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INDIRECT ESTIMATION VIA L = \W
PETER W. GLYNN

Stanford University, Stanford, California
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For a large class of queueing systems, Little’s law (L = AW) helps provide a variety of statistical estimators for the long-
run time-average queue length L and the long-run customer-average waiting time . We apply central limit theorem
versions of Little’s law to investigate the asymptotic efficiency of these estimators. We show that an indirect estimator
for L using the natural estimator for W plus the known arrival rate A is more efficient than a direct estimator for L,
provided that the interarrival and waiting times are negatively correlated, thus extending a variance-reduction principle
for the GI/G/s model due to A. M. Law and J. S. Carson. We also introduce a general framework for indirect estimation
which can be applied to other problems besides L = A\WW. We show that the issue of indirect-versus-direct estimation is
related to estimation using nonlinear control variables. We also show, under mild regularity conditions, that any nonlinear
control-variable scheme is equivalent to a linear control-variable scheme from the point of view of asymptotic efficiency.
Finally, we show that asymptotic bias is typically asymptotically negligible compared to asymptotic efficiency.

he formula L = AW (Little’s law) expresses a

fundamental principle in queueing theory: Under
very general conditions, the time-average queue length
L is equal to the product of the arrival rate A and the
customer-average waiting time W (see Little 1961 and
Stidham 1974). Little’s law is very useful because the
assumptions are minimal; it applies to general systems
such as queueing networks and subnetworks as well
as to individual queues (see Section 11.3 of Heyman
and Sobel 1982).

As shown by Law (1974, 1975), Carson (1978) and
Carson and Law (1980), Little’s law also helps con-
struct new statistical estimators for the basic queueing
parameters. These estimators are useful for both direct
system measurements and computer simulation ex-
periments. It is naturally of interest to compare these
estimators and determine which have more desirable
properties. For the GI/G/s queue, Carson and Law
applied regenerative process theory to compare several
of the basic estimators in terms of their asymptotic
efficiency (the normalization constant in the central
limit theorem). The asymptotic efficiency is important
because it determines the size of confidence intervals
when there are large samples.

Our goal in this paper is to compare the asymptotic
efficiency of basic estimators for L and W in more
general queueing systems. It turns out that the fun-
damental relation L = AW, when appropriately gen-

eralized, not only helps identify estimators, but also
provides the basis for comparing their asymptotic
efficiency. In particular, central limit theorem (CLT)
versions of L = AW can be applied for this purpose
(see Glynn and Whitt 1986, 1987, 1988).

The problem is easily stated in rough general terms:
For a queueing system satisfying Little’s law, suppose
that we have natural estimators L, A and W for L, A
and W, respectively. Several questions arise:

Q1. When are the estimators AW and L/A more
efficient for estimating L and W, respectively, than
the natural estimators L and W?

Q2. If A is known, as is often the case (e.g., with
simulation), when are the estimators AW and /A
more efficient for estimating L and W than the natural
estimators £ and W?

Q3. Can the differences in asymptotic efficiency be
significant? Can the variance reduction using the more
efficient estimators be substantial?

Q4. In each of these situations (using X\ or A), are
there other estimators that are even more efficient
than either of these two? Is it possible to determine
the most efficient estimators in some sense?

Q5. When there is substantial potential variance
reduction with a new estimator, is it easy to realize?
Are the new estimators easy to construct and widely
applicable?

Subject classification: Queues: applications to statistical estimation. Queues: asymptotic efficiency via L = A W. Simulation: control variables.
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Q6. Do the conclusions here generalize? Are there
additional ramifications? Are there even more general
principles?

Q7. The focus above is on asymptotic efficiency.
What about asymptotic bias (the difference between
the expected value of the estimator and the actual
parameter value)? Which is more important: asymp-
totic efficiency or asymptotic bias?

The purpose of this paper is to properly formulate
and answer these questions. We obtain simple answers
that are valid in considerable generality. Omitting the
qualifications now, the answers are:

Al. Little’s law does not change the asymptotic
efficiency when \ needs to be estimated.

A2. When X is known and used, the asymptotic
efficiencies of the estimators are indeed typically dif-
ferent. A simple criterion is available to determine
which estimator is more asymptotically efficient in
terms of the covariance matrix in the central limit
theorem version of L = AW. Of course, the covariance
matrix elements are hard to calculate even for elemen-
tary models, but in considerable generality, we show
that A} and W are more asymptotically efficient for
estimating L and W than L and L/ (see Section 7).

A3. The differences in asymptotic efficiency can be
dramatic. We give examples in Section 7 in which the
asymptotic variance of one estimator (natural or in-
direct) is zero, while the asymptotic variance of the
other estimator is positive, so that the relative advan-
tage can be infinite (either way). Typical variance
reduction amounts from using AW instead of L can
be seen from numerical examples for GI/G/s queues
in Law; Carson; and Carson and Law. The typical
improvement is significant but not overwhelming; for
a typical GI/G/s model one might achieve on the
order of 10% variance reduction. (The ratio of the
confidence interval lengths is the square root of
the ratio of the variances.) The improvement usually
increases as the arrival process gets more highly vari-
able, so that for bursty arrival processes the variance
reduction can well be 50-90%.

A4. Any discussion of “most efficient” requires
caution and qualifications; much depends on the in-
formation and the context. Given appropriate quali-
fications, when X is estimated, all the estimators are
equally efficient asymptotically. When \ is known, it
is typically possible to do better than either the indirect
or the natural estimator. The most asymptotically
efficient estimators of L and W in the general L = AW
framework (Section 2) are A\W + a(A™' — A™') and
W + (@/A\(A™" — \7"), where 4 is a consistent esti-
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mator for a constant times a ratio of covariance
matrix elements. (It is no accident that these new
estimators look like linear control-variable estimators;
see A6 below.) This optimality is restricted to the
general L = AW framework in Section 2; if other
quantities such as mean service times are known in
models with additional structure, then it is possible to
do even better.

AS5. The alternative estimators are easy to con-
struct, so that the gains in asymptotic efficiency
are easy to realize. However, the indirect estimators
AW and L/\ clearly require no extra work. The
improved estimators AW + a(A™' — A') and
W + (a4/A)(A~' — A7) require somewhat more work
because d needs to be constructed, but this is not
difficult. Moreover, the same construction applies to
a wide variety of queueing systems and other models.
The improved estimators are worthwhile because they
usually provide significantly more variance reduction
than the direct and indirect estimators. However, with
small samples the more elementary direct and indirect
estimators might be preferred because they avoid the
estimator 4. Experience indicates that there can be
significant degradation of confidence interval coverage
due to g with small samples (e.g., Lavenberg, Moeller
and Sauer 1979).

A6. The conclusions generalize. We show that
the issue of indirect-versus-direct estimation using
L = AW can be regarded as a special case of estimation
using nonlinear control variables; see Kleijnen (1974)
and Nelson (1987). We also show that a nonlinear
control-variable scheme is asymptotically equivalent
to a linear control-variable scheme from the point of
view of asymptotic efficiency. This is a rather direct
consequence of Taylor’s theorem, but it is very im-
portant. (Our analysis supplements p. 53 of Cheng
and Feast (1980) on this point.) Hence, from the point
of view of asymptotic efficiency, the problem of exploit-
ing L = AW for estimation efficiency can be viewed as
a special case of estimation with linear controls. (As
noted in A5 above, though, indirect estimation via
L = AW is convenient because the weight a is not
needed.) More generally, from the point of view of
asymptotic efficiency, indirect estimation is covered
by the theory of linear control variables; see Theorem
9 in Section 8. See Bratley, Fox and Schrage (1987);
Iglehart and Lewis (1979); Chapter III of Kleijnen;
Lavenberg, Moeller and Sauer; Lavenberg and Welch
(1981); Lavenberg, Moeller and Welch (1982); Nozari,
Arnold and Pegden (1984); Rubinstein and Marcus
(1985); and Wilson and Pritsker (1984a,b) for back-
ground on linear control variables and references to
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the relevant statistics literature, e.g., Hansen, Hurwitz
and Madow (1953) and Cochran (1977). To a large
extent, our analysis can be viewed as providing addi-
tional motivation for using linear control estimators.
More generally, we present a convenient framework
for evaluating the asymptotic efficiency of many
estimators.

A7. We investigate asymptotic bias as well as
asymptotic efficiency (Section 9). In a large-sample
context, asymptotic efficiency is usually more impor-
tant than asymptotic bias: Typically the size of confi-
dence intervals (asymptotic efficiency) is on the order
n~'2, whereas the bias is on the order n~!, where n is
the sample size. (This conclusion seems to be the
accepted view; e.g., p. 278 of Fishman 1973; we pres-
ent additional supporting arguments.) We identify two
kinds of bias: initial and nonlinearity, both of which
tend to be of the order n~'. The linear control esti-
mators have the advantage of having no nonlinearity
bias, but bias is also introduced when the linear weight
a in A4 is estimated. The bias associated with esti-

mating 4 is also typically of the order n™".

The key to answering these questions is formulating
them carefully. Thus, we begin in Section 1 by intro-
ducing a general framework for considering indirect
estimation. Then in Section 2 we introduce the frame-
work for L = AW. It is much less general than the
framework of Section 1, but much more general than
a specific model such as the standard GI/G/s queue.
Some conclusions hold in the general estimation
framework of Section 1, whereas others depend on
the L = AW framework. We try to highlight the
differences. In Section 3, we state more precisely the
fundamental principles emerging from our analysis.
The remaining sections develop the theory in more
detail. We outline the rest of the paper at the end of
Section 3. For much of the theory, we draw on Glynn
and Whitt (1986, 1988); when we do, we often omit
proofs.

