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Real-Time Delay Estimation Based on Delay History
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Motivated by interest in making delay announcements to arriving customers who must wait in call centers
and related service systems, we study the performance of alternative real-time delay estimators based
on recent customer delay experience. The main estimators considered are: (i) the delay of the last customer to
enter service (LES), (ii) the delay experienced so far by the customer at the head of the line (HOL), and (iii) the
delay experienced by the customer to have arrived most recently among those who have already completed
service (RCS). We compare these delay-history estimators to the standard estimator based on the queue length
(QL), commonly used in practice, which requires knowledge of the mean interval between successive service
completions in addition to the QL. We characterize performance by the mean squared error (MSE). We do
an analysis and conduct simulations for the standard GI/M/s multiserver queueing model, emphasizing the
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case of large s. We obtain analytical results for the conditional distribution of the delay given the observed
HOL delay. An approximation to its mean value serves as a refined estimator. For all three candidate delay
estimators, the MSE relative to the square of the mean is asymptotically negligible in the many-server and

classical heavy-traffic (HT) limiting regimes.
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1. Introduction
In this paper, we study alternative ways to estimate
the delay (before entering service) of an arriving cus-
tomer in a service system. These delay estimates may
be used to make delay announcements to arriving
customers, especially when the delay will be rela-
tively long. Such real-time delay announcements can
be very helpful with invisible queues, as in call cen-
ters, where service requests are made by telephone;
see Gans et al. (2003) for a background on call centers.
Since the steady-state waiting-time distribution
tends to be quite highly variable (e.g., often exponen-
tial or approximately so), good real-time delay estima-
tion necessarily relies on state information; see Whitt
(1999). From the perspective of statistical precision,
for a single-number estimate, we would ideally want
to use the conditional expected delay given all infor-
mation available at the arrival epoch, but complexity
leads to considering more elementary alternatives.

1.1. Standard Queue Length (QL)

Delay Estimator
The standard state-dependent delay estimator, com-
monly used in practice (assuming service from a
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queue in first-come first-served order, but without any
other specific model assumptions), is the queue-length
(QL) delay estimator, defined as

Q) +1
r(t)

where the notation = means “defined as,” t is the cur-
rent time (time of the arrival for which the announce-
ment is made), Q(¢) is the QL (number of customers
waiting), and r(t) is the rate at which customers enter
service (typically, not known precisely). If the num-
ber of servers is s(t), and can be assumed to remain
at that level in the near future, with each server serv-
ing a single customer without interruption, and the
current average service time is m(t), then the rate cus-
tomers enter service may be approximated by r(t) =
s(t)/m(t). Furthermore, when the mean service time
is stable, we can replace m(t) by a long-run average
service time m. The QL delay estimator then becomes
0oL (t) = m(Q(t) + 1)/s(t), which requires knowledge
of only s(t), the number of servers, and Q(t), the QL,
at each time t, which is information that usually is
readily available.

HQL(t) = 1)
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1.2. Estimators Based on Delay History

In this paper, we examine alternative estimators based
on the delays actually experienced by recent cus-
tomers, in particular: (i) the delay of the last customer
to enter service (LES), (ii) the delay experienced so
far by the customer at the head of the line (HOL),
(iii) the delay experienced by the customer to have
arrived most recently among those who have com-
pleted service (RCS).

These delay estimators based on recent delay his-
tory are appealing because they are easy to interpret,
and because they are simple and robust, applying to a
broad range of models, without requiring knowledge
of the model or its parameters. If somehow the QL,
Q(t), or the rate at which customers enter service, r(t),
is unknown or incorrect, then we would have difficul-
ties with the standard QL estimator. With any predic-
tion system, it is good to monitor its performance, but
that is often not possible for the customer. A delay-
history delay estimator has the advantage that the
basis for the prediction is evident.

The HOL delay estimator was used as an announce-
ment in an Israeli bank studied by Mandelbaum
et al. (2000) and is mentioned as a candidate delay
announcement by Nakibly (2002) in her study of
delay predictions. Something similar to LES or RCS is
used by the U.S. Citizenship and Immigration Service;
they publish the arrival time of recently completed
applications to give an idea about upcoming delays.
In this study, we are motivated, in part, by recent
work by Armony et al. (2009), who studied delay
announcements in many-server queues with customer
abandonment, focusing on customer response to the
announcements, leading to balking and new aban-
donment behavior. They developed ways to approxi-
mately describe the equilibrium system performance
using LES delay announcements. Armony et al. (2009)
discuss the motivation for the LES delay estimator
and other delays estimators based on recent delay
history.

1.3. Quantifying the Effectiveness

We quantify the effectiveness of the delay estimators
through the mean squared error (MSE), which we
approximate analytically and estimate via simulation.
To illustrate, let Wigg(w) denote the random delay
of a new arrival, conditional on that customer hav-
ing to wait and an observed LES delay of w (under
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specified conditions, e.g., in steady state). Let 6;y5(w)
be a candidate estimator based on this information.
We will primarily be concerned with the direct esti-
mator 6fps(w) = w, the refined estimator 6].q(w) =
E[Wigs(w)], and approximations of the refined esti-
mator, since the refined estimator is difficult to deter-
mine. The MSE of such an estimator is

MSE = MSE (6 5 () = E[(Wys(®) — frgs(@)Y]. (2)

For the refined estimator 6 (w), the MSE coin-
cides with the variance Var(Wg(w)). It is well
known that the mean minimizes the MSE (using that
information).

To estimate these MSEs via simulation, we use the
average squared error (ASE), defined by

ASE = li(aj —e)?, ®)

j=1

where 4; is the actual delay and e¢; is the estimated
delay for appropriate customers. For example, if we
want to estimate the performance of LES when the
observed delay is w = 0.40, then we consider all
arrivals who must wait (4; > 0) for which the LES
delay ¢; falls in an interval such as [0.39, 0.41]. On the
other hand, if we wish to consider the overall aver-
age performance of LES, then we consider all j such
that a; > 0.

1.4. Study in an Idealized Setting

In this paper, we study the performance of the delay-
history delay estimators and compare them to the
standard QL delay estimator in the relatively sim-
ple idealized setting of the GI/M/s queueing model,
which has a renewal arrival process, s homogeneous
servers working in parallel, unlimited waiting space,
a first-come first-served service discipline and ii.d.
exponential service times with mean m, which are
independent of the arrival process. For this GI/M/s
model, the QL estimator 0y (t) = m(Q(t) +1)/s is an
ideal delay estimator. Indeed, there are no serious
competitors, as far as statistical precision is concerned
(provided that we have no information about remain-
ing service times). Given the queue length, the future
evolution of the system is independent of the past.
(This even remains true for more general arrival pro-
cesses.) Consequently, 0y (t) is the conditional mean
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delay given all information available at time ¢, so that
it minimizes the MSE.

We study the alternative delay-history delay esti-
mators in this simple context to gain insight about
the relative performance of alternative estimators in
more complex scenarios (which are much more diffi-
cult to analyze directly). We know that the QL esti-
mator will have superior performance for the GI/M/s
model, but we want to understand by how much.
That knowledge will help us understand the advan-
tage of the QL estimator over these alternative delay
estimators when the QL estimator is appropriate, and
will provide useful background when considering
these alternative delay estimators for more compli-
cated systems for which these alternative estimators
may be preferred.

1.5. Motivation for Considering Alternative
Delay Estimators

Whenever the actual service system is well mod-
eled by a GI/M/s queueing model and the sys-
tem state is known accurately at each time, then
there is little motivation for considering other delay
estimators besides the standard QL estimator. How-
ever, real service systems rarely are as simple as
the GI/M/s model. First, the service-time distribu-
tion might well be nonexponential, as shown for call
centers by Brown et al. (2005). Second, the number
of servers and mean service times often change over
time, in part, because the servers are humans who
serve in different shifts and may well have different
service-time distributions. Third, the QL may not be
directly observable. That is nicely illustrated by the
ticket queues studied by Xu et al. (2007). Upon arriv-
ing at a ticket queue, each customer is issued a num-
bered ticket. The number currently being served is
displayed. The QL is not known to ticket-holding cus-
tomers or even to system managers, because they do
not observe customer abandonments.

Finally, the system is often much more complicated:
For one example, there may be multiple customer
classes and multiple service pools with some form
of skill-based routing; see Gans et al. (2003). For a
second example, with Web chat, servers may serve
several customers simultaneously, different servers
may participate in a single service, and there may
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be interruptions in the service times, as the cus-
tomers explore material on the Web in between con-
versations with agents. For a third example, when
delays are large—which is when we most want to
make delay announcements—customers often aban-
don from queue. In these more complicated settings,
the QL is typically known, but the rate customers
enter service is often not known and/or difficult to
estimate reliably. That causes problems for the QL
estimator.

When the GI/M/s model is not appropriate for
one of these reasons, the QL estimator may not per-
form well.

