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The Kolmogorov-Smirnov (KS) statistical test is commonly used to determine if data can be regarded as a
sample from a sequence of i.i.d. random variables with specified continuous cdf F , but with small samples
it can have insufficient power, i.e., its probability of rejecting natural alternatives can be too low. However,
Durbin [1961] showed that the power of the KS test often can be increased, for given significance level, by
a well-chosen transformation of the data. Simulation experiments reported here show that the power can
often be more consistently and substantially increased by modifying the original Durbin transformation
by first transforming the given sequence to a sequence of mean-1 exponential random variables, which is
equivalent to a rate-1 Poisson process, and then applying the classical conditional-uniform transformation
to convert the arrival times into the order statistics of i.i.d. uniform random variables. The new KS test
often has much more power, because it focuses on the cumulative sums rather than the random variables
themselves.
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1. INTRODUCTION
The Kolmogorov-Smirnov (KS) statistical test is commonly used to determine if data
can be regarded as a sample from a sequence of independent and identically dis-
tributed (i.i.d.) random variables {Xn : n ≥ 1}, each distributed as a random variable
X with a specified continuous cumulative distribution function (cdf) F (x) ≡ P (X ≤ x),
x ∈ R. The test is based on the maximum difference between the empirical cdf (ecdf)

Fn(x) ≡
1

n

n∑
k=1

1{Xk≤x}, x ∈ R, (1)

and the underlying cdf F , where 1A is an indicator function, equal to 1 if the event A
occurs, and equal to 0 otherwise, i.e.,

Dn ≡ sup
x
{|Fn(x)− F (x)|}, (2)
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which has a distribution that is independent of the cdf F , provided that the cdf is
continuous. For any observed maximum y from a sample of size n, we compute the
P -value P (Dn > y), e.g., by using the Matlab program ksstat, and compare it to the
significance level α, i.e., for specified probability of rejecting the null hypothesis when
it is in fact correct (type I error), which we take to be α = 0.05. Sometimes it is prefer-
able to use corresponding one-sided KS tests, but we will concentrate on the two-sided
test. See Simard and L’Ecuyer [2011] and Shorack and Wellner [2009] for additional
background and references on the KS test.

Alternative KS tests can be obtained by considering various transformations of the
data, based on transformations of the hypothesized sequence of i.i.d. random variables
{Xn : n ≥ 1} with continuous cdf F into a new sequence of i.i.d. random variables
{Yn : n ≥ 1} with continuous cdf G, while keeping the significance level α unchanged.
Since the KS test applies in both settings, we should prefer the new test based on
the transformed data if it has substantially greater statistical power for contemplated
alternatives, i.e., if it has higher probability of rejecting the null hypothesis when the
null hypothesis is false. Specifically, for specified significance criterion α, the power
of a specified alternative is the probability 1 − β, where β ≡ β(α) is the probability
of incorrectly accepting the null hypothesis (type II error) when it is false (which of
course depends on the alternative as well as α).

Durbin [1961] suggested transforming the data to increase the power of the KS test
and proposed a specific transformation for that purpose. In this paper we study the
issue further. We conclude that a good data transformation can indeed significantly
increase the power of the KS test, but that a modification of the Durbin [1961] trans-
formation, proposed for testing a Poisson process by Lewis [1965], consistently has
even more power.

1.1. Motivation: Arrival Processes in Service Systems
Our research was originally motivated by the desire to fit stochastic queueing models
to data from large-scale service systems, such as telephone call centers and hospital
emergency rooms, as discussed in Brown et al. [2005] and Armony et al. [2011]. Since
the arrival rate typically varies strongly by time of day in these service systems, the
natural arrival process model is a nonhomogeneous Poisson process (NHPP) instead of
a homogeneous Poisson process. Nevertheless, Brown et al. [2005] showed that the KS
test can still be applied, provided that we transform the data.

Since the arrival rate in a service system typically changes relatively slowly com-
pared to the overall arrival rate, it is often reasonable to assume that the arrival rate
is piecewise-constant. A piecewise-constant NHPP can be regarded as a Poisson pro-
cess over each subinterval. Given a Poisson process on any one subinterval, and con-
ditional on the total number of arrivals in that interval, the arrival times divided by
the length of that interval are distributed as the order statistics of i.i.d. random vari-
ables uniformly distributed on [0, 1]; e.g., see §2.3 of Ross [1996]. With that classical
conditional-uniform (CU) approach, the data from all the subintervals can be com-
bined to obtain a single sequence of i.i.d. random variables uniformly distributed on
[0, 1], to which the KS test can be applied directly. Moreover, the CU method eliminates
the nuisance parameter; the method is independent of the rate of the PP. Brown et al.
[2005] did not stop with the CU KS test, but instead proposed a (scaled) logarithmic
transformation into a single sequence of i.i.d. exponential random variables for the KS
test.

We wondered about the power of the passed-over CU KS test and the chosen loga-
rithmic (Log) KS test of a NHPP. Thus, we conducted simulation experiments to study
the power of these KS tests and various alternatives, and we reported the results in
Kim and Whitt [2013c]. Consistent with Brown et al. [2005], we found that the CU KS
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test of a Poisson has remarkably little power, while the Log KS test has much greater
power. We also found that there is a substantial history in the statistical literature.
First, Lewis [1965] made a significant contribution for testing a Poisson process, rec-
ognizing that the Durbin [1961] transformation could be effectively applied after the
CU transformation. Second, from Lewis [1965] we discovered that the direct CU KS
test of a Poisson process was evidently first proposed by Barnard [1953]; and Lewis
[1965] showed that it had little power.

Upon discovering Lewis [1965], we first supposed that the Log KS test of Brown et al.
[2005] would turn out to be equivalent to the Lewis [1965] transformation and that the
KS test proposed by Lewis [1965], drawing upon Durbin [1961], would coincide with
the KS test given in Durbin [1961], but neither is the case. Thus, this past work sug-
gests several different KS tests. In Kim and Whitt [2013c] we concluded that the Lewis
test of a Poisson process has the most power against stationary point processes having
non-exponential interarrival distributions, providing a significant improvement over
the Log KS test.

1.2. Standard KS Tests for i.i.d. Sequences with cdf F
Even though we were originally interested in tests of a Poisson process, because they
yield tests of a piecewise-constant NHPP, the KS tests used to test a Poisson process
can be also applied to test whether n observations can be regarded as a sample of size
n from an i.i.d. sequence with arbitrary specified continuous cdf F . Such a KS test
evidently has not been considered before.

Moreover, these new KS tests are also directly applicable to service systems, because
the standard model for the service times is an i.i.d. sequence. The most convenient
cdf for analysis is the exponential cdf, but data analysis often suggests a lognormal
cdf instead, as in Brown et al. [2005]. The new KS tests can be used to test these
alternatives.

Just as it is common (and done by Durbin [1961]) to transform an initial sequence
{Xn : n ≥ 1} of i.i.d. random variables with cdf F into a sequence {Un : n ≥ 1} of i.i.d.
random variables uniformly distributed on [0, 1] by letting Un ≡ F (Xn), n ≥ 1, so we
can also transform the initial sequence into a sequence {Yn : n ≥ 1} of i.i.d. exponential
random variables with mean 1 by letting Yn ≡ − log {1− F (Xn)}, n ≥ 1. It is well
known that the value of the KS statistic in (2) is unchanged by these transformations,
provided of course that we use both the new ecdf and the new cdf in each case.

For applying the associated KS tests of a Poisson process, the key observation is that
the sequence of partial sums {Tn : n ≥ 1}, where Tn ≡ Y1+· · ·+Yn, n ≥ 1, constitute the
arrival times of a rate-1 Poisson process. Moreover, for a fixed sample of size n, we can
use a variant of the CU transformation, stating that the n−1 random variables Tk/Tn,
1 ≤ k ≤ n − 1, are distributed as the order statistics of n − 1 i.i.d. random variables
uniformly distributed on [0, 1]. Thus, we can perform a new KS test based on the KS
statistic in (2) with the new ecdf

F (CU)
n (x) ≡ 1

n− 1

n−1∑
k=1

1{(Tk/Tn)≤x}, 0 ≤ x ≤ 1, (3)

and the underlying uniform cdf F (x) ≡ x, 0 ≤ x ≤ 1; that is the CU test in the new
Poisson process context. Alternatively, instead of the CU test based on the new ecdf in
(3), we can use the associated Log or Lewis tests considered in Kim and Whitt [2013c].