We close this introduction by emphasizing that the
focus of this paper is entirely on asymptotic analysis
(the limiting behavior as the sample size » increases).
We are concerned primarily with asymptotic effi-
ciency, but we also consider asymptotic bias. We
believe that asymptotic analysis is appropriate for
most simulations, because simulations usually permit
large samples. Moreover, experience indicates that the
asymptotic analysis does indeed capture the dominant
effects in a large sample context. However, in a small
sample context many other statistical issues arise; we
do not address these small-sample issues here.

1. General Framework for Indirect Estimation

We believe that it is useful to define three kinds of
estimators for each parameter: natural, direct and
indirect. Of course, there are many different specific
estimators, but this classification captures the essential
properties. To focus on the main ideas, we first define
these estimators in a more general framework. Let
{(X,, Y., Z,): n = 1} be a sequence of random vectors,
with X, € R%, Y, € R’ and Z, € R!, that satisfy a
Weak Law of Large Numbers (WLLN), i.e.,

n‘1<2 X, XY,y Z,-) =(x,y,2) in R (1
i=1 i=1 i=1

as n — oo, where (X, y, z) is a nonrandom vector and
=> denotes weak convergence or convergence in dis-
tribution. (Recall that weak convergence to a nonran-
dom limit is equivalent to convergence in probability
and that joint convergence in probability is equivalent
to convergence in probability of the marginals sepa-
rately; pp. 25-27 of Billingsley 1968.) Furthermore,
suppose x, y and z are related by

z=f(x ) 2

where f/: R**' — R' is a suitably smooth function, i.e.,
having continuous partial derivatives in all coordi-
nates in a neighborhood of (x, y). In this framework,
we regard X, y and z as the basic parameters and some
initial segment {(X;, Y;, Z;) : 1 < i < n} of the sequence
{(Xi, Yi, Z;) : i = 1} as the model for the observed
data. The natural estimators for x, y and z are then,
respectively,

x"?,’\’ = n_l Z Xi)
i=1

y =n"'Y Y,
i=1

xV=n"'Y Z. (3)
i=1

The direct estimator for z exploits (2) and the other
natural estimators via

z7 = f(x3, ¥2). “4)

The indirect estimator for z also exploits the fact that
one of the parameters x or y, say x, is known, so that

z, = f(x, yu)- ®)

For simplicity, we have assumed that Z, and z are
real-valued, but the ideas and results extend easily to
vectors in R (e.g., see Rubinstein and Marcus). Also



note that the sequence {Z,} is needed in this general
framework only for the natural estimator z%) in (3); we
can obtain the direct estimator (4) and the indirect
estimator (5) directly from {(X;, Y}): 1 < i< n} and
(2). Moreover, other direct and indirect estimators for
z are obtained by substituting different estimators for
the natural estimators x¥ and y? in (3); i.e., the ideas
easily generalize further.

By (1), the natural estimators in the general frame-
work are all consistent, in the sense that z) = z
as n — oo, Since f is locally continuous, a minor
modification of the continuous mapping theorem
(Theorem 5.1 of Billingsley) implies that the other
estimators for z in (4) and (5) are consistent too;
e.g., z2 = f(x, y) = z. To investigate the asymptotic
efficiency of the estimators, we will introduce extra
conditions so that the estimators satisfy CLTs. In
particular, we will have

n'(z; — z) = N(0, o}),

n'(z? — z) = N(0, ¢3)

and

n'A(z; — z) = N(0, o7) (6)

where N(u, ¢?) is a random variable with a normal
distribution having mean u and variance o> The
variances, o%, o» and o? in (6) are the asymptotic
efficiency parameters of the estimators z%, z2 and z/,
respectively. We say that one estimator is more asymp-
totically efficient than another if its asymptotic effi-
ciency parameter is less than the other.

In order to compare the direct and indirect esti-
mators, we also assume that the basic sequence

{(X,, Y,) : n = 1} satisfies a joint CLT; i.e.,

n'Axy = x, y¥ = y)

=n"/2<§‘,Xi“’1x, é Y,-—ny>=>N(0, C) (7

i=1 i=1

where C is a covariance matrix, 0 is a vector of 0’s
and N (0, C) is a random vector with a multivariable
normal distribution with parameters (0, C'). We ana-
lyze asymptotic efficiency in this general framework
in Section 8.

It is also important to consider the bias of each
estimator. For example, for the direct estimator z2 in
(4) the bias is E(z2 — z). Under reasonable regularity
conditions, n(Ez? — z) — Bp as n — o, and similarly
for the other estimators of z. We then call 8, the
asymptotic bias parameter of the estimator z2. What
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is more important is that Ez2 approaches z an order
of magnitude faster than z? does in (6), so that
E(z2 — z) is asymptotically negligible as # — o com-
pared to the size of the confidence interval based
on z”. We develop the supporting asymptotic theory
and describe the asymptotic bias parameter in more
detail in Section 9.

2. A Framework for L = \W

We now introduce a framework for L = AW. We start
with a sequence of ordered pairs of real-valued ran-
dom variables {(4,, D,) : n = 1}, satisfying

0<4,<A,.,—x asn—o andAd,<D,<wx

w.p. 1 (with probability one). We usually interpret A,
and D, as the arrival and departure epochs of the nth
arriving customer. (However, arrival and departure
should be interpreted with respect to the system under
consideration. For example, if the system refers to a
queue, excluding the servers, then D, is the epoch
when the nth customer leaves the queue, which usu-
ally occurs when the customer begins service.) We do
not require that D, < D,.,,, i.e., customers depart in
the same order that they arrive, although this does in
fact hold for many queues. We view the nth customer
as being in the system during the interval [4,,, D,], so
that Q(t), the number of customers in the system at
time ¢, is given by

N()

Q@) = gl I4, <t < D,) ®

where [ is the set indicator function, defined for any
event B and sample point w by I(B)(w) =1if w € B
and I(B)(w) = 0 otherwise, and

Nit)=max{n=0:4,<1t},t=0, 9)

with 4, = 0 without there being a Oth customer. Thus,
N(t) is the arrival counting process. The waiting time
for the nth customer is of course W, = D, — A,,. (For
further discussion, see Section 2 of Glynn and Whitt
(1986). A more general framework encompassing the
extension of L = AW to H = AG is introduced and
CLTs are proved for it in Glynn and Whitt (1989).
The H = \G relations are also covered by the general
estimation framework of Section 1.)

The standard statement of Little’s law relates the
w.p. 1 limit of the time average ™' [ O(s)ds as
t — o to the w.p. 1 limits of the customer averages
n' Y., W, and n7'4, as n — o. To study
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asymptotic efficiency, we will assume instead a joint
CLT.

Basic CLT Assumption

The sequence {(4,, Y%i-1 Wi): n = 1} obeys a joint
CLT: There exist constants A and w with 0 < A,
w < o and a covariance matrix C = {C;;: 1 < i,j < 2}
such that

n“/2<A,,—n>\", 3 Wk—nw)zN(O,C). (10)

k=1

It is of course important that the CLT (10) and
stronger FCLTs (functional central limit theorems)
actually hold in many circumstances (see Iglehart
1971; Whitt 1972; Glynn and Whitt 1987; and Prop-
ositions 2 and 3 in Section 7 here.

Henceforth, we follow the convention that ordinary
lower case letters usually represent nonrandom ele-
ments, while capitals and boldface letters such as z%
in (3) usually represent random variables. Thus, we
let w replace W as the long-run customer-average
waiting time and we let g replace L as the long-run
time-average queue length. This explains why w ap-
pears as a translation constant in (10).

To interpret what follows it is useful to have
a concrete example (which we use throughout the

paper).

Example 1a

Consider the standard M/M/1 queue with service rate
1 and arrival rate p with p < 1. Let W, be the waiting
time of the nth customer before beginning service.
Then (10) holds with C; = 1/p?, C;; = —1(/1 — p)?
and Cy; = p[2 + S5p — 4p% + p%/(1 — p)*. First, C,, is
obvious because it is just the variance of an exponen-
tial with mean 1/p. The term C,, comes from (2.1) of
Law (1975), while the term C,, comes from (2.2) of
Law plus Theorem 2 here. See Daley and Jacobs
(1969), Iglehart (1971) and Abate and Whitt (1988)
for different approaches.

By the continuous mapping theorem (Theorem 5.1
of Billingsley), (10) immediately implies the associated
Weak Law of Large Numbers (WLLN), i.e.,

n'4,=\"' and n'Y W,=w. (11)

k=1

Less obvious is the associated WLLN for the arrival
counting process N(¢) and the queue length process
Q(¢) in (8) and (9).

Theorem 1. Ifthe WLLNs (11) holds, which is implied
by (10), then

t
IT'N(@)=\ and t"f Q()ds=q
0
ast— o, where q = \w.

This is Theorem 3 of Glynn and Whitt (1988).
Thus, (10) yields WLLNs for Q(t), W, and A4, and
requires that the limits be related by ¢ = Aw, which,
of course, is L = AW in our notation. In other words,
(10) is a hypothesis guaranteeing the existence of the
relevant limits and the validity of Little’s formula (see
Franken, Konig, Arndt and Schmidt 1981; Stidham,
and Section 2 of Glynn and Whitt 1986 for other such
hypotheses). Neither (10) nor the standard hypotheses
imply each other (see Glynn and Whitt 1988). More
important for our purposes, however, is the fact that
(10) also has important implications for statistical
estimation.

Note that the L = AW framework is represented as
a special case of the general framework in Section 1
bylettingz=L=¢g,x=\,y=W=wand f(x, y) =
xyorz=W=w,x=\',y=L=gandf(x,y) =
y/x). Of course, the L = AW framework does not fit
into Section 1 exactly as given because the data for g
consist of the continuous time queue length process
instead of some sequence {Z,:n = 1}, but the ideas
easily extend to cover this modification. As we will
show, the key point is that the arrival rate \ is often
known in advance, so that there is an opportunity to
exploit it in the statistical estimation of ¢ and w. For
example, in an open network of queues, A is typically
known in a simulation experiment. In a system
measurement context, indirect estimation may also
be relevant. For example, suppose that we are esti-
mating g for a newly installed telephone switching
system. The historical calling record might be used to
obtain a highly accurate estimate for A\. Moreover, the
arrival process might be unchanged by the addition of
the new switching system, even though the service
mechanism and, thus, the waiting times and queue-
length process, would typically be very different. On
the other hand, for a closed network of queues, A is
typically unknown even in a simulation experiment.
In either case, but especially (as it turns out) when A
is known, it is clearly important to know whether the
direct or the indirect estimator is more efficient. It is
also important to know if there are even more efficient
estimators.