ExamMPLE (NONEXPONENTIAL SERVICE TiMmEs). To
dramatically illustrate the possible difficulties with
the QL delay estimator in the presence of a non-
exponential service-time distribution (without trying
to be realistic), we consider a limiting hyperexponen-
tial (H,) distribution, in which each service time is
either an exponential with mean 10, with probabil-
ity 1/10, or the deterministic value 0, with probabil-
ity 9/10. Thus the service time has mean 1, but busy
servers will only be serving customers with the expo-
nential distribution. Let s =100 and suppose that an
arrival finds the queue empty but all the servers busy.
Then, the QL delay estimate for this new arrival is
1/s =1/100, but the actual delay is exponentially dis-
tributed with mean 1/10 (the minimum of 100 expo-
nential random variables, each with mean 10). Hence
the actual mean delay is 10 times greater than pre-
dicted by the QL delay estimator. Consistent with
this extreme example, we have found that our alter-
native delay estimators actually outperform the QL
delay estimator in the D/H,/100 model with moder-
ately variable H, distributions.

Similarly, when there is a large amount of cus-
tomer abandonment, the QL estimator will tend to
overestimate the potential delay (the delay assum-
ing that the customer has infinite patience), because
many customers in queue may abandon before enter-
ing service, and the standard QL estimator fails to
take that into account. As discussed in Whitt (1999),
the QL estimator can be revised to provide an accu-
rate estimate of delays with abandonments when
the time-to-abandon distribution is exponential. How-
ever, as discussed in Whitt (2006), the performance
measures in the overloaded M/M/s+ GI model, with
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nonexponential time-to-abandon distribution, depend
strongly on the time-to-abandon distribution beyond
its mean. Since the time-to-abandon distribution has
been found to be nonexponential in practice, see
Brown et al. (2005), there also are potential diffi-
culties with the generalized QL estimator based on
the M/M/s + M model. We investigate alternative
delay estimators in the presence of abandonments
in a sequel to this paper, Ibrahim and Whitt (2008).
There we give examples with nonexponential distri-
butions in which both the standard QL estimator and
the refinement for the M/M/s + M model are out-
performed by delay estimators based on recent delay
history.

From the above discussion, we conclude that other
estimators besides the standard QL estimator are
worth considering; we do not conclude that the stand-
ard QL estimator or other estimators based on the QL
are necessarily bad. Indeed, we will show advantages
of the QL estimator when it can be used.

1.6. This Study

Here, we study the performance of the delay estima-
tors based on delay history in the relatively simple
idealized setting of the GI/M /s model. Motivated by
call centers, we are especially interested in the case of
large s, but we consider all possible s.

For this more elementary GI/M/s model, we
obtain strong analytical results and make compar-
isons through computer simulations. Unlike Armony
et al. (2009), here we do not consider customer
response and we do not consider balking or customer
abandonment, although we recognize that those phe-
nomena are important. Moreover, here we are not
concerned with what to announce, for which we
should consider interpretation and response, but only
with the effectiveness of the candidate delay esti-
mators in predicting the actual delay encountered
(assuming no customer response).

We find that the conditional distribution of the
delay to be estimated, given the observed past delay,
is often approximately normally distributed, imply-
ing that the conditional distribution is approximately
characterized by its mean and variance. The observed
delay is the natural direct estimator of the delay to be
encountered by the new arrival, while the mean of
the conditional distribution of the delay of the new
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arrival, given that observed delay, is a natural refined
estimator based on the same information. (In general,
these are different!) The refined estimator depends
on the model and its parameters. Because the condi-
tional mean is complicated, we develop approxima-
tions for it.

For the GI/M/s model, we will show that the QL
estimator does indeed perform better than the alter-
native estimators based on recent delays, and we will
quantify the difference. Roughly, the MSE differs by
the constant factor ¢ + 1, where ¢? is the squared
coefficient of variation (SCV; variance divided by the
square of the mean) of an interarrival time. Thus
the MSEs of the delay-history estimators are about the
same as the MSE of the QL estimator when the
arrival-process variability is low, but considerably
greater when the arrival-process variability is high.

1.7. Related Literature

There is a large body of related literature with some-
what different goals. We are doing statistical inference
for queues, but as in Avramidis et al. (2004), Brown
et al. (2005), and Glynn and Whitt (1989), most statis-
tical inference for queues aims to estimate the model
or the steady-state performance. There is an interesting
stream of literature related to estimating past perfor-
mance in a partially observed system from transac-
tional data, stemming from Larson (1990). There has
been much interesting recent inference work, includ-
ing delay estimation, related to the Internet, as sur-
veyed by Coates et al. (2002), but our setting and time
scales tend to be very different. In addition to Whitt
(1999), delay estimation for real-time delay prediction
is investigated by Ward and Whitt (2000) and Nakibly
(2002); these focus on processor sharing and priority
disciplines, respectively. Our real-time focus is in the
spirit of real-time queueing, as in Doytchinov et al.
(2001) and references therein.

1.8. Organization of the Paper

We start in §2 by defining alternative delay estimators
based on recent delay history and giving some expres-
sions for them for the GI/M/s model. We present
results of initial simulation experiments in §3. We
establish properties of two basic delay estimators—
LES and the HOL estimator—in §4. We present con-
firming simulations related to those analytical results
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in §5. We discuss insights from heavy-traffic (HT)
limits in §6. Finally, we draw conclusions in §7.
We present additional material in an e-companion,
including more experimental results, more HT limits,
and a cautionary example showing the possible pit-
falls of the LES and HOL delay estimators for nonex-
ponential service-time distributions. We present even
more experimental results in an online supplement
(Ibrahim and Whitt 2007).

2. Alternative Estimators

21. GI/M/s Model

We now specify the GI/M /s model: The service times
are independent and identically distributed (ii.d.)
exponential random variables V, with mean 1. The
interarrival times are i.i.d. positive random variables
U, with a nonlattice cumulative distribution function
(cdf) F. (We will also consider the deterministic
arrival process, which violates this condition; conse-
quently, it will require slightly different analysis.) We
omit the subscripts from U and V when the spe-
cific index is not important. Let F have finite third
moment, characterized by v§ = E[U?]/(E[U])?. Then,
F necessarily has finite first and second moments.
Assume that E[U] = 1/(sp), where s is the number
of servers and p = E[V]/(sE[U]) is the traffic inten-
sity. Let F have SCV ¢2 = Var(U)/(E[U]?). Let A =
{A(t): t = 0} be the renewal counting process (arrival
process) associated with U, defined by

A(ty=max{n>0: U, +---+U,<t}, t=0. @)

The GI/M/s system is well known to be stable, and
have a proper limiting steady-state behavior, if and
only if p < 1. All our simulation results are for the
GI/M/s model in steady state, even though the esti-
mation procedures apply more generally.

2.2. No-Information (NI) Steady-State Estimator

The candidate delay estimators differ depending on
the information used. If no information at all is used
beyond the model, then it is natural to use the steady-
state distribution. In particular, with W, denoting the
steady-state waiting time before beginning service,
the no-information (NI) steady-state delay estimator
for a customer who must wait before beginning ser-
vice is Oy = E[(W,, | W, > 0)]. It serves as a useful
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reference point. Any other estimator exploiting addi-
tional real-time information should do at least as well
to be worth serious consideration.

For the GI/M /s model, it is well known that (W_, |
W, > 0) has an exponential distribution—see §XIL.3
of Asmussen (2003)—so that the SCV is 1. Since the
SCV is 1, the NI estimator is quite highly variable,
and so necessarily has low predictive power. For the
M/M/s special case, the mean is 1/s(1 — p), so that
MSE = Var((W,, | W, > 0)) =1/s*(1 — p)*.

2.3. Full-Information QL Delay Estimator
The other extreme would be full information at the
arrival epoch, which we take to mean that we know:
(i) the queueing model, (ii) the number of customers
in the system at that arrival epoch, and (iii) the
elapsed service times of all customers in service. If we
knew the remaining service times as well, then we
could compute the exact delay, but we assume that
the remaining service times are unknown. Of course,
for exponential service times, the elapsed service
times give no useful information about the remaining
service times because of the lack-of-memory prop-
erty of the exponential distribution. Thus the (full-
information) QL estimator for the GI/M /s model only
exploits the QL Q(¢) and knowledge of the model.
Let Wy(n) represent a random variable with the
conditional distribution of the delay of a new arriv-
ing customer at some time t, given that the arriving
customer must wait before starting service and given
that the queue length at that time (not counting the
new arrival) is Q(#) = n. (For n > 1, the customer must
necessarily wait; for n =0, our conditioning implies
that all servers are busy but the QL is 0.) For the
GI/M/s model, the random variable W;(n) can be
represented as

n+1

Wo(m) = 3 (Vi/s), ©)

when Q(t) = n. The natural QL delay estimator, based
on the observed QL Q(t) =n, is the mean 6 (1) =
E[Wo(n)] = (n + 1)/s. The QL estimator requires
knowledge of s and the mean service time E[V] (here
taken to be 1) as well as Q(¥).
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We have the division by s in (5) because the times
between successive service completions when all
servers are busy are ii.d. random variables dis-
tributed as the minimum of s exponential random
variables, each with mean 1, which makes the mini-
mum exponential with mean 1/s. It is significant that
this estimator is independent of the arrival process,
and thus also of the traffic intensity. It applies equally
well to steady-state and transient settings.

