
E[S] 5 m� 1 and no customer abandonment. Motivated
by large service systems, we are primarily interested
in the case of large s, which we take to be fixed. It is
possible to choose appropriate time-varying staffing
(making s a function of time) so that delays are sta-
bilized at low levels; e.g., see Green et al. (2007).
However, in practice there often is not adequate flex-
ibility in setting staffing levels. Our fixed staffing
assumption captures the spirit of such situations. We
leave to future research the important extension to
time-varying staffing levels.

Our delay estimators apply to arbitrary arrival-rate
functions, but to analyze the performance of these es-
timators we restrict attention to periodic arrival-rate
functions, under which the queueing system has a
dynamic steady state, provided that the average ar-
rival rate, denoted by �l, is strictly less than the
maximum possible service rate, sm; e.g., see Heyman
and Whitt (1984). For our analysis, both analytically
and by simulation, we further restrict attention to the
special case of sinusoidal arrival rates. That is com-
monly done in studies of queues with time-varying
arrivals; e.g., see Green et al. (2007) and references
therein. Sinusoidal arrival rates capture the spirit of
daily cycles.

In sections 8 and 9 we consider the Mt/GI/s1GI
model, which adds customer abandonment. The
abandonment times are i.i.d. with mean n� 1 and a
general cumulative distribution function (cdf) F. As in
Ibrahim and Whitt (2009b), we see that the abandon-
ment distribution has a significant impact.
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3. Performance Measures for the Delay
Estimators

In this section, we indicate how we evaluate the per-
formance of our candidate delay estimators. We use
computer simulation to do the actual estimation. In
our simulation experiments, we quantify the perfor-
mance of a delay estimator by computing the average
squared error (ASE), defined by

ASE � 1

k

Xk

i¼1

ðpi � eiÞ2; ð1Þ

where pi40 is the potential waiting time of delayed
customer i, ei is the delay estimate given to customer i,
and k is the number of customers in our sample.
In our simulation experiments, we measure pi for
both served and abandoning customers. For abandon-
ing customers, we compute the delay experienced,
had the customer not abandoned, by keeping him
‘‘virtually’’ in queue until he would have begun
service. Such a customer does not affect the waiting
time of any other customer in queue. Because
we measure time in units of mean service times, the
ASE is given in units of mean service time squared
per customer.

As discussed in Ibrahim and Whitt (2009a, b), the
ASE approximates the expected MSE for a system in
steady state with a constant arrival rate, but the situ-
ation is more complicated with time-varying arrivals.
We regard ASE as directly meaningful, but now we
indicate how it relates to the MSE. Let WHOL(t, w)
represent a random variable with the conditional dis-
tribution of the potential delay of an arriving customer,
given that this customer must wait before starting ser-
vice, and given that the elapsed delay of the customer at
the HOL at the time of his arrival, t, is equal to w. Let
yHOL(t, w) be some given single-number delay estimate
which is based on the HOL delay, w, and the time of
arrival, t. Then, the MSE of the corresponding delay
estimator is given by

MSEðyHOLðt;wÞÞ � E½ðWHOLðt;wÞ � yHOLðt;wÞÞ2�; ð2Þ

which is a function of w and t. In order to obtain the
overall MSE of HOL at time t, we average with respect
to the unconditional distribution of the HOL waiting
time at time t, WHOL(t), i.e.,

MSEðtÞ � E½MSEðyHOLðt;WHOLðtÞÞÞ�: ð3Þ

Finally, in order to relate the ASE in (1) to the MSE,
we need to average MSE(t) defined in (3) appropri-
ately over time, but because the ASE represents a
customer average instead of a time average, we
need to use a weighted time average of the time-
dependent MSE in (2) in order to relate it to the ASE.

In particular, if T is the cycle length, then

ASE �
R T

0 lðuÞMSEðuÞduR T
0 lðuÞdu

; ð4Þ

where MSE(t) is defined in (3); for supporting theory
see the appendix of Massey and Whitt (1994).

In addition to the ASE, we quantify the perfor-
mance of a delay estimator by computing the root
relative average squared error (RRASE), defined by

RRASE �
ffiffiffiffiffiffiffiffiffiffi
ASE
p

ð1=kÞ
Pk

i¼1 pi

; ð5Þ

using the same notation as in (1). The denominator in
(5) is the average potential waiting time of customers
who must wait. The RRASE is useful because it mea-
sures the effectiveness of an estimator relative to the
average potential waiting time, given that the cus-
tomer must wait.

4. Delay Estimators for the Mt/GI/s
Model

In this section, we propose a new refined HOL-based
delay estimator, HOLr, for the Mt/GI/s model. Our
idea is to use the refined estimator yHOL

r (t, w) �
E[WHOL(t, w)] instead of the HOL estimator yHOL(t,
w) � w, because the mean necessarily minimizes the
MSE based on this information. However, this mean is
difficult to compute, so we propose an approximation.
We approximate the mean in the given Mt/GI/s
model by its exact value in the corresponding Mt/GI/
s model, with exponential service time having the
given mean E[S].