We close this section by remarking that (10) is



weaker than the conditions in Glynn and Whitt (1986,
1987, 1988) for the continuous time processes
(N (@), [6 Q(s) ds) to satisfy a joint CLT, i.e., for

z-'/2<N(t)—>\t, fo Q(S)ds—'qt)f»*N(O»C*) (12

for some covariance matrix C*. If the joint CLT (10)
is strengthened to a joint FCLT (functional central
limit theorem), then (N(¢), [§ Q(s) ds) obeys a
joint FCLT, and thus also (12), by Theorem 4 of
Glynn and Whitt (1986). If, instead, the sequence
{(4y — Ar—y, W)):k = 1} is stationary in addition to
(10), then (12) holds by Theorem 1 of Glynn and
Whitt (1988). (In either case, we can then express C*
in terms of C.) We will introduce the stronger FCLT
hypothesis in Section 5, but first, in Section 4 we see
what can be done only with (10). Many of the results
in this paper can be obtained without considering the
continuous time processes, and so do not depend on
the extra FCLT assumption.

3. Main Conclusions

Now that we have formulated a general indirect esti-
mation framework (Section 1) and the L = AW frame-
work (Section 2), we can state our main conclusions
more precisely. We use the new notation: g for L and
w for W. Six general principles emerge from our
analysis:

P1. In the L = AW framework, the asymptotic
efficiency of the natural and direct estimators for g
coincide (and similarly for w). This principle very
much depends on the special structure of the queueing
model; it is valid in the L = AW framework of
Section 2, but not in the general indirect estimation
framework of Section 1. This nice property occurs for
queueing systems because the relation L = AW, when
fully developed, embodies much more than a relation
(2) among the parameters ¢, A and w. Properly inter-
preted, the relation L = AW also entails a relation
among the associated stochastic processes; see Theo-
rem 1 of Glynn and Whitt (1986). As a consequence,
in the queueing context we are able to show that

2y =125 + op(n~'7), (13)

which means that modulo a term that converges in
probability to zero after dividing by n~'/2, z% is equal
to z2; i.e., (13) means that

n'?@¥ —z0)=0 asn—oox. (14)
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As a consequence of (14), 6% =¢3, but (13) and (14)
are much stronger than the separate convergence in
(6) with ¢% = ¢%. Formulas 13 and 14 say that in a
large-sample context n'/*(zy — z) and n'*(z% — z)
are essentially the same random variable. They will
have approximately the same value for any sufficiently
long segment of any realization of the underlying
stochastic process. (It is trivial that z} and z2 are
essentially the same random variable for large #n, both
being nearly z.)

In queueing, this principle means that we can re-
strict attention to the direct and indirect estimators;
i.e., the fundamental issue as far as asymptotic effi-
ciency is concerned is whether to use A instead of an
estimator for A when A is known. As far as asymptotic
efficiency is concerned, there is no advantage or dis-
advantage to using a segment of the continuous time
queue length process instead of a segment of the
discrete time waiting time sequence, given the same
basic data.

P2. In the special case of L = AW, we can exploit
the special structure of f in (2) to write w = \7!g
and relate the asymptotic efficiency parameters of
w and ¢. Let ¢%(g) and o*(w) denote the asymptotic
efficiency parameters of estimators of g and w, respec-
tively, with subscripts indicating the method. In par-
ticular, it is immediate that

oi(g)=N*e%(w) and o7(W)=A"*03(q),

but o5(w) = o%(w) and ¢5(g) = oi(q) by P1 above,
so that

o#(q) — o5(q) = N*(ab(W) — s H(W)).

As a consequence, the indirect estimator for g is more
efficient than the direct estimator for g if and only if
the direct estimator for w is more efficient than the
indirect estimator for w. Moreover, we will show that
the estimators for ¢ and w are actually related in the
stronger sense of (13) and (14); see (20). As a conse-
quence, as far as asymptotic efficiency is concerned,
it suffices to consider only one of g and w.

P3. In considerable generality, the indirect esti-
mator for g (the direct estimator for w) is asymptoti-
cally more efficient than the direct estimator for g (the
indirect estimator of w); see Section 7. In particular,
this is true provided the waiting times and interarrival
times are negatively correlated, which, in turn, is true
of the conditional expected waiting time given that an
interarrival time is a nonincreasing function of the
interarrival time, for all interarrival times and waiting
times, which we would expect to be satisfied in most
queueing systems. This conclusion is valid for the
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standard GI/G/s queue with the first-come first-served
discipline, as was shown by Carson and Law. More-
over, we show that the independence and identical-
distribution assumptions of the GI/G/s model can be
relaxed (Theorem 8).

P4. The time scale has no stochastic effect on the
asymptotic efficiency of the estimators. In other
words, under mild regularity conditions, it does not
matter whether we collect data for a specified number
n of customers, for a random number of customers,
for a specified time interval [0, ¢{] or for a random
time interval. There is a deterministic effect due to
the expected average number of customers arriving;
e.g., in [0, ¢] it is A¢ (asymptotically). As a conse-
quence, working with the time interval [0, ¢] instead
of n simply causes each asymptotic efficiency param-
eter to be multiplied by A ™! (see Section 6). It thus has
no effect on a comparison of estimators in terms of
their asymptotic efficiency. (This effect is the same
as caused by regenerative cycles in regenerative
simulation.)

P5. As indicated in answer A6 to question Q6, the
relationship between indirect and direct estimation
is fruitfully viewed from the perspective of control
variables. This is true in the general framework of
Section 1. In particular, direct estimation can be iden-
tified with estimation using nonlinear control vari-
ables, whereas indirect estimation corresponds to not
using the control variable. Nonlinear control-variable
schemes have been proposed for statistical estimation
in simulation experiments by Kleijnen and Nelson.
However, we show that under mild regularity condi-
tions a nonlinear control-variable scheme is equiva-
lent to an associated linear control-variable scheme as
far as the asymptotic efficiency is concerned. Finally,
by optimizing over the linear control variable schemes
in the usual way, we obtain an estimator that is at
least as good and usually strictly better than either the
direct or indirect estimator, with the criterion of
asymptotic efficiency. In fact, in a strong sense, the
optimal linear control estimators are best possible in
the L = AW framework of Section 2 with the criterion
of asymptotic efficiency; see Theorem 10. Similarly,
the natural estimators are best possible when A is
unknown. This optimality goes beyond optimality
within the linear control-variable framework because
our L = AW framework in Section 2 is more general.
However, for a particular model with additional struc-
ture (e.g., when service times with known mean are
specified too0), it is typically possible to do even better
by using multiple control variables; see Section 10 and
Lavenberg, Moeller and Sauer.

P6. As indicated in answer A7, asymptotic bias is

usually asymptotically negligible compared to asymp-
totic efficiency. For example, consider the direct esti-
mator z2 in (4): the bias is (Ez2 — z). Asymptotic
analysis, based on reasonable regularity conditions,
shows that

Ez2—z=n""Bp+o(n™")

or, equivalently, that n(Ez? — z) — 8p as n — . The
main conclusion upon comparison with (6) is that the
bias is indeed asymptotically negligible compared to
the efficiency as n — . We also describe the asymp-
totic bias parameter 8, in more detail. In particular,
we can identify separate contributions to the bias, i.e.,

ﬁD = Bx + ﬁy + Bf”

where 8, and B, are the contributions due to the initial
bias of xJ and y!, respectively (which also in-
volves fin 2), and 8, is the contribution due to the
nonlinearity of f (which also involves (x3, yX)).
The linear control estimators have the advantage that
B,-vanishes.

Here is how the rest of this paper is organized.
Sections 4 and 5 discuss estimation in the customer
(discrete) time scale, and Section 6 discusses estima-
tion in the intrinsic (continuous) time scale (establish-
ing P4). Section 4 explores what can be done given
the basic CLT assumption (10), while Sections 5 and
6 require the addition of a stronger FCLT assumption
to treat the continuous time processes Q(¢) and N(t)
in (8) and (9).

Section 7 is devoted to the question of when indirect
estimation is asymptotically more efficient than direct
estimation (P3). Section 8 returns to the general
framework in Section 1, establishes the connection to
control variable estimation and develops the new,
more efficient estimator (P5). Section 9 investigates
asymptotic bias, supporting the conclusions in A7
and P6.

Finally, Section 10 illustrates the value of the general
framework in Section 1 and the associated general
results in Sections 8 and 9 by studying the asymptotic
efficiency and the asymptotic bias of estimators of the
time-average limit of the workload in a GI/G/s queue
at time ¢, using the extension of L = AW to H = A\G;
e.g., see pp. 408-412 of Heyman and Sobel. This
example shows how we can exploit a known service
time distribution as well as a known arrival rate.

4. Estimation in the Customer Time Scale

Consider the L = AW framework in Section 2 with
the basic CLT assumption (10). Suppose that we



observe the system over the time interval required for
the first #» customers to arrive and depart, i.e., over
the interval [0, D}] where D} = max{D;:1 < k < n},
with the purpose of estimating g. Such an observation
may be obtained either by a direct system measure-
ment or by a computer simulation experiment.
Over the time interval [0, D}], the variables
W, Wy, ..., W,, and A4, are observable, so that the
estimators n~'4, and 37, W, for A™! and w can be
constructed.