As discussed in Whitt (1999), Wy (n) has the desir-
able property that the estimation gets relatively more
accurate as the observed QL 7 increases:

EIWo(9] = "8, Var[Wo(n) = "1

and

Var[Wo(m)] 1 ©)
(E[Wo(m)])?  n+1’

2
Cwg(n)

so that ¢, — 0 as 1 — oco.

Thus, whenever the QL is large, the QL estimator
E[Wg(n)] will be relatively accurate. If we consider
HT regimes, where the QL approaches infinity, as we
will do later, then this QL delay estimator will per-
form well. For example, the half width of a 95% confi-
dence interval is about 2/./n, which is about 20% of a
mean conditional waiting time when n = 100. Such a
large value of n is not uncommon when s too is large.

For the M/M/s model, there is a simple expres-
sion for the average MSE in steady state, which helps
judge the performance of other estimators; the MSEs
for the other delay estimators should all fall between
the QL estimator (best possible) and the NI estima-
tor (worst possible, knowing the model). Let Q¥ be a
random variable with the conditional distribution of
the steady-state QL upon arrival, given that the cus-
tomer must wait before beginning service. In the
M/M/s model, Q¥ +1 has a geometric distribution
with mean 1/(1 — p). That is easily deduced from the
time reversibility of the M/M/s model, which implies
that QY has the steady-state distribution of the num-
ber in the system in an M/M/1 queue with traffic
intensity p; e.g., see Proposition 5.6.3 of Ross (1996).
Hence

EIMSE(Wo(Q)] = - MSE(Wo(1)P(Q2 =)
— EVarWo( Q) =5 @)
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so that the ratio between the worst possible NI MSE
and the best possible QL MSE is

MSE(6y;)  Var(W,| W, >0)
MSE(6q(Q%))  E[Var(Wo(Qx))]
182 1—-p* 1
C o 1/2(1-p)  1-p’
For example, a case of principle interest for call cen-
ters has s =100 and p = 0.95. Then, the average MSE
for NI is 20 times greater than the average MSE
for QL. We will show that the delay-history estima-

tors produce a corresponding ratio of approximately
2
c;+1=2.

®)

2.4. Last Customer to Enter Service (LES)

The first candidate direct delay estimator is the delay
(before starting service) of the LES. The direct LES
estimator is appealing because it is relatively easy to
obtain and interpret, but there also are a variety of
refined LES estimators we can consider; all are based
on the LES observation.

To a large extent, the alternative refined LES delay
estimators (and others as well) are obtained by replac-
ing the known QL 7 in (5) by random variables that
estimate the QL, based on the available delay history.
Let Wips(w, d) be the delay of a new arrival, given
that the new arrival must wait before starting service
and given that the LES experienced delay w before
entering service and there was elapsed time d since
that customer entered service. Let ¢, be the arrival
epoch of the new customer and ¢, be the time the
last customer entered service prior to f,. (Throughout
this paper, we use the fact that, almost surely, no two
events—arrivals or service completions—will occur
simultaneously.) Necessarily, d =t, — t, and t, — w is
the arrival epoch of the customer entering service
at f,. A key observation is that the QL at time ¢,
must be distributed as A(w), because customers enter
service from the queue in order of arrival. However,
Wigs(w, d) has a relatively complicated exact distribu-
tion, because we do not know precisely what happens
in the interval [¢,, t,].

If we impose an extra condition, then this random
variable Wigs(w, d) has a relatively simple distribu-
tion. The extra condition is that the epoch ¢, is also
simultaneously the last service completion prior to f,.
That extra condition will necessarily hold if at least
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one customer remains in the queue at time f,. In
turn, that sufficient condition is very likely to be sat-
istied if w is relatively large (the case of primary
interest). Under the extra condition that ¢, is also the
last service completion before f,, we have the simple
representation

A(w+d)+1

Wigs(w, d) = Z (Vi/s), )

where the summands are ii.d. and independent of
A(w + d), because the QL seen by the new arrival
at time t, will be A(w + d), the number of arrivals
in the interval of length w + d preceding the arrival
epoch t,. Formula (9) allows us to characterize the
distribution of W gs(w, d), under the assumed extra
condition. Just like (5), (9) requires knowledge of s
and the mean service time as well as w. Here, we also
require knowledge of the renewal arrival process or,
equivalently, the interarrival-time distribution.

An important reference point for the refined LES
estimator in (9) is the D/M/s model, with a deter-
ministic arrival process, having constant interarrival
times, because under the extra condition leading
to (9), we then have Wigs(w, d) = W,(Q(t,)), since
A(w +d) = Q(t,), making (5) coincide with (9). Thus
we see that the loss of efficiency in going from QL
to LES (direct or refined) is primarily because of the
variability in the arrival process.

We assume that the experienced LES waiting time
w is always available, but we might not know d,
so that we might want to consider as an alternative
refined estimator the mean of the random variable
Wigs(w), which assumes d is unavailable, but drop-
ping d makes the distribution even more complicated.
If we can assume that w >> d, then there should be
negligible difference. In general, we have the natural
approximations based on (9):

A(w+(Vy/s))+1 A(w+(1/s))+1
Wis(w)~ 3. (Vi/s)= 3. (Vi/s), (10)
i=1 i=1
where V,, is an exponential random variable with
mean 1 independent of V; for i > 1, because the
time between successive service completions when all
servers are busy is distributed as V/s. (Assuming that
the queue is nonempty at time ¢,, that time is a service
completion epoch. Then, d is the age of the Poisson
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all-servers-busy departure process with rate s under
Poisson inspection by the arrival process.) The second
approximation is obtained by inserting the expected
value. It is also based on the extra condition, which
will hold approximately for large w.

2.5. Head of the Line (HOL) Estimator

A second candidate direct delay estimator, which is
closely related to the direct LES estimator, is the
elapsed waiting time of the customer at the HOL
(queue), assuming that there is at least one cus-
tomer waiting at the new arrival epoch. The direct
HOL delay estimator was used as an announcement
in an Israeli bank studied by Mandelbaum et al.
(2000) and mentioned as a candidate delay announce-
ment by Nakibly (2002). It is appealing compared
to LES because the conditional distribution of the
delay to be estimated is more tractable given the HOL
information.

The customer at the HOL will enter service after
the next service completion. That remaining time is
exponential with mean 1/s. Let Wy (w) be a ran-
dom variable with the conditional distribution of the
waiting time (before starting service) of a new arrival
given that the new arrival must join the queue, given
that there already is at least one customer in queue,
and given that the customer at the HOL has already
spent time w in queue. The random variable Wyo (w)
is closely related to the random variable W;g(w, d),
but has the advantage that we do not need to use d.
Moreover, we do not need to impose the extra con-
dition that we made for Wigs(w, d), but, instead, we
need to impose a new one: The extra condition now is
the assumption that there is at least one customer in
queue at the arrival epoch t,; otherwise there would
be no customer at the head of the line. We propose
the random variable Wy (w) as an approximation for
the random variable W gg(w), where we omit the lag
d, as well as for its own sake. Closely paralleling the
previous formulas, we have

A(w)+2

Whow(w) = 2 (Vi/s). (11)

2.6. Delay of the Last Customer to Complete
Service (LCS)

A third candidate direct delay estimator is the delay

of the LCS. We naturally would want to consider this
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alternative estimator if we only learn customer delay
experience after they complete service. That might be
the case for customers and outside observers.

Let Wics(w, v, d) be the delay of a new arrival,
given that the new arrival must wait before starting
service and given that the last customer to complete
service experienced delay w before entering service,
had individual service time v, and there was elapsed
time d since that customer completed service. As
before, let ¢, be the arrival epoch of the new cus-
tomer; let t, be the time the last customer completed
service prior to t,. The mean of the random variable
Wics(w, v, d) is a natural refined estimator, but this
random variable has a relatively complicated distri-
bution. Some data may be unavailable, so that we
may want to consider as alternative refined estima-
tors the means of the random variables W, s(w, d),
which assumes v is unavailable, and W ¢(w), which
assumes that neither v nor d is available. Dropping v
or the pair (v, d) makes the representation even more
complicated.

2.7. Delay of the Most Recent Arrival to Complete
Service (RCS)

Under some circumstances, the LCS and LES direct
estimators will be similar, but they actually can be
very different when s is large, because the LCS may
have experienced his waiting time much before the
LES. We emphasize that customers need not depart
in order of arrival. Indeed, with exponential service
times, when all s servers are busy, each of the s servers
is equally likely to generate the next service comple-
tion. Thus, for large s, the LCS estimator is not really
a viable alternative, as we will show. Consequently,
we propose other candidate delay estimators based on
the delay experience of customers who have already
completed service. The first is the delay experienced
by the customer who arrived most recently (and thus
entered service most recently) among those customers
who have already completed service (RCS). We find
that RCS is far superior to LCS when s is large.

