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Abstract

Recent robust queueing approximations for open queueing networks exploit
partial characterizations of each arrival process by its rate and index of dis-
persion for counts (IDC), which is a scaled version of the variance-time curve.
Even though only means and variances are involved, for the GI/GI/1 queue
and generalized Jackson networks, where the arrival processes are renewal
processes, the arrival processes are fully characterized by the rate and IDC.
This provides a basis for more accurate approximations than traditional par-
tial characterizations.
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1. Introduction

We briefly describe major advantages of new robust queueing (RQ) ap-
proximations for single-server queues and open networks of queues in [1] and
subsequent papers. The approximations are intended for general G/GI/1
queues with general stationary arrival processes that are independent of in-
dependent and identically distributed service times, and open networks of
such queues.

For the GI/GI/1 queue and generalized Jackson open queueing networks,
which have mutually independent renewal external arrival processes and se-
quences of independent and identically distributed (i.i.d.) service times,
at each queue and Markovian routing, traditional approximations for the
steady-state performance measures depend on each interarrival-time and
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service-time distribution through two parameters: its first two moments or,
equivalently, its mean and squared coefficient of variation (scv, variance di-
vided by the square of the mean). The simple two-parameter approach is
applied in parametric-decomposition approximations such as the Queueing
Network Analyzer (QNA) in [2] and the first Robust Queueing Network An-
alyzer (RQNA) in [3] as well as in approximations in [4], [5] and [6] based on
multidimensional reflected Brownian motion stemming from the heavy-traffic
limit established in [7].

Some of the key properties can be seen from a single queue. Thus, we will
first focus on the GI/GI/1 queue with interarrival times Un and service times
Vn distributed as U and V , partially characterized by the parameter vector
(λ, c2a, τ, c

2
s), where λ−1 ≡ E[U ], c2a ≡ c2U ≡ V ar(U)/E[U ]2 and τ ≡ µ−1 ≡

E[V ], c2s ≡ c2V ≡ V ar(V )/E[V ]2, where ρ ≡ λ/µ < 1 to ensure stability.
We will focus on the expected steady-state waiting time (for each arrival

until starting service) E[W ] and workload (remaining work in the system at
each time) E[Z] at each queue. These are related by the conservation law
H = λG or Brumelle’s formula, [8] or (6.20) of [9], which for the G/GI/1
model is

E[Z] = λ

(

E[WV ] +
E[V 2]

2

)

= ρE[W ] + ρτ
(c2s + 1)

2
. (1)

These in turn are related to the mean number in queue and in system by
Little’s law.

Even though the heavy-traffic limits for the GI/GI/1 queue only depend
on the model data through the parameter vector (λ, c2a, τ, c

2
s), and similarly

for generalized Jackson networks [7], the steady-state performance at typical
traffic intensities can be quite complicated, as we explain in §2.

To do better for renewal arrival processes and to capture the depen-
dence in more general arrival processes, we use the index of dispersion for
counts (IDC) of the stationary arrival process, which is a scaled version of
the variance-time function that is independent of the rate. In particular if
A(t) is the arrival counting process, assumed to be stationary with rate λ,
then as in §4.5 of [10], the IDC is

Ia(t) ≡
V ar(A(t))

E[A(t)]
=

V ar(A(t))

λt
, t ≥ 0, (2)

where ≡ denotes equality by definition; see §4 of [1].
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Our main RQ approximation in [1] is for the expected steady-state work-
load at each queue. It uses the index of dispersion for work (IDW) associated
with the cumulative input process Y , defined by

Y (t) ≡
A(t)
∑

k=1

Vk, t ≥ 0, (3)

and is defined, as in [11], by

Iw(t) ≡
V ar(Y (t))

E[V1]E[Y (t)]
, t ≥ 0. (4)

For the G/GI/1 model, where the arrival process is general but independent
of an i.i.d. sequence of service times, the IDW is related to the IDC by

Iw(t) = Ic(t) + c2s, t ≥ 0; (5)

see §4.3.1 of [1].
Given the IDW, the RQ approximation for the mean workload as a func-

tion of the traffic intensity ρ when the mean service time is fixed at τ = 1
appears in (28) in §4.1 of [1], being simply

E[Z] ≡ E[Zρ] ≈ Z∗
ρ ≡ sup

x≥0

{

−(1 − ρ)x/ρ+ bf
√

xIw(x)
}

, (6)

where bf is a parameter to be specified, which we take to be
√
2, which we

explain below. (See [12] for additional background on the RQ approxima-
tions.)