Theorem 1 suggests the following direct estimator
for g = A

0 =mA " Y Wi=A4," Y W, (15)
k=1

k=1

Note that (15) is a special case of (4), with the modi-
fication that {Z,} is replaced by the continuous time
process {Q(t):t = 0}. (As remarked in the introduc-
tion, the sequence {Z,} or its analog {Q(t)t = 0} is not
needed for the direct and indirect estimators; here the
basic sequence {(X,, Y,,):n = 1} for the general frame-
work in Section 1 is defined by X, = 4, — 4,-, and
Y, = W,, n = 1, using the data we have chosen to
observe.) Clearly, the basic assumption (10) implies
that q2 is a consistent estimator for ¢, in the sense
that q? = ¢. The rate of convergence of g2 to g
is described by the following CLT. Let =, denote
equality in distribution.

Theorem 2. Under (10), n'*(q? — q) = N(0, ¢3)
where 6% = A\(q*Cy, — 2qCi2 + Cy).

Proof. Note that

n'?[qry —q]

= n”ZA;‘{E Wi — qAn]
k=1

= (n/A,,)n*‘/2<A,, -\, Y We— nw) . <—‘1]>
k=1
By (10) and Theorem 5.1 of Billingsley,
n"/2<A,1 -, Y Wi~ nw) . <_§1>
k=1
= N(,C) - (‘?) =,\"apN(0, 1).

Recalling that 4,/n = A, we apply Theorems 4.1
and 4.4 of Billingsley to complete the proof.
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If X is known, then we may use instead the following
indirect estimator of g:

4 =" Y Wi (16)
k=1

A CLT for q/ follows immediately from (10): under
(10) n'X(q}, — q) = N(0, ¢3), where o7 = A\Cy. We
say that the indirect estimator g7 is more asymptoti-
cally efficient for estimating ¢ than the direct estimator
q?2 if ¢ < ¢%. In Section 7 we investigate when this
inequality holds.

Example 1b

For the M/M/1 queue, since we let W, be the waiting
time before beginning service, the associated queue
length process counts the number of customers wait-
ing, excluding any in service, and has steady state
mean g = p*(1 — p). The asymptotic efficiency param-
eters for the direct and indirect estimators of g are

o =2p(1 +4p — 4p> + p’)/(1 — p)*

and

07=p’Cn=p*2+5p—4p> +p’)/(1 = p)*.

The variance reduction using the indirect estimator is
ob— o7 =p*q*’Cii — 29C2) = p*(3 = p)/(1 — p)’

and the relative savings is

ob—oi __p(1=p)3—p)
o} 2+8p—8p2+2p%°

which converges to 0 as p approaches both 0 and 1.
For p = 0.5, 0.7, 0.8 and 0.9, the relative savings is
0.15,0.11, 0.08, and 0.05, respectively.

5. Using the Stronger FCLT Assumption

Given the data over [0, D}] in Section 4, we also can
construct the natural estimator for g, namely

D},
qy = (D)™ Q(s) ds. (17
However, to treat (17) we need a stronger condition
than (10). In particular, we introduce the FCLT con-
dition in Glynn and Whitt (1986). (An alternative is
to assume stationarity and invoke Theorem 1 of
Glynn and Whitt 1988.) For this purpose, let D[0, 1]
be the function space of all right-continuous real-
valued functions on [0, 1] with left limits everywhere,
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as in Chapter 3 of Billingsley. Then let
A1) =n""[ Ay = N"'nt]

and

[nt]
W)= n“/z[z Wi — wnt], O=<t=l1 (18)
k=1

by random elements of D[0, 1], where [x] is the
greatest integer less than or equal to x. Also let
B, C)t), 0 < t < 1, represent two-dimensional
Brownian motion on D[0, 1]* = D[0, 1] X D[0, 1]
with drift vector b = (b,, b,) and covariance matrix C.
(B(b, C) can be represented as B(b, I)M where 1 is
the identity matrix, M is a 2 X 2 rotation matrix such
that C = M*DM, D is a diagonal matrix and
B(b, I') is standard two-dimensional Brownian motion
with independent marginal processes (p. 365 of Karlin
and Taylor (1975) and pp. 70, 84 of Feller (1971); for
each ¢, B(b, C)(¢) is distributed as N(zb, tC).)

Stronger FCLT Assumption

The sequence {(A,, W,):n = 1} in (18) satisfies a joint
FCLT: there exist constants A and w with 0 < A,
w < o and a covariance matrix C = {C;;: 1 < i, j < 2}
such that

(A, W,)=B(0,C) in DI0, 1]°. (19)

Note that (19) implies (10), by applying the contin-
uous mapping theorem with the projection map ,
defined by =(x, y) = (x(1), (1)) for x, y € D[0, 1], so
that (19) is indeed a stronger condition. However, for
practical purposes there is little difference between
(19) and (10). It is only in pathological situations that
(10) holds without (19); e.g., see Glynn and Whitt
(1988).

In order to treat q5 in (17), we use the stronger
FCLT condition (19). As a consequence, we also get
an FCLT conclusion, but we do not state it.

Theorem 3. Under (19), n™'D}, = X7, n'*(q? — qJ))
= 0, and n"*(qY — q) = N, o) for b in
Theorem 2.

Proof. This follows easily from Theorem 4 of Glynn
and Whitt (1986). The functional version of the first
limit is contained directly there. The second limit,
which corresponds to (13) and (14), follows from the
third limit and the limit in Theorem 2 holding jointly
with the same limit random variable, i.e.,

n'A(q7 - q,qn — g)= (X, X) inR’

where X =, (0, ¢3). To establish this joint limit, use
(19) and Theorem 4 of Glynn and Whitt (1986) to get

{n"An, n~'D}, n“”(A,, — XL, Dl —n\"!,

D},

Zn: Wi — nw, Q(s) ds — nw)},

k=1
=\ A4,4, W, W) inR.

Then apply the argument in the proof of Theorem 2
twice to get the desired joint convergence in R* with
limit X = N(—g4 + W) =, N(0, o3).

So far, we have discussed only estimators for g.
Estimators for w can be treated in the same way; in
fact, we can apply the previous results for the esti-
mators q%, q2 and ¢/, of g. Simply observe that for the
data over [0, D}], the corresponding three estimators
for w are, by definition according to (3)-(5),

wy=n"'Y Wi=X"qj,

k=1
wl2=(n"'4,)q) and wi=\"'q}. (20)

Only w2 in (20) requires some additional discussion:
Since w¥ = n~'4,q2 and

wr = (n""A,)qy
=04, = N Nay —q7)
+ A#l(qu - an) + n_lAnan,

w2 = w) + 0,(n"/?) under (19) by (11) and Theorem
3, which in turn implies. that w2 = X~'q/ + 0,(n™'?)
under (19); i.e., we have established P1 and P2 in
Section 3 for the estimators of w.

6. Estimation in the Intrinsic Time Scale

Now suppose that we observe the queue over the time
interval [0, ¢], again for the purpose of estimating g.
It turns out that, from the point of view of asymptotic
efficiency, this change in the basic data corresponds
to a deterministic time transformation. As # — o, the
number of arrivals in [0, D}] is approximately #; i.e.,
n 'N(D}) = 1. On the other hand, as ¢t — o, the
number of arrivals in [0, ¢] is approximately \f; i.e.,
t7'N(t) = \. By changing to the intrinsic time scale,
the limit theorems in Sections 4 and 5 are modified
as if we replaced the number of customers, n, by An
in the customer time scale without changing the nor-
malization to (An)'/% i.e., the change corresponds to
n'*(qf, — q) = N'’N(0, o) =4 N(0, \7'o3). See



Lemma 1 in Section 5 of Glynn and Whitt (1986) for
additional theoretical justification.

Let O(t) be the number of customers to depart the
system by time ¢, which we can define by

o)=Y I(D,<t), t=0,
k=1

where I(B) is the indicator function as in (8). Over
the interval [0, t], Wi, Wa, ..., Wou, and Ao are
observable, so that paralleling (15), we can define the
direct estimator

o)

q°(t) =450 =AB<‘z>kZ We. (21)
=1

From Theorem 1, we have "' N(¢) = X and we should
expect to have 17'O(¢) = X\ as well. However, this is
less obvious; it holds under the conditions of Theo-
rem 1 by Theorem 3 of Glynn and Whitt (1988).

It is to be expected from Theorem 2 that

016w — 9) = oo D(0, 1). (22)

In fact, (22) can be justified under (19), by appealing
to Theorem 4 of Glynn and Whitt (1986). By combin-
ing (22) with the converging-together theorem (Theo-
rem 4.1 of Billingsley) or by appealing directly to
Theorem 4 of Glynn and Whitt (1986), we obtain the
following CLT.

Theorem 4. Under (19), tY*(q°(¢t) — ¢q) =
N(0, A\"'o3) for a3 in Theorem 2.

A variety of other estimators can be constructed
from data observed over the interval [0, ¢], all of which
are asymptotically equivalent to q°(¢). Let

q?)=q"t)=1t" J; O(s) ds,

o)

q?(t) = (Anw)™" k§=:1 Wi

and

ou)

qf(t) =t z Wk.
k=1

The next CLT also follows from Theorem 4 in
Glynn and Whitt (1986). The fact that the natural
estimator ¢™¥(¢) = q?(¢) has the same asymptotic effi-
ciency parameter A\~'¢2 as q”(¢) establishes principle
P1 in the intrinsic time scale.

Theorem 5. Under (19), for each i, qP(t) = q”(t) +
0,(t7'%) and t'*(qP(t) — q) = N(0, \"'a3).
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As in Section 2, an indirect estimator of ¢ is also
available on the intrinsic time scale. In particular,
assuming that X is known, let

o)

q'(0)=r0(0)~" kgl Wi. 24

The following CLT has a proof similar to that of
Theorem 4.

Theorem 6. Under (19), t'*(q'(z) — q) = N(0, \"'¢?)
Jor o} = N2C», as in Section 4.