2.8. Among the Last ¢/s Customers to Complete
Service (RCS-c./s)

A disadvantage of the RCS estimator is that we must

analyze a lot of data, going arbitrarily far back in the

past. From HT analysis in §6 and the e-companion,
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we deduce that the most recent arrival time of a cus-
tomer who has completed service is very likely to
occur among the last cy/s customers when s is large
(and the system is normally loaded). So we introduce
a new estimator, which requires less information pro-
cessing: Let RCS-c/s be the delay of the customer to
have arrived most recently among the last c¢4/s cus-
tomers who have already completed service. Clearly,
these last three estimators LCS, RCS, and RCS-c./s
are complicated, so that we primarily rely on simula-
tion to evaluate their relative performance. Through
extensive simulation experiments, we found that the
ASE of RCS-c4/s is essentially identical to that of RCS
when ¢ = 4, differs by at most 1% when ¢ =2 and
differs by at most 10% when c=1.

2.9. Averages

Our main estimators are individual delays experi-
enced by a recent customer, rather than an aver-
age over many past delays. Only the no-information
steady-state estimator (W, | W,, > 0) can be said to
use averages. We can extend the LES, LCS, RCS, and
RCS-c+/s estimators to get LES-k, LCS-k, RCS-k, and
RCS-c4/s — k by averaging over the last k experienced
delays. With the exception of LCS with large s (which
does not have desirable properties), we have found
that averages do not help, when the delays are rela-
tively large (the case of primary interest to us). There
is a simple explanation: When delays are large, the
delays change relatively slowly compared to the size
of the delays. Theoretically, this can be explained by
the HT snapshot principle; see §6. In this setting, it
is better to use recent information than to eliminate
noise by averaging.

3. Initial Simulation Experiments:
Comparing the Estimators

In this section, we present initial simulation experi-

ments, aiming to compare the alternative estimators

defined in §2. We focus on the ASE of the estima-

tor, defined in (3). For large samples, the ASE should

agree with the MSE in steady state.

Table 1 shows the ASEs for seven different delay
estimators in the GI/M/s model with s = 100. We
consider three categories of estimators: (i) the two
reference estimators QL and NI, (ii) the direct delay
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Table 1 Comparison of Efficiency of Different Real-Time Delay
Estimators for G//M /100 Queue as a Function of Traffic
Intensity p and Interarrival-Time Distribution (M, D, and H,)

Estimated ASE in units of 10-2

p QL LES HOL RCS RCS-v/s  LCS NI

M/M /s model with s =100

098 503 102 10.2 12.5 12.9 26.7 255
+0.02 005 +£0.05 005 =+0.05 +0.06  +36

095 2.04 4.3 43 6.4 6.7 16.5 41.8
+0.02 +0.05 +0.05 005 =+0.05 +0.06 +2.7

093 144 3.07 3.08 5.06 5.32 13.1 20.8
+0.002 +0.003 +0.003 =+0.003 +0.003 +0.13 +1.2

0.90 0.99 2.2 2.2 39 4.2 9.4 9.7
+0.003 +0.006 +0.006 =+0.008 =+£0.009 +£0.27 =+0.7
D/M /s model with s =100

0.98 248 2.62 2.62 3.77 3.94 10.3 61.5
+0.05 £0.05 +0.05 =+0.05 +0.05 +011  £39

095 1.01 1.15 1.15 2.20 2.34 6.38 101
+0.02 +0.02 +0.02 +0.03 +0.03 +0.12  +0.40

093 073 0.87 0.87 1.85 1.96 4.90 5.20
+0.02 +0.02 +0.02 +0.03 =+0.03 +0.13 +0.32

0.90 052 0.67 0.66 1.54 1.63 3.44 2.68
+0.015 +0.016 +0.017 +0.035 +0.037 +0.15 +0.23
H,/M /s model with s =100
098 124 60.4 60.4 66.1 67.0 103.4 1,505
+0.70 +32  +32  +£32 +3.2 +340  +226
095 482 225 22.5 27.7 28.4 56.3 2433
+0.095 +0.46 +047 +045 +0.45 +0.58 +22.7
093 344 155 15.5 204 21.1 445 1214
+0.094 +044 +044 049 +0.50 +1.02 +10.2
090 235 102 10.2 14.6 15.2 331 55.4
+0.040 +0.21 +021 +£024 +0.24 +0.53 +29

Notes. Only the direct estimators are considered. Estimates of the ASE are
shown together with the half width of the 95% confidence interval. The units
are 10-3 throughout.

estimators LES and HOL, and (iii) the three estima-
tors based on delays of customers who have already
completed service—LCS, RCS, and RCS-,/s. We con-
sider three interarrival-time distributions—M, D, and
H,—and four values of the traffic intensity p—0.98,
0.95, 0.93, and 0.90. The H, distribution has SCV cg =4
and balanced means (the two component exponen-
tial distributions contribute equally to the mean). We
performed 10 independent replications of long runs
in each case. The half width of the 95% confidence
interval is shown below each estimate. Corresponding
results for other values of s—1, 10, 400, and 900—
are contained in the online supplement, Ibrahim and
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Whitt (2007). The cases s =10 and s =1 are shown in
the e-companion.

These estimators appear in Table 1 with the better
performance toward the left; i.e., in terms of efficiency
(low ASE), the estimators are ordered by

QL>LES~HOL>RCS~RCS—+/s>LCS>NL (12)

As expected, the full-information QL estimator per-
forms best, while the no-information NI estimator
performs worst. The performance of LES and HOL
are very close, while the performance of RCS and
RCS-/s are very close. The QL estimator is sig-
nificantly better than LES; LES is slightly better
than RCS; RCS is significantly better than LCS; and
LCS is significantly better than NI Very roughly,
ASE(LES)/ASE(QL) ~ (¢ 4+ 1)/p, so LES performs
nearly as well as QL for low-variability arrival pro-
cesses such as the D arrival process, but much worse
for high-variability arrival processes such as the H,
arrival process.

It is instructive to look at the relative average
squared error (RASE), which is obtained by divid-
ing the ASE by E[W,, | W,, > 0]?, because the associ-
ated steady-state relative mean squared error (RMSE),
defined as MSE/E[W,, | W_, > 0]?, is linear as a func-
tion of p for the QL estimator: RMSE(QL) = (1 — p).
(The RMSE is identically 1 for the NI estimator.) We
show the RASE plots for the D/M /100 model in Fig-
ure 1. With the D arrival process, LES and HOL are
virtually identical (with the plots lying on top of each
other), so we only show LES. Both LES and HOL
are nearly as good as QL and much better than RCS;
LCS is so bad that it is not even shown. Correspond-
ing plots for other interarrival-time distributions and
other s appear in the online supplement. The plots
for the M/M/100 and H,/M/100 models are in the
e-companion.

Experience shows that the NI estimator performs
especially poorly in very HT, while LCS performs
especially poorly with large s in light traffic. For large
s and small p, LCS even performs worse than the
NI estimator. There is only one case in Table 2; more
cases can be seen when s =400 and s =900 in the
supplement.

Because delay estimates are more relevant when
the observed delays in the system are longer, it
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Figure 1 RASE for D/M /100 Model approximately as in Table 1. As should be expected,
DM100— RASE the NI estimator fares even worse in this comparison.
07 : : : : : ; ;
......... QL
06} —— LES 4. Analysis of HOL
BN 7 hossarn and LES Estimators

05y \'\.\ The representation (11) allows us to characterize
oal '\\.\ the probability distribution of the random variable
é N Whow(w), which we do both for its own sake and as
T o3} RN an approximation for the random variables W gg(w)

0.2

0.1

0
090 091 092 093 094 09 09 097 0.98
p

is natural to consider the behavior of the estima-
tors for larger delays. We have complemented the
experiments described above by considering how
the delay estimators perform when we only con-
sider actual delays that fall in one of the intervals:
(E[W | W > 0],2E[W | W >0]), QE[W | W > 0], 4E[WV |
W > 0]), AE[W | W > 0],6E[W | W > 0]), and
(6E[W | W > 0], 00). Table 2 illustrates the results for
the M/M/100 model when the observed delays fall
in the interval (4E[W | W > 0], 6E[W | W > 0]). Other
cases appear in the online supplement. The perfor-
mance of the estimators for these larger delays is

Table 2 Comparison of Efficiency of Different Real-Time Delay
Estimators Conditional on Level of Delay Experienced for
M/M /100 Model as a Function of Traffic Intensity p
p QL LES HOL RCS  RCS-v/s LGS NI
099 494 86.6 86.3 894 90.1 108.8 11,586
+70 +69 69 7.2 +7.2 +10.2 1,250
0.98 248 475 47.3 50.1 50.6 69.6 3,542
+1.8 431 430 +31 +3.1 +3.7 +431
095 105 20.4 20.1 23.5 24.0 50.4 564
+0.23 +0.63 +062 +0.82 +0.80 +3.3 +27
0.93 754 152 14.9 18.7 19.3 52.0 286
+020 +031 =+029 043 +045 +3.2 +8.0
0.90 562 111 10.7 15.3 16.1 50.9 137.4
+021 +038 +0.38 +061 +066  +25.2 +6.7

Notes. Actual delays are considered that fall in the interval (4E[W | W > 0],
BE[W | W > 0]). Estimates of the conditional ASE are shown together with
the half width of the 95% confidence interval. The units are 103 throughout.
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and Wies(w). When we use the HOL estimator, we
assume that there is at least one customer in queue at
the new arrival epoch t,. Very similar formulas hold
for the LES estimator based on formula (9), under
the extra assumption given there. Because the formu-
las are virtually identical, we do not display separate
results for LES.