For the Mt/M/s model, we have the representation

WHOLðt;wÞ �
XAðtÞ�Aðt�wÞþ2

i¼1

Si=s; ð6Þ

where fA(t):t � 0g denotes the arrival (counting) pro-
cess. We have division by s in (6) because the times
between successive service completions, when all
servers are busy, are i.i.d. random variables distri-
buted as the minimum of s exponential random
variables, each with rate m, which makes the mini-
mum exponential with rate sm. The random variable
A(t)�A(t�w) has a Poisson distribution with meanR t

t�w lðuÞdu. Since WHOL(t, w) in (6) is a random sum of
i.i.d. random variables, where A(t)�A(t�w) is in-
dependent of the summands Si/s, we can easily
compute this mean. Hence our refined HOL estimator
for the Mt/GI/s model is this mean

yHOLrðt;wÞ � E½WHOL;Mt=M=sðt;wÞ�

¼ 1

sm
2þ

Z t

t�w
lðuÞdu

� �
:

ð7Þ
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In general, with a non-exponential service-time dis-
tribution, yHOLrðt;wÞ in (7) need not equal E[WHOL(t, w)],
because many remaining service times at time t are re-
sidual service times for service times begun before time
t. Consequently, these service times have a different
distribution than the original service time. However, we
can make stochastic comparisons. A cdf G of a non-
negative random variable is said to be new better
(worse) than used—NBU (NWU)—if Gt

c(x) � Gc(t1x)/
Gc(t) � ( � )Gc(x) for all t � 0 and x � 0, where
Gc(x) � 1�G(x); see Barlow and Proschan (1975, p.
159). In the parlance of survival analysis, a cdf is NBU
(NWU) if the probability of surviving for an additional
x time units, given survival up to time t, decreases
(increases) with t.

PROPOSITION 1. If the service-time cdf is NBU (NWU), then
yHOLrðt;wÞ � ð�ÞE½WHOLðt;wÞ�.

PROOF. The NBU and NWU condition means that the
residual service times are stochastically ordered com-
pared with the original service times. Intuitively,
approximating an NBU (NWU) distribution by an ex-
ponential leads to overestimating (underestimating) the
residual service times, and thus the overall delay. Given
the elapsed times, the remaining service times are mu-
tually independent. The minimum (the time until the
next departure) is thus stochastically ordered compared
with the minimum of mutually independent original
service-time distributions. The random variable WHOL

(t, w) is the sum of several of those intervals between
successive departures. Even though those intervals may
be dependent, the mean of the sum is the sum of the
means. Hence the means are ordered, as claimed. &

More importantly, simulation shows that HOLr pro-
vides a good approximation even when the service-time
distribution is not nearly exponential; see section 6.

We conclude this section by reviewing the QL es-
timator, previously considered in Ibrahim and Whitt
(2009a, b). Let WQ(t, n) represent a random variable
with the conditional distribution of the delay of an
arriving customer, given that this customer must wait
before starting service, and given that the QL seen
upon arrival, at time t, is equal to n. Again, the QL
estimator is obtained by using the exact expected
value E[WQ(t, n)] for the corresponding Mt/M/s
model with the same mean service time.

In the Mt/M/s model, WQ(t, n) is the sum of n11
i.i.d. exponential random variables, each with rate sm.
The QL estimate given to a customer who finds n other
customers in queue upon arrival is yQL(t, n) � E[WQ(t,
n)] 5 (n11)/sm, which depends on t only through n,
which is directly observable. The optimal delay esti-
mator, conditional on the number of customers, n, seen
in line at time t, using the MSE criterion, is the one
announcing the mean, E[WQ(t, n)]. That is why the QL

estimator is the optimal delay estimator, under the MSE
criterion, in the Mt/M/s model.

By essentially the same reasoning as for Proposition 1,
we can obtain bounds for the mean delay compared
with yQL(t, n) when the service-time cdf is NBU or NWU.

PROPOSITION 2. If the service-time cdf is NBU (NWU), then
yQL(t, n) � (�)E[WQ(t, n)].

Fortunately, again simulation shows that QL re-
mains effective in the Mt/GI/s model, even when the
service-time distribution is not nearly exponential; see
section 6. For the Mt/M/s model, we obtain analytical
results quantifying the difference in performance be-
tween QL and HOLr in the next section.

5. Analytical Expressions for the Mt/M/s
Model

The QL estimator has the desirable property that the
estimation obtains relatively more accurate as the
observed QL n increases. For the conditional waiting
time at time t based on an observed QL of n, we have
the representation

WQðt; nÞ �
Xnþ1

i¼1

Si=s: ð8Þ

The expectation, variance, and squared coefficient
of variation (SCV, equal to the variance divided by the
square of the mean) of WQ(t, n) are given by

E½WQðt; nÞ� ¼
nþ 1

sm
; Var½WQðt; nÞ� ¼

nþ 1

s2m2
;

c2
WQðt;nÞ �

Var½WQðt; nÞ�
ðE½WQðt; nÞ�Þ2

¼ 1

nþ 1
;

ð9Þ

so that c2
WQðt;nÞ ! 0 as n ! 1.

To treat HOLr, we use the representation in (6),
which allows us to characterize the probability distri-
bution of the random variable WHOL(t, w), in the Mt/
M/s model.

PROPOSITION 3. For the Mt/M/s model,

Var½WHOLðt;wÞ� ¼
2

s2m2
1þ

Z t

t�w
lðuÞdu

� �
; ð10Þ

which, combined with (7), yields

c2
WHOLðt;wÞ ¼

Var½WHOLðt;wÞ�
ðE½WHOLðt;wÞ�Þ2

¼ 2
1þ

R t
t�w lðuÞdu

ð2þ
R t

t�w lðuÞduÞ2
:

ð11Þ

PROOF. Formula (10) follows from the conditional vari-
ance formula, e.g., Ross (1996, p. 51). Formula (11)
immediately follows from (7) and (10). &

Ibrahim and Whitt: Real-Time Delay Estimation with Time-Varying Arrivals
Production and Operations Management 20(5), pp. 654–667, r 2010 Production and Operations Management Society 659



Since yHOLrðt;wÞ � E½WHOLðt;wÞ� and yQL(t, n) �
E[WQ(t, n)], we can compare the performance of HOLr

and QL by comparing the respective SCV’s in (9) and
(11). (When the delay estimate equals the conditional
mean, the MSE coincides with the variance.)