Strong positive results for the RQ approximation in (6) with bf ≡
√
2

for the G/GI/1 queue appear in Theorems 2-5 of [1]. Theorem 2 states it is
exact for theM/GI/1 queue, while Theorem 5 states that it is asymptotically
correct in both light and heavy traffic. To state it, we define the normalized
or scaled (steady-state) workload by comparing to what it would be in the
associated M/D/1 model; i.e.,

c2Z(ρ) ≡
E[Zρ]

E[Zρ;M/D/1]
=

2(1− ρ)E[Zρ]

E[V1]ρ
=

2(1− ρ)E[Zρ]

τρ
. (7)

The normalization in (7) exposes the impact of variability separately from
the traffic intensity.
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Theorem 1.1. (heavy-traffic and light-traffic limits from [1]) Under the reg-
ularity conditions assumed for the IDW Iw(t), if bf ≡

√
2, then the RQ

approximation in (6) is asymptotically correct for the G/GI/1 model with
τ = 1 both in heavy traffic (as ρ ↑ 1) and light traffic (as ρ ↓ 0). Specifically,
we have the following limits:

lim
ρ↑1

c2Z∗(ρ) = Iw(∞) = lim
ρ↑1

c2Z(ρ) and lim
ρ↓0

c2Z∗(ρ) = Iw(0) = lim
ρ↓0

c2Z(ρ). (8)

We have developed this approximation method to treat general stationary
arrival processes, which have complex dependence over time. However, this
approach is important even for the basic GI/GI/1 queue as we will explain
here. First in §2 we explain why we want to go beyond the traditional
two-parameter characterizations of arrival processes, even for the GI/GI/1
model. Then in §3 we show that the rate and IDC fully characterize a renewal
process, so that the rate and IDC of the arrival and service processes fully
characterize the GI/GI/1 model. We discuss the special case of the GI/M/1
model in §4. Finally, we elaborate in §5 with simulation examples for queues
in series, focusing on the heavy-traffic bottleneck phenomenon in [13], which
has been discussed in [6].

2. Why We Do Want More Information about the Arrival Process?

For the GI/GI/1 queue partially specified by the vector (λ, c2a, τ, c
2
s), a

commonly used approximation for the steady-state waiting time is

E[W ] ≈ τρ(c2a + c2s)

2(1− ρ)
, (9)

because it is exact (being the classical Pollaczek-Khintchine formula) for
the M/GI/1 special case, when the interarrival time has an exponential
distribution, in which case c2a = 1.

We call (9) the heavy-traffic approximation because, under regularity
conditions, it is asymptotically correct in that limit:

2(1− ρ)E[W (ρ)]

τρ
→ c2a + c2s as ρ → 1. (10)

In fact, the heavy-traffic limit does much more, showing that the scaled
waiting-time distribution is asymptotically exponential and thus is asymp-
totically fully characterized by its mean. Hence, if we approximate the mean
we also can approximate the full distribution.
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A conservative approach to the mean waiting time E[W ] is to look for
upper bounds. The best known upper bound (UB) on E[W ], given the
parameter vector (λ, c2a, τ, c

2
s), is the Kingman[14] UB,

E[W ] ≤ τρ([c2a/ρ
2] + c2s)

2(1− ρ)
, (11)

which is also asymptotically correct in heavy traffic, just like (9).
A better UB depending on these same parameters was obtained by Daley

[15]. in particular, the Daley UB replaces the term c2a/ρ
2 by (2− ρ)c2a/ρ, i.e.,

E[W ] ≤ τρ([(2 − ρ)c2a/ρ] + c2s)

2(1− ρ)
. (12)

Note that (2− ρ)/ρ < 1/ρ2 because ρ(2− ρ) < 1 for all ρ, 0 < ρ < 1, as can
be seen by noting that 1− 2ρ− ρ2 = (1− ρ)2 > 0 for all ρ, 0 ≤ ρ < 1.