We emphasize that the random variable Wyq; (w)
applies to both transient and steady-state scenarios.
We can have arbitrary traffic intensity p, including
p > 1, under which there is no proper steady state. We
assume that the renewal arrival process {A(t): t > 0}
and the traffic intensity p are specified and unchang-
ing in the interval [t, — w, t,], which is the relevant
system history for our estimation at time f,.

We start by showing that the distribution of
Wyor (w) depends on s in a relatively simple way. For
that purpose, we introduce an extra subscript s to
indicate the dependence on s, getting Wy ((w). Let

4 denote equality in distribution.

THEOREM 4.1 (DEPENDENCE ON s). For the GI/M/s

model,

W
W, (1) £ o1 E0) (13)

for all p, w, and s.

Proor. We show the equality in distribution by
establishing equality w.p.1 for a special construction.
We construct a convenient family of systems indexed
by s. For each s, let the service times be exponential
random variables V, with mean 1 as before. Start by
defining interarrival times U, with mean 1/p to use
for the case of s =1. Then, in the system with s > 1,
let the nth interarrival time be U, /s. Let {A,(t): t > 0}
be the renewal counting process in system s, having
interarrival times U,/s. Then, A ,(w/s) = A;(w) for all
s and w; since we have rescaled the interarrival times,
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we just rescale time in the associated renewal count-
ing process. This construction yields equality for the
random variables in (13) and all w > 0. Because the
distribution is independent of the construction, that
implies the claimed relation (13). O

We now show that we get relatively simple asymp-
totic expressions characterizing the distribution of
Whor, s(w) when sw — co. That applies when w — oo
for fixed s, but it also can apply when s 4 oo and w | 0,
as occurs in the quality-and-efficiency-driven (QED)
many-server HT limiting regime, to be discussed in
§6; then w = O(1/./s), so that sw — co while w — 0.

Let N(m, 0%) denote a normally distributed random
variable with mean m and variance ¢2. Let = denote
convergence in distribution.

THEOREM 4.2 (DISTRIBUTION OF Wygp ((w)). Con-
sider the GI/M/s queue with traffic intensity p operating
in the time interval [t, — w, t,].

(@) For any p>0,s>1, and w >0,
E[A(w)]+2
EWaor ()] = A2 gy
and

Var[Wyor, s(w)] = E[A(w) +2]Var(V /s)

+ Var(A(w) +2)(E[V/s])*.  (15)

(b) If the arrival process is Poisson, then

2
E[Whor, s(w)] = pw + 3 (16)
and
2pw 2
Var[WHOL,s(w)] = T + 5_2/ (17)
so that
2 6 1
2
=— — O
0= sz~ O ap)
as sw — oo. (18)

(c) For a general renewal arrival process with a non-
lattice interrenewal-time distribution if sw — oo, then

c2+3
Wi, (@] —psw— 2D qag)
W,
HO#‘“(w)ap w.p.1, and
¢ (20)
E[Whor, s(w)]
— % p,

w

RIGHTS L1 N Hig

Szvar(WHOL,s(w)) — psw(c; +1)

5(c2+1)*  2v3
— (T_ 3 +1>, (21)
S*E[(Whor, s(w) — pw)*] — psw(c; +1) - K, (22)
S"E[(Whor, s(w) — w)’] — (sw)*(1 — p)?
—sw[(2p—1)c2+4p—-3] =K, (23)
where
3¢t 9 213
K=K =2 4424+ _"2 24
@m=(grace-3), e
2
1
SwCIZNHOL R €t and
(25)
Wern: (W) —
HOL,s(w) pw ~ N(@O,1).

Vpw(cz+1)/s

Proor. Since Wy (w) in (11) is a random sum of
iid. random variables, where A(w) is independent
of the summands V,/s, we have (14). Formula (15)
follows from the conditional variance formula, e.g.,
Ross (1996, p. 51). For (18), we use elementary opera-
tions on series, as in 3.6.22 in Abramowitz and Stegun
(1972). When we let sw increase, we first apply Theo-
rem 4.1 to reduce the analysis to the case s = 1. Hence-
forth assume that s =1. When we restrict attention to
s =1, it suffices to simply let w — co. When we let w
increase,

(c2+1)
2

E[A(w) +2] — pw — +1 asw-—>o00, (26)

see Corollary 3.4.7 of Ross (1996) or (10) and (11) of
Whitt (1982), which review a classic result. Combining
(26) and (14) gives (19), which immediately implies
the second limit in (20). For the w.p.1 limit in (20),
we apply the strong law of large numbers for the par-
tial sums of V, and the renewal arrival process A(w):
With probability one,

% — E[V]=1 and
A(wa))+2 N E[1u] _p, 27)
so that
STV _Aw+2 STV
w w A(w)+2
w.p. 1. (28)
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The asymptotic variance formula (21) follows from
(15) and the asymptotic form of the variance for a
renewal process, e.g., as in (10) and (11) of Whitt
(1982):

Var(A(w)+2) = Var(A(w))

5(c24+1)> 212
— 2 a A
= pPwat T 3

2
1

—(C'ZZ—+)+O(1) as w—oo. (29)

The associated limits (22) and (23) follow from (21).

For (22), we use

E[(Whor, s(w) — pw)’]
= var(Wyor, ;(w) — pw) + (E[Wyor, s(w) — pw])?
= var(Wyor, s(w)) + (E[Wyor, s(w) — pw])>.  (30)

The calculation for (23) is similar. The first limit
in (25) follows immediately from (19) and (21). The
central limit theorem in (25) follows from the cen-
tral limit theorem for renewal-reward processes, e.g.,
Whitt (2002, Theorem 7.4.1). We use the convergence-
together theorem, Theorem 11.4.7 of Whitt (2002),
to justify neglecting the asymptotically negligible
terms. O

REMARK 4.1 (ExacT VALUES BY NUMERICAL INVER-
SION). It is possible to exploit (14) and (15) to com-
pute the exact means and variances. To do so, we
can exploit numerical transform inversion of Laplace
transforms, as discussed in §13 of Abate and Whitt
(1992). The Laplace transform of E[A(t)] is m,(s) =
f (s)/[s(1— f (s))], where f (s) is the Laplace transform
of the density function of the interarrival-time cdf F
(here assumed to exist). The associated Laplace trans-
form of E[A(t)?] is 2#i,(s)? — i, (s), as can be seen from
exercise XI.13 on p. 386 of Feller (1971). Because we
are interested in estimation for relatively large delays,
we will rely on the asymptotic approximations.

REMARK 4.2 (NONHOMOGENEOUS PO1SSON ARRIVAL
Process). We can also analyze the random variable
Whor, s(w) in the case of a nonhomogeneous Poisson
arrival process with intensity function {A(f): t > 0}.
The exact relations (16) and (17) have natural exten-
sions to that case. We again have representation (11),
but now with A(w) being a Poisson random variable
having mean

m, (w) = / " A dt, (1)

t,—w
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which depends on the arrival time ¢, and the intensity
function as well as the experienced waiting time w.
Unless we specify how the intensity function behaves,
we have no simple asymptotic story as w increases
though.

Theorem 4.2 shows that the first-order asymptotic
behavior of the random variable Wy ((w) as sw
increases depends on the general interarrival-time
distribution F only through its first two moments or,
equivalently, through the mean E[U] =1/ps and the
SCV ¢2. Equations (21) and (25) show that both the
variance Var(Wyop (w)) and the SCV C‘%\JHOL/s(w) are
approximately proportional to ¢2+1 for large sw.

Theorem 4.2 shows that it may be useful to con-
sider various refined estimators instead of the direct
estimator 6f},, = w. We would want to use the refined
estimator 6f;o; = E[Wyop (w)], because the mean nec-
essarily minimizes the MSE, but we do not have a
convenient formula for the mean. Theorem 4.2 leads
us to consider two other refined estimators: the simple
refined estimator 6fj5, = pw and the asymptotic refined
estimator 0o, = pw + (c2 + 3)/(2s), based on the the
limit (19) as sw — oo. Note that the formulas for
the mean and variance for Poisson arrivals in (16)
and (17) are exact, whereas the formulas for non-
Poisson formulas are only approximations.