To understand all these transformations, it is good to start with n i.i.d. random
variables Uk, 1 ≤ k ≤ n, each uniformly distributed on [0, 1], obtained by letting
Uk ≡ F (Xk). The direct applications of the Log and Durbin transformations apply
by sorting these uniform random variables, which is equivalent to sorting the original
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n observations. Accordingly, we call these the sort-Log KS test and the sort-Durbin
KS test. Since the sort-Durbin test coincides with the original Durbin [1961] test, we
simply call it the Durbin test, but the Log transformation used by Brown et al. [2005]
was only proposed after the CU transformation.

In contrast, the alternative KS tests based on first transforming to n i.i.d. mean-1
exponential random variables Yk by letting Yk ≡ − log {1− F (Xk)} and then applying
the CU transformation applies by first considering the partial sums of the random
variables. We thus have three KS tests based on the CU transformation applied to the
exponential variables: (i) Exp+CU, the CU transformation alone as in Barnard [1953],
(ii) Exp+CU+Log, the CU transformation plus the Log transformation as in Brown
et al. [2005], and (iii) Exp+CU+Durbin, the CU transformation plus the Durbin [1961]
transformation, as in Lewis [1965]. Since the Exp+CU+Durbin test was not proposed
by Durbin [1961], but coincides with the Lewis [1965] test (even though the setting is
new), we call the Exp+CU+Durbin test the Lewis test. In this new setting, we again
find that the Lewis [1965] test consistently has the highest power against alternatives
with different marginal distributions. Thus, we conclude that the Lewis [1965] test has
wider applicability than to just the Poisson process.

1.3. Organization
We now indicate how the rest of the paper is organized. We start in §2 by carefully
defining the six different KS tests. Next in §3 we describe our first simulation exper-
iment, which is a fixed-sample-size discrete-time stationary-sequence analog of the
fixed-interval-length continuous-time stationary point process experiment, aimed at
studying tests of a Poisson process, conducted in Kim and Whitt [2013c]. In addition
to the natural null hypothesis of i.i.d. exponential random variables, we also con-
sider i.i.d. non-exponential sequences with Erlang, hyperexponential and lognormal
marginal cdf ’s. We report the results in §4, which surprisingly show that the original
Durbin [1961] method performs poorly, but the new version of the Lewis [1965] test
performs well, providing increased power. However, Durbin [1961] considered differ-
ent examples. Motivated by the good results found for a standard normal null hypoth-
esis by Durbin [1961], in §5 we consider a second experiment to test for a sequence
of i.i.d. standard normal random variables. Consistent with Durbin [1961], we find
that the original Durbin [1961] method performs much better for the standard normal
null hypothesis, but again the new version of the Lewis [1965] test also performs well.
We draw conclusions in §6. Additional information appears in appendices, Kim and
Whitt [2013a; 2013b].

2. THE ALTERNATIVE KS TESTS
We consider the following six KS tests to determine whether n observations Xk, 1 ≤
k ≤ n, can be considered a sample from a sequence of i.i.d. random variables having a
continuous cdf F . We start by forming the associated variables Uk ≡ F (Xk), which are
i.i.d. uniform variables on [0, 1] under the null hypothesis.

Standard Test.. We use the standard KS test to test whether Uk ≡ F (Xk), 1 ≤ k ≤ n,
can be considered to be i.i.d. random variables uniformly distributed on [0, 1].
Sort-Log Test.. Starting with the n random variables Uk, 1 ≤ k ≤ n, in the standard
test, let U(j) be the jth smallest of these, so that U(1) < · · · < U(n). As in §3.1 of
Brown et al. [2005], we use the fact that under the null hypothesis

Y
(L)
j ≡ − loge (Uj/Uj+1) , 1 ≤ j ≤ n− 1,

are n − 1 i.i.d. rate-1 exponential random variables, to which we can apply the KS
test with n replaced by n− 1..
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Durbin (≡ Sort-Durbin) Test.. This is the original test proposed by Durbin [1961],
which also starts with Uk ≡ F (Xk) and U(k) with U(1) < · · · < U(n) as above. In this
context, look at the successive intervals between these ordered observations:

C1 ≡ U(1), Cj ≡ U(j) − U(j−1), 2 ≤ j ≤ n, and Cn+1 ≡ 1− U(n).

Then let C(j) be the jth smallest of these intervals, 1 ≤ j ≤ n, so that 0 < C(1) <
· · · < C(n+1) < 1. Now let Zj be scaled versions of the intervals between these new
ordered intervals, i.e., let

Zj = (n+ 2− j)(C(j) − C(j−1)), 1 ≤ j ≤ n+ 1, (with C(0) ≡ 0). (4)

Remarkably, Durbin [1961] showed (by a simple direct argument giving explicit
expressions for the joint density functions, exploiting the transformation of ran-
dom vectors by a function) that, under the null hypothesis, the random vector
(Z1, . . . , Zn) is distributed the same as the random vector (C1, . . . , Cn). Hence, again
under the null hypothesis, the vector of associated partial sums (S1, . . . , Sn), where
Sk ≡ Z1 + · · ·+Zk, 1 ≤ k ≤ n, has the same distribution as the original random vec-
tor (U(1), . . . , U(n)) of ordered uniform random variables. Hence, we can apply the
KS test with the ecdf

Fn(x) ≡ n−1
n∑
k=1

1{Sk≤x}, 0 ≤ x ≤ 1,

for Sk above, comparing it to the uniform cdf F (x) ≡ x, 0 ≤ x ≤ 1.
CU, (Conditional-Uniform ≡ Exp+CU) Test.. We start with Yk ≡ − log {1− F (Xk)},
1 ≤ k ≤ n, which are i.i.d. mean-1 exponential random variables under the null
hypothesis. Thus, the cumulative sums Tk ≡ Y1 + · · ·+ Yk, 1 ≤ k ≤ n, are the arrival
times of a rate-1 Poisson process. In this context, the conditional-uniform property
states that Tk/Tn, 1 ≤ k ≤ n, are distributed as the order statistics of n − 1 i.i.d.
random variables uniformly distributed on [0, 1]. Thus we can apply the KS statistic
with the ecdf in (3).
CU+Log (Exp+CU+Log) Test.. We start with the partial sums Tk, 1 ≤ k ≤ n, used in
the CU test, which are the arrivals times of a rate-1 Poisson process under the null
hypothesis. We again use the conditional-uniform property for fixed sample size to
conclude that, under the null hypothesis, Tk/Tn, 1 ≤ k ≤ n − 1, are distributed as
U(k), the order statistics of n− 1 random variables, with U(1) < · · · < U(n−1). Hence,
just as in the Sort-Log test above,

Y
(L)
j ≡ − loge (Tj/Tj+1) , 1 ≤ j ≤ n− 1,

should be n−1 i.i.d. rate-1 exponential random variables, to which we can apply the
KS test.
Lewis (Exp+CU+Durbin) Test.. We again start with the partial sums Tk, 1 ≤ k ≤ n,
used in the CU test, which are the arrivals times of a rate-1 Poisson process under
the null hypothesis. We again use the conditional-uniform property for fixed sample
size to conclude that, under the null hypothesis, Tk/Tn, 1 ≤ k ≤ n−1, are distributed
as U(k), the order statistics of n− 1 random variables uniformly distributed on [0, 1],
with U(1) < · · · < U(n−1). From this point, we apply the Durbin [1961] test above
with n replaced by n− 1, just as Lewis [1965] did in his test of a Poisson process.

3. THE FIRST EXPONENTIAL EXPERIMENT
Our first simulation experiment is for the discrete-time analog of the experiment for
testing the continuous-time Poisson process in Kim and Whitt [2013c]. Our base case
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is a sample of size n = 200 i.i.d. mean-1 exponential random variables, but to see the
impact of the sample size, we also give results for the larger sample size of n = 2000.

3.1. The Cases Considered
We use the same alternative hypotheses to the continuous-time Poisson process used
in Kim and Whitt [2013c], except that replace the time intervals of fixed length t by
sample sizes of fixed size n. That is, we now consider stationary sequences of mean-1
random variables. There are 9 cases, each with from 1 to 5 subcases, yielding 29 cases
in all. Using the same cases as before facilitates comparison. Before we considered the
random number of points observed by a rate-1 stationary point process in the fixed
interval [0, 200]. The fixed sample size here n ≡ 200 coincides with the expected sample
size before.