To obtain further results, we consider a sinusoidal
arrival-rate function

lðuÞ ¼ �lþ b sinðguÞ � �lþ �la sinð2pu=GÞ

for �1ouo1 ;
ð12Þ

where �l is the average arrival rate, a is the relative
amplitude, and G is the cycle length. (We define b � �la
and g � 2p/G.) Given the cycle length, G, we can de-
duce the place where any time u falls within the cycle,
in dynamic steady state. Henceforth, we focus solely on
the interval 0 � u � G, which describes a full cycle.

With sinusoidal arrival rates, we obtain analytical re-
sults comparing the performance of the QL and HOLr

estimators. We determine the limit of the ratio of the
SCV’s as n! 1. Formula (13) coincides with formula
(4.25) of Ibrahim and Whitt (2009a) for the stationary
GI/M/s model. As before, the condition n! 1 arises
naturally in heavy traffic, either with fixed s or as
s! 1; e.g., see Garnett et al. (2002). (When s! 1
along with the arrival rate, the QL is of order s and

ffiffi
s
p

in the ED and QED regimes.) Recall that r � �l=sm.

PROPOSITION 4. For the Mt/M/s model with sinusoidal
arrival rates,

c2
WHOLðt;wÞ

c2
WQðnÞ

! 2

r
as n!1; ð13Þ

for all t, provided that w/n ! 1/sm.

PROOF. Using Equations (7), (10)–(12), we obtain the
following expressions for the mean, variance, and
SCV of WHOL(t, w), in the Mt/M/s model with sinu-
soidal arrivals:

E½WHOLðt;wÞ� ¼
2þ �lwþ ðb=gÞðcosðgt� gwÞ � cosðgtÞÞ

sm
ð14Þ

and

Var½WHOLðt;wÞ� ¼ 2
1þ �lwþ ðb=gÞðcosðgt� gwÞ � cosðgtÞÞ

s2m2
;

ð15Þ

which yields

c2
WHOLðt;wÞ ¼

Var½WHOLðt;wÞ�
ðE½WHOLðt;wÞ�Þ2

¼ 2
1þ �lwþ ðb=gÞðcosðgt� gwÞ � cosðgtÞÞ
½2þ �lwþ ðb=gÞðcosðgt� gwÞ � cosðgtÞÞ�2

ð16Þ

for 0 � t � G. Using (16), and recalling that
� 1 � cos(u) � 1 for all u, we obtain the following
bounds for the SCV of WHOL(t, w):

2þ 2�lw� 4b=g

ð2þ �lwþ 2b=gÞ2
� c2

WHOLðt;wÞ

� 2þ 2�lwþ 4b=g

ð2þ �lw� 2b=gÞ2
: ð17Þ

Let W(t) be the potential waiting time at time t, the
time that an arrival at t would have to wait before
beginning service. Since

WðtÞ ¼
XQðtÞþ1

i¼1

Si=s; ð18Þ

where Q(t) is the number of customers waiting in queue
upon arrival at t, the law of large numbers implies that
W(t)Q(t)! 1/sm as Q(t)! 1. Thus, when Q(t) is large,
we have W(t) � Q(t)/sm. Assuming that n in (9) is large
with w 5 n/sm1o(n) as n! 1, where o(n) denotes a
quantity that is asymptotically negligible when divided
by n, and combining that with (17), for large n we obtain

ð2þ 2rðnþ oðnÞÞ � 4b=gÞðnþ 1Þ
ð2þ rðnþ oðnÞÞ þ 2b=gÞ2

�
c2

WHOLðt;wÞ

c2
WQðnÞ

� ð2þ 2rðnþ oðnÞÞ þ 4bgÞðnþ 1Þ
ð2þ rðnþ oðnÞÞ � 2b=gÞ2

ð19Þ

for all t. By a sandwiching argument, (19) yields (13) as
n! 1. &

6. Simulations Experiments for the
Mt/GI/s Model

In this section, we present simulation results for the
Mt/GI/s model, quantifying the performance of QL,
HOL, and HOLr with sinusoidal arrival rates. For the
service-time distribution, we consider M (exponen-
tial), D (deterministic), and LN(1, 4) (lognormal with
mean equal to 1 and variance equal to 4). The LN(1, 4)
(D) distribution exhibits high (low) variability, relative
to M. We consider a lognormal distribution because
there is statistical evidence suggesting a good fit of the
service-time distribution to the lognormal distribution
in call centers; see Brown et al. (2005).

6.1. Description of the Experiments
We fix the number of servers, s 5 100, because we are
interested in large service systems. We consider non-
homogeneous Poisson arrival processes with the si-
nusoidal arrival-rate functions in (12). We vary �l to
obtain alternative values of r, for fixed s. We consider
values of r ranging from 0.90 to 0.98. These values of r
are chosen to let our systems alternate between
periods of overload and underload. We consider two
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values of the relative amplitude: a5 0.1 and a5 0.5.
Simulation point and 95% confidence interval esti-
mates are based on 10 independent replications of five
million events each, where an event is either an arrival
or a service completion. That is, each simulation run
terminates when the sum of the number of arrivals
and the number of service completions is equal to five
million. Here, we show a sample of our simulation
results; see Ibrahim and Whitt (2009c) for more.