For fixed p < 1, the three refined estimators
OfoL(w), 650 (w), and 6fjy (w) are all relatively con-
sistent and asymptotically relatively efficient as sw —
oo, whereas the direct HOL estimator w has neither
of these properties. By relatively consistent, we mean
that the ratio of the estimator to the quantity being
estimated (here Wyq, ((w)) converges to 1; by asymp-
totically relatively efficient, we mean that the RMSE
(RMSE = MSE/Mean®) converges to 0.

At first glance, the simple refined estimator looks
very appealing, because it combines simplicity with
good asymptotic properties. However, we found
that the direct estimator consistently outperforms
the simple refined estimator in experiments evaluat-
ing the steady-state performance for typical param-
eter values. Evidently, the extra constant term in
0fio. helps. The following (somewhat loosely stated)
theorem supports that empirical observation. Let
MSE(0y0r (W,,)) denote the steady-state MSE of the
estimator 6o (w) when w is averaged with respect to
the conditional delay (W,, | W,, > 0), where W_ is the
steady-state delay.
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THEOREM 4.3 (COMPARISON OF ALTERNATIVE HOL
EstiMATORS). Consider the GI/M/s queue with traffic
intensity p < 1 in steady state. If the arrival process is
Poisson or if we take the limit in (19) as the exact mean,
then the steady-state MISEs are ordered by

MSE (6o, (W..)) < MSE(6}; (W.,))
< MSE(6f10.(W,)). (32)

Moreover,

MSE (601, (W.o)) —MSE(8fior (W..))

2 2 2 2
- E|:<(1—p)(Woo |W_>0)— (Cﬂ;‘o’)) }< (Cﬂ;gf)
= MSE (b0, (W.)) —MSE (6101 (W,))- (33)

Proor. The MSE formulas in (33) are obtained by
directly adding and subtracting the mean inside the
MSE formula, with the mean here regarded as being
given by (19). The key inequality in (33) follows from
a bound on the mean steady-state waiting time in the
GI/M/1 queue. The conditional delay (W, | W,, > 0)
in the GI/M/s model has the same exponential distri-
bution as in the GI/M/1 model; e.g., see Wolff (1989,
p- 398). Its mean is (1 — w)~!, where w is the root of
the transform equation f (1—-w) = w, where f (s) is the
Laplace-Stieltjes transform of the interarrival-time cdf.
However, it is known that 1—w >2(1—p)/(c?+1);
e.g., apply Theorem 2 of Whitt (1984), noting that
in the D/M/1 queue 1— w > 2(1 — p), which follows
from elementary inequalities for the exponential func-
tion: e21=” > 1 — 2(1 — p). From (33), we see that
MSE (¢, (W..)) < MSE(65;,, (W,.)) if and only if

(2+3)\*] _ (c2+3)?
_ - ,
2s 452

[ (a-pim. =0 en
which, upon expanding the quadratic and using the
fact that the second moment is twice the square of the
first moment, holds if and only if

c2+3
s(1-p)’

which is implied by the delay bound. O

To illustrate, we show numerical results in Table 3
for the candidate delay estimators 6%, 6}, and
0fio. in the H,/M/s model with s =100 and s = 1.

E[W, | W, >0]<

(35)
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We display the values of their approximate MSEs in
steady state predicted by formulas (23), (22), and (21),
and we show the contributing terms, displayed in the
order given in Theorem 4.2. In each case, one term
grows without bound as p increases, while the other
terms remains constant or nearly constant. We take
the expected value of each MSE formula, where w is
distributed randomly as the steady-state conditional
delay (W, | W,, > 0). We use the simulation estimates
of the first two moments of the conditional delay.
Table 3 is consistent with Theorem 4.3. As a conse-
quence of Theorem 4.3, we suggest using the asymp-
totic refined estimator 6, .

We remark that the limit in (25) implies that
Whor, s(w) should be approximately normally distrib-
uted when sw is not too small. Our simulation exper-
iments show that all the random variables Wyo, ((w),
Wigs s(w), and Wicg ((w) tend to be normally dis-
tributed when sw is not too small.

We can combine (25) and (6) to compare the effi-
ciency of the QL and refined HOL estimators under
high congestion. Let W(t) be the virtual waiting time
at time t, the time an arrival at time t would have to
wait before beginning service. Since

Q(H+1

W= > (Vi/s), (36)

i=1

the law of large numbers implies that W(t)/Q(t) —
1/s as Q(t) — co. Thus, when Q(¢) is large, we have
W(t) ~ Q(t)/s (even if W (t) itself is not large). Assum-
ing that n is large with w ~ n/s in (25) and (6), we
have both sw and n large and

C%VHOL,s(w) ~ (Cg +1)/psw ~ Cg +1
C%\,Q,S(n) 1/(n+1)

(37)

Since we have introduced HOL partly as an approx-
imation for LES, it is interesting to consider the dif-
ference between the HOL and LES observed delays
and the difference between the random variables
Whor, s(w) and Wigg ((w,d/s). (We let t, —t, =d/s
because it should be proportional to 1/s with s
servers.) First, note that if at least one customer
remains in queue after the LES at time ¢, then the
HOL customer at time ¢, (after the customer entered
service) will remain the HOL customer at time ¢,. As a
consequence, the HOL customer arrived immediately
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Table 3 Evaluation of MSE Approximations for Estimators 65, , 655, ,
and 95, in Steady State Using (23), (21), and (22) Together
with Simulation Estimates of First Two Moments of
Conditional Delay E[W_ | W, > 0]

Evaluating alternative HOL estimators

p 0.88 0.92 0.96 0.98
Approximations in H,/M /100 model
EIW W > 0] 0.1902 0.2964 0.6114 1.307
conf. int. +0.0030 +0.0067 +0.029 +0.17
EW? W > Q] 0.07205 0.1761 0.7446 3.436
conf. int. +0.0022 +0.0095 +0.060 +0.67
MSE(67) 0.00826 0.0135 0.0293 0.0640
Term 1 0.00103 0.00113 0.00119 0.00137
Term 2 0.00677 0.0120 0.0276 0.0622
Term 3 0.00045 0.00045 0.00045 0.00045
MSE(6°") 0.00882 0.00141 0.00298 0.0645
Term 1 0.00837 0.0136 0.0293 0.0640
Term 2 0.00045 0.00045 0.00045 0.00045
MSE(62") 0.00759 0.0129 0.0286 0.0632
Term 1 0.00837 0.0136 0.0293 0.0640
Term 2 —0.000775 —0.000775 —0.000775 —0.000775
p 0.85 0.90 0.95 0.98
Approximations in H,/M /1 model
E[W | W > 0] 15.01 23.50 48.64 115.7
conf. int. +0.18 +0.42 +1.6 +8.80
EW? | W > 0] 446.2 1,105.7 4,707.1 25,650.5
conf. int. +8.03 +39.2 +263.2 +3,280
MSE(67) 62.59 104.9 230.3 565.7
Term 1 10.04 11.06 11.76 10.26
Term 2 48.04 89.3 214.0 550.9
Term 3 45 45 45 45
MSE(6°") 68.31 110.3 235.5 571.6
Term 1 63.81 105.8 231.0 567.1
Term 2 45 45 45 45
MSE(62") 56.06 98.02 223.3 559.3
Term 1 63.81 105.8 231.0 567.1
Term 2 —7.75 —7.75 —7.75 —7.75

Note. The H,/M/s model is considered as a function of the traffic intensity
pfors=100and s=1.

after the LES customer. Thus the HOL customer waits
more than the LES customer by the time f, —t, but less
by the single interarrival time between them. Clearly,
these differences should become asymptotically neg-
ligible in the appropriate scaling.

We now compare the random variables Wyop  (w)
and Wigg ((w, d). We establish a stochastic bound
between these random variables. Let <,, denote ordi-

nary stochastic order; see §9.1 of Ross (1996). The
following bound shows that the difference between
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Whor, s(w) and Wik (w, d) is stochastically bounded,
and thus asymptotically negligible compared to w
and these individual random variables as sw — co. We
say that a family of random variables {X(w): w > 0}
is stochastically bounded if for any € > 0 there exists a
positive constant K(e€) such that P(|X(w)| > K(¢)) <e.
By Markov’s inequality, for nonnegative random vari-
ables, it suffices to have the means E[X(w)] uniformly
bounded: P(|X(w)| > K(€)) < E[X(w)]/K(€).