The first five cases involve i.i.d. mean-1 random variables; the last four cases involve
dependent identically distributed mean-1 random variables. The first i.i.d. case is our
null hypothesis with exponential random variables. The other i.i.d. cases have non-
exponential random variables. Cases 2 and 3 contain Erlang and hyperexponential
random variables, which are, respectively, stochastically less variable and stochasti-
cally more variable than the exponential distribution in convex stochastic order, as in
§9.5 of Ross [1996]. Thus, they have squared coefficient of variation (scv, variance di-
vided by the square of the mean, denoted by c2), respectively, c2 < 1 and c2 > 1. Cases
4 and 5 contain non-exponential cdf ’s with c2X = 1 as well as E[X] = 1, just like the
exponential cdf.

Case 1, Exponential.. The null hypothesis with i.i.d. mean-1 exponential random
variables (Base Case).
Case 2, Erlang, Ek.. Erlang-k (Ek) random variables, a sum of k i.i.d. exponentials
for k = 2, 4, 6 with c2X ≡ c2k = 1/k .
Case 3, Hyperexponetial, H2.. Hyperexponential-2 (H2) random variables, a mix-
ture of 2 exponential cdf ’s with c2X = 1.25, 1.5, 2, 4 and 10 (five cases). The
cdf is P (X ≤ x) ≡ 1 − p1e

−λ1x − p2e
−λ2x. We further assume balanced means

(p1λ−11 = p2λ
−1
2 ) as in (3.7) of Whitt [1982] so that given the value of c2X , pi =

[1±
√
(c2X − 1)/(c2X + 1)]/2 and λi = 2pi.

Case 4, mixture with c2X = 1.. A mixture of a more variable cdf and a less variable
cdf so that the c2X = 1; P (X = Y ) = p = 1−P (X = Z), where Y is H2 with c2Y = 4, Z
is E2 with c2Z = 1/2 and p = 1/7.
Case 5, lognormal, LN.. Lognormal (LN(1, σ2)) random variables with mean 1
and variance σ2 for σ2 = c2X = 0.25, 1.0, 4.0, 10.0 (four cases).

Cases 6 and 7 are dependent stationary sequences that deviate from the null hypoth-
esis (Case 1) only through dependence among successive variables, each exponentially
distributed with mean 1:

Case 6, RRI, dependent exponential interarrival times.. Randomly Repeated
Interarrival (RRI) times with exponential interarrival times, constructed by letting
each successive interarrival time be a mixture of the previous interarrival time
with probability p or a new independent interarrival time from an exponential dis-
tribution with mean 1, with probability 1− p (a special case of a first-order discrete
autoregressive process, DAR(1), studied by Jacobs and Lewis [1978; 1983]). Its se-
rial correlation is Corr(Xj , Xj+k) = pk. We consider three values of p: 0.1, 0.5 and
0.9.
Case 7, EARMA, dependent exponential interarrival times.. A stationary se-
quence of dependent exponential interarrival times with the correlation structure
of an autoregressive-moving average process, called EARMA(1,1) in Jacobs and

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



The Power of Alternative Kolmogorov-Smirnov Tests Based on Transformations of the Data A:7

Lewis [1977]. Starting from three independent sequences of i.i.d. random variables
{Xn : n ≥ 0}, {Un : n ≥ 1}, and {Vn : n ≥ 1}, where Xn is exponentially distributed
with mean m, while

P (Un = 0) = 1− P (Un = 1) = β and P (Vn = 0) = 1− P (Vn = 1) = ρ, (5)

the EARMA sequence {Sn : n ≥ 1} is defined recursively by

Sn = βXn + UnYn−1,

Yn = ρYn−1 + VnXn, n ≥ 1. (6)

Its serial correlation is Corr(Sj , Sj+k) = γρk−1 where γ = β(1 − β)(1 − ρ) + (1 −
β)2ρ. We consider five cases of (β, ρ): (0.75, 0.50), (0.5, 0.5), (0.5, 0.75), (0.00, 0.75),
(0.25, 0.90) so that the cumulative correlations

∑∞
k=1 Corr(Sj , Sj+k) increase: 0.25,

0.50, 1.00, 3.00, and 5.25. For more details, see Pang and Whitt [2012]. We specify
these cases by these cumulative correlations.

The final two cases are stationary sequences that have both non-exponential
marginal distributions and dependence among successive variables:

Case 8, mH2, superposition of m i.i.d. H2 renewal processes.. a stationary se-
quence of interarrival times from a superposition of m i.i.d. equilibrium renewal
processes, where the times between renewals (interarrival times) in each renewal
process has a hyperexponential (H2) distribution with c2a = 4 (mH2). As the number
m of component renewal processes increases, the superposition process converges
to a PP, and thus looks locally more like a PP, with the interarrival distribution
approaching exponential and the lag-k correlations approaching 0, but small corre-
lations extending further across time, so that the superposition process retains an
asymptotic variability parameter, c2A = 4. We consider four values of m: 2, 5, 10 and
20.
Case 9, RRI (H2), dependent H2 interarrival times with c2 = 4.. Randomly
Repeated Interarrival (RRI) times with H2 interarrival times, each having mean 1,
c2 = 4 and balanced means (as specified in Case 3). The repetition is done just as in
Case 6. We again consider three values of p: 0.1, 0.5 and 0.9.

Cases 6 and 7 above have short-range dependence, whereas Case 8 for large m tends
to have nearly exponential interarrival times, but longer-range dependence. For small
m, the mH2 superposition process should behave much like the H2 renewal process in
Case 3 with the component c2 = 4; for large m, the mH2 superposition process should
behave more like Cases 6 and 7 with dependence and exponential interarrival times.

Since the new KS tests apply to i.i.d. sequences with arbitrary continuous cdf ’s, we
also consider alternative null hypotheses. In particular, here we report results for E2,
H2 (with c2 = 2) and lognormal LN(1, 4) (with c2 = 4) marginal cdf ’s having mean 1 as
well as the exponential base case.

3.2. Simulation Design
For each case, we simulated 104 replications of 104 interarrival times. We generate
much more data than needed in order to get rid of any initial effects. We are supposing
that we observe stationary sequence, which is achieved by having the system operate
for some time before collecting data. The initial effect was observed to matter for the
cases with dependent interarrival times and relatively small sample sizes.

We use this simulation output to generate sample sizes of a fixed size n. With fixed
sample size n = 200, in each replication of the 104 simulated interarrival times we use
interarrival times from the 103th interarrival time to the 103+200th interarrival time.
To consider large sample sizes, we increased n from 200 to 2000. We then consider the
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Table I. Summary of the performance of alternative KS tests of
i.i.d. mean-1 exponential variables for the sample size n = 200
with significance level α = 0.05: the case of a renewal process
with H2 interarrival times having c2X = 2.

KS test Lewis Standard CU Durbin
Power 0.93 0.64 0.28 0.14
Average p value 0.02 0.09 0.24 0.40

interarrival times from the 103th interarrival time to the 103+2000th interarrival time
to observe the effect of larger sample size.

For each sample we checked our simulation results by estimating the mean and
scv of each interarrival-time cdf both before and after transformations; tables of the
results and plots of the average of the ecdf ’s appear in the appendix, Kim and Whitt
[2013b].

4. RESULTS OF THE FIRST EXPERIMENT
The long appendix Kim and Whitt [2013b] contains detailed results of the experiments;
we present a summary here. First, we found that the sort-Log and Log tests were
consistently dominated by the Durbin [1961] test or the Lewis [1965] test, so we do
not present detailed results for those two Log cases here. For the CU, CU+Log and
Lewis tests, we considered variants based on the exponential variables − log {F (X)}
and well as − log {1− F (X)}, but we did not find great differences, so we do not report
those either. Thus, we present the results of four KS tests: (i) the standard test, using
the variables Uk ≡ F (Xk), (ii) the Durbin [1961] test, (iii) the CU test and (iv) the Lewis
[1965] test, as specified in §2. Under the null hypotheses, the cdf in all four cases is
uniform on [0, 1].