A corresponding simple transformation of the
asymptotic efficiency parameters occurs if we measure
time in regenerative cycles, as is often done in regen-
erative simulation; see p. 210 of Glynn and Whitt
(1986).

Example 1c

For the M/M/1 queue, the asymptotic efficiency of
the direct estimator of ¢ in the discrete time scale is
o5 =2p%(1 + 4p — 4p* + p*)/(1 — p)*. In the intrinsic
time scale it is p~'¢3. If, instead, we want to measure
time in busy cycles, as in regenerative simulation, then
to obtain the asymptotic efficiency of the direct esti-
mator of g we simply divide by the expected number
of customers served in a busy cycle and get (1 — p)a3.
This is VAD(d,) in (2.2) of Law (1975).

7. Comparing the Asymptotic Efficiency

We compare the asymptotic efficiency of direct and
indirect estimators by comparing the quantities
0% and o7. Since

0'%) = 0'% ad 2q>\2C12 + q2>\2C11,

a sufficient condition for o7 < ¢3 is C;, < 0. In fact,
it is common to have C;, < 0, as we will show. Then
o} — ¢% is bounded below by ¢’A\*C,;, and the reduc-
tion in the variance relative to the square of the
estimate g is

(O’%)— U%)/qz = )\2CV1] =C,24

where c? is the asymptotic variability parameter of the
arrival process, which plays a prominent role in heavy-
traffic limit theorems and approximations; see Whitt
(1982). The asymptotic variability parameter c?
thus seems to be a good indicator of the relative vari-
ance reduction. This is illustrated by the Q data in
Tables I and II of Carson and Law. We would expect
significant variance reduction from the indirect esti-
mation of ¢ in models with very bursty arrival
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processes as measured by ¢, eg., ¢ = 18 for a
multiplexer in Sriram and Whitt (1986).

To analyze the sign of C,, it is convenient to impose
the following uniform integrability (UI) assumption;
see p. 32 of Billingsley or Section 4.5 of Chung (1974).
As usual, the purpose of Ul is to get convergence of
moments from convergence in distribution.

Assumption UL The sequences {n~'(4, — n\7'):
n= 1} and {n~'(Xi=1 Wi — nw)*: n = 1} are uniformly
integrable.

Assumption UI immediately implies uniform
integrability of several related sequences.

Proposition 1. Under Assumption UL, the sequences

(WA, —n\"N:n=1},

{n“‘/2<2 W, — nw):n = 1}
k=1

and

i fi o3 w1}

are uniformly integrable.
Proof. Observe that
n2 A, —nt|

<1+n'(4d,—n\",

n—l/2

n
2 Wk — nw
k=1

n 2
<1 +n“<2 Wk—nw> ,

k=1

n—l

A, - nk“)(é W — nw) l

n 2
< 2“[71“(/1,, — N+ n“( D Wi— nw) ]
k=1

Thus, the three sequences in question are dominated
by uniformly integrable sequences, which implies uni-
form integrability of the dominated sequences.

The continuous mapping theorem applied to (10)
shows that

nV(4,—n\) =Y,

n“”( > Wi— nw) =Y,

k=1
n“[(A,, — nA")( > We— nw)] =YY,
k=1

where (Y, Y>) is distributed as N(0, C). The uniform
integrability provided by Proposition 1 allows us to
pass the expectation through (25), yielding

n'2E(4, — n\")—> EY, =0

n””E(Z W, — nw) —- EY, =0

k=1
n_lE[(An - I’l)\_l)( z Wk - nW>:| ——)EYI Yz = Clz
k=1

as n— . Let U; = 4, — A, be an interarrival time.
We thus have

Cy; = lim n“cov[A,,, > Wk]
k=1

n—oo

M s

= lim n™!

n—

En) cov(Uj, Wy). (26)

Jj=1

under Assumptions 10 and UL To obtain nonposi-
tivity of Cy,, it, therefore, suffices to show that
cov(U;, W) < 0 for all j and k. Since

cov(U;, W) = cov(U;, hu(U)))
where
hyw) = E(Wie| Uy = w) @7

by Theorem 9.1.3 of Chung (1974), we obtain the
following result. For the proof, recall that a family of
random variables {X,} is associated if cov( f({X.}),
2({X,.}) = 0 for all pairs of nondecreasing real-valued
functions f'and g such that the expectations exist; see
p. 29 of Barlow and Proschan (1975).

Theorem 7. If, in addition to Assumptions 10 and Ul,
hi(u) in (27) is a nonincreasing function of u for all j
and k, then o3 < o%.

Proof. We need only observe that if f and g are
nondecreasing functions, then cov[f(X), g(X)] = 0
provided that the covariance is well defined. In other
words, a single random variable X is associated. In
fact, (f(X), g(X)) then has the maximum possible



covariance among bivariate distributions with margin-
als distributed as f(X) and g(X) by virtue of the
rearrangement theorem of Hardy, Littlewood and
Polya (1952); see Whitt (1976): Theorem 2.1 and
Lemmas 2.2 and 2.3 also establish the desired
inequality.

From a practical view, Theorem 7 says that indirect
estimation of ¢ is more efficient than direct estimation
provided that the waiting times tend to be nonincreas-
ing functions of the interarrival times (/;,(#) in (27)
involves an expectation and (26) involves an average).
The conditions of Theorem 7 hold in many queues,
including the standard GI/G/s queue with the FCFS
(first-come first-served) discipline when W, is the
waiting time of the kth customer until beginning
service (or the sojourn time, including service time),
as was shown by Carson and Law, Lemma 3.

Our next result shows that the GI/G/s result in
Carson and Law holds with the usual distributional
assumptions (independence and identical distribu-
tions) greatly relaxed.

Theorem 8. Consider the standard wmultiserver
queueing model with unlimited waiting room and the
FCEFS discipline. If, in addition to Assumptions 10
and Ul, either a) the family {U,, — Vi: k = 1} is
associated, where V. is the service time of the kth
customer, or b) the service times are independent of
the interarrival times and the interarrival times {U,}
alone are associated, then Cov(U;, W) < 0 for all j

and k, so that o} < o3,

Proof. Kiefer and Wolfowitz (1955) proved that, for
each sample path of interarrival time and service
times, W, is a nonincreasing function of the first
k — 1 interarrival times and a nondecreasing function
of the first k — 1 service times. Hence,

Cov(U;, Wy)

= Cov(ljj’ﬁ((Ul’ ceey Uk—l’ _Vl9 DY _Vk—l))

where f.: R*? — R is nonincreasing. Since
{(Ur, =V3)} is associated by assumption in (a), the
conclusion follows. Under (b), we can first condition
on the service times. By the assumed independence
between {U,} and {V}}, the conditional interarrival
times given the service times are associated. Hence,

we have
Cov(U;, W) = Cov(U;, gu(Uy, ..., Uiy))

where there is an implicit conditioning on the service
times. However, g, is nonincreasing for each realiza-
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tion of the service times, so that Cov(U;, W,) condi-
tional on the service times is nonpositive. Finally, we
obtain the desired conclusion by unconditioning.

Note that in Theorem 8 neither the service nor the
interarrival times need be either independent or iden-
tically distributed. Of course, independence for ran-
dom variables is a sufficient condition for them to be
associated.

We now give examples in which each of the basic
estimators for ¢ is strongly preferred.

Example 2

Consider the standard GI/D/o service system, focus-
ing on the number of customers in service. Obviously,
n~' i, Wi = w for each n so that C,, = C;, = 0. In
general, however, A, has variance so that C,; > 0.
In this case, o = 0 whereas o7, = A*¢>C;, > 0.

Example 3

We now show that the reverse of Example 2 can
prevail: it can be much better to use the direct esti-
mator q2 than the indirect estimator q’.. Suppose that
Q(t) is the number of jobs in service at a single-server
facility, so that Q(t) € {0, 1}. If there are an unlimited
number of jobs to be processed at this facility, then
the server is always busy so that Q(t) = 1 for all ¢
w.p.l. Furthermore, the arrival time A,., of the
(k + 1)st customer is the departure time of the kth
customer, so that W), = U,,,. Thus,

a7 = 47" X Wi= (Api — 4)/Ap. (28)
k=1

If the interarrival times {U,: k = 1} are independent
and identically distributed, with finite variance, it is
easily shown using (28) that n'/*(g? — 1) = 0 as
n — o, implying that ¢2 = 0. On the other hand,
q’. = 7' X4, Wi clearly satisfies n'/2(q} — 1) =
N(0, o2}, where o7 = Avar(U,). Note that in this
example W, and U,., are positively correlated; in fact,
their correlation is 1, the maximum possible. Also,
observe that this example arises approximately with a
GI/G/1 queue in heavy traffic if the system we focus
on consists of the server.

Before concluding this section, we discuss condi-
tions guaranteeing Assumption UL Frequently, the
conditions necessary to obtain UI also imply (19) (and
thus 10).

Proposition 2. Let {X,: n = 0} be a real-valued
nondelayed regenerative sequence with an associated
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sequence of regeneration times {T,: n= 1}. If
Ty-1 2

E< Y (Xl + 1)) < oo,
k=0

then

{I’l—l<ni (Xk - EXk)> ‘n= 1}

is uniformly integrable and an FCLT holds for the
partial sums.

For the proof of uniform integrability in Proposi-
tion 2, see Chung (1966), p. 102; for the FCLT, see
Freedman (1967). Both proofs are given for dis-
crete time Markov chains but generalize without diffi-
culty to the regenerative case. :

Proposition 3. Let {X,: n = 0} be a strictly stationary
o-mixing sequence via ¢-mixing coefficients satisfying
Sieo o2 < oo, If EX} < o, then

n—1 2
{n“( > X — nEXO) Tn= 1}
k=0

is uniformly integrable and an FCLT holds for the
partial sums.