THEOREM 4.4 (BounND ON DIFFERENCE BETWEEN
Whov, s(w) AND Wigs ((w, d/s)). Consider the GI/M/s
model. Assume that there is at least one customer in queue
at the new arrival epoch, so that (11) is valid for HOL and
(9) is valid for LES. Then,

Wiks,s(w, d/s) — X(s, w, d)
<5t Whov, s(W) <g Wigs (w, d/s) + X(s, w,d),  (38)

where X(s, w, d) is distributed as

A(w+(d/s))—A(w)+1

XG,wd= Y (V). (39

i=1
As w — oo for fixed s, E[X(s, w,d)] - (pd + 1)/s; as
sw — oo, E[X(s, w, d)]/w — 0, so that
|Whior (w) — Wigs(w, d)|

- —0 assw— . (40)
For the M /M /s model,
A(d/s)+1
X(s,w,d)=Y. (Vi/s), (41)
i=1

so that
E[X(s,w,d)]=(pd+1)/s and
Var(X(s, w, d)) = (2pd +1) /5. (42)

Proor. Without altering the individual distribu-
tions of Wy ((w) and Wigg ((w, d/s), we can make
a special construction in which we use exactly the
same exponential random variables V,/s for the two
estimators. The random numbers of summands differ
by A(w + (d/s)) — A(w) — 1, which is bounded above
by A(w + (d/s)) — A(w) + 1, which we use in (39).
Since the renewal process A has rate ps, we can then
apply Blackwell’s renewal theorem, Asmussen (2003,
p- 155), to get E[A(w +d/s) — A(w)] — pd as sw — co.
Recall that we have assumed that the interarrival time
cdf F is nonlattice. Hence we get E[X(s, w, d)]/w — 0
as sw — oo, which implies (40). O
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5. Simulations Related to Theorem 4.2
Based on (23) in Theorem 4.2, we approximate the
MSE of the direct HOL, LES, and RCS estimators by

MSE (60, (w))

20—1)2+4p-3)w K
m(1—p)2w2+((p )”S p—3) ta 49

for K in (24). As above, let MSE(6¢,; (W,.)) denote the
MSE in steady state, i.e., when we replace w in (43)
by (W, | W, > 0). We obtain

MSE (6o (W..))

~ (1= p)’E[W | W, > 0]

(2p—1)c2+4p—3)E[W,_|W,>0] K

(
+ g (44)

S

where W, is the steady-state delay.

We have compared the ASE for HOL, LES, and RCS
to MSE(6f,, (W..)) and found close agreement, with
the agreement being slightly better for HOL and LES
than for RCS. In making this comparison, we sub-
stitute the simulation estimates of the two moments
E[W, | W, > 0] and E[W2 | W, > 0] into (44). We must
calculate or approximate these conditional moments
to have a full approximation, but we do not con-
sider that step here. We obtain good results compar-
ing approximation (44) to the ASE for the cases of
exponential (M), hyperexponential (H, with ¢ =4),
and Erlang (E,) interrenewal-time distributions. We
did experiments for s =1, 10, 100, 400, 900, each for
four values of p, increasing with s to represent typical
cases. The errors were consistently less than 5% for
HOL and LES in these experiments, as illustrated by
the results for LES with M and H, interarrival-time
distributions in Table 4.

We found that the approximation in (44) does not
perform nearly as well for the case of a determin-
istic (D) arrival process, which should not be sur-
prising, because the deterministic interrenewal-time
distribution is a lattice distribution not covered by
Theorem 4.2. Instead of (43), we propose the follow-
ing approximation for the direct estimator with a D
arrival process:

MSE(8fior, p(w)) ~ (1 — p)*w” +

pw +s(2/s) . @)
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Table 4 Evaluation of Approximations for Steady-State MSE of HOL in
(44) and (46) by Comparing to Simulation Estimates of ASE
for LES in G//M /100 Model as a Function of Interarrival-Time
Distribution and Traffic Intensity p

Testing the MSE(HOL,) approximations in the G//M /100 model

P M %diff. (%)  %dif.D (%) H, % diff. (%)
098 10.20 -03 267 —19 628 -39
095 420 14 120 —41 229 19
093 3.6 0.4 092 58 159 —21
090 220 15 072 -75 105 ~32

Notes. The simulation estimates appear in Table 1. The approximations in
units of 10-2 and the relative percent differences are shown here.

which is obtained by making the simple approxima-
tion A(w) ~ psw. We then obtain the following analog
of the steady-state approximation (44):
MSE(0fior, p(We)) ~ (1= p) E[WS | W, > 0]
o PEIWs [We, > 0] +(2/5)
5 .

(46)

Approximation (46) performs much better than
approximation (44) with ¢? = 0, yielding errors of
about 5% (ranging up to 11%), instead of about
5%—-25%, as shown in Table 4. For the refined estima-
tor, we would also change the mean estimator to (16)
instead of (19).

To evaluate the approximations for a specified
observed delay w, we consider data from the simu-
lation where the observed HOL delay falls in a small
interval about w =2E[W_ | W, > 0]. (We choose inter-
val widths to make roughly reasonable, comparable
sample sizes.) Table 5 shows the results of such an
experiment for the GI/M /100 model with p = 0.95.
(The width of the sampling interval in each case was
chosen to have roughly comparable sample sizes.)
Table 5 shows that the approximations for the HOL
conditional mean and variance are remarkably accu-
rate approximations for all three estimators: HOL,
LES, and RCS, with the variance being slightly higher
for RCS. We found that the estimated distribution
of the actual delay is approximately normally dis-
tributed in each case, as predicted by the limit in (25).

6. Insights from Heavy-Traffic (HT)
Limits

We can gain additional insight about the performance

of the different estimators by considering HT limits
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Table 5 Comparing Approximations for £ [W,q, (w)] and Var(Wg (w))
for Fixed w Following from (19) and (21) with Simulation
Estimates of Mean and Variance of HOL, LES, and RCS
Estimators in G//M /100 Model with p = 0.95 as a Function
of Interarrival-Time Distribution

Testing the approximations (19) and (21) with observed w in
a small interval about 2E[W_ | W, > 0]

Interarrival-time dist. M D H,
2E[W,, | W, > 0] 0.40 0.20 0.96
Selected HOL w interval [0.39, 0.41] [0.19, 0.21] [0.94, 0.98]
Sample size 128,287 99,747 151,556
Sample mean observed 0.3998 0.2000 0.9597
E[Wio 1(w) est. 0.4003 0.1996 0.9625
Var(Wyo ) (w) est. 0.0080 0.0020 0.0448
E[W g (w)] est. 0.3996 0.1995 0.9617
Var(Wes(w)) est. 0.0081 0.0021 0.0450
E[Wees(w)] est. 0.3938 0.1929 0.9586
Var(Wpes(w)) est. 0.0103 0.0029 0.0507
Predicted mean by (19) 0.400 0.205 0.947
Pred. variance by (21) 0.0076 0.0021 0.0455

Notes. Data are collected for observed waiting times contained in a small
interval about 2E[W_, | W, > 0]. The resulting sample sizes are shown.

for the GI/M /s model. To do so, we consider a family
of models indexed by the parameter p, so we intro-
duce a second subscript p in addition to s. We let the
service times remain unchanged. We assume that we
start with interarrival times U, having mean 1/s. In
system (s, p), we use interarrival times U,/p, so that
they have mean 1/sp. That makes the traffic intensity
in model p be p.

We consider both the classical HT regime in which
p 11 for fixed s and the QED many-server HT regime
in which both p 11 and s — oo with (1—p)/s—
for 0 < B < oo; see Whitt (2002, chaps. 5, 9-10) for
background. The queue length tends to be of order
1/(1—-p) in both limiting regimes, but the delays
behave differently. The delays are of order 1/(1 — p)
in the classical HT regime, but are of order 1 —p or
1/4/5 in the QED HT regime.

6.1. HT Snapshot Principle

Just as in the application of HT limits to plan queue-
ing simulations reviewed in Whitt (2002, §5.8), the
time scaling in the HT stochastic-process limits pro-
vides important insight. In particular, we can apply
the celebrated HT snapshot principle, see Reiman (1982)
and Whitt (2002, p. 187), which, in our context, tells
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us that the waiting times (of other customers) tend to
change negligibly during the time a customer spends
waiting when the system is in HT. In other words,
the snapshot principle immediately implies that the
LES and HOL estimators are asymptotically exact in
heavy-traffic limits (specifically, the ratio converges
to one). It also shows that, asymptotically in the HT
limit, there is no advantage in averaging over delays
of past customers.

Since we are primarily concerned with waiting
times, it is appropriate to focus on the virtual
waiting time stochastic process, which describes the
waiting time of a potential arrival who would come at
time t. We first consider the classical HT regime. Let
W, ,(t) be the virtual waiting time at time # in model
(s, p). The waiting time of the kth arrival at time A ; ,
is just W, (A s ,—), where g(t—) is the left limit of
the function g at time ¢.

The classical HT stochastic-process limit for the vir-
tual waiting time process states that

1-p)W, ,(1=p)7?) = RBM(t) asptl, (47)

where the limit stochastic process RBM(t) is a
reflected Brownian motion, which has continuous
sample paths, and the convergence in distribution is
for the entire stochastic process with sample paths
in the function space D; see Whitt (2002). The space
scaling in (47) implies that the waiting times will
be of order O(1/(1 — p)), while the time scaling
in (47) implies that the waiting times will only change
significantly over time intervals of length of order
O(1/(1 — p)?). As a consequence, we conclude that the
HOL and LES estimators are relatively consistent in
the classical HT regime.

