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The theory supporting Little’s law (L = λW ) is now well developed, applying to both limits of averages

and expected values of stationary distributions, but applications of Little’s law with actual system data

involve measurements over a finite time interval, which are neither of these. We advocate taking a statistical

approach with such measurements. We investigate how estimates of L and λ can be used to estimate W when

the waiting times are not observed. We advocate estimating confidence intervals. Given a single sample path

segment, we suggest estimating confidence intervals using the method of batch means, as is often done in

stochastic simulation output analysis. We show how to estimate and remove bias due to interval edge effects

when the system does not begin and end empty. We illustrate the methods with data from a call center and

simulation experiments.
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1. Introduction

We have just celebrated the 50th anniversary of the famous paper by Little (1961) on the funda-

mental queueing relation L= λW with a retrospective by Little (2011) himself, which emphasizes

the applied relevance as well as reviewing the advances in theory, including the sample-path proof

by Stidham (1974) and the extension to H = λG. Several books provide thorough treatments of

the theory, including the sample-path analysis by El-Taha and Stidham (1999) and the stationary

framework involving the Palm transformation by Sigman (1995) and Baccelli and Bremaud (2003),

as well as the perspective within stochastic networks by Serfozo (1999). As a consequence, L= λW

and the related conservation laws are now on a solid mathematical foundation.

The relation L= λW can be quickly stated: The average number of customers waiting in line
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(or items in a system), L, is equal to the arrival rate (or throughput) λ multiplied by the average

waiting time (time spent in system) per customer, W . If we know any two of these quantities,

then we necessarily know all three. The easily understood reason is reviewed in §2. With queueing

models where λ is known, the relation L= λW yields the value of L or W whenever the other has

been calculated.

1.1. Measurements Over a Finite Time Interval

However, in many applications, these conservation laws are applied with measurements over a

finite time interval of length t, yielding finite averages L̄(t), λ̄(t) and W̄ (t) (defined in (1) below).

Indeed, the applied relevance with measurements motivated Little (2011) to discuss relations among

finite-time measurements instead of the stationary framework in Little (1961). However, with finite

averages, the large body of supporting theory often does not apply directly, because that theory

concerns either long-run averages (limits) or the expected values of stationary stochastic processes

in stochastic models. The available measurements are neither of these.

Here is the essence of a typical application: We start with the observation of L(s), the number

of items in the system at time s, for 0 ≤ s ≤ t. From that sample path, we can directly observe

the arrivals (jumps up) and departures (jumps down). Hence, we can easily estimate the arrival

rate λ and the average number in system L. However, based only on the available information, we

typically cannot determine the time each item spends in the system, because the items need not

depart in the same order that they arrived. Nevertheless, we can estimate the average waiting time

by W =L/λ, using our estimates of L and λ.

In this paper we focus on the typical application in the paragraph above, estimating W given

estimates of L and λ, illustrated by data from a large call center. The first issue is that, with

commonly accepted definitions (see (1) below), the relation L= λW is not valid as an equality over

a finite time interval unless the system starts and ends empty, which often is either not feasible or

not desirable. In §2 we review the exact relation that holds for finite time intervals and a way to

modify the definitions so that the edge effects do not occur, even when the system does not start and
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end empty. Using modified definitions to make L̄(t) = λ̄(t)W̄ (t) valid for all finite intervals is the

approach of the “operational analysis” proposed by Buzen (1976) and Denning and Buzen (1978),

motivated by performance analysis of computer systems, which is also discussed by Little (2011).

Changing definitions in that way can be very helpful to check the consistency of measurements

and data analysis, which is a legitimate concern. While changing the definitions is one option, we

advocate not doing so, because it leads to problems with interpretation.

1.2. A Statistical Approach

We advocate taking a statistical approach with data over a finite time interval. Thus we regard

the finite averages as realizations of random estimators of underlying unknown “true” values. We

suggest estimating confidence intervals. Since the initial estimators may be biased, we suggest

refined estimators to reduce the bias. To the best of our knowledge, a statistical approach has not

been taken previously in the literature on applications of L = λW with measurements; e.g., see

Denning and Buzen (1978), Little and Graves (2008), Little (2011), Lovejoy and Desmond (2011)

and Mandelbaum (2011).