The proof and more details on the statement of
Proposition 3 can be found on pgs. 172-177 of
Billingsley. Similar results hold for strongly mixing
sequences (Hall and Heyde 1980, p. 132) and associ-
ated sequences (Newman and Wright 1981).

8. Nonlinear Control Variables

In this section, we show that the relationship between
direct and indirect estimation is fruitfully viewed from
a control-variable perspective. This perspective allows
us to construct an estimator that is asymptotically
more efficient than either the direct or the indirect
estimator just discussed. To accomplish this goal, we
return to the general framework of Section 1. Since
we are not going to consider natural estimators here,
we do not need the sequence {Z,} in (1), but to treat
asymptotic efficiency we need the CLT (7). Obviously
the basic CLT assumption (10) is just (7) in the
L = AW framework.

Direct and indirect estimators also arise naturally
in nonlinear control-variable schemes, but in a differ-
ent way. Our starting point is a function of one
variable, say g. Given (7), suppose that we are inter-
ested in estimating z = g(y) where g: R’ — R. We
then introduce a convenient function fand a vector x

in R* such that f: R’ — R and z = g(y) = f(x, »)
for that special x and all y. The new vector x is the
control parameter, and the natural estimator for x,
xZ, is the control. The uncontrolled estimator for z is
g(y¥), which coincides with the indirect estimator
f(x, y¥). The controlled estimator is f(xy, y»), which
coincides with the direct estimator.

Below are examples of functions f that have been
introduced for this purpose:

@) f(w, y) = g(y) + (u = x)a’
(i) f(u, y) = (x/u)g(y)
@it1) f(u, y) = (u/x)g(y) (29)
iv) f(u, y) = g(y)*"
™) f, y) = g(y)*

where u, x and « are row vectors in R* and «f is the
transpose of « (associated column vector) in i, where
k =1 and x # 0 in ii-v. The key property is that
f(u, ) = g(y) when u = x. Control scheme i is the
standard linear control-variable scheme which has
been studied extensively in the literature. The ratio
and product controls, ii and iii, can be found in
Kleijnen. The power law controls, iv and v, were
proposed recently by Nelson.

As we have already seen, direct and indirect esti-
mation arises naturally in the context of Little’s Law.
As noted in (20), the natural estimator for w based on
data over the interval [0, D}]is w) = n™' 3L, W,
while the indirect estimator is

p},
w, = A'qy =AD" f Q(s) ds.
0

However, from Section 5, w), = \7'q? + 0,(n™'?)
where

AaR = NTA Y W= N (ndy T W
i=1 i=1

is precisely a ratio control estimator for w of the form
ii in (29). (Set g(y) = y = wand x = X\7'.) Thus, w7},
and w} are related to one another via a ratio control
scheme and, by our terminology, w/ and w} are indi-
rect and natural estimators for w, respectively, the
latter being asymptotically equivalent to a direct
estimator.

Now return to the general framework (1)-(7),
and let

V. S(x, y) = <—8-J: (C51) R 5‘% (x, y))

X,



and

VYf(xa y)= (:;97]: (x5 y)a "'?%(X? y))a

so that V. f(x, y) and V,f(x, y) are column vectors.
Unspecified vectors such as x are taken to be row
vectors. Using Taylor’s theorem to expand

f(n”' X X,nt Y K)
i=1 i=1
around the point (x, y), we find that

z; =f(x,y)+ (n“ D X,-—x>fo(£n, M)

i=1

+<n_l z K_y>vyf(€n: nn) (30)

i=1

for n sufficiently large, where (£, u,) lies on the line
segment joining (x, ) with

<z X, 3 Y)
i=1 i=1

and so is a random vector. By (1), it follows that
(&4, m1) = (x, ¥) as n — oo, 50 that the continuity of
the gradient of / in the neighborhood of (x, y) implies

that fo(gn: nn) = vxf(xa y) and Vyf(gn, nn) =
V,f(x, y) as n — . Relations (7) and (30) together
then show that

sz=z+<n_l f)Xf—X)fo(x’y)

i=1

+ (”“' 5 v y)vyf(x, )+ 0, (n™?)  (31)

so that n'?(z? — z) = N(0, ¢3,), where
o5 = Vo (x, pYCii VS (x, »)
+ V[0 p)' CuVif(x, y)
+ Vi f(x, p) CiaV, f(x, )
+ V,f(x yY CV,f(x, p) (32)

with C,,, Cy5, C;; and Cy, being the k X k, k X [,
I X k and [ x [ submatrices of the covariance matrix
Cin (7).

Similarly, we can analyze the indirect estimator zZ,
thereby finding that

z,=2z+ (n“ Z Y- y>Vyf(x, »+o,(n'7),  (33)
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so that n'?(z, — z) = N(0, o7) where
o7 = Vuf(x, y) CuV,f(x, y). (34)

We summarize our discussion thus far with the follow-
ing theorem. (Part c follows immediately from (31)
and (33).)

Theorem 9. If (7) holds, then

(@) n'2(z2 — z) = N(O, o), where o> is given
by (32);

(b) n'?(zh — z) = N(O, o3), where olis given by (34);

© 2z =1z + (n' Y-, X = 0)V.f(x, ) + 0,(n""72).

Specialized to Little’s Law, i.e., the framework
in Section 2, Theorem 9a and b are covered by
Section 4. Perhaps the most interesting aspect of
Theorem 9 is ¢, which states that modulo the
0,(n~'?) term (which is asymptotically negligible),
we have a representation of z2 as z/, plus a linear
control-variable term (see i in (29)). Thus, direct and
indirect estimators are related to one another, essen-
tially (asymptotically), through linear control variable
schemes. In particular, recalling the fact that nonlinear
control-variable schemes are but a special case of our
framework, we conclude that every nonlinear control-
variable method behaves asymptotically like a linear
control-variable scheme. In other words, no improve-
ment in asymptotic efficiency can be achieved by gen-
eralizing the notion of control variables from the linear
Jorm to a nonlinear setting. (Such a conclusion is also
reached by Cheng and Feast, p. 53.) Of course, this
does not preclude the possibility of better performance
by nonlinear methods in a small sample context.

Theorem 9c is also the basis for improving the
performance of z2. We can consider a general linear
control estimator, replacing V.f(x, y) by some «' to
obtain

z8(a) = 2! + (l’l”' i X — x)a'. 35)

Theorem 9 and the converging-together theorem
(Theorem 4.1 of Billingsley) prove that

n~'(z5(a) = 2) = N(O, s¢(a))
where
oe(a) = aCia’ + 2V, f(x, y)Y Coa!
+ Vo (x, yY C Vo[ (x, ). (36)

Let o* minimize the unconstrained quadratic pro-
gram o2(a) in (36). It is well known (e.g., p. 31 of
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Anderson 1958 and the Appendix of Rubinstein and
Marcus) that if C,, is invertible, then

a* ==V, f(x, yYCu Cy/, (37)
so that
oca)

= V,f(x, »)(Coz = Co1 C{ Ci2) Y, f(x, p). (38)

If C,, is positive definite (and so nonsingular), then
we have o(a*) < ¢}, in (32) unless o* = V.. f(x, y),
in which case o2.(a*) = ¢2. We also have o2(a*) <
o7 in (34) unless C,,V,f(x, y) = 0, in which case
o2(a*) = o2. (See the linear control variable papers
for further discussion.)

Specializing this discussion to the estimation of g,
we have k= /= 1, so that C,,, C,, and C,, are scalars.
If C,, # 0, then the controlled estimator for g in the
framework of Section 2 that involves the best linear
control is defined as

qSa*) ="t Y Wi+ a*(n™'4, — 271 (39)

k=1
for o* = —\C|,/C,, which has asymptotic efficiency
Uzc(a*) = >\2(sz - sz/C“).

Of course, usually the covariance matrix C is un-
known in advance, so that «* in (37) or (39) is
unknown. However, o* can be estimated from data.
It suffices to use any consistent estimator for «* in
(37) or (39). The converging-together theorem (Theo-
rem 4.1 of Billingsley) establishes the following result.

Corollary. Under (7), if a, = «* in (37), then
n'(zS(a,) — z) = N(0, eX(a*)) for oZ(a*) in (38),
so that the estimation of «* entails no loss of asymp-
totic efficiency.

Of course, for a finite sample, there is loss of effi-
ciency; see Lavenberg and Welch. From an asymptotic
viewpoint, we conclude that the queueing estimators

qS@,) = " Y W+ a,(n'4,— \7Y)
k=1

and
wi(a,) = q5(a,)/\, (40)
where a, = a* = —\C|,/C|, are more efficient than

any of the direct or indirect estimators for g and
w: From the construction, ¢} < ¢, and o2 < o7.
Moreover, it is also easy to quantify the differ-

ence. In particular, since o7 = A\2Cy and o) =
)\2(q2C“ = 2¢C\» + Cy),

2 2 2
0 — 0c= >\2C12/C11

and
Ui) - 0'2C = )\Z(QCH - C12)2/C11~ (41)
Example 1d

For the M/M/1 queue, the optimal weight and vari-
ance of the linear control estimator in (39) are

* ACy; P3
ot = —— = ——2-
Ch (1 - P)
and
2
s(a*) = x2<czz - g—)

_p[2+4p —4p” = p’]
(1=p)
The variance reduction from using the optimal linear

control estimator of g instead of the indirect estimator
is

202 4
2 _ 2__>‘C12_ p
g, — 0= =

Cy (1 _P)4

and the relative saving is (62 — o2)/o> = p/(2 + 5p —
4p% + p3). Note that the relative savings approaches
25% as p — 1 for the optimal linear control estimator,
as opposed to 0% for the indirect estimator. From the
form of ¢7 — o, we would expect that the value of
using the optimal linear control estimator instead of
the indirect estimator might tend to be a decreasing
function of the arrival process variability, as measured
by the asymptotic variability parameter ¢’ = \2Cy,.