A similar story holds in the QED HT regime. The
stochastic-process limit for the virtual waiting time
process in the QED regime is obtained by Puhalskii
and Reiman (2000). Let W ,(t) be the virtual waiting
time at time ¢ in model (s, p). Paralleling (47), in the
QED regime, we have the stochastic-process limit

AW, = Y() as ptl,  (@9)

where the limit process Y () is no longer RBM, but
again is a diffusion process with continuous sample
paths and again the convergence in distribution is for
the entire stochastic process with sample paths in the
function space D.
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The time and space scaling in (48) is drastically dif-
ferent from (47), but we nevertheless obtain the same
conclusions about our estimators. Now, the waiting
times are getting small instead of large, being of order
O(1/4/s), but there is no time scaling at all, so that
the waiting times will only change significantly over
time intervals of length of order O(1). As a conse-
quence, we conclude that the HOL and LES esti-
mators are also relatively consistent in the QED HT
regime. Again, we conclude that there will be no
advantage to averaging the delays experienced over
past customers.

6.2. Steady-State HT Limits

In the e-companion, we also establish HT limits in
both regimes for steady-state random variables. We
focus on the HOL estimator; by Theorem 4.4, the LES
estimator behaves the same. We see what happens
“on average” to the random variable Wyq , ,(w)
(where the observed delay w has the steady-state dis-
tribution). From the steady-state HT limits, we deduce
that both the direct QL and HOL estimators are
(weakly) relatively consistent: the ratio of the estima-
tor to the random quantity being estimated converges
to 1. We also develop limits establishing the asymp-
totic efficiency of the different estimators (comparing
MSESs). In these HT limits, the direct and refined esti-
mators have asymptotically the same efficiency, while
the QL estimator is asymptotically more efficient than
these delay-history estimators by the constant factor
c2 + 1, consistent with Theorem 4.2. Because associ-
ated heavy-traffic stochastic-process limits have been
established for other models, the estimators should
have similar nice properties for other models.

7. Conclusions

7.1. Insights That Can Be Generalized

Even though we are primarily interested in service
systems that are more complex than the GI/M/s
queueing model, in this paper, we studied the per-
formance of alternative delay estimators in this rel-
atively simple idealized GI/M/s setting. Our goal
has been to gain insight into how the estimators
will perform in more complex settings. Our results
for the GI/M/s model indicate what to expect more
generally. Although it remains to be verified in each
specific context, we anticipate that many of the perfor-
mance conclusions for the GI/M/s model (reviewed
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below) will extend to other settings. At a minimum,
the results here serve as a basis for comparison in fur-
ther examination of delay estimation.

7.2. Performance of Estimators

An important reference point for the delay estima-
tors based on delay history is the standard QL esti-
mator based on the observed QL, defined in (1). For
QL, the only source of uncertainty is the remaining
service times of the customers ahead of the arrival.
That uncertainty can be reduced if the remaining ser-
vice times can be reliably estimated, as emphasized
by Whitt (1999).

As can be seen from formulas (9)—(11), to a large
extent, the LES and HOL estimators can be regarded as
the QL estimator modified by replacing the known QL
by an estimate of that QL. Because the QL is equal (or
approximately equal) to the number of arrivals during
the observed waiting time, the QL is estimated by the
expected number of arrivals during the observed wait-
ing time. Thus the increase in MSE in going from QL to
the LES, HOL, and RCS estimators is primarily because
of variability in the arrival process. The MSE tends to
be larger for LES and HOL than QL by the constant fac-
tor (c2 + 1), where ¢2 is the SCV of an interarrival time,
a common measure of variability for a renewal arrival
process; see Whitt (1982).

As a consequence, the delay estimators based on
delay history will perform about the same as the
QL estimator when the arrival process has very low
variability, but the relative performance will degrade
as that arrival-process variability increases. From the
perspective of statistical precision, the QL estimator
should be preferred to the delay-history estimators
if it is available, unless there is negligible arrival-
process variability. The delay-history estimators offer
the advantage of transparency, but that is obtained at
the expense of statistical precision. This insight should
apply very broadly.

Overall, we conclude that the greatest source of
estimation uncertainty is the remaining service times.
After that, it is the arrival-process variability, as par-
tially characterized by the SCV ¢2. We conclude that the
estimators Oqy (1), 0fps(w), Ofio (w), and Ofs(w) can
be very useful, but they are not extraordinarily accu-
rate. The refined estimators for HOL, LES, and RCS can
remove all or nearly all of the bias, but nonnegligible
variance remains. The greatest hope for more reliable
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estimation seems to lie in being able to better predict
the remaining service times, which is certainly possi-
ble if the service times are actively controlled, and is
possible to some extent if either the service-time distri-
bution is nonexponential or if it is possible to classify
the customers, as discussed in Whitt (1999). An impor-
tant direction for further research is to develop more
sophisticated estimators that exploit much more of the
information. Nevertheless, there may always be a role
for the transparent delay estimators based on recent
delay history considered here.

We considered several different delay estimators
based on recent delay history, notably LES, HOL,
and RCS. Through analysis and extensive simulation
experiments, we conclude that the LES and HOL delay
estimators are very similar, with both being more accu-
rate than the others based on delay history, but less
accurate than the full-information QL estimator. For
large s, RCS is far superior to the delay of the LCS,
because customers need not complete service in the
same order they arrive. For low traffic intensities with
large s, LCS was even outperformed by the NI esti-
mator. The reason is that the LCS customer may have
arrived too long ago. We conclude that RCS should
only be preferred to HOL and LES if delay information
is not available until after customers complete service,
but the MSE is not much greater for RCS than for LES
and HOL.

For the GI/M/s model, the random delay Wyo; (w)
given the HOL observation w is remarkably tractable,
as can be seen from the representation (11). Theorem
4.2 gives the exact mean and variance of Wyg (w)
for Poisson arrivals. It is significant that the mean
E[Whor(w)] is not simply w, but instead is a lin-
ear function of it: pw + (2/s) with Poisson arrivals.
That mean serves as a refined estimate, which has
lower MSE than the direct estimator, but it requires
extra information. Bias in the direct estimators can be
expected more generally.

For general renewal arrivals, Theorem 4.2 estab-
lishes asymptotic results that generate simple approx-
imations, which may well describe the behavior of
these estimators in other settings. As sw increases,
the random variable Wy (w) is asymptotically nor-
mally distributed with explicit mean and variance (§4),
which has been substantiated by simulation, as dis-
cussed in §5. From (25), we see that the squared coef-
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ficient of variation CiVHOL,s(w) is asymptotically propor-
tional to (c? + 1)/psw as sw — oo. That implies very
accurate prediction when sw is large. These proper-
ties of Wyor (w) (and W gs(w)) can be expected to hold
more generally.

In §6 and the e-companion, we showed that heavy-
traffic limits provide important insight. The heavy-
traffic snapshot principle provides strong support for
all these delay-history estimation procedures, and
shows that there should be little benefit from averaging
over past customer delays, under heavy loads. The rel-
ative errors of the LES and HOL estimators are asymp-
totically negligible in both the classical and many-
server HT regimes. The MSE relative to the mean is
asymptotically negligible for all the candidate delay
estimators based on delay history. The QL estimator
is asymptotically more efficient than HOL and LES by
the constant factor ¢2 + 1 in both HT regimes. Since
similar HT limits have already been established for
much more general models, these HT properties can be
expected to hold more generally.

7.3. Possible New Applications
For call centers as well as other service systems (e.g.,
delays in receiving new products or getting an applica-
tion processed), there may be new applications of these
alternative delay estimators based on recent delay his-
tory. They can also be used by customers and third par-
ties who do not have access to all the state information
available to the service provider. This might work as
follows: Large groups of customers might voluntarily
route their delay experience electronically to a central-
ized consumer-group monitor that makes this infor-
mation available to its customer base in real time. The
customers, in turn, could have their communication
equipment set up to simultaneously query the monitor
whenever the customer contacts the service provider.
In this way, the flow of critical information could take
place in milliseconds, which is far shorter than a short
telephone call. This is not beyond current technology.
In the same spirit, the LES delay estimator could
be used by outside parties to verify that the service
provider is providing accurate delay estimates. The
service provider could agree to publish its delay esti-
mates, providing extra coded information giving the
customer identification for each observed LES delay.
Customers or authorized third parties could then ver-
ify that the delays, appropriately recorded, coincided
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with that same delay when it was quoted as an LES
delay. The information available to each customer
would not go beyond its own delay experience, and
yet, collectively, customers could verify the accuracy
of the delay predictions. Such verification might well
be regarded as a legitimate customer concern. And ser-
vice providers might want to offer the verification as a
way to provide better service.

Electronic Companion

An electronic companion to this paper is available on
the Manufacturing & Service Operations Management website
(http://msom.pubs.informs.org/ecompanion.html).
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