1.2.1. A Stationary Framework Two very different settings can arise: stationary and non-

stationary. Preliminary data analysis should be done to determine if the data are from a stationary

environment. In a stationary framework, we assume that Little’s law theory applies, so that L,

λ and W are well defined, corresponding to both means of stationary probability distributions

and limits of averages (assumed to exist), and related by L= λW . We thus regard the underlying

parameters L, λ and W as the true values that we want to estimate; we regard the averages L̄(t),

λ̄(t) and W̄ (t) based on measurements over a time interval [0, t] as estimates of these parameters.

To learn how well we know L, λ and W when we compute the averages L̄(t), λ̄(t) and W̄ (t), we

suggest estimating confidence intervals. Given a single sample path from an interval that can be

regarded as approximately stationary, we suggest applying the method of batch means to estimate

confidence intervals, as is commonly done in simulation output analysis, and has been studied

extensively; e.g., see Alexopoulos and Goldsman (2004), Asmussen and Glynn (2007), Tafazzoli et
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al. (2011), Tafazzoli and Wilson (2011) and references therein. We present theory supporting its

application in the present context.

In addition, we are concerned with the statistical problem of how to make inferences from limited

data. We illustrate by focusing on estimating W given the finite averages L̄(t) and λ̄(t) when

the waiting times are not directly observed. We pay special attention to the indirect estimator

W̄L,λ(t)≡ L̄(t)/λ̄(t) suggested by Little’s law. We show the special definition used to obtain equality

for L̄(t) = λ̄(t)W̄ (t) within each subinterval seriously distorts the batch-means estimators when the

modified definition is used within each subinterval.

1.2.2. A Nonstationary Framework However, many applications with data involve non-

stationary settings; e.g., service systems typically have arrival rates that vary significantly over

each day. Estimation is more complicated without stationarity, because conventional Little’s law

theory no longer applies. Indeed, the parameters L, λ and W are typically no longer well defined.

To specify what we are trying to estimate, we assume that there is an unspecified underlying

stochastic queueing model, which may be highly nonstationary (for which the processes in §2.1

are well defined). As usual with Little’s law, it is not necessary to define the underlying queueing

model in detail. Then we regard the vector of time averages (L̄(t), λ̄(t), W̄ (t)) as a random vector

with an associated vector of finite mean values (E[L̄(t)],E[λ̄(t)],E[W̄ (t)]). We propose that mean

vector as the quantity to be estimated.

Since the method of batch means is no longer appropriate without stationarity, we suggest an

approach corresponding to independent replications. That approach is appropriate for call centers

when the data comes from multiple days that can be regarded as independent and identically

distributed. In a nonstationary setting, the bias can be much more important, so we discuss ways

to reduce it.

1.2.3. Validation by Simulation Since actual system data may be complicated and limited,

we suggest applying simulation to study how the estimation procedures proposed here work for

an idealized queueing model of the system. In doing so, we presume that we do not know enough
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about the actual system to construct a model that we can directly apply to compute what we are

trying to estimate, but that we know enough to be able to construct an idealized model to evaluate

how the proposed estimation procedures perform. We illustrate this suggested simulation approach

with our call center example in §3.2.

1.3. Organization

Here is how the rest of this paper is organized: In §2 we discuss the finite-time version of L= λW ,

emphasizing the interval edge effects. In §3 we apply the statistical approach to a banking call center

example and associated simulation models. In §4 we study ways to estimate confidence intervals.

In §5 we study ways to estimate and reduce the bias in the estimator W̄L,λ(t)≡ L̄(t)/λ̄(t). In §6

we perform experiments combining the insights in §§4 and 5; we estimate confidence intervals for

refined estimators designed to reduce bias. Finally, in §7 we draw conclusions. Additional material

appears in the e-companion and a technical report (Kim and Whitt 2012) is available on the

authors’ web pages; the contents of both are described at the beginning of the e-companion.

2. Measurement over a Finite Time Interval: Definitions and Relations

In this section we review analogs of L= λW for a finite time interval, denoted by [0, t]. Consistent

with most applications, we assume that the system was in operation in the past, prior to time

0, and that it will remain in operation after time t. We will use standard queueing terminology,

referring to the items being counted as customers. We focus on the customers that are in the system

at some time during the interval [0, t]. Let these customers be indexed in order of their arrival time,

which could be prior to time 0 if the system is not initially empty (with some arbitrary method to

break ties, if any).