The parameters of the arrival-rate intensity func-
tion, l(u) in (12), should be interpreted relative to the
mean service time, E[S]. As in section 1.4, we measure
time in units of mean service times; hence m5 1. Then,
we refer to g in (12) as the relative frequency. Table 1
displays values of the relative frequency as a function
of E[S], assuming a daily cycle. For interpretation, we
also will specify the associated mean service time in
minutes, given a daily cycle.

Here, we consider two different values of g. First,
we consider g5 0.131, which corresponds to E[S] 5 30
minutes, assuming a daily cycle. This choice of E[S]
could be used to describe the experience of waiting
customers in a call center, for example. Second, we
consider g5 1.57, which corresponds to E[S] 5

6 hours. This choice of E[S] could be used to describe
the experience of waiting patients in a crowded hos-
pital ED. With E[S] 5 30 minutes and a5 0.1 (E[S] 5

6 hours and a5 0.5), and daily cycles, the arrival rate
varies relatively slowly (rapidly) with respect to the
service times.

In Table 2, we present simulation (point and 95%
confidence interval estimates) quantifying the perfor-
mance of QL, HOLr, and HOL in the Mt/GI/s model

Table 1 The Relative Frequency, c, as a Function of the Mean Service Time
E [S ] for a Daily Cycle

Relative frequency g Mean service time E [S ]

0.0220 5 minutes

0.0436 10 minutes

0.131 30 minutes

0.262 1 hour

1.571 6 hours

3.14 12 hours

6.28 24 hours

12.6 48 hours

The relative frequency is the frequency computed with measuring units so that

E [S ] 5 1.

Table 2 A Comparison of the Efficiency of QL, HOLr , and HOL in the Mt /GI/100 Model, as a Function of the Traffic Intensity, q

r

Mt/M/100, a5 0.1, E [S ] 5 30 minutes Mt/M/100, a5 0.5, E [S ] 5 6 hours

QL HOLr HOL QL HOLr HOL

0.9 2.26 � 0.051 4.29 � 0.088 4.61 � 0.098 2.24 � 0.023 4.27 � 0.033 9.01 � 0.015

0.93 3.77 � 0.10 7.29 � 0.21 8.04 � 0.26 2.83 � 0.029 5.45 � 0.063 14.1 � 0.25

0.95 5.08 � 0.072 10.1 � 0.15 11.7 � 0.20 3.49 � 0.033 6.82 � 0.073 21.4 � 0.28

0.97 7.16 � 0.098 14.1 � 0.20 17.5 � 0.24 4.82 � 0.12 9.46 � 0.22 39.0 � 1.5

0.98 9.14 � 0.30 18.0 � 0.59 23.9 � 1.0 6.77 � 0.32 13.3 � 0.62 63.3 � 3.9

r

Mt/LN(1, 4)/100, a5 0.1, E [S ] 5 30 minutes Mt/LN(1, 4)/100, a5 0.5, E [S ] 5 6 hours

QL HOLr HOL QL HOLr HOL

0.9 4.36 � 0.25 7.30 � 0.34 7.78 � 0.36 2.08 � 0.13 3.60 � 0.19 7.79 � 0.33

0.93 6.89 � 0.15 11.3 � 0.34 12.8 � 0.34 3.48 � 0.18 5.90 � 0.27 14.0 � 0.49

0.95 9.82 � 0.28 15.9 � 0.42 19.0 � 0.56 5.70 � 0.14 9.52 � 0.22 22.5 � 0.38

0.97 17.2 � 0.81 27.0 � 1.3 35.1 � 2.1 9.92 � 0.60 15.9 � 0.89 34.2 � 1.1

0.98 23.2 � 0.94 35.8 � 1.4 48.9 � 2.4 20.1 � 2.2 31.0 � 3.3 52.1 � 3.2

r

Mt/D/100, a5 0.1, E [S ] 5 30 minutes Mt/D/100, a5 0.5, E [S ] 5 6 hours

QL HOLr HOL QL HOLr HOL

0.9 0.972 � 0.025 2.31 � 0.034 2.47 � 0.036 3.02 � 0.023 4.14 � 0.039 7.35 � 0.054

0.93 1.23 � 0.024 3.84 � 0.063 4.18 � 0.078 3.71 � 0.027 5.01 � 0.026 8.91 � 0.045

0.95 1.31 � 0.027 5.19 � 0.041 6.01 � 0.041 4.33 � 0.038 5.84 � 0.051 10.5 � 0.068

0.97 1.35 � 0.026 7.26 � 0.065 9.29 � 0.038 5.41 � 0.086 7.54 � 0.075 15.5 � 0.14

0.98 1.34 � 0.042 8.29 � 0.057 11.3 � 0.069 6.01 � 0.075 8.84 � 0.076 21.1 � 0.49

Point and 95% confidence interval estimates of the average squared error (ASE) are shown (in units of mean service time squared per customer). Estimated ASEs are in

units of 10� 3.

HOL, head of the line; QL, queue length.
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with M, LN(1, 4), and D service-time distributions. We
discuss these results next.

6.2. Comparing HOLr and HOL
Table 2 shows that, for a5 0.1 and E[S] 5 30 minutes,
HOLr performs better than HOL, particularly for high
values of r. We obtain consistent results with M,
LN(1, 4), and D service times: ASE(HOL)/ASE(HOLr)
is roughly equal to 1 for r5 0.9, and roughly equal to
1.4 for r5 0.98. The case with high r corresponds to
extreme fluctuations between phases of underload and
overload, in which case HOL performs relatively poorly.