But even the Daley bound in (12) is not tight; see [16] for a recent study
of these bounds for E[W ], including a numerical algorithm to compute the
tight UB and an approximation formula. A major concern is the range of
possible values given the parameter vector (λ, c2a, τ, c

2
s). For that purpose,

these new results can be combined with the lower bound (LB), which has
long been known. The explicit formula for the LB is

E[W (LB)] =
τρ((1 + c2s)ρ− 1)+

2(1− ρ)
, (13)

where x+ ≡ max {x, 0}.
Tables 1 and 2 plus Tables EC.1 and EC.2 in [16] give a numerical

overview of the upper and lower bounds for E[W ], given the parameter vec-
tor (λ, c2a, τ, c

2
s), in the four cases for which c2a and c2s assume all combinations

of the two values 0.5 (less variable than exponential) and 4.0 (more variable
than exponential). We illustrate by reproducing a portion of Table 1 of [16]
here in Table 1. Paralleling (7), to focus on the impact of the variability
independent of the traffic intensity ρ, so in Table 1 we display values for the
normalized or scaled mean waiting time

c2W (ρ) ≡ 2(1− ρ)E[W (ρ)]

ρτ
, (14)

which shows the total variability in the arrival and service processes, and
assumes the constant value c2a+ c2s for the heavy-traffic approximation in (9).
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Table 1: A comparison of the scaled bounds and approximations for E[W ], i.e., for c2
W
(ρ) ≡

2(1− ρ)E[W (ρ)]/ρτ in (14), given the parameter vector (λ, c2a, τ, c
2

s) as a function of ρ for
the case c2

a
= c2

s
= 4.0. (Below HTA is the scaled version of (9), while the other entries are

scaled versions of the tight bounds, the Daley UB in (12) and the Kingman UB in (11).)

ρ Tight LB HTA Tight UB Daley Kingman
0.10 0.0 8.0 76.0 80.0 404.0
0.30 0.0 8.0 23.4 26.6 48.4
0.50 1.0 8.0 13.8 16.0 20.0
0.70 3.0 8.0 10.4 11.4 12.2
0.90 3.8 8.0 8.6 8.8 9.0
0.99 4.0 8.0 8.0 8.0 8.0

The first conclusion from Table 1 is that the basic approximation in (9)
is consistent with the possible values for all ρ.

A second conclusion is that the quality of approximations depends on
the traffic intensity. Consistent with [17], it is not possible to obtain reli-
able approximations for E[W ] in light traffic based only on (λ, c2a, τ, c

2
s). In

contrast, the heavy-traffic approximation in (9) and all the upper bounds
are asymptotically equivalent in the heavy-traffic limit for the scaled mean
waiting time 2(1−ρ)E[W (ρ)]/ρτ in heavy-traffic. Even in heavy traffic, this
is an iterated limit; i.e., we first fix the interarrival-time distribution with
given c2a and then we let ρ ↑ 1.

We illustrate by giving a typical example.

Example 2.1. (an H2/M/1 queue example) Suppose that we consider the
H2/M/1 queue, where the interarrival-time distribution is H2 (hyperexpo-
nential) with c2a = 2, where the third parameter is specified by assuming
balanced means as in (37) on p. 137 of [18]. Then, the heavy-traffic for the
scaled waiting time c2W ≡ 2(1− ρ)E[W (ρ)]/ρτ is c2a + c2s = 2 + 1 = 3.0. For
the actual model, for traffic intensities ρ = 0.3, ρ = 0.6 and ρ = 0.9, we
obtain the values c2W = 2.82, 2.96 and 2.99, respectively, from Table I on p.
170 of [19], exploiting Little’s law. These cases are well approximated by the
HTA 3.0, so that it performs quite well.