Of course, many estimators like (39) and (40) have
been investigated previously as candidate linear con-
trol estimators for queues; e.g., Lavenberg, Moeller
and Welch. Our contribution is to relate direct and
indirect estimators to linear control estimators.

It should be intuitively clear that we have found the
best possible estimators of the queueing parameters g
and win the framework of Section 2 when A is known,
using the criterion of asymptotic efficiency. However,
such a strong statement is hard to make precise and,
in fact, not nearly true without additional qualifica-
tions. We give one concrete expression of this idea.
For this purpose, suppose that we observe data over
the interval [0, D}].

Theorem 10. Under (19), no estimator f(X,,) is asymp-
totically more efficient for estimating q and w than the



two estimators in (40) when )\ is known, and the
natural estimators qi and w3 in (17) and (20) when X
is unknown, provided that f: R'* — R has continuous
partial derivatives in all coordinates in the neighbor-
hood of x, X,, is

Xn=<n“An, n='D,, n7'D}, n7' Y W,

i=1
o A, D,
nt Y Wi, n“f Q(s) ds, n“f Q(s) ds,
i=1 0 0

Df,

n~! A Q(s)ds, n~'N(4,), n'N(D,),

n~'N(D}), n~'0(4,), n~'O(D,), n“O(DI,))
and

x=A", LN w,ow,o w,ow,ow, 1, 1110 D,

Proof. Under (19), we can establish a joint (FCLT)
in D[0, 1]" for X, with appropriate normalization.
This FCLT foilows from the joint convergence in
Theorem 4 of Glynn and Whitt (1986) plus a Taylor
series expansion as in (30). For example, since
n'D, = n'4, + o0,(n""?), nothing is gained
by incorporating n~'D, as well as n~'4, into the
estimator.

The practical implication of Theorem 10 is that it
is not possible to improve the asymptotic efficiency
with estimators of g based on other quantities from
Section 2 such as the departure epochs instead of or
in addition to the arrival epochs; i.e., the estimator

d.(d,) = n"" Y W+d.(n"'D,—\7")

i=1

where d, = 6* with 6* the optimal linear control has
the same asymptotic efficiency as qS$(a*) in (39).
Detailed descriptions of the asymptotic efficiency of
many related estimators also follow from Theorem 4
of Glynn and Whitt (1986).

The optimality in Theorem 10 obviously requires
some qualifications, such as are contained in the con-
ditions there. Much depends on the information. The
conclusion is not nearly true without qualifications.
For example, in the setting of Section 2 suppose that
we know in advance that W, = w, which still allows
the CLT (10) with a nondegenerate limit. Then W, is
clearly the best estimator for w using data from
[0, D}]; the asymptotic efficiency parameter is zero.
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The optimality in Theorem 10 also breaks down
when there is additional model structure. For exam-
ple, consider the M/M/1 queue with the FCFS disci-
pline in the setting of Section 2 with known arrival
rate A and service rate u. Let the traffic intensity be
p = Mu < 1. Let g represent the expected equilib-
rium number of customers waiting, not counting the
customer in service, if any. Clearly, the exact value
q = N*/(u* — M) is the best estimator for g; we don’t
need any data.

For more general models, when both the service
rate and the arrival rate are known, it is natural to use
linear controls such as (39) and (40) involving both
parameters A~' and p~'. Even if x is unknown and A
is known, paralleling the information above, it is
intuitively obvious that for the M/M/1 model it is
often better to use an estimator for u, say g to obtain
§=M\*(4* — M) as an estimator for ¢ than an estimator
based on w}. (See Schruben and Kulkarni 1982 for
some complications, which do not affect our CLT
analysis.)

Example 1e

In particular, suppose that we observe the M/M/1
queue over the interval [0, D!] as in Sections 2 and 4,
where D} = D, is the epoch the nth customer com-
pletes service. From the observations of {(4,, D;): 1 <
i < n}, we can determine the service times V, as well
as the waiting times W, = D, — A, from the basic
data, because we have a single-server queue with the
FCFS queue discipline. (We do not need extra data!)
We can then form the natural estimator for u~!,
namely, ™' = n™' ¥%-, Vi. (Doing better with 4~
does not contradict Theorem 10 because 4i~' does not
appear in X,.) We can use the general framework in
Section 1 and the results in this section to make a
detailed analysis of the asymptotic efficiency. Here
x= X" y=p"and f(x, y) = y*/(x* — xp) and
the proposed alternative estimator with A known,
g above, is the indirect estimator f(x, yY). Theo-
rem 9b then describes the asymptotic efficiency. The
partial derivatives are

af(x,y) _2xX°y—xy> _NQu—N)_pp’2—p)
ay 2 =xyy (b= NP (1=p)y "~

so that from (34) the asymptotic efficiency parameter
associated with this estimator ¢ is

o MQ2u =AY p*Q2-—p)
o*(§) == Z = ol
(N — u) (1 =p)
Note that the asymptotic efficiency parameter in (42)
is less than the optimal linear control asymptotic

(42)
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efficiency parameter in Example 1d for all p. Of
course, in general we can do even better than ¢
by using a linear control estimator of the form
G+ a(\"" = x"")where A" = n"'A4,.

To summarize, this section presents a strong case
for using the optimal linear control estimators when
some of the parameters are known. In considerable
generality the estimator (40) is most efficient in the
L = AW framework of Section 2 when A is known,
but it does not take into account extra information
that may be available when the model has additional
structure, as illustrated by the M/M/1 example.

The optimal linear control estimator has the draw-
back that it requires constructing the estimator a, for
o*, but this is actually not difficult. Using the esti-
mator a, for a* also introduces bias, but the analysis
in Section 10 reveals that the bias contribution due to
estimating «* is typically asymptotically negligible
compared to the size of the confidence intervals, being
of order O(n™') just like the other bias terms,
compared to O(n~'?) for the confidence intervals.
However, since a, is an estimator for a function of
covariance matrix elements, for small # it is likely to
have a large variance; a, seems to be a term that
requires a relatively large # to be in a large sample
context. However, for simulation experiments with
ample data the optimal linear control estimators seem
desirable.

We conclude this section by giving a specific esti-
mator a, for «* in (37) to use in the linear control
estimator z$(a,,) in the corollary to Theorem 9 for the
special case of regenerative structure. (See Iglehart and
Lewis, and Lavenberg, Moeller and Sauer, and the
other control-variable papers for related results.) In
addition to the general framework (1)-(7), suppose
that the basic sequence {(X,, Y,): n = 1} in R*"' is
regenerative (possibly delayed) with regeneration
times {7,,: n = 1}. Let

Ty —1 Tix1—1
XY= 3 X, Yi= ¥ Y, A=Tu-T,
=

J=T;

and L(n) = max{i = 0: T; < n} with T, = 0. Let the
desired estimators be

L(n)

Cu(m)=n"" Y (Xi—xYA)Y(X,—x)A),
i=1

L(n)
Co(n)=n""Y (Ki—=x¥A) (¥, —yNA),

i=1

L(n)
Ca(n)=n"' 3 (Yi—y¥A YK —x}A),

i=1
L(n)

Co(n)=n"" 2 (f’,»— YLVA:’)’(?:'_ yiA),

=1

a, ==V, f(x3, y2) Cu(n)C1} (n) (43)

assuming that C,,(n) has an inverse and using x and
y» in (3). The following proposition is easily proved
using a standard regenerative argument.

Proposition 4. (a) If

E(A?) < o,
Ty—1 tTy—1

E[(Z um)(Z um)] <o
=T, =T

and

AL )5 e <=

where | x| = (|xi|, ..., |x|) for x € R*, then
C,j(n)— C;w.p.l as n— o for each i, j.

(b) If, in addition, C,, has an inverse, then C,\(n)
has an inverse for all sufficiently large n and a, — o*
in(37) w.p.1 as n — oo,

9. Asymptotic Bias

So far, we have only considered asymptotic efficiency;
now we consider asymptotic bias. Our goal is to show
that bias is typically asymptotically negligible com-
pared to efficiency as the sample size increases, thus
justifying paying more attention to asymptotic
efficiency.

We conduct our analysis in the general framework
of Section 1, but we simplify the notation by deleting
the variable y. The parameter to be estimated can thus
be represented as z = f(x). As before, all vectors are
taken to be row vectors; x € R¥is 1 X k. We consider
only the direct estimator z2 = f(x¥). (Of course, the
results generalize.) The bias is Ez2 — z. This section
is devoted, first, to showing that in considerable gen-
erality Ez2 = z + n~'8p + o(n™') and, second, to
describing the asymptotic-bias parameter 3p that ap-
pears in this expansion. By Theorem 9a, the length of
the confidence intervals are of the order n~"2, so this
result will support our goal.

We make four new assumptions in addition to the



ones in Section 1:

(1) n(ExY — x)— y.as n— o,
() {n?[(xy — x)xY —x)Y]:n=1}is
uniformly integrable.

(iii) The function fhas continuous second
partial derivatives in all coordinates in a
neighborhood of x.

@iv) {f(x}): n= 1} is a uniformly bounded
sequence of random variables.

(44)

Condition i is critical: It says that the initial bias
for the natural estimator x2 is of the order n™'. It is im-
portant that condition i is actually satisfied in most
cases of practical interest. Typically, X, = X and
EX, — EX as n — o for the process {X,} in (1).
Moreover, there often is geometric ergodicity for the
expected values, i.e., | EX, — x| = O(p") for x = EX
and | p| < 1, so that

¥ WEX, — x| <o 1<j<k (45)
n=1

The convergence (45) is common for ergodic Markov
chains; see Lemma 7.2, p. 224 of Doob (1953) and
the discussion about the fundamental matrix on
pp. 75, 101 of Kemeny and Snell (1960). The funda-
mental matrix for ergodic Markov chains is essentially
a representation of the sum in (45). Note that

n(Exy — x) = é (EX; — x)

g(EX,-—X)-— i (EX; — x)

i=1 i=n+1

= v, + o(1).