4.1. The Base Case: i.i.d. Mean-1 Exponential Variables
We report the number of KS tests passed out of 10, 000 replications as well as the
average p-value with associated 95% confidence intervals. Thus, the estimate of the
power is 1− (number passed/10, 000). The p-value is the significance level below which
the hypothesis would be rejected. Thus low p-values indicate greater power. Just as in
Table 1 of Kim and Whitt [2013c], the differences in the tests is striking for the middle
H2 alternative with c2 = 2.0, as shown in Table I. The results for the Lewis, standard
and CU tests are very similar to those for the corresponding KS tests of a Poisson
process in Table 1 of Kim and Whitt [2013c], but the results for the Durbin [1961] test
are new, and surprisingly bad.

The results for all 29 cases are given in Table II. The first “exponential” case is
the i.i.d. exponential null hypothesis. The results show that all tests behave properly
for the i.i.d. exponential null hypothesis. The results also show that the tests per-
form quite differently for the alternative hypotheses. Table II shows that the standard
and Lewis tests all perform reasonably well for the i.i.d. cases with non-exponential
interarrival-time cdf ’s, in marked contrast to the CU and Durbin tests. Table II also
shows that the Lewis test is consistently most powerful for these cases. For H2 cdf ’s
with lower scv, the power of all methods is less than in Table IV, but the ordering re-
mains; forH2 cdf ’s with higher scv, the power of all methods is greater, but the ordering
remains.

Just as in Kim and Whitt [2013c], the story is more complicated for the dependent
sequences. The Durbin test performs remarkably well for the RRI cases, far better
than all others. For the RRI(H2) cases, all tests except CU perform very well. Hence
the Lewis test is consistently superior against non-exponential marginals. As in Kim
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Table II. Performance of alternative KS tests of i.i.d. mean-1 exponential variables for the sample size n = 200: Number of KS tests
passed (denoted by #P ) at significance level 0.05 out of 10, 000 replications and the average p-values (denoted by E[p − value])
with associated 95% confidence intervals.

F(X) Durbin CU Lewis
Case Subcase #P E[p− value] #P E[p− value] #P E[p− value] #P E[p− value]

Exp − 9487 0.50± 0.0057 9515 0.50± 0.0056 9511 0.50± 0.0056 9493 0.50± 0.0057
Ek k = 2 28 0.00± 0.0001 3320 0.08± 0.0029 9985 0.78± 0.0045 0 0.00± 0.0000

k = 4 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.94± 0.0021 0 0.00± 0.0000
k = 6 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.98± 0.0011 0 0.00± 0.0000

H2 c2 = 1.25 8843 0.42± 0.0058 9451 0.49± 0.0057 8956 0.41± 0.0056 7501 0.30± 0.0056
c2 = 1.5 7204 0.27± 0.0053 9331 0.48± 0.0058 8418 0.33± 0.0053 3966 0.12± 0.0039
c2 = 2 3603 0.09± 0.0032 8667 0.40± 0.0058 7186 0.24± 0.0046 695 0.02± 0.0013
c2 = 4 90 0.00± 0.0003 4569 0.13± 0.0039 3648 0.08± 0.0027 22 0.00± 0.0003
c2 = 10 0 0.00± 0.0000 878 0.02± 0.0012 928 0.02± 0.0014 67 0.00± 0.0006

Z − 1200 0.02± 0.0009 7016 0.26± 0.0053 9438 0.57± 0.0061 187 0.00± 0.0004
LN (1, 0.25) 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.94± 0.0022 0 0.00± 0.0000

(1, 1) 98 0.00± 0.0002 3482 0.08± 0.0025 9517 0.53± 0.0058 24 0.00± 0.0001
(1, 4) 176 0.00± 0.0005 5542 0.18± 0.0047 4742 0.13± 0.0036 28 0.00± 0.0002
(1, 10) 0 0.00± 0.0000 353 0.01± 0.0008 2024 0.04± 0.0019 0 0.00± 0.0000

RRI p = 0.1 9048 0.41± 0.0055 1911 0.03± 0.0012 9044 0.42± 0.0056 9121 0.41± 0.0054
p = 0.5 4659 0.11± 0.0030 0 0.00± 0.0000 5587 0.16± 0.0039 4624 0.11± 0.0030
p = 0.9 16 0.00± 0.0001 0 0.00± 0.0000 701 0.01± 0.0011 13 0.00± 0.0001

EARMA 0.25 9284 0.47± 0.0058 9475 0.50± 0.0057 8564 0.36± 0.0055 9498 0.50± 0.0057
0.5 8865 0.43± 0.0059 9516 0.50± 0.0057 7519 0.27± 0.0050 9393 0.49± 0.0058
1 8178 0.37± 0.0059 9419 0.50± 0.0057 6009 0.19± 0.0043 8964 0.44± 0.0059
3 5209 0.21± 0.0055 6356 0.23± 0.0050 1896 0.04± 0.0018 6796 0.30± 0.0061
5.25 4100 0.14± 0.0044 8215 0.38± 0.0061 1598 0.03± 0.0018 5680 0.21± 0.0051

mH2 m = 2 4398 0.14± 0.0044 8871 0.42± 0.0058 4355 0.11± 0.0032 1546 0.04± 0.0024
m = 5 7514 0.32± 0.0058 9363 0.48± 0.0057 5400 0.17± 0.0043 7228 0.29± 0.0057
m = 10 7818 0.35± 0.0060 9423 0.49± 0.0057 6562 0.24± 0.0051 9004 0.44± 0.0059
m = 20 7996 0.37± 0.0060 9457 0.50± 0.0057 7804 0.33± 0.0057 9431 0.49± 0.0057

RRI(H2) p = 0.1 104 0.00± 0.0003 126 0.00± 0.0003 2987 0.07± 0.0024 37 0.00± 0.0003
p = 0.5 253 0.00± 0.0005 0 0.00± 0.0000 1105 0.02± 0.0013 215 0.00± 0.0006
p = 0.9 4 0.00± 0.0000 0 0.00± 0.0000 229 0.00± 0.0005 5 0.00± 0.0000

and Whitt [2013c], none of the tests has much power against the EARMA alternatives,
but the CU test has the most power.

4.2. Plots of the Average Empirical Distributions
As in Kim and Whitt [2013c], we find that useful insight is provided by plots comparing
the average of the ecdf ’s over all 10, 000 replications to the cdf associated with the null
hypothesis, which is uniform in each case here. Figures 1-4 illustrate for the i.i.d.
variables having cdf ’s H2 with c2 = 2, E2 and LN(1, 4), and for the dependent RRI(0.5)
variables with n = 200. These figures show that the transformation in the Lewis KS
test provides greater separation between the average ecdf and the cdf in the i.i.d. cases,
while the Durbin KS test does so remarkably well for the RRI alternative. In each case,
the Durbin and Lewis tests tend to produce stochastic order compared to the uniform
cdf, whereas the ecdf crosses over for the standard KS test, which is especially evident
for E2.

4.3. Erlang, Hyperexponential and Lognormal Alternatives
We now consider three different i.i.d. null hypotheses: E2, H2 with c2 = 2 and LN(1, 4);
lognormal hypotheses are especially interesting for service systems, e.g., Brown et al.
[2005]. The results are shown for the same 29 cases in Tables III-V below for the base
case of n = 200. As before, all tests perform properly for the null hypotheses. The order-
ing of the tests by power when we consider the i.i.d. exponential alternative hypothesis
is the same as before. Overall, these tables show that the previous conclusions for the
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Fig. 1. Comparison of the average ecdf based on 104 replications for n = 200 with the cdf of the null
hypothesis; H2 (c2 = 2): F(X), Durbin, CU, and Lewis Tests (from left to right).
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Fig. 2. Comparison of the average ecdf based on 104 replications for n = 200 with the cdf of the null
hypothesis; E2: F(X), Durbin, CU, and Lewis Tests (from left to right).
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Fig. 3. Comparison of the average ecdf based on 104 replications for n = 200 with the cdf of the null
hypothesis; LN(1, 4): F(X), Durbin, CU, and Lewis Tests (from left to right).
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Fig. 4. Comparison of the average ecdf based on 104 replications for n = 200 with the cdf of the null
hypothesis; RRI(0.5): F(X), Durbin, CU, and Lewis Tests (from left to right).
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i.i.d. exponential null hypothesis conclusions extend to i.i.d. null hypotheses with other
marginal cdf ’s.