However, the third conclusion from Table 1 is that the lower bound is
surprisingly low, even in heavy traffic, so that the range of possible values
consistent with the parameters is surprisingly wide. That occurs because the
LB is attained asymptotically at the associated D/GI/1 queue with c2a = 0.
That D distribution is approached by a distribution that has a very small
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mass at a very large value, and the rest of the mass just less than the mean.
That allows very small values of E[W ].

The heavy-traffic limit of the lower bound is the heavy-traffic limit for
the associated D/GI/1 model, which in Table 1 would be 4.0. The values in
Table 1 are obtained by, first, fixing ρ and then letting the interarrival-time
distribution approach D. Table 1 implies that, for any given ρ, the least
possible value is attained in the corresponding D/GI/1 model. This is why
the distance between the LB and the UB remains large for all ρ.

While we might regard the LB as something of an anomaly, these nu-
merical results clearly indicate that the mean waiting time is not adequately
approximated by the parameter vector (λ, c2a, τ, c

2
s). Moreover, the difficulty

is primarily caused by the arrival process. For example, for M/GI/1, the
mean E[W ] is fully determined by (9), but for GI/M/1 there is a wide
range.

The next question is: What do we gain by replacing the variability pa-
rameter c2a of the renewal arrival process by its IDC? It may seem that we
should gain little, because even though it is a function instead of a single
number, it is still just a variance, but as we show next, that is not the case.

3. Full Characterizations of a Renewal Processes

In this section we observe that the rate and the IDC provide a full char-
acterization of a renewal process and the GI/GI/1 queue.

For understanding and appreciating this conclusion, it is important to
distinguish between the ordinary renewal process and the equilibrium renewal
process, as discussed in [20] and §3.4 and §3.5 of [21]. These two alternative
versions of a renewal process constitute a special case of the discrete-time
stationary point process and the associated continuous-time stationary point
process, linked by the Palm transformation, as discussed in [22]. This is
important for the IDC because the IDC is defined in terms of the continuous-
time stationary version, and is independent of the rate.

We start with a rate-λ renewal process N ≡ {N(t) : t ≥ 0}. Let F be
the cumulative distribution function (cdf) of the interval U between points
(the interarrival time in a GI arrival process), having mean E[U ] = λ−1 and
finite second moment. As a regularity condition, we also assume that F has
a probability density function (pdf) f , where F (t) =

∫ t

0
f(u) du, t ≥ 0. The

pdf assumption ensures that the equilibrium renewal process arises as the
time limit of the ordinary renewal process; e.g., see §3.4 and §3.5 of [21].
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The stationary or equilibrium renewal process differs from the ordinary
renewal process only by the distribution of the first interarrival time. Let Fe

be the cdf of the equilibrium distribution, which has pdf fe(t) = λ(1−F (t)).
Note that we can construct Fe given F , but we cannot construct F given Fe,
but the pair (λ, Fe) fully characterizes F ; we can construct F via

F (t) = 1− λ−1fe(t), t ≥ 0. (15)

Let Ee[·] denote the expectation under the stationary distribution (with
first interval distributed according to Fe) and let E0[·] denote the expectation
under the Palm distribution (with first interval distributed as F ).

Conditioning on the first arrival, distributed as F under the Palm distri-
bution or as Fe under stationary distribution, the renewal equations for the
mean and second moment of N(t), the number of points in an interval [0, t],
are:

m(t) ≡ E0[N(t)] = F (t) +

∫ t

0

m(t− s)dF (s),

me(t) ≡ Ee[N(t)] = Fe(t) +

∫ t

0

m(t− s)dFe(s),

σ(t) ≡ E0[N2(t)] = F (t) + 2

∫ t

0

m(t− s)dF (s) +

∫ t

0

σ(t− s)dF (x),

σe(t) ≡ Ee[N2(t)] = Fe(t) + 2

∫ t

0

m(t− s)dFe(s) +

∫ t

0

σ(t− s)dFe(x).