Thus, if (45) holds for the processes {X,,: n = 1} in (1),
then

=3

NEXY —x)—>v,= 2, (EX,—X) asn— . (46)

n=1

Of course, (45) only provides an easy sufficient
condition for condition i in (44); Condition i holds
more generally. The remaining conditions in (44) are
technical regularity conditions. Condition ii is the
standard regularity condition to get convergence of
moments from weak convergence; the weak conver-
gence follows from (7) and the continuous mapping
theorem. Condition iii typically holds, so it is not a
serious restriction. Condition iv is a restriction as
stated, but it can be relaxed. (Finding better statements
and proofs appears to be a worthwhile direction for
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research.) Condition iv is a convenient sufficient con-
dition to facilitate a relatively easy proof of our main
result about asymptotic bias. Note that condition iv
holds if the function fis continuous on R* and the
basic random variables X, in (1) all have values in
some compact subset K of R*. Obviously, the averages
xY are then contained in K too for all n; and a
continuous function on a compact subset is bounded.
Conditions ii and iv address technical problems at
infinity.

To state our result, let H(x) be the k X k Hessian
matrix of the second partial derivatives of fand let

k k
AOB= 2 ZAijBij (47)

i=1i=j
for two (k X k) matrices 4 and B.

Theorem 11. Under conditions i-iv in (44) and (7),
Ez? =z+ n7'8p + o(n™"), where Bp = B, + Bu, with

B =vxVf(x),
6H= 2—1H(X) O C3

C is the covariance matrix in (7) and

Vf(x)=<af( ),...,a—f(x))

—(x
X, é)xk
as in Section 8.

We refer to 3. as the bias contribution due to the
initial bias of x%. We refer to 85 as the bias contribu-
tion due to the nonlinearity of /. Obviously 8y = 0
if H is a zero matrix, i.e., if f is linear. We prove
Theorem 11 in Appendix A.

We close this section by briefly discussing the bias
associated with using a, to estimate the optimal linear
weight a* in (37), as suggested by the corollary to
Theorem 9. Note that

nE(xY — x)a,, = nE(xy — x)a*
+ nE[(x) — x)(@, — a*)']. (48)

The first term on the right in (48) is asymptotically
v<(a*) + o(1) under Assumption i in (44). Assume
that n'2(a, — «*, x) — x) converges weakly to a
nondegenerate limit as # — o, which we would expect
to have a joint normal distribution. Then n(x) — x)
(a, — a*) converges weakly too, by the continuous
mapping theorem, so that

nE[(xy — x)(a, — a*)'] = Bar+ o(1) (49)

under an additional uniform integrability condition
similar to ii in (44). The asymptotic bias associated



100 / GLYNN AND WHITT

with estimating a* by a, is thus of the order O(n™"),
with .- being the associated asymptotic bias
parameter.

10. Another Application of the General
Framework

The general results in Sections 1, 8 and 9 obviously
go much beyond the L = AW framework in Sec-
tion 2. For example, we can generalize all the other
theorems in Carson and Law involving other
queueing variables. We can compare the direct and
indirect estimators for more general models than the
GI/G/s queue, and we obtain the best possible esti-
mators for each parameter in the sense of Theorem
10. We illustrate these ideas by briefly discussing one
application, namely, to estimating the time-average of
the workload (the uncompleted work in service time
at time ¢) in the GI/G/s system. We assume that
p <1 and P(U, > V) > 0, where U, is an inter-
arrival time and V) is a service time, so that the
empty state is a regeneration epoch with finite ex-
pected regeneration interval, see Whitt (1972) and
Carson and Law. In fact, we only need to assume that
p < 1 in order to get regenerative structure, but, in
general, the regeneration epochs are more compli-
cated; see Charlot, Ghidouche and Hamami (1978)
and Sigman (1988a, b).

To treat the workload, we use the extension of
L = AW to H = \G; see pp. 408-412 of Heyman
and Sobel and references there. A CLT version of
H = MG is contained in Glynn and Whitt (1989),
which allows us to go beyond the specific GI/G/s
model. Moreover, the CLT version of H = \G pro-
vides a generalization of the special queueing frame-
work in Section 2. However, here we only discuss the
application of Section 1.

The basic data sequence here is {(4,, W,, V,):
n = 1} where 4, and W, are as in Section 2, with
W, interpreted as the waiting time until beginning
service, and V/, is the service time of the nth customer,
which we assume satisfies EV, = v, and E(V2) =
v, < o, (Unlike the single server queueing example in
Section 8, here we need to observe {V/,} in addition to
{(4,, D,)}.) In terms of this basic sequence, we can
define the workload in the system at time ¢, say Z().
Using the standard A = AG argument, we can show
that if p = \v,/s < 1, then ¢t '(Z(t) — z w.p.l in
addition to the usual L = A limits, and

z=f(\ W, vy, 1) = A w+ (Ar2)/2. (50)

A key assumption supporting (50), which is satisfied
by the GI/G/s model, is that V,, is independent of W,,.

If this assumption is dropped, then v, w in (50) must
be replaced by the limit of n™' 3., V. Wy; e.g., see
Heyman and Sobel.

Under our regenerative assumptions and appro-
priate moment hypotheses, there is a joint CLT par-
alleling (10), i.e., (7) holds, so that we can apply
Sections 8 and 9 to obtain the desired results. In
particular, given data in [0, D}], the direct estimator
for z is Ap1aWY 4+ Aubrn/2 and the indirect estimator
based on known (A, vy, v,) is Av, w2 + Av,/2, where

n
W£,V=n_l Z Wk,

k=1

n
)\y,=n_1An, ﬁly,=n_l Z Vk

k=1

and
n
A - 2
1/2,,=n ! Z Vk'
k=1

(In the setting of Section 1, y¥ = (X, #1,, 2,).) More-
over, the most asymptotically efficient estimator for z
in the sense of Theorem 10 given data in [0, D}] when
A, v, and v, are known is the linear control estimator.

z5(@,) = Mywh + (Ar)/2
ot s,
k=1

<n“ ‘2 V,ﬁ—uzv)]an (51)

k=1

where a, is a consistent estimator for o* in (37). A
specific consistent estimator a,, is displayed in (43).

Appendix A: Proof of Theorem 11

Let B.(x) = {y € R*: | x — y|| <&}, where || - | is the
Euclidean norm and e is sufficiently small so that /
possesses continuous second partial derivatives in
B,(x); invoke condition iii. We apply Taylor’s theorem
to f(x¥): When x¥ € B,(x), we can write

S = f(x) + (x) = x)Vf(x)
+ 27" (x) = x)H,(x) — x)
where

H,=(H,(i,j)1=<ij<k)

=< O (&) 1 si,jsk),

ax;0x;




where {, lies on the line segment joining x5 and Xx,
and so is random, and Vf( y) is the column vector of
partial derivatives at y. Moreover, since x = x by (1)
and H is continuous on B,(x), H,(x) = H(x) by the
continuous mapping theorem.

First we divide the expectation EzZ into two parts:

Ezy = Ef(x})
=E(f(x)); | x7' — x|| <e)
+ E(f(x); I x) — x|l >e). (A-1)

Let || fIl be the bound on {f(x}): n = 1} from
condition iv. The second term in (A-1) is asymptoti-
cally negligible because

nf DIl x5 = x || > ¢)
< allfI I([(x7 — x)(xx = x)' TP >¢*)
< nllfI((xx — x)x7 — x)' /e
where
n?((xy' — x)(xx' — x)')’ = (N0, )N, C)'Y  (A-2)

by (7) and the continuous mapping theorem. The
expectations converge in (A-2) by the UI condition ii.
Dividing by n, we obtain nE((xy — x)(x¥ — x)')> -0
as n — o,

Turning to the first term in (A-1), we apply the
Taylor series expansion to get

E(f(x2); Ixy — x| <e)
= E{f(x) + (x)' — x)Vf(x)
+27Hx) = X)H,(x) — x)5 | xy — x| <e}.
First,
n| E(f(x) + (xz' = x)V/(x); | xi — x || <e)
= f(x) — E(x;) = x)Vf(x)|
<n| E(f(x) + (x' = x)Vf(x); [ x7 = x| > )|
<n|f)|P(Ixy— x| >e)
+nE(Ixy — x| - | V) x3 = x| >e))
sn|fG) | P(x7— x| >e)
+ul| VOIE x) —x [ I(| x) = x || >¢))
<n|fO) P x7 = x| >e)
+ull VSO IE Xy —x|1*)/é%,

which converges to zero by the argument used
above to treat the second term in (A-1). Of course,
nE(xY — x)Vf(x) = v.Vf(x) by condition i.
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It remains to show that

nEQR™' (xy = X)H, (x5 — x)'; | x) — x || <e)

— 27 Y(H(x)OC

where H(x) O C is defined in (47). Since x}) = x by
(1), H, = H(x) by condition iii and the continuous
mapping theorem. By more of the same reasoning,

n(xy = X)H,(x3 = x)I(| xi — x || <e)

=TI'=N(0, C)H(x)N(0, C) (A-3)

where E(I') = H O C. Hence, it suffices to show that
the left side of (A-3) is uniformly integrable. To this
end, note that H(y) is bounded on the compact set
B.(x), by M. The following is based on two elemen-
tary inequalities: | x| < 1 + x? for a scalar x and
ada' < Mkaa' where a is 1 X k, A is k X k and
M =z max{| A;;|: 1 < i, j< k}. In particular,

n(xy' = X)H,(xz = x)'I([| x — x|| <e)

kK
<nM Y Y | xN— x| xh— x|
i=1j=1

k k
<nM27' Y Y [(xh— X+ (x— x )]

i=1j=1

k
<nkM Y, (x¥— x;)? = nkM(xY — x)(xY — x)"

i=1

<M1 + n?[(x) — x)(xY — x)'])

which is uniformly integrable by condition ii.
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