2.1. The Performance Functions and Their Averages

For customer k, let Ak be the arrival time, Dk the departure time and Wk ≡Dk −Ak the waiting

time (time in system), where −∞<Ak <Dk <∞, [0, t]∩ [Ak,Dk] 6= ∅ and ≡ denotes “equality by

definition.” Let R(0) count the customers that arrived before time 0 that remain in the system at
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time 0; let A(t) count the total number of new arrivals in the interval [0, t]; and let L(t) be the

number of customers in the system at time t. Thus, A(t) = max{k≥ 0 :Ak ≤ t}−R(0), t≥ 0, and

L(0) =R(0) +A(0), where A(0) is the number of new arrivals at time 0, if any. We will carefully

distinguish between R(0) and L(0), but the common case is to have A(0) = 0 and L(0) =R(0).

The respective averages over the time interval [0, t] are

λ̄(t)≡ t−1A(t), L̄(t)≡ t−1
∫ t

0

L(s)ds, W̄ (t)≡ (1/A(t))

R(0)+A(t)∑
k=R(0)+1

Wk, (1)

where 0/0≡ 0 for W̄ (t). The first two are time averages, while the last, W̄ (t), is a customer average,

but over all arrivals during the interval [0, t].

We will focus on these averages over [0, t] in (1), but we could equally well consider the averages

associated with the first n arrivals. To do so, let Tn be the arrival epoch of the nth new arrival, i.e.,

Tn ≡An+R(0), n≥ 0,

λ̄n ≡ n/Tn, L̄n ≡ (1/Tn)

∫ Tn

0

L(s)ds, W̄n ≡ n−1
R(0)+n∑
k=R(0)+1

Wk. (2)

As in (1), the first two averages in (2) are time averages, but over the time interval [0, Tn], while

the last, W̄n, is a customer average over the first n (new) arrivals. If there is only a single arrival

at time Tn, then the averages in (2) can be expressed directly in terms of the averages in (1):

λ̄n = λ̄(Tn), L̄n = L̄(Tn) and W̄n = W̄ (Tn), so that conclusions for (1) yield analogs for (2).

Just as we can use the relation L = λW and knowledge of any two of the three quantities L,

λ and W to compute the remaining one, so can we use any two of the three estimators in (1) to

create a new alternative estimator, exploiting L= λW :

L̄W,λ(t)≡ λ̄(t)W̄ (t), λ̄L,W (t)≡ L̄(t)

W̄ (t)
and W̄L,λ(t)≡ L̄(t)

λ̄(t)
. (3)

For the typical application mentioned in §1 in which we observe L(s), 0≤ s≤ t, we can directly

construct the averages L̄(t) and λ̄(t), but we may not observe the individual waiting times. Hence,

we may want to use W̄L,λ(t) in (3) as a substitute for W̄ (t) in (1).
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2.2. How the Averages in (1) Are Related

Figures 1 and 2 below show how the three averages in (1) are related. These averages are related

via L̄(t) = λ̄(t)W̄ (t) if the system starts and ends empty, i.e., if R(0) = L(t) = 0, as we show in

Theorem 1 below. However, more generally, these averages are not simply related. To illustrate, in

Figures 1 and 2 a bar of height 1 is included for each of the customers in the system at some time

during [0, t] with the bar extending from the customer’s arrival time to its departure time. (In this

example the customers do not depart in the same order they arrived.) Thus the width of the bar

is the customer’s waiting time. For 0≤ s≤ t, the number of bars above any time s is L(s).

To better communicate what is going on visually, we have ordered the customers in a special way.

In Figures 1 and 2, the customers that arrive before time 0 but are still there at time 0 are placed

first, starting at the bottom and proceeding upwards. These customers are ordered according to

the arrival time, so the customers that arrived before time 0 appear at the bottom. One of these

customers also departs after time t. The customers that arrived before time 0 and are still in the

system at time 0 contribute to the regions A, B and C in Figure 2.

After the customers that arrived before time 0, we place the customers that arrive after time

0 and depart before time t, in order of arrival; they constitute region D in Figure 2. Finally, we

place the customers that arrive after time 0 but depart after time t. These customers are ordered

according to their arrival time as well; they constitute regions E and F in Figure 2. Three extra

horizontal lines are included, along with the vertical lines at times 0 and t, to separate the regions.

The arrival numbers are indicated along the vertical y axis. The condition R(0) = L(t) = 0 arises

in Figure 2 as the special case in which all regions except region D are empty.