With a5 0.5, and E[S] 5 6 hours, the difference in
performance between HOL and HOLr is significant,
for all r considered. For example, with D service
times, ASE(HOL)/ASE(HOLr) ranges from about 1.8
for r5 0.9 to about 2.4 for r5 0.98. With M service
times, ASE(HOL)/ASE(HOLr) ranges from about 2.1
for r5 0.9 to about 4.8 for r5 0.98. The HOLr estima-
tor is also relatively more accurate than HOL. For
example, with LN(1, 4) service times, RRASE(HOLr)
ranges from about 27% for r5 0.9 to about 15% for
r5 0.98. In this case, RRASE(HOL) ranges from about
38% for r5 0.9 to about 20% for r5 0.98.

6.3. Comparing HOLr and QL
In the Mt/M/s model, QL is provably the optimal
estimator given the observed QL upon arrival, under
the MSE criterion; see section 4. With a5 0.1, E[S] 5 30
minutes, and M service times, Table 2 shows that
RRASE(QL) ranges from about 21% for r5 0.9 to
about 10% for r5 0.98. With non-exponential service
times, QL remains the most effective estimator, under
the MSE criterion. It is relatively accurate, in all mod-
els considered. For example, with a5 0.5, E[S] 5

6 hours, and LN(1, 4) service times, RRASE(QL) ranges
from about 20% for r5 0.9 to about 12% for r5 0.98.

Consistent with section 5, the approximation for the
ratio of the SCV’s in (13) provides a remarkably ac-
curate approximation for the ratio of the ASE’s with
M service times, particularly for high values of r, as
we would expect. (The distortion caused by the cus-
tomer average in (4) is evidently minor.) For example,
with E[S] 5 30 minutes and a5 0.1, Table 2 shows that
the relative error between simulation point estimates
for ASE(HOLr)/ASE(QL) and numerical values given
by (13) is less than 3% for r5 0.98.

With LN(1, 4) service times, E[S] 5 30 minutes, and
a5 0.1, Table 2 shows that ASE(HOLr)/ASE(QL)
ranges from about 1.7 for r5 0.9 to about 1.5 for
r5 0.98, which is less than predicted by (13). Simi-
larly, with D service times, E[S] 5 6 hours, and a5 0.5,
Table 2 shows that ASE(HOLr)/ASE(QL) is approxi-
mately equal to 1.5 for all r.

7. Estimating the Required Additional
Information for HOLr

We have shown, both analytically and using simula-
tion, that the HOL estimator can perform poorly when
the arrival rate varies considerably over time while
the staffing is fixed. We showed that the new refined
HOL estimator, HOLr, performs remarkably better
than HOL in the Mt/GI/s queueing model, with time-
varying arrival rates; see section 6.

However, the statistical accuracy of HOLr is ob-
tained at the expense of ease of implementation. In
addition to the HOL delay, w, HOLr depends on the
arrival-rate function, l(t), and the mean time between
successive service completions (which equals 1/sm
with s simultaneously busy servers and i.i.d. expo-
nential service times with rate m); see (7). In practice,
the implementation of HOLr requires knowledge of
those system parameters, which may require estima-
tion from data. Any estimation procedure inevitably
produces some estimation error, which would affect
the performance of HOLr.

In this section, we propose estimation procedures
for the arrival rate and the mean time between suc-
cessive service completions in real-life service
systems. Further, we quantify the estimation error re-
sulting from those procedures, and its impact on the
performance of HOLr; see Table 3. We show that the
HOLr estimator remains effective even with imperfect
information about system parameters.

To estimate the arrival-rate function, l(t), we pro-
pose relying on forecasts relying on data from
previous days, and observations over the current
day, up to date. For yHOLrðt;wÞ in (7), we need esti-
mates of the arrival-rate function over the interval
[t�w, t]. Here, we assume that the arrival process is a
non-homogeneous Poisson process with an integrable
arrival-rate function. As we observe customer arrival
times, but not the arrival rates, we need to forecast
future rates based on historical call volumes. For ways
of forecasting future arrival rates, we refer the reader
to recent work on forecasting arrival rates to service
systems such as call centers. For one example, Shen
and Huang (2008) propose an approach to forecast the
time series of an inhomogeneous Poisson process by
first building a factor model for the arrival rates, and
then forecasting the time series of factor scores. As
another example, Aldor-Noiman (2006) propose an
arrival count model, which is based on a mixed Pois-
son process approach incorporating day-of-week,
periodic, and exogenous effects. For other related
work, see Avramidis et al. (2004), Brown et al. (2005),
and references therein.

We might also rely on historical data from previous
days to estimate the mean time between successive
service completions, combined with real-time data
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over the recent past. However, we consider a procedure
based on real-time estimation alone, and investigate its
feasibility. As a real-time estimator, we propose com-
puting the sample average, m̂, of (recent) time intervals
between successive service completions in the system.
In doing so, as an approximation, we assume (i) that all
servers are simultaneously busy and (ii) that the times
between successive service completions are i.i.d. (As we
are interested in systems that are heavily loaded, the
assumption of busy servers is not too restrictive. The
second assumption is exact for exponential service
times, but not more generally.) Given that assumption,
we can apply elementary statistics to compute the sam-
ple size, n(x), needed to obtain a desired margin of
relative error, x, at a given confidence level. (Specifically,
the half width of a confidence interval is a function of
the number of observations used. Therefore, we can
obtain a desired margin of relative error by changing
the number of observations, thus leading to a different
half width.) The error, x, measures the relative error
between the actual mean and the sample mean.