The function m(t) is the familiar renewal function. To express the rela-
tions among these quantities, we use the Laplace Transform (LT) instead of
the Laplace-Stieltjes Transform (LST). Let the LT of a pdf f(t) and the LST
of F be denoted by L(f)(s) ≡ f̂(s) and defined by

f̂(s) ≡ L(f)(s) ≡
∫ ∞

0

e−stf(t)dt =

∫ ∞

0

e−stdF (t), (16)

so that f(t) = L−1(f̂)(t).
Let a subscript e denote a quantity associated with the equilibrium re-

newal process. Then the LT of fe is

f̂e(s) =
λ(1− f̂(s))

s
and F̂e(s) =

f̂e(s)

s
,
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where λ−1 ≡
∫∞

0
tf(t) dt is the mean.

Applying the LT to the renewal equations, we obtain

m̂(s) =
f̂(s)

s(1− f̂(s))
, (17)

m̂e(s) =
f̂e(s)

s(1− f̂(s))
=

λ

s2
, (18)

σ̂(s) =
f̂(s) + 2sm̂(s)f̂(s)

s(1− f̂(s))
=

f̂(s)(1 + f̂(s))

s(1− f̂(s))2
, (19)

σ̂e(s) =
λ

s2
+

2λ

s
m̂(s) =

λ(1 + f̂(s))

s2(1− f̂(s))
. (20)

From (18), we see that Ee[N(t)] = λ, t ≥ 0, as must be true for any stationary
point process. We are now ready to state the basic characterization theorem,
which is not new, e.g., [20] and [10], but deserves to be better known.

Theorem 3.1. (renewal process characterization theorem) A renewal process
with an inter-renewal distribution having pdf f and cdf F having finite first
two moments with positive mean λ−1 is fully characterized by any one of the
following:

1. the pdf f(t) of the time between renewals;

2. the cdf F (t) of the time between renewals;

3. the LT f̂(s);

4. the renewal function m(t);

5. the LT m̂(s);

6. the rate λ and the variance function of the equilibrium renewal process
σe(t);

7. the rate λ and the LT σ̂e(s);

8. the rate λ and the IDC Ie(t) ≡ σe(t)/λ(t) of the equilibrium renewal
process.

Proof. The equivalence of the time functions and their transforms follows
from the basic theory of Laplace transforms. Hence, we obtain the equiva-
lence by explicit expressions in terms of the Laplace transforms. From (17)
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and (20), we obtain

f̂(s) =
sm̂(s)

1 + sm̂(s)
and

f̂(s) =
s2σ̂e(s)− λ

s2σ̂e(s) + λ
. (21)

Then, from the definition of the IDC, we obtain

σe(t) = λ(t)Ie(t), t ≥ 0.

Corollary 3.1. (full characterization of a GI/GI/1 queue) The GI/GI/1
queue with interarrival-time cdf F and service-time cdf G having finite sec-
ond moments is fully characterized by the four-tuple (λ, Ia(t), τ, Is(t)), where
Ia(t) (Is(t)) is the IDC of the equilibrium renewal process associated with the
interarrival (service) times.

Corollary 3.1 is exploited strongly in [23] in the development of approx-
imations for queues in series. Of course, the rate of a departure process is
just the rate of the arrival process. The key step in the approximation is
developing an approximation for the IDC of a stationary departure process
via a convex combination of the IDC’s Ia(t) and Is(t). By that approach,
we obtain a good characterization of each queue in the series model. The
final formula is an approximation, exploiting heavy-traffic limits, but Corol-
lary 3.1 implies that the true formula must be a function of the four-tuple
(λ, Ia(t), τ, Is(t)).

4. The Case of an H2/M/1 Queue

For the GI/M/1 queue with interarrival-time pdf f , the steady-state
performance depends on a single root of a transform equation. In particular,

E[W ] =
τσ

1− σ
and E[Z] = ρτ

(

σ

1− σ
+

c2s + 1

2

)