4.4. Larger Sample Sizes
Table II-V clearly show how the power decreases as the alternative gets closer to the
i.i.d. null hypothesis. For the i.i.d. exponential null hypothesis and the i.i.d. alternative
hypotheses, we see this as the scv c2X approaches 1; for the dependent exponential
sequences, we see this as the degree of dependence decreases. However, all of these are
for the sample size n = 200. The power also increases as we increase the sample size,
as we now illustrate by considering case n = 2000 for the exponential null hypothesis
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Table III. Performance of alternative KS tests of i.i.d.E2 variables for the sample size n = 200: Number of KS tests passed (denoted
by #P ) at significance level 0.05 out of 10, 000 replications and the average p-values (denoted by E[p − value]) with associated
95% confidence intervals.

F(X) Durbin CU Lewis
Case Subcase #P E[p− value] #P E[p− value] #P E[p− value] #P E[p− value]

Exp − 129 0.00± 0.0003 2596 0.06± 0.0027 7421 0.24± 0.0046 0 0.00± 0.0000
Ek k = 2 9492 0.50± 0.0056 9500 0.49± 0.0057 9497 0.50± 0.0057 9506 0.50± 0.0057

k = 4 155 0.00± 0.0003 4100 0.11± 0.0034 9977 0.77± 0.0046 0 0.00± 0.0000
k = 6 0 0.00± 0.0000 7 0.00± 0.0001 9999 0.88± 0.0033 0 0.00± 0.0000

H2 c2 = 1.25 17 0.00± 0.0001 1181 0.03± 0.0016 6106 0.17± 0.0040 0 0.00± 0.0000
c2 = 1.5 0 0.00± 0.0000 539 0.01± 0.0008 4905 0.12± 0.0033 0 0.00± 0.0000
c2 = 2 0 0.00± 0.0000 129 0.00± 0.0004 3336 0.07± 0.0024 0 0.00± 0.0000
c2 = 4 0 0.00± 0.0000 0 0.00± 0.0000 752 0.01± 0.0009 0 0.00± 0.0000
c2 = 10 0 0.00± 0.0000 0 0.00± 0.0000 67 0.00± 0.0004 0 0.00± 0.0000

Z − 8069 0.32± 0.0054 9286 0.46± 0.0058 7152 0.28± 0.0054 4466 0.15± 0.0046
LN (1, 0.25) 0 0.00± 0.0000 425 0.01± 0.0006 9973 0.75± 0.0048 0 0.00± 0.0000

(1, 1) 3086 0.07± 0.0027 8424 0.37± 0.0058 6809 0.22± 0.0045 331 0.01± 0.0009
(1, 4) 0 0.00± 0.0000 3 0.00± 0.0000 1507 0.03± 0.0014 0 0.00± 0.0000
(1, 10) 0 0.00± 0.0000 0 0.00± 0.0000 408 0.01± 0.0006 0 0.00± 0.0000

RRI p = 0.1 135 0.00± 0.0003 24 0.00± 0.0001 6455 0.19± 0.0042 5 0.00± 0.0000
p = 0.5 164 0.00± 0.0004 0 0.00± 0.0000 2429 0.05± 0.0020 45 0.00± 0.0002
p = 0.9 3 0.00± 0.0000 0 0.00± 0.0000 142 0.00± 0.0004 3 0.00± 0.0000

EARMA 0.25 108 0.00± 0.0002 2552 0.06± 0.0027 5494 0.15± 0.0037 1 0.00± 0.0000
0.5 114 0.00± 0.0003 2614 0.07± 0.0027 4064 0.10± 0.0029 0 0.00± 0.0000
1 135 0.00± 0.0003 2597 0.07± 0.0028 2670 0.06± 0.0022 6 0.00± 0.0001
3 918 0.02± 0.0015 3573 0.12± 0.0043 508 0.01± 0.0008 585 0.02± 0.0018
5.25 432 0.01± 0.0007 2347 0.07± 0.0032 374 0.01± 0.0006 339 0.01± 0.0007

mH2 m = 2 0 0.00± 0.0000 289 0.01± 0.0007 1248 0.02± 0.0013 0 0.00± 0.0000
m = 5 23 0.00± 0.0001 1179 0.03± 0.0015 2356 0.05± 0.0022 0 0.00± 0.0000
m = 10 63 0.00± 0.0002 1684 0.04± 0.0020 3581 0.09± 0.0031 0 0.00± 0.0000
m = 20 96 0.00± 0.0002 2070 0.05± 0.0024 4884 0.14± 0.0038 0 0.00± 0.0000

RRI(H2) p = 0.1 0 0.00± 0.0000 0 0.00± 0.0000 557 0.01± 0.0007 0 0.00± 0.0000
p = 0.5 0 0.00± 0.0000 0 0.00± 0.0000 151 0.00± 0.0003 0 0.00± 0.0000
p = 0.9 0 0.00± 0.0000 0 0.00± 0.0000 23 0.00± 0.0002 1 0.00± 0.0000

in Table VI. Corresponding results for Erlang, hyperexponential and lognormal null
hypotheses appear in Kim and Whitt [2013b]. When the sample size is increased to
n = 2000, all the tests except the CU test reject the alternative hypotheses in all 104
replications for most of the alternatives. Nevertheless, the superiority of the Lewis
test for non-exponential marginals is evident from the H2 case with c2 = 1.25, the
superiority of the Durbin test for the RRI cases is evident, and the superiority of the
CU test for the EARMA cases is evident, consistent with the previous results for n =
200.

5. THE SECOND NORMAL EXPERIMENT
The poor results for the Durbin [1961] test for the i.i.d. cases in §4 seem inconsistent
with the results in Durbin [1961] and the enthusiastic endorsement by Lewis [1965], so
we decided to repeat some of the experiments actually performed by Durbin [1961]. We
now consider the same four KS tests applied to the i.i.d. standard normal (N(0, 1)) null
hypothesis. To keep the same mean equal to 0 for all alternatives, we consider all the
previous 29 cases after subtracting 1 to make them all have mean 0. Indeed, the first
alternative considered by Durbin [1961] was an i.i.d. sequence of random variables
distributed as Y − 1, where Y is a mean 1 exponential variable; it has the same mean
and variance as N(0, 1). We summarize the results for this alternative with the sample
size n = 50 used by Durbin [1961] in Table VII. Table VII shows that now the Durbin
[1961] and Lewis [1965] have essentially the same power, which is far greater than for
the standard and CU tests.
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Table IV. Performance of alternative KS tests of i.i.d. H2 with c2 = 2 variables for the sample size n = 200: Number of KS tests
passed (denoted by #P ) at significance level 0.05 out of 10, 000 replications and the average p-values (denoted by E[p − value])
with associated 95% confidence intervals.

F(X) Durbin CU Lewis
Case Subcase #P E[p− value] #P E[p− value] #P E[p− value] #P E[p− value]

Exp − 3661 0.10± 0.0034 8951 0.43± 0.0058 9935 0.69± 0.0051 1613 0.03± 0.0014
Ek k = 2 0 0.00± 0.0000 92 0.00± 0.0003 10000 0.89± 0.0032 0 0.00± 0.0000

k = 4 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.98± 0.0012 0 0.00± 0.0000
k = 6 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.99± 0.0005 0 0.00± 0.0000

H2 c2 = 1.25 6574 0.23± 0.0052 9433 0.49± 0.0057 9850 0.63± 0.0055 5543 0.15± 0.0038
c2 = 1.5 8530 0.39± 0.0059 9497 0.50± 0.0057 9750 0.58± 0.0056 8307 0.34± 0.0055
c2 = 2 9511 0.50± 0.0056 9482 0.50± 0.0057 9482 0.50± 0.0057 9507 0.50± 0.0056
c2 = 4 4983 0.14± 0.0040 9107 0.44± 0.0058 8143 0.31± 0.0052 3888 0.11± 0.0038
c2 = 10 269 0.01± 0.0005 6142 0.19± 0.0046 5098 0.15± 0.0039 1221 0.04± 0.0024

Z − 0 0.00± 0.0000 1932 0.04± 0.0021 9989 0.80± 0.0043 0 0.00± 0.0000
LN (1, 0.25) 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.98± 0.0011 0 0.00± 0.0000