The averages can be expressed in terms of the two cumulative processes,

CL(t)≡
∫ t

0

L(s)ds and CW (t)≡
R(0)+A(t)∑
k=R(0)+1

Wk, t≥ 0. (4)

The difference between these two cumulative processes can be expressed in terms of the process

T
(r)
W (t), recording the total residual waiting time of all customers in the system at time t, i.e.,

T
(r)
W (t)≡

L(t)∑
k=1

W r,t
k , (5)
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Figure 1 The total work in the system during the

interval [0, t] with edge effects: including

arrivals before time 0 and departures after

time t.
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Figure 2 Six regions: waiting times (i) of customers

that both arrive and depart inside [0, t]

(D), (ii) of arrivals before time 0 (A∪B∪

C) and (iii) of departures after time t (C∪

E ∪F ).

where W r,t
k is the remaining waiting time at time t for customer k in the system at time t (with

index k assigned at time t among those remaining). The averages in (1) are the time average

L̄(t)≡ t−1CL(t) and the customer average W̄ (t)≡CW (t)/A(t). For a region A in Figure 2, let |A| be

the area of A. In general, the cumulative processes can be expressed in terms of the regions in Figure

2 as CL(t) = |B∪D∪E| and CW (t) = |D∪E ∪F |, while T
(r)
W (0) = |B∪C| and T

(r)
W (t) = |C ∪F |, so

that

CL(t)−CW (t) = |B| − |F |= |B ∪C| − |F ∪C|= T
(r)
W (0)−T (r)

W (t). (6)

This relation for CL(t) is easy to see if we let ν be the total number of arrivals and departures in

the interval [0, t], τk be the kth ordered time point among all the arrival times and departure times

in [0, t], with ties indexed arbitrarily and consistently, τ0 ≡ 0 and τν+1 = t. Then

CL(t)≡
∫ t

0

L(s)ds=
ν+1∑
j=1

∫ τj

τj−1

L(s)ds=
ν+1∑
j=1

L(τj−1)(τj − τj−1) = |B ∪D∪E|,

where the last relation holds because L(τj−1) is the number of single-customer unit-height bars

above the interval [τj−1, τj]. Since CL(t) =CW (t) = |D| if R(0) =L(t) = 0, we necessarily have the

following well known result, appearing as Theorem I of Jewell (1967).
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Theorem 1. (traditional finite-time Little’s law) If R(0) =L(t) = 0, then L̄(t) = λ̄(t)W̄ (t).

Proof. Under the condition, L̄(t)≡ CL(t)

t
= CW (t)

t
=
(
A(t)

t

)(
CW (t)

A(t)

)
≡ λ̄(t)W̄ (t).

On the other hand, for the common case in which there are customers in the system during [0, t]

that arrived before time 0 and/or depart after time t, as in Figures 1 and 2, there is no simple

relation between these cumulative processes and the associated averages, because of the interval

edge effects. Nevertheless, the analysis above exposes the relationship that does hold. Variants of

these relations are needed to establish sample-path limits in Little law theory, so the following

result should not be considered new; e.g., see Theorem 1 of Glynn and Whitt (1986). A variant

appears on p. 17.4 of Mandelbaum (2011), who credits it to his student Abir Koren and emphasizes

its importance for looking at data.

Theorem 2. (extended finite-time Little’s law) The averages in (1) and (3) are related by

∆L(t) ≡ L̄W,λ(t)− L̄(t) =
|F | − |B|

t
=
T

(r)
W (t)−T (r)

W (0)

t
,

∆W (t) ≡ W̄L,λ(t)− W̄ (t) =
|B| − |F |
A(t)

=−∆L(t)

λ̄(t)
=
T

(r)
W (0)−T (r)

W (t)

A(t)
,

∆λ(t) ≡ λ̄L,W (t)− λ̄(t) =

(
|B| − |F |

|D|+ |E|+ |F |

)
λ̄(t) =−∆L(t)

W̄ (t)
, (7)

where |B| is the area of the region B in Figure 2 and T
(r)
W (t) is defined in (5).

Since we focus on inferences about the average wait based on L̄(t) and λ̄(t) using W̄L,λ(t), we

focus on ∆W (t) in (7). Given the customers need not depart in the order they arrive and we only

observe L(s), 0≤ s≤ t, the random variables T
(r)
W (0) and T

(r)
W (t) appearing in ∆W (t) in (7) are not

directly observable; we only have partial information about these random variables.