To illustrate, consider the Mt/M/100 model with
exponential service times. Then, n(0.05) � 1540 at the
95% confidence level. That is, the sample size required
to obtain a relative error margin of x 5 0.05 is roughly
equal to 1540, at the 95% confidence level. It is im-
portant to get a sense of how long it would take to get
a total of 1540 service completions in the system. For
example, suppose that the mean service time is equal
to 5 minutes. The length of the estimation interval is
roughly equal to 77 minutes. Indeed, each service re-
quest requires, on average, 5 minutes to process, and
there are 100 servers working in parallel. This numer-
ical example illustrates that the computational burden
of obtaining estimates of system parameters that are
within a relative error margin of x 5 0.05 of their ac-
tual values is not unreasonable.

There remains to study the effect of the estimation
error, x, on the performance of the HOLr estimator. To
that end, we consider modified HOLr delay estima-
tors, denoted by HOLr(x), depending on the relative
error, x, in estimating 1/sm. That is, the HOLr(x) es-
timators use the following delay estimate:

yHOLrðt; x;wÞ ¼
1þ x

sm
2þ

Z t

t�w
lðuÞdu

� �
;

where � 1oxo1, and (11x)/sm is our estimate of the
mean time between successive service completions,
including a relative error x. We study the performance
of HOLr(x) for alternative small values of x. Clearly,
the performance of HOLr(x) should degrade as |x|
increases, but we would like to know by how much.

In Table 3, we study the performance of HOLr(x) as a
function of the traffic intensity, r, in the Mt/M/100
queueing model, with a5 0.5 and E[S] 5 5 minutes. WeTa
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also include the sample sizes needed to obtain system
parameter estimates within that error margin and, in
parentheses, the corresponding required length of the
estimation interval (under our model assumptions). We
consider values of x between � 0.1 and 0.1. For these
values, we find that HOLr still performs considerably
better than HOL. For example, for x 5 0.05, the ratio
ASE(HOL)/ASE(HOLr(x)) ranges from about 14 to about
23 for values of r between 0.9 and 0.98. For x 5� 0.05,
ASE(HOL)/ASE(HOLr(x)) ranges from about 16 to about
27 for r between 0.9 and 0.98. That is, simulation shows
that HOLr remains remarkably more effective than HOL,
even with imperfect information about system param-
eters, as would commonly occur in practice.

Additional simulation results are presented in the
online supplement to the main paper. There, we con-
sider lognormal and deterministic service times, and
alternative arrival-rate parameters. We find that
HOLr(x) usually performs better than HOL when the
relative error, x, is at most 5%. For example, in the Mt/
H2/100 model with a5 0.5, E[S] 5 6 hours, and
x 5� 0.05, the ratio ASE(HOL)/ASE(HOLr(x)) ranges
from 2.4 to 2.8.

8. Delay Estimators for the Mt/GI/s1GI
Model

In this section, we propose a new delay estimator for the
Mt/GI/s1GI model, based on the HOL delay observed
upon arrival to the system. In section 9 we show that
this new estimator, QLh, performs remarkably well. In
particular, QLh effectively copes with both time-varying
arrivals and non-exponential abandonment-time distri-
butions. As a frame of reference, we also consider a
delay estimator based on the QL seen upon arrival to
the system. This estimator, QLm, was previously con-
sidered in Whitt (1999a) and Ibrahim and Whitt (2009b).

8.1. Actual and Potential Waiting Times
As in Garnett et al. (2002), we need to distinguish be-
tween the actual and potential waiting times of a given
delayed customer in a queueing model with customer
abandonment. A customer’s actual waiting time is the
amount of time that this customer spends in queue,
until he either abandons or joins service, whichever
comes first. A customer’s potential waiting time is the
delay he would experience, if he had infinite patience
(his patience is quantified by his abandon time). For
example, the potential waiting time of a delayed cus-
tomer who finds n other customers waiting ahead in
queue upon arrival is the amount of time needed to
have n11 consecutive departures from the system.
(Departures from the system are either service comple-
tions or abandonments from the queue.) Our delay
estimators, described next, estimate the potential wait-
ing times of delayed customers.

8.2. The Approximation-Based QL-Based Delay
Estimator (QLap)
In Ibrahim and Whitt (2009b), we introduced an ap-
proximation-based QL-based delay estimator, QLap,
which exploits established approximations for perfor-
mance measures in the M/GI/s1GI model, developed
by Whitt (2005). We showed that QLap consistently
outperforms all other estimators considered in the
GI1GI1s1GI model, with a stationary arrival process.
Here, we propose an analog of QLap that uses the ob-
served HOL delay, and effectively copes with time-
varying arrival rates. We begin by briefly reviewing
the QLap estimator for the GI/GI/s1GI model; a more
complete description can be found in section 3.5 of
Ibrahim and Whitt (2009b) and Whitt (2005).

The QLap estimator approximates the GI1GI1s1GI
model by the corresponding GI/M/s1M(n) model,
with state-dependent Markovian abandonment rates.
In particular, we assume that a customer who is jth
from the end of the queue has an exponential aban-
donment time with rate cj, where cj is given by

cj � hð j=lÞ; 1 � j � k; ð20Þ

where k is the current QL, l is the arrival rate (as-
sumed constant), and h is the abandonment-time
hazard-rate function, defined as h(t) � f(t)/(1� F(t)),
t � 0, where f is the corresponding density function
(assumed to exist). Here is how (20) is derived: If we
knew that a given customer had been waiting for time
t, then the rate of abandonment for that customer, at
that time, would be h(t). We therefore need to estimate
the elapsed waiting time of that customer, given the
available state information. Assuming that abandon-
ments are relatively rare compared with service
completions, it is reasonable to act as if there have
been j arrival events because our customer arrived. As
a simple rough estimate for the time between succes-
sive arrival events is the reciprocal of the arrival rate,
1/l, the elapsed waiting time is approximated by
j/l and the corresponding abandonment rate by (20).