, (22)

where σ is the unique root in (0, 1) of the equation

f̂(µ(1− σ)) = σ. (23)
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Consider an H2/M/1 queue, which is a GI/GI/1 queue with an expo-
nential service distribution and a hyperexponential (H2) interarrrival-time
distribution, i.e., a mixture of two exponential distributions, which has pdf

f(t) ≡ pλ1e
−λ1t + (1− p)λ2e

−λ2t, t ≥ 0, (24)

and thus the parameter triple (p, λ1, λ2). Equivalently, it has as parameters
its first three moments or the mean λ−1, scv c2a and the ratio between the two
components of the mean r ≡ p1/λ1/(p1/λ1+p2/λ2) where λ1 > λ2. The third
parameter is often specified by stipulating balanced means,i.e., r = 0.5, as
in (37) on p. 137 on [18]. The behavior as a function of the third parameter
has been studied in [19]. As far as the congestion in the queue is concerned,
the H2 arrival process can be as smooth as a Poisson process with the same
rate or as bursty as a batch Poisson process with the same scv; see (9) in
§IV of [19]. The consequence is illustrated for c2a = 2 and c2a = 12 in Tables
I and II on p. 170 of [19].

From p. 50 of [20], the IDC is

Ia(t) = c2a −
2β

γt
(1− e−γt), t > 0, (25)

where

β ≡ c2a − 1

2
and γ ≡ 2β((m3/3)− (c2s + 1)2/2) (26)

with m3 being the third moment, which is increasing in r. Note that Ia(t) in
(25) in strictly increasing in t from 1 at t = 0 to c2s at t = ∞.

By virtue of Theorem 3.1, the set of H2 arrival processes for given rate
and scv c2a are in fact fully characterized by their rate and IDC. The range
of possible behavior of these IDC’s can be seen from the IDC’s of the two
extremal H2 arrivval processes. The IDC of the lower bound is identically 1,
while the IDC of the upper bound is identically c2s. All other IDC’s increase
from 1 at 0 to c2s at infinity.

Figure 1 compares the RQ approximation for the workload via (6) and
then the waiting time via (1) with simulation estimates for the H2/M/1
model with c2a = 8 and r = 0.1 and r = 0.9. The IDW and normalized
mean workload increase from 2 to 9. We see that the performance and the
approximations remain closer to the M/M/1 lower bound with r = 1 for
r = 0.9 than r = 0.1. Note that Figure 1 is consistent with Theorem 1.1.
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Figure 1: A comparison of the robust queueing approximation for the mean workload and
waiting time in (6) and (1) for the H2/M/1 model with c2a = 8 and two values of r to
simulation estimates.
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5. Simulation Comparisons for a Series of Queues

We now consider simulation experiments for a series of single-server queues.
We consider the heavy-traffic bottleneck examples from [13], which are for
a non-Poisson arrival process feeding a series of 9 single-server queues with
ρi = 0.6 for 1 ≤ i ≤ 8, and ρ9 = 0.9, so that the last queue is a bottle-
neck queue. In particular, we compare the new RQNA algorithm in [23] and
RQ, the algorithm in (6) from [1] with the exact estimated IDC, to the per-
formance of QNA from [2], QNET from [4] and SBD from [6]. The QNET
method uses the multi-dimensional reflected Brownian motion resulting from
the heavy-traffic limit in [7]. The RQNA algorithm uses (74) and (75) of [23].
Each departure IDC is a convex combination of the arrival and service IDC’s,
i.e.,

Id,ρ(t) ≈ wρ(t)Ia(t) + (1− wρ(t))Is(t), t ≥ 0, (27)

where the ρ-dependent weight is

wρ(t) ≡ w∗((1− ρ)2λt)/ρc2s) for w∗(t) ≡ 1− (1− c∗(t))/2t, (28)

where c∗(t) is the correlation function of the stationary version of canonical
(drift - 1, variance 1) RBM; see (24)-(27) of [23].

Table 2 compares five approximation methods to simulation for 9 expo-
nential (M) queues in series fed by a highly-variable rate-1 H2 renewal arrival
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process with c2a = 8 and the usual balanced means. Table 2 compares the var-
ious approximations of the mean steady-state waiting time at each station,
as well as the total waiting time in the system, to simulation estimates. The
simulation estimates for E[Wi] and the IDC are based on a C++ program
and run of length 5 × 107, discarding the initial 105 customers to approach
steady state. The half width of the confidence interval at the final bottleneck
queue was about 0.2% in every case. The QNA approximation appears in
[13]; the heavy-traffic approximations QNET from [4] and SBD appear in [6].