(1, 1) 0 0.00± 0.0000 585 0.01± 0.0006 9982 0.77± 0.0046 0 0.00± 0.0000
(1, 4) 5685 0.18± 0.0045 9051 0.44± 0.0059 8493 0.36± 0.0055 5281 0.16± 0.0043
(1, 10) 13 0.00± 0.0001 4888 0.15± 0.0043 5824 0.17± 0.0042 11 0.00± 0.0001

RRI p = 0.1 3400 0.09± 0.0032 1352 0.02± 0.0010 9804 0.61± 0.0056 1410 0.03± 0.0013
p = 0.5 2058 0.05± 0.0020 0 0.00± 0.0000 7608 0.28± 0.0050 883 0.02± 0.0012
p = 0.9 9 0.00± 0.0001 0 0.00± 0.0000 1282 0.03± 0.0017 6 0.00± 0.0000

EARMA 0.25 3697 0.10± 0.0035 8922 0.43± 0.0058 9684 0.56± 0.0056 1577 0.03± 0.0014
0.5 3839 0.11± 0.0037 8872 0.42± 0.0059 9216 0.45± 0.0057 1630 0.03± 0.0015
1 3755 0.11± 0.0037 8629 0.40± 0.0059 8364 0.34± 0.0055 1607 0.03± 0.0017
3 3607 0.13± 0.0044 5683 0.19± 0.0047 3333 0.08± 0.0028 2577 0.07± 0.0032
5.25 2770 0.08± 0.0032 6642 0.27± 0.0056 3118 0.08± 0.0029 1690 0.05± 0.0025

mH2 m = 2 8771 0.42± 0.0058 9466 0.49± 0.0057 7788 0.29± 0.0052 9091 0.43± 0.0057
m = 5 6227 0.24± 0.0053 9290 0.47± 0.0058 7974 0.33± 0.0056 5465 0.16± 0.0041
m = 10 5052 0.18± 0.0047 9032 0.44± 0.0058 8543 0.40± 0.0061 3210 0.07± 0.0025
m = 20 4598 0.15± 0.0044 9013 0.43± 0.0058 9265 0.50± 0.0061 2263 0.05± 0.0018

RRI(H2) p = 0.1 4641 0.14± 0.0040 1227 0.02± 0.0010 7377 0.26± 0.0048 3720 0.11± 0.0037
p = 0.5 2542 0.05± 0.0022 0 0.00± 0.0000 3586 0.09± 0.0029 2467 0.05± 0.0022
p = 0.9 13 0.00± 0.0001 0 0.00± 0.0000 440 0.01± 0.0008 9 0.00± 0.0001

Table VIII below shows all the results for our original 29 cases with n = 50.
Since those alternatives have quite a different shape from the symmetric N(0, 1)
distributions, we also considered i.i.d. sequences of random variables distributed as
Zk−1+

√
1− (1/k)N(0, 1), where Zk has an Ek cdf, for k = 2, 4, 6. These have the same

first two moments and approximately the same shape.
The new base case is the i.i.d. standard normal null hypothesis; it appears just below

the previous alternatives in Table VIII. Just as in the previous tables, the results show
that all tests behave properly for the standard normal null hypothesis. Overall, Table
VIII shows that the Durbin [1961] test performs much better now, just as originally
reported. In this case both the Durbin [1961] and Lewis [1965] KS tests perform much
better than the standard and CU alternatives. An exception is the set of three modified
Erlang cases, with the same shape and first two moments as N(0, 1). The Lewis test
has most power, but all four tests have low power for these cases.

As in §4, the power increases as the sample size increases. Table IX shows the results
for n = 200. With the larger sample size n = 200, all tests except CU have estimated
perfect power except in the last three modified Erlang cases, where the Lewis test
stands out with power 0.375 for the modified E2 case compared to 0.13 for standard
and CU, and only 0.055 for Durbin. Figures 5 and 6 show that the reason can be seen
in the average of the ecdf ’s of the transformed data.
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Table V. Performance of alternative KS tests of i.i.d. LN(1, 4) variables for the sample size n = 200: Number of KS tests passed
(denoted by #P ) at significance level 0.05 out of 10, 000 replications and the average p-values (denoted by E[p − value]) with
associated 95% confidence intervals.

F(X) Durbin CU Lewis
Case Subcase #P E[p− value] #P E[p− value] #P E[p− value] #P E[p− value]

Exp − 181 0.00± 0.0005 5509 0.18± 0.0046 9972 0.75± 0.0047 38 0.00± 0.0002
Ek k = 2 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.93± 0.0024 0 0.00± 0.0000

k = 4 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.99± 0.0007 0 0.00± 0.0000
k = 6 0 0.00± 0.0000 0 0.00± 0.0000 10000 1.00± 0.0003 0 0.00± 0.0000

H2 c2 = 1.25 811 0.02± 0.0012 7382 0.29± 0.0056 9939 0.70± 0.0051 513 0.01± 0.0007
c2 = 1.5 2340 0.05± 0.0023 8354 0.37± 0.0058 9895 0.66± 0.0053 2255 0.05± 0.0020
c2 = 2 5665 0.17± 0.0043 9006 0.43± 0.0058 9788 0.59± 0.0055 6140 0.19± 0.0043
c2 = 4 9164 0.36± 0.0048 8864 0.41± 0.0058 9294 0.46± 0.0056 8783 0.31± 0.0046
c2 = 10 3774 0.08± 0.0023 6700 0.23± 0.0050 8538 0.35± 0.0054 5450 0.13± 0.0032

Z − 0 0.00± 0.0000 196 0.00± 0.0005 10000 0.87± 0.0034 0 0.00± 0.0000
LN (1, 0.25) 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.99± 0.0005 0 0.00± 0.0000

(1, 1) 0 0.00± 0.0000 90 0.00± 0.0003 9999 0.85± 0.0037 0 0.00± 0.0000
(1, 4) 9508 0.50± 0.0056 9508 0.50± 0.0056 9508 0.50± 0.0057 9490 0.50± 0.0057
(1, 10) 232 0.01± 0.0005 6261 0.22± 0.0051 8094 0.30± 0.0051 185 0.00± 0.0004

RRI p = 0.1 193 0.00± 0.0005 346 0.01± 0.0004 9921 0.68± 0.0053 47 0.00± 0.0001
p = 0.5 408 0.01± 0.0007 0 0.00± 0.0000 8255 0.34± 0.0054 120 0.00± 0.0003
p = 0.9 13 0.00± 0.0001 0 0.00± 0.0000 1738 0.04± 0.0021 3 0.00± 0.0001

EARMA 0.25 206 0.00± 0.0006 5443 0.18± 0.0046 9866 0.64± 0.0054 34 0.00± 0.0001
0.5 312 0.01± 0.0007 5388 0.17± 0.0045 9571 0.53± 0.0058 44 0.00± 0.0002
1 436 0.01± 0.0009 5032 0.16± 0.0045 9023 0.43± 0.0058 72 0.00± 0.0003
3 1594 0.04± 0.0024 4073 0.13± 0.0041 4018 0.10± 0.0033 647 0.01± 0.0012
5.25 1220 0.03± 0.0019 3612 0.12± 0.0042 4027 0.11± 0.0036 469 0.01± 0.0013

mH2 m = 2 4930 0.15± 0.0040 8640 0.39± 0.0058 8786 0.39± 0.0057 4425 0.12± 0.0035
m = 5 1706 0.04± 0.0022 7193 0.27± 0.0055 8677 0.40± 0.0059 606 0.01± 0.0008
m = 10 1083 0.03± 0.0017 6179 0.22± 0.0051 9085 0.48± 0.0062 178 0.00± 0.0004
m = 20 808 0.02± 0.0013 5752 0.19± 0.0049 9572 0.57± 0.0060 79 0.00± 0.0002

RRI(H2) p = 0.1 8581 0.29± 0.0046 834 0.02± 0.0008 8830 0.39± 0.0055 8117 0.26± 0.0044
p = 0.5 3857 0.08± 0.0024 0 0.00± 0.0000 5080 0.14± 0.0036 3547 0.07± 0.0024
p = 0.9 17 0.00± 0.0001 0 0.00± 0.0000 658 0.01± 0.0010 5 0.00± 0.0001

6. CONCLUSIONS
We have conducted simulation experiments to study the power of alternative
Kolmogorov-Smirnov (KS) statistical tests of a sequence if i.i.d. random variables with
continuous cdf F , focusing on the exponential and standard normal null hypotheses.
Our analysis strongly supports the data-transformation approach proposed by Durbin
[1961], but we find that another related KS test proposed by Lewis [1965], which uses
the original Durbin [1961] transformation after converting to exponential random vari-
ables and applying the conditional-uniform (CU) property, is usually superior, often
markedly so. Thus, we recommend the Lewis test, implemented as described in §2.
Since there is some variation in the results, we recommend applying simulation as we
have done in this paper, if there is the opportunity, in order to assess what KS test has
the most power and what that power should be in a new setting of interest. The tables
and plots based on 104 replications give a very clear picture.