2.3. Alternative Definitions to Force Equality: The Inside View

Denning and Buzen (1978), Little (2011) and others have observed that we can preserve the relation

L̄(t) = λ̄(t)W̄ (t) in Theorem 1 without any conditions on R(0) and L(t) if we change the definitions.

Equality can be achieved in general if we assume that our entire view of the system is inside the

interval [0, t]. We see arrivals before time 0 but only as arrivals appearing at time 0, and we see the



Kim and Whitt: Little’s Law
10 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

portions of all waiting times only within the interval [0, t]. To achieve the inside view, let A(i)(t)

count the number of new arrivals plus the number of customers initially in the system and let W
(i)
k

measure the waiting time inside the interval [0, t]; i.e., let

A(i)(t)≡R(0) +A(t), t≥ 0, and W
(i)
k ≡ (Dk ∧ t)− (Ak ∨ 0), k≥ 1, (8)

where a∧ b≡min{a, b} and a∨ b≡max{a, b}. Now consider the associated averages

λ̄(i)(t)≡ t−1A(i)(t) and W̄ (i)(t)≡
∑A(i)(t)

k=1 W
(i)
k

A(i)(t)
. (9)

By an elementary modification of the proof of Theorem 1, we obtain the following “operational

analysis” relation. (The equality relation corresponds to the operational Little’s law on p. 235 of

Denning and Buzen (1978) and Theorem LL.2 of Little (2011).)

Theorem 3. (finite-time version of Little’s law with altered definitions) With the new definitions

in (8) and (9), λ̄(i)(t)≥ λ̄(t), W̄ (i)(t)≤ W̄ (t) and L̄(t) = λ̄(i)(t)W̄ (i)(t).

Given that we only see inside the interval [0, t], the reduced waiting times are censored. Indeed,

there is no valid upper bound on W̄ (t) based on the inside view. Arrivals before time 0 can have

occurred arbitrarily far in the past prior to time 0, and customers present at time t can remain

arbitrarily far into the future after time t. Any further properties of W̄ (t) must depend on additional

assumptions about what happens outside the interval [0, t].

Even though the new definitions provide a good framework for checking the consistency of the

data processing, and can be regarded as proper definitions, we advocate not using this modification

because it causes problems in interpretation. We think it is usually better to account for the fact

that an important part of the story takes place outside the interval [0, t], even if we do not see it

all. The alternative definitions in (8) also cause problems with the method of batch means used to

construct confidence intervals; see §3.4.
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3. A Banking Call Center Example

We illustrate the statistical approach by considering data from a telephone call center of an Amer-

ican bank from the data archive of Mandelbaum (2012). In 2001, this banking call center had sites

in four states, which were integrated to form a single virtual call center. The virtual call center had

900−1200 agent positions on weekdays and 200−500 agent positions on weekends. The center pro-

cessed about 300,000 calls per day during weekdays, with about 60,000 (20%) handled by agents,

with the rest being served by integrated voice response (IVR) technology. As in many modern call

centers, in this banking call center there were multiple agent types and multiple call types, with a

form of skill-based routing (SBR) used to assign calls to agents.

Since we are only concerned with estimation related to the three parameters L, λ and W , we

do not get involved with the full complexity of this system. For this paper, we use data for one

class of customers, denoted by “Summit,” for 18 weekdays in May 2001; the data used and the

analysis procedure are available from the authors’ web sites. Each working day covers a 17-hour

period from 6 am to 11 pm, referred to as [6,23].

3.1. Sample Paths for a Typical Day

For some of the analyses, we will use a single day, Friday, May 25, 2001. Over this 17-hour period

on that one day there were 5749 call arrivals (of this one type requesting an agent), of which 253

(4.4%) abandoned from queue before starting service. We do not include these abandonments in

our analysis. Figures 3 and 4 show plots of the total number of arrivals into the queue (system),

Aq(s), and into service, Aser(s), together with the total number of departures from the queue

(system), Dq(s), and from service, Dser(s), all over the interval [0, s], 0≤ s≤ t, first over the entire

working day [6,23] and then over the hour [14,15]. These are based on the counts over 1-second

subintervals. Note that the four curves in Figure 3 are too close to discern due to short waiting

time (time in system, measured in minutes) relative to the time scale (hours). We see better when

we zoom in, as in Figure 4.
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Figure 3 Arrivals and departures over the full day

of May 25, 2001.
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Figure 4 Arrivals and departures over the hour

[14,15] within that day.