Table 2: A comparison of five approximation methods to simulation for the expected
waiting time E[W ] at each of 9 exponential (M) queues in series with ρi = 0.6, 1 ≤ i ≤ 8,
and ρ9 = 0.9 fed by a highly-variable rate-1 H2 renewal arrival process with c2a = 8 and
r = 0.5, i.e., the usual balanced means.

node Sim QNA QNET SBD RQNA RQ
1 3.36 4.05 4.05 4.05 3.95 3.95
2 2.32 2.92 1.81 1.82 1.58 2.61
3 1.96 2.19 1.47 1.49 0.98 2.04
4 1.77 1.73 1.16 1.19 0.92 1.72
5 1.64 1.43 1.07 1.10 0.90 1.53
6 1.56 1.24 1.03 1.06 0.90 1.41
7 1.49 1.12 1.00 1.03 0.90 1.32
8 1.44 1.04 0.98 1.01 0.90 1.27
9 29.2 8.9 6.0 36.4 29.1 37.1
sum 45.3 24.6 18.6 49.8 40.1 52.9

Table 2 shows poor performance of QNA [2] at the last bottleneck queue
originally exposed in [13]. It also shows the significant improvement provided
by the sequential bottleneck approximation (SBD) reported in [6], which is
largely matched by RQNA and RQ.

To illustrate the impact of additional information about the arrival pro-
cess, Table 3 is the analog of Table 2 in which we use three alternative rate-1
H2 arrival processes, all with c2a = 8.0 but different r, in particular for r = 1.0,
0.9 and 0.1. The case r = 1 is the lower-bound H2 renewal arrival process
with the same mean and c2s = 8, which is the Poisson process, for which both
RQNA and RQ are exact. For r = 0.1, the arrival process is close to a batch
Poisson process. For these cases, the QNA, QNET and SBD approximations
are the same as in Table 2.
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Table 3: A comparison of RQNA and RQ to simulation for the expected waiting time at
each queue for the same model in Table 2 except except the third parameter of the H2

renewal arrival process with c2
a
= 8 is changed from r = 0.5 to r = 1.0, 0.9 and 0.1.

r 1.0 0.9 0.1
node exact Sim RQNA RQ Sim RQNA RQ
1 0.90 1.16 1.13 1.13 5.69 5.84 5.83
2 0.90 1.16 0.95 1.12 2.46 2.71 2.40
3 0.90 1.15 0.91 1.11 1.98 1.28 1.83
4 0.90 1.14 0.90 1.10 1.76 0.97 1.56
5 0.90 1.14 0.90 1.10 1.63 0.91 1.41
6 0.90 1.13 0.90 1.09 1.54 0.90 1.31
7 0.90 1.13 0.90 1.08 1.48 0.90 1.24
8 0.90 1.12 0.90 1.08 1.42 0.90 1.20
9 8.10 19.6 27.2 36.5 29.6 29.3 36.3
sum 15.3 28.8 33.8 45.3 47.5 43.7 53.1

From Tables 2 and 3, we see that the mean waiting time increases as r
decreases. We also see that both RQNA and RQ are very accurate at the
first H2/M/1 queue, where the arrival process is a renewal process, but are
far less reliable at later queues, which have non-renewal arrival processes.
For queues 3-8, RQNA seriously underestimates E[Wi]; since RQ does not,
we include the difficulty lies in the IDC approximation in (27) under lighter
loads. Consistent with the heavy-traffic limit in [23], RQNA performs well at
the final bottleneck queue, although RQ does not, which is partly explained
by the relevant times are those where the IDC experineces most of its increase.
RQNA also does reasonably well predicting the sum of the waiting times.

The RQNA from [3] seems to perform far worse, as shown in Tables 1
and 2 of [12], but it provides tuning parameters that can yield significant
improvement given additional information. In [12] we show that the specific
version of RQNA from §7.2 of [3] corresponds to the asymptotic method from
[18] for all the arrival processes and the Kingman upper bound from [14] at
each queue.

Finally, we observe that the cases r = 0.9 and r = 0.1 in Table 3 pro-
vide a rough estimate of the range of reasonable approximation values for
unspecified third parameter.
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