Both in Kim and Whitt [2013c] and here we have focused on the two-sided KS test,
but we also conducted one-sided KS tests. We found that the one-sided test can further
increase power when it is justified. As usual with statistical tests, the power increases
with the sample size, so that some sample sizes may be too small to have any power,
whereas other sample sizes may be too large to accept even the slightest deviation
from a null hypothesis. Thus, as many have discovered before, judgment is required in
the use of statistical tests.
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Table VI. Performance of alternative KS tests of i.i.d. mean-1 exponential variables for the sample size n = 2000: Number of KS tests
passed (denoted by #P ) at significance level 0.05 out of 10, 000 replications and the average p-values (denoted by E[p − value])
with associated 95% confidence intervals.

F(X) Durbin CU Lewis
Case Subcase #P E[p− value] #P E[p− value] #P E[p− value] #P E[p− value]

Exp − 9515 0.50± 0.0056 9495 0.50± 0.0057 9481 0.50± 0.0057 9495 0.50± 0.0057
Ek k = 2 0 0.00± 0.0000 0 0.00± 0.0000 9985 0.79± 0.0044 0 0.00± 0.0000

k = 4 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.95± 0.0019 0 0.00± 0.0000
k = 6 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.98± 0.0009 0 0.00± 0.0000

H2 c2 = 1.25 3380 0.08± 0.0029 9360 0.48± 0.0057 8957 0.40± 0.0055 281 0.01± 0.0006
c2 = 1.5 68 0.00± 0.0002 8320 0.36± 0.0059 8313 0.32± 0.0051 0 0.00± 0.0000
c2 = 2 0 0.00± 0.0000 3425 0.08± 0.0030 6893 0.21± 0.0043 0 0.00± 0.0000
c2 = 4 0 0.00± 0.0000 0 0.00± 0.0000 2788 0.05± 0.0019 0 0.00± 0.0000
c2 = 10 0 0.00± 0.0000 0 0.00± 0.0000 34 0.00± 0.0002 0 0.00± 0.0000

Z − 0 0.00± 0.0000 4 0.00± 0.0001 9450 0.52± 0.0058 0 0.00± 0.0000
LN (1, 0.25) 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.95± 0.0019 0 0.00± 0.0000

(1, 1) 0 0.00± 0.0000 0 0.00± 0.0000 9501 0.51± 0.0057 0 0.00± 0.0000
(1, 4) 0 0.00± 0.0000 0 0.00± 0.0000 2610 0.06± 0.0023 0 0.00± 0.0000
(1, 10) 0 0.00± 0.0000 0 0.00± 0.0000 242 0.00± 0.0005 0 0.00± 0.0000

RRI p = 0.1 9010 0.41± 0.0055 0 0.00± 0.0000 9129 0.41± 0.0055 9014 0.40± 0.0055
p = 0.5 4410 0.10± 0.0028 0 0.00± 0.0000 4666 0.11± 0.0030 4531 0.10± 0.0028
p = 0.9 0 0.00± 0.0000 0 0.00± 0.0000 25 0.00± 0.0001 0 0.00± 0.0000

EARMA 0.25 9336 0.47± 0.0057 9483 0.50± 0.0057 8326 0.33± 0.0052 9429 0.49± 0.0057
0.5 8806 0.42± 0.0059 9505 0.50± 0.0057 7063 0.22± 0.0044 9408 0.49± 0.0057
1 8210 0.37± 0.0059 9488 0.50± 0.0057 4722 0.12± 0.0031 8901 0.43± 0.0058
3 5247 0.21± 0.0054 6406 0.22± 0.0049 822 0.01± 0.0008 6715 0.29± 0.0061
5.25 4111 0.14± 0.0045 9290 0.47± 0.0058 193 0.00± 0.0003 5769 0.21± 0.0051

mH2 m = 2 0 0.00± 0.0000 5272 0.16± 0.0042 3029 0.06± 0.0022 0 0.00± 0.0000
m = 5 3135 0.09± 0.0032 9281 0.46± 0.0058 3434 0.07± 0.0024 182 0.00± 0.0004
m = 10 6428 0.25± 0.0054 9471 0.49± 0.0057 3732 0.09± 0.0027 4432 0.13± 0.0040
m = 20 7364 0.31± 0.0058 9470 0.50± 0.0057 4365 0.11± 0.0033 8127 0.35± 0.0058

RRI(H2) p = 0.1 0 0.00± 0.0000 0 0.00± 0.0000 1897 0.03± 0.0015 0 0.00± 0.0000
p = 0.5 0 0.00± 0.0000 0 0.00± 0.0000 177 0.00± 0.0003 0 0.00± 0.0000
p = 0.9 0 0.00± 0.0000 0 0.00± 0.0000 0 0.00± 0.0000 0 0.00± 0.0000

Table VII. Summary of the performance of alternative KS tests
of i.i.d. standard normal N(0, 1) variables for the sample size
n = 50 with significance level α = 0.05: the case of the ran-
dom variable Y − 1, where Y is a mean-1 exponential random
variable.

KS test Lewis Standard CU Durbin
Power 0.885 0.443 0.328 0.894
Average p value 0.02 0.07 0.23 0.02
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Table VIII. Performance of alternative KS tests of i.i.d. N(0, 1) variables for the sample size n = 50: Number of KS tests passed (de-
noted by #P ) at significance level 0.05 out of 10, 000 replications and the average p-values (denoted by E[p− value]) with associated
95% confidence intervals.

F(X) Durbin CU Lewis
Case Subcase #P E[p− value] #P E[p− value] #P E[p− value] #P E[p− value]

Exp − 5576 0.07± 0.0010 1871 0.04± 0.0016 6716 0.23± 0.0049 1154 0.02± 0.0006
Ek k = 2 3813 0.04± 0.0006 2953 0.05± 0.0018 9364 0.52± 0.0059 376 0.01± 0.0004

k = 4 20 0.01± 0.0002 336 0.01± 0.0004 9977 0.81± 0.0043 0 0.00± 0.0000
k = 6 0 0.00± 0.0000 5 0.00± 0.0000 10000 0.92± 0.0026 0 0.00± 0.0000

H2 c2 = 1.25 4188 0.05± 0.0010 1004 0.02± 0.0011 5051 0.16± 0.0043 417 0.01± 0.0004
c2 = 1.5 3100 0.04± 0.0009 629 0.01± 0.0009 4022 0.12± 0.0039 174 0.00± 0.0003
c2 = 2 1747 0.02± 0.0008 221 0.00± 0.0004 2639 0.07± 0.0031 36 0.00± 0.0001
c2 = 4 222 0.00± 0.0003 17 0.00± 0.0001 1237 0.04± 0.0027 1 0.00± 0.0000
c2 = 10 7 0.00± 0.0001 1 0.00± 0.0000 1870 0.09± 0.0046 0 0.00± 0.0000

Z − 4836 0.05± 0.0008 2671 0.05± 0.0018 7273 0.37± 0.0065 533 0.01± 0.0004
LN (1, 0.25) 0 0.00± 0.0001 41 0.00± 0.0001 9915 0.76± 0.0050 0 0.00± 0.0000

(1, 1) 1722 0.03± 0.0005 700 0.01± 0.0007 5971 0.24± 0.0055 89 0.00± 0.0002
(1, 4) 460 0.01± 0.0004 31 0.00± 0.0002 2027 0.06± 0.0028 5 0.00± 0.0000
(1, 10) 24 0.00± 0.0001 0 0.00± 0.0000 1168 0.03± 0.0021 1 0.00± 0.0000