From the first plot in Figure 3, we see that the arrival rate is not stationary over the entire

day (because the slope is not nearly constant), but it appears to be approximately stationary over

the middle part of the day, e.g., in the six-hour interval [10,16]. When the arrival rate is nearly

constant, so is the departure rate. The stationary-and-independent-increments property associated

with a homogeneous Poisson process over [10,16] and the nonstationarity over [6,10] and [16,23]

were confirmed by applying the turning points test, the difference-sign test and the rank test for

randomness discussed on p. 312 of Brockwell and Davis (1991); the details appear in EC.2.

To confirm what we deduce from the arrival and departure rates, we also plot the number in

system Lsys and the waiting times (times spent in the system), Wsys, and their hourly averages

over the full day in Figures 5 and 6. Consistent with the plots in Figure 3, we see that the

number in system looks approximately stationary in the 6-hour interval [10,16], but not over the

full day [6,23]. In addition, Figure 6 shows that the hourly averages of the waiting times do not

change much, especially in the interval [10,16]. During that 6-hour period [10,16], during which the

system is approximately stationary, agents handled 3427 calls, of which only 28 (0.82%) abandoned.

However, closer examination shows that the sample means L̄ are 28.3 and 32.6 over the hours

[13,14] and [14,15], respectively, so that the differences can be shown to be statistically significant,

but are minor compared to differences at the ends of the day. Since stationarity clearly does not
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hold exactly, caution should be used in using the estimates.
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Figure 5 Lsys and its hourly averages over the full

day.
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Figure 6 Wsys and its hourly averages over the full

day.

To illustrate both the statistical approach to this example and the consequence of nonstationarity,

we estimated L, λ and W both over the full day [6,23] and over the approximately stationary

subinterval [10,16]. For both, we used the method of batch means, dividing the interval into m= 20

batches of equal length, producing batch lengths of 51 and 18 minutes, respectively. Over the full

day, we have the estimates (measuring time in minutes)

L̄full = 20.2± 6.1, λ̄full = 5.39± 1.84 and W̄full = 4.18± 0.56; (10)

over the interval [10,16], we have the estimates

L̄stat = 31.8± 1.0, λ̄stat = 9.44± 0.31 and W̄stat = 3.39± 0.15 (11)

For each estimate in (10) and (11), we also include the halfwidth of the 95% confidence interval,

estimated as described in the §4.3. We draw the following conclusions: (i) the confidence intervals

tell us more than the averages alone, (ii) paying attention to stationarity is important, (iii) the

halfwidths themselves reveal the nonstationarity, because we get far smaller halfwidths with the

shorter subinterval [10,16], and (iv) since the mean waiting time is much less than the batch length,

the number of batches is not grossly excessive (but that requires further examination).
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3.2. Supporting Call Center Simulation Models

Many-server systems such as call centers are characterized by having many servers working inde-

pendently in parallel. In such systems (if managed properly), the waiting times in queue tend to

be short compared to the service times, and the service times tend to be approximately i.i.d. and

independent of the arrival process. Thus, it is natural to use an idealized infinite-server paradigm,

involving an infinite-server (IS) model with i.i.d. service times independent of the arrival process

to approximately analyze statistical methods. Since the service times coincide exactly with the

waiting times in the IS model, the waiting times are i.i.d. with constant mean E[S], even though

we are considering a nonstationary setting. That often holds approximately in service systems, as

illustrated by our call center example.

For the call center, we have data on the arrival times and waiting times as well as the number

in system L(s), 0≤ s≤ t, but we do not have data on the staffing and the complex call routing.

Thus, as suggested in §1.2.2, to evaluate the estimation procedures, we simulate the single-class

single-service-pool Mt/GI/∞ IS model and associated Mt/GI/st models with time-varying staffing

levels chosen to yield good performance, exploiting the square root staffing (SRS) formula s(t)≡

m(t)+β
√
m(t), where m(t) is the offered load, the time-varying mean number of busy servers in the

IS model, as in Jennings et al. (1996). As described in the Appendix EC.3.1, we fit the arrival rate

function to a continuous piecewise-linear function, with one increasing piece over [6,10] starting at

0, a constant piece over [10,16] and two decreasing linear pieces over [16,18] and [18,23], the first

steeper and the second ending at 0. We then simulated a nonhomogeneous Poisson arrival process

with this arrival rate function. We assumed that all the service times were i.i.d. with a distribution

obtained to match the observed waiting time distribution. A lognormal distribution with mean