For the GI/M/s1M(n) model, we need to make fur-
ther approximations in order to describe the potential
waiting time of a customer who finds n other customers
waiting in line, upon arrival. Let WQ(n) represent a
random variable with the conditional distribution of the
potential delay of an arriving customer, given that this
customer must wait before starting service, and given
that the QL seen upon arrival, is equal to n. We have the
approximate representation:

WQðnÞ �
Xn

i¼0

Xi; ð21Þ

where Xn� i is the time between the ith and (i11)th
departure events. As the distribution of the Xi’s
is complicated, we assume that successive departure
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events are either service completions, or abandonments
from the HOL. We also assume that an estimate of the
time between successive departures is 1/l. Under our
first assumption, after each departure, all customers re-
main in line except the customer at the HOL. The
elapsed waiting time of customers remaining in line in-
creases, under our second assumption, by 1/l. Let Xn� 1,
which is the time between the lth and (l11)th departure
events, have an exponential distribution with rate
sm1dn� dl, where dk ¼

Pk
j¼1 cj ¼

Pk
j¼1 hð j=lÞ, k � 1,

and d0 � 0. That is the case because Xn� l is the mini-
mum of s exponential random variables with rate m
(corresponding to the remaining service times of cus-
tomers in service), and n� l exponential random
variables with rates ci, l11 � i � n (corresponding to
the abandonment times of the customers waiting in line).

The QLap delay estimate given to a customer who
finds n customers in queue upon arrival is

yQLapðnÞ ¼
Xn

i¼0

1

smþ dn � dn�i
; ð22Þ

that is, yQLapðnÞ approximates the mean of the poten-
tial waiting time, E[WQ(n)].

8.3. The QLh Estimator
We are now ready to propose a new delay estimator
for the Mt/GI/s1GI model, which we refer to as QLh.
This estimator requires knowledge of the abandon-
ment-time hazard-rate function, h. That is convenient
from a practical point of view, because it is relatively
easy to estimate hazard rates from system data; see
Brown et al. (2005).

We proceed in two steps: (i) we use the observed
HOL delay, w, to estimate the QL seen upon arrival
and (ii) we use this QL estimate to implement a new
delay estimator, paralleling (22). Unlike QLap, QLh

exploits the HOL delay, and does not assume
knowledge of the QL seen upon arrival.

For step (i), let Nw(t) be the number of arrivals in the
interval [t�w, t] who do not abandon. That is,
Nw(t)11 is the number of customers seen in the queue
upon arrival at time t, given that the observed HOL
delay at t is equal to w. It is significant that Nw has the
structure of the number in system in an Mt/GI/1
infinite-server system, starting out empty in the infi-
nite past, with arrival rate l(u) identical to the original
arrival rate in [t�w, t] (and equal to 0 otherwise). The
individual service-time distribution is identical to the
abandonment-time distribution in our original sys-
tem. Thus, Nw(t) has a Poisson distribution with mean

mðt;wÞ � E½NwðtÞ� ¼
Z t

t�w
lðsÞð1� Fðt� sÞÞds; ð23Þ

where F is the abandonment-time cdf.

For step (ii), we use m(t, w)11 as an estimate of the
QL seen upon arrival, at time t. In (20), we replace l
by l̂, where l̂ is defined as the average arrival rate
over the interval [t�w, t], i.e., l̂ � ð1=wÞ

R t
t�w lðsÞds.

We do so because we now have a non-stationary ar-
rival process instead of a stationary arrival process.
Paralleling (22), the QLh delay estimate given to a
customer such that the observed HOL delay, at his
time of arrival, t, is equal to w, is given by

yQLh
ðt;wÞ �

Xmðt;wÞþ1

i¼0

1

smþ d̂n� d̂n�i

ð24Þ

for m(t, w) in (23), d̂k ¼
Pk

j¼1 hðj=l̂Þ, and d̂0 ¼ 0. If we
actually know the QL, then we can replace m(t, w) by
Q(t), i.e., we can use QLap. There remains to inves-
tigate ways of estimating the abandonment-time
distribution needed to implement QLh. We envision
that such estimates will be based on long-term esti-
mates of customer time-to-abandon distribution,
instead of real-time information about customer aban-
donment times. Providing additional details relating
to this estimation is outside the scope of this paper,
and is left for future research.

9. Simulation Results for the Mt/M/
s1GI Model

In this section, we present simulation results for the
Mt/M/s1GI model with sinusoidal arrival rates. For
the abandonment-time distribution, we considered M
(exponential), E10 (Erlang, sum of 10 exponentials) and
H2 (hyperexponential with SCV equal to four and bal-
anced means), but here we only discuss the first two
cases; see Ibrahim and Whitt (2009c) for a discussion of
the H2 case. We consider the QLm, QLh, and HOL delay
estimators. In this section, we show plots of the sim-
ulation results. Corresponding tables with estimates of
95% confidence intervals, in addition to more simula-
tion results, appear in Ibrahim and Whitt (2009c).

9.1. Description of the Experiments
We vary the number of servers, s, but consider only
relatively large values (s � 100), because we are in-
terested in large service systems. We let the service
rate, m, be equal to 1. For the arrival-rate function, l(u)
in (12), we fix the relative frequency, g5 1.571. This
value of g corresponds to a mean service time E[S] 5

6 hours, for daily arrival-rate cycles; see Table 1.
We consider a relative amplitude a5 0.5, and an

average arrival rate �l ¼ 140. The instantaneous
offered load in the system, at time t, is given by
l(t)/sm. With a5 0.5, the offered load varies between
0.7 and 2.1. Because of customer abandonment, the
congestion is not extraordinarily high when the sys-
tem is significantly overloaded. We let the aban-
donment rate, n5 1, because that seems to be a
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representative value. Simulation results for all models
are based on 10 independent replications of length
1 month each, assuming a daily cycle.