RRI p = 0.1 5219 0.06± 0.0010 763 0.01± 0.0009 6239 0.21± 0.0049 1152 0.02± 0.0007
p = 0.5 2791 0.03± 0.0008 0 0.00± 0.0000 4283 0.13± 0.0039 788 0.01± 0.0007
p = 0.9 62 0.00± 0.0001 0 0.00± 0.0000 3696 0.17± 0.0057 15 0.00± 0.0001

EARMA 0.25 5395 0.07± 0.0010 1813 0.04± 0.0016 5820 0.20± 0.0048 1120 0.02± 0.0007
0.5 5296 0.06± 0.0011 1872 0.04± 0.0016 5140 0.17± 0.0045 1192 0.02± 0.0008
1 5028 0.06± 0.0011 1884 0.04± 0.0017 4883 0.17± 0.0047 1370 0.02± 0.0010
3 3034 0.03± 0.0008 2492 0.05± 0.0019 2970 0.09± 0.0034 1474 0.03± 0.0014
5.25 3446 0.04± 0.0010 2049 0.05± 0.0020 4275 0.17± 0.0053 2115 0.05± 0.0023

mH2 m = 2 2363 0.03± 0.0009 460 0.01± 0.0007 2777 0.09± 0.0038 76 0.00± 0.0002
m = 5 4045 0.05± 0.0010 1109 0.02± 0.0012 4591 0.16± 0.0046 421 0.01± 0.0005
m = 10 4667 0.06± 0.0010 1477 0.03± 0.0015 5682 0.20± 0.0049 706 0.01± 0.0006
m = 20 4932 0.06± 0.0010 1636 0.03± 0.0015 6361 0.23± 0.0050 891 0.02± 0.0007

RRI(H2) p = 0.1 302 0.01± 0.0003 3 0.00± 0.0001 1306 0.04± 0.0028 3 0.00± 0.0000
p = 0.5 454 0.01± 0.0004 0 0.00± 0.0000 2009 0.07± 0.0037 12 0.00± 0.0001
p = 0.9 17 0.00± 0.0001 0 0.00± 0.0000 4063 0.21± 0.0065 1 0.00± 0.0000

N(0, 1) − 9447 0.50± 0.0057 9460 0.50± 0.0057 9501 0.50± 0.0056 9492 0.50± 0.0057
Ek − 1 k = 2 9336 0.47± 0.0057 9472 0.49± 0.0057 8782 0.40± 0.0057 8393 0.38± 0.0058

+
√

1− 1/k k = 4 9526 0.51± 0.0056 9493 0.50± 0.0057 9330 0.47± 0.0057 9410 0.48± 0.0057
×N(0, 1) k = 6 9503 0.50± 0.0057 9476 0.50± 0.0057 9427 0.49± 0.0057 9445 0.49± 0.0057
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Table IX. Performance of alternative KS tests of i.i.d. N(0, 1) variables for the sample size n = 200: Number of KS tests passed (de-
noted by #P ) at significance level 0.05 out of 10, 000 replications and the average p-values (denoted by E[p− value]) with associated
95% confidence intervals.

F(X) Durbin CU Lewis
Case Subcase #P E[p− value] #P E[p− value] #P E[p− value] #P E[p− value]

Exp − 0 0.00± 0.0000 0 0.00± 0.0000 5524 0.16± 0.0039 0 0.00± 0.0000
Ek k = 2 0 0.00± 0.0000 0 0.00± 0.0000 9262 0.48± 0.0059 0 0.00± 0.0000

k = 4 0 0.00± 0.0000 0 0.00± 0.0000 9990 0.82± 0.0041 0 0.00± 0.0000
k = 6 0 0.00± 0.0000 0 0.00± 0.0000 10000 0.93± 0.0024 0 0.00± 0.0000

H2 c2 = 1.25 0 0.00± 0.0000 0 0.00± 0.0000 3240 0.08± 0.0028 0 0.00± 0.0000
c2 = 1.5 0 0.00± 0.0000 0 0.00± 0.0000 1850 0.04± 0.0019 0 0.00± 0.0000
c2 = 2 0 0.00± 0.0000 0 0.00± 0.0000 702 0.01± 0.0010 0 0.00± 0.0000
c2 = 4 0 0.00± 0.0000 0 0.00± 0.0000 33 0.00± 0.0003 0 0.00± 0.0000
c2 = 10 0 0.00± 0.0000 0 0.00± 0.0000 27 0.00± 0.0004 0 0.00± 0.0000

Z − 0 0.00± 0.0000 0 0.00± 0.0000 4471 0.18± 0.0053 0 0.00± 0.0000
LN (1, 0.25) 0 0.00± 0.0000 0 0.00± 0.0000 9926 0.76± 0.0050 0 0.00± 0.0000

(1, 1) 0 0.00± 0.0000 0 0.00± 0.0000 3684 0.10± 0.0035 0 0.00± 0.0000
(1, 4) 0 0.00± 0.0000 0 0.00± 0.0000 248 0.00± 0.0006 0 0.00± 0.0000
(1, 10) 0 0.00± 0.0000 0 0.00± 0.0000 48 0.00± 0.0002 0 0.00± 0.0000

RRI p = 0.1 0 0.00± 0.0000 0 0.00± 0.0000 4784 0.13± 0.0035 0 0.00± 0.0000
p = 0.5 0 0.00± 0.0000 0 0.00± 0.0000 2118 0.05± 0.0021 0 0.00± 0.0000
p = 0.9 0 0.00± 0.0000 0 0.00± 0.0000 416 0.01± 0.0009 0 0.00± 0.0000

EARMA 0.25 0 0.00± 0.0000 0 0.00± 0.0000 4026 0.10± 0.0032 0 0.00± 0.0000
0.5 0 0.00± 0.0000 0 0.00± 0.0000 2997 0.07± 0.0026 0 0.00± 0.0000
1 0 0.00± 0.0000 0 0.00± 0.0000 2143 0.05± 0.0022 0 0.00± 0.0000
3 0 0.00± 0.0000 0 0.00± 0.0000 625 0.01± 0.0009 0 0.00± 0.0000
5.25 0 0.00± 0.0000 0 0.00± 0.0000 632 0.01± 0.0011 5 0.00± 0.0000

mH2 m = 2 0 0.00± 0.0000 0 0.00± 0.0000 315 0.01± 0.0008 0 0.00± 0.0000
m = 5 0 0.00± 0.0000 0 0.00± 0.0000 1395 0.03± 0.0018 0 0.00± 0.0000
m = 10 0 0.00± 0.0000 0 0.00± 0.0000 2470 0.06± 0.0026 0 0.00± 0.0000
m = 20 0 0.00± 0.0000 0 0.00± 0.0000 3603 0.10± 0.0033 0 0.00± 0.0000

RRI(H2) p = 0.1 0 0.00± 0.0000 0 0.00± 0.0000 42 0.00± 0.0002 0 0.00± 0.0000
p = 0.5 0 0.00± 0.0000 0 0.00± 0.0000 93 0.00± 0.0005 0 0.00± 0.0000
p = 0.9 0 0.00± 0.0000 0 0.00± 0.0000 472 0.01± 0.0012 0 0.00± 0.0000

N(0, 1) − 9491 0.51± 0.0056 9476 0.50± 0.0057 9522 0.50± 0.0056 9498 0.50± 0.0057
Ek − 1 k = 2 8702 0.39± 0.0056 9366 0.48± 0.0057 8631 0.37± 0.0055 6247 0.21± 0.0049

+
√

1− 1/k k = 4 9474 0.49± 0.0057 9480 0.50± 0.0056 9370 0.47± 0.0056 9233 0.46± 0.0057
×N(0, 1) k = 6 9514 0.50± 0.0056 9515 0.50± 0.0057 9416 0.49± 0.0057 9436 0.49± 0.0057
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Fig. 5. Comparison of the average ecdf based on 104 replications with n = 200 for the Exp − 1 alternative
and the N(0, 1) null hypothesis: F(X), Durbin, CU, and Lewis Tests (from left to right).
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Fig. 6. Comparison of the average ecdf based on 104 replications with n = 200 for the Exp − 1 alternative
and the N(0, 1) null hypothesis: E2 − 1 +

√
1− 1/kN(0, 1): F(X), Durbin, CU, and Lewis Tests (from left to

right).
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