3.38 and squared coefficient of variation c2s = 1.02 was found to be a good fit, but an exponential

distribution with that mean (and c2s = 1) was also a good approximation, and so was used, because

it is easier to analyze (see EC.3.2). The IS model was simulated with that fitted arrival rate

function and service-time distribution. The offered load m(t) was also computed by formulas (6)
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and (7) of Jennings et al. (1996), drawing on Eick et al. (1993b); then the staffing function s(t)

was determined by the SRS formula using a range of Quality-of-Service (QoS) parameters β (see

EC.3.3). We simulated 1000 independent replications of each of these models to study how the

methods to estimate confidence intervals performed. In the next subsection we report results from

simulation experiments showing that the finite-server models perform much like the IS model.

3.3. Confidence Intervals for the Call Center Data and Simulation

We applied the method of batch means to estimate confidence intervals for the parameters L, λ and

W using the direct sample averages from (1) plus indirect estimate W̄L,λ(t) from (3) for the time

interval [10,16] over which the system is approximately stationary. (For both the call center data

and the simulation model, we observe the waiting times, but we examine the alternative estimator

W̄L,λ(t) from (3) to see how it would perform if we could not observe the waiting times.)

We also consider the idealized Mt/M/∞ and Mt/M/st simulation models introduced in §3.2 and

explained in detail in §EC.3. The estimation results are shown in Table 1. Additional results with

more values of m appear in Tables 4-9 of Kim and Whitt (2012).

Table 1 Direct estimates of L, λ and W from (1) plus indirect estimate W̄L,λ(t) from (3) with associated 95%

confidence intervals for the approximately stationary time interval [10,16], constructed using batch means for

m= 5,10, and 20 batches for the call center data and idealized simulation models, including the Mt/M/∞ and

Mt/M/st models with piece-wise linear arrival rate function fit to data, mean service time of 3.38 minutes and

time-varying staffing based on the square-root-staffing formula using QoS parameter β taking values ranging from

1.0 to 2.5. Estimated confidence interval coverage is shown for the two waiting time estimates for the simulations

based on 1000 replications.
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case m L̄(m)(t) λ̄(m)(t) W̄ (m)(t) cov. W̄
(m)
L,λ (t) cov.

β =∞ 5 31.5± 2.0 9.33± 0.42 3.38± 0.15 95.1% 3.38± 0.15 95.4%

(Mt/M/∞) 10 31.5± 1.6 9.33± 0.35 3.38± 0.13 95.0% 3.38± 0.13 95.7%

20 31.5± 1.4 9.33± 0.33 3.38± 0.12 94.4% 3.38± 0.12 95.3%

β = 2.5 5 31.5± 2.0 9.33± 0.42 3.38± 0.15 95.3% 3.38± 0.15 95.9%

(Mt/M/st) 10 31.5± 1.6 9.33± 0.35 3.38± 0.13 95.2% 3.38± 0.13 95.8%

20 31.5± 1.4 9.33± 0.33 3.38± 0.12 95.0% 3.38± 0.12 95.3%

β = 2.0 5 31.5± 2.0 9.33± 0.42 3.38± 0.16 95.2% 3.38± 0.16 95.7%

10 31.5± 1.6 9.33± 0.35 3.38± 0.13 95.3% 3.38± 0.13 95.6%

20 31.5± 1.4 9.33± 0.33 3.38± 0.12 95.0% 3.38± 0.12 95.5%

β = 1.5 5 31.6± 2.2 9.33± 0.42 3.39± 0.17 95.8% 3.39± 0.17 95.9%

10 31.6± 1.7 9.33± 0.35 3.39± 0.14 94.9% 3.39± 0.14 95.1%

20 31.6± 1.5 9.33± 0.33 3.39± 0.13 94.0% 3.40± 0.13 94.9%

β = 1.0 5 32.1± 2.6 9.33± 0.42 3.44± 0.21 95.0% 3.44± 0.21 95.3%

10 32.1± 2.1 9.33± 0.35 3.44± 0.17 93.2% 3.44± 0.17 93.5%

20 32.1± 1.8 9.33± 0.33 3.44± 0.15 91.4% 3.44± 0.15 92.5%

data 5 31.9± 1.9 9.44± 0.49 3.38± 0.22 3.38± 0.19

(call center) 10 31.9± 1.3 9.44± 0.36 3.39± 0.15 3.38± 0.16

20 31.9± 1.0 9.44± 0.30 3.39± 0.15 3.38± 0.11

For large QoS parameter β, e.g., β ≥ 2.0, the performance in the finite-server model is essentially

the same as in the associated IS model, as can be seen from Table 1. However, as β decreases, more

customers have to wait before starting service. Thus, the estimated mean waiting time increases

from 3.38 in the IS model to 3.39 and 3.44, respectively, for β = 1.5 and 1.0, respectively. Similarly,

the estimated mean number in system increases from 31.5 to 31.6 and 32.1 for these same cases.