9.2. Results for the Mt/M/s1M Model
Consistent with theory in section 8, Figure 3 shows that
QLm is the best possible estimator, under the MSE cri-
terion. The RRASE of QLm ranges from about 14% for
s 5 100 to about 4% when s 5 1000. Figure 3 shows that
s	ASE(QLm), the ASE of QLm multiplied by the number
of servers s, is nearly constant for all values of s con-
sidered. This shows that QLm is asymptotically correct
as s increases, i.e., ASE(QLm) approaches 0 as s increases.

The QLh estimator is the second best estimator for
this model. The RRASE of QLh ranges from about 20%
for s 5 100 to about 6% for s 5 1000. That is, QLh is rel-
atively accurate for this model. The difference in
performance between QLh and QLm is not too great:
ASE(QLh)/ASE(QLm) is close to 1.6 for all s. Moreover,
Figure 3 shows that QLh is asymptotically correct:
s	ASE(QLh) is also roughly equal to a constant for all s.

The HOL estimator performs much worse than QLm

and QLh. For example, the ratio ASE(HOL)/ASE(QLh)
ranges from about 3 for s 5 100 to about 20 for
s 5 1000. The RRASE of HOL ranges from about 33%
for s 5 100 to about 27% for s 5 1000. That is, we do
not see a considerable improvement in the perfor-
mance of HOL, as s increases. That is confirmed by
Figure 3, where we see that s	ASE(HOL) increases
linearly, as s increases.

9.3. Results for the Mt/M/s1E10 Model
The QLh estimator is the most effective estimator, un-
der the MSE criterion, for this model. The RRASE of
QLh ranges from about 11% for s 5 100 to about 4% for

s 5 1000. That is, QLh is relatively accurate for this
model. Figure 4 shows that QLh is asymptotically cor-
rect: s	ASE(QLh) is roughly equal to a constant for all
values of s considered.

The QLm estimator performs significantly worse than
QLh, with E10 abandonment. The ratio ASE(QLm)/
ASE(QLh) ranges from about 1.5 for s 5 100 to about 6.5
for s 5 1000. The RRASE of QLm ranges from about 13%
for s 5 100 to about 10% for s 5 1000. Figure 4 shows
that QLm is not asymptotically correct as s increases.

The least effective estimator is, yet again, the HOL
estimator. The RRASE of HOL ranges from about 27%
for s 5 100 to about 25% for s 5 1000. The difference in
performance between HOL and QLh is remarkable:
ASE(HOL)/ASE(QLh) ranges from roughly 7 for
s 5 100 to roughly 33 for s 5 1000. Figure 4 shows
that s	ASE(HOL) increases linearly (and steeply) as s
increases.

9.4. Results for Other Models
We consider general service-time and abandonment-
time distributions in Ibrahim and Whitt (2009c).
For the service-time distribution, we consider M, D,
and H2. For the abandonment-time distribution, we
consider M, H2, and E10. We consider different combi-
nations of service-time and abandonment-time distri-
butions. These additional simulation results are
consistent with those reported above: The QLm esti-
mator remains effective with M abandonment, even
when the service-time distribution is not nearly ex-
ponential. With H2 and E10 abandonment, QLh

outperforms QLm, especially when the number of
servers is large. The HOL estimator remains the least
effective estimator, under the MSE criterion, in all
models considered.
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10. Conclusions
In this paper, we studied the performance of alternative
delay estimators in the Mt/GI/s and Mt/GI/s1GI
queueing models, which have a non-homogeneous
Poisson process. We concentrated on the HOL estima-
tor, which is equal to the elapsed delay of the customer
at the HOL, at the time of arrival. We did so with the
understanding, based on our previous work, that re-
sults for HOL should apply equally well to the delay of
the LES. A main conclusion is that the performance of
these delay-history-based delay estimators can degrade
in face of time-varying arrivals, which often occurs in
practice; that is dramatically shown in Figure 2.

As a consequence, we developed refinements of
HOL, in particular, HOLr in (7) for Mt/GI/s and QLh in
(24) for Mt/GI/s1GI. Simulation experiments in sec-
tions 6 and 9 showed that these estimators effectively
cope with both time-varying arrivals and non-expo-
nential service-time and abandon-time distributions.
We also established analytical results supporting HOLr

in section 5. We quantified the difference in perfor-
mance between QL and HOLr and found that the ratio
of their respective MSE’s is roughly equal to 2, espe-
cially for high values of the traffic intensity, r; see (13).

However, the new refined estimators lose some of
their appeal compared with the simple HOL and LES
estimators, because they require information about the
model, in particular, the arrival-rate function and the
mean time between successive departures. Hence, in
section 7 we proposed ways to estimate the required
information. Even if we rely on real-time estimation of
the mean time between successive departures, we
showed that we can obtain suitably accurate estimates
without requiring that the observation interval be too
long. Table 3 shows that the HOLr estimator remains
effective even if the information is known imperfectly.

Our general strategy for creating the refined HOL
estimators has been to approximate the mean condi-
tional delay, given the observed HOL delay by (i)
approximating the QL, given the observed HOL delay,
and (ii) approximating the expected delay given the
QL. As a consequence, direct QL-based delay estima-
tors should be preferred if the QL is known. However,
in section 1.2 we observed that there are complex ser-
vice systems such as web chat and ticket queues for
which the QL is not known.
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