Of special interest is the confidence interval coverage in the simulations based on 1000 replications.

Table 1 shows it is excellent for all values of m, being very close to the target 95.0%, for all β ≥ 1.5.

However, we see a drop in coverage for β = 1. Thus, to be conservative, we advocate using for the

call center model the largest estimated CI, which usually should be associated with the smallest

number of batches m= 5 for the call center data. Overall, Table 1 shows that the indirect estimator

W̄
(m)
L,λ (t) behaves very much the same as the direct estimator W̄ (t). Indeed, that is consistent with

the theory and other experiments in this paper.

To illustrate what happens with a shorter sample path segment, we consider the interval [14,15].
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Table 2 shows the corresponding estimates for the IS model and the call center. Additional results

with more values of m appear in Tables 10 and 11 of Kim and Whitt (2012). In this case, m= 5,

10, and 20 corresponds to 5 batches of 12 minutes, 10 batches of 6 minutes and 20 batches of 3

minutes, respectively. The CI coverage is again excellent for the IS model for all cases. However,

since the mean waiting time is about 3.4 minutes, we regard only m= 5 appropriate for the interval

[14,15] (We also note that the difference between W̄
(m)
L,λ (t) and W̄ (t) in Table 2 becomes greater as

m increases. See Section 3.4.1 for more discussion on this).

Table 2 Direct estimates of L, λ and W from (1) plus indirect estimate W̄L,λ(t) from (3) with associated 95%

confidence intervals for the approximately stationary time interval [14,15] constructed using batch means for

m= 5,10, and 20 batches for the call center data and simulation of the idealized Mt/M/∞ models, with piecewise

linear arrival rate function fit to data, mean service time of 3.38 minutes and time-varying staffing based on the

square-root-staffing formula using QoS parameter β. Estimated confidence interval coverage based on 1000

replications is shown for the two waiting time estimates for the simulations.

case m L̄(t) λ̄(t) W̄ (t) cov. W̄
(m)
L,λ (t) cov.

β =∞ 5 31.4± 4.0 9.32± 1.04 3.37± 0.37 95.6% 3.38± 0.37 94.8%

(Mt/M/∞) 10 31.4± 2.9 9.32± 0.87 3.37± 0.32 95.8% 3.40± 0.32 95.4%

20 31.4± 2.1 9.32± 0.82 3.37± 0.30 95.9% 3.46± 0.32 94.3%

data 5 32.6± 1.9 9.82± 0.82 3.33± 0.21 3.33± 0.10

(call center) 10 32.6± 1.6 9.82± 0.79 3.33± 0.21 3.34± 0.16

20 32.6± 1.3 9.82± 0.81 3.32± 0.23 3.43± 0.31

3.4. Edge Effects and the Method of Batch Means

The issue of interval edge effects discussed in §2 becomes more serious with the method of batch

means. For a fixed sample path segment of length t and m batches, there are m intervals, each

with edge effects, and each interval is of length t/m instead of t.

3.4.1. The Error Due to the Interval Edge Effects Formula (7) shows that the difference

between W̄L,λ(t) and W̄ (t) should be inversely proportional to t in a stationary setting, because

the distribution of T
(r)
W (t) is independent of t, whereas λ̄(t) ≡ t−1A(t)→ λ as t→∞. We should

expect serious bias if t is less than or equal to W , the average time spent in the system, but very

little bias if t is much greater. Since W ≈ 3.4 minutes for the call-center example from §3, we expect
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serious bias if t = 3 minutes, some bias if t = 30 minutes and almost no bias if t = 300 minutes.

Those expectations are confirmed by the averages shown in Table 3. In each case, the averages

over subintervals correspond to batch means. (See Tables 12-14 of Kim and Whitt (2012) for more

details.)

Table 3 Comparison of the direct and indirect estimators W̄ (t) and W̄L,λ(t) for three values of t: 3, 30 and 300

minutes for the data from §3. Averages are given for the 20 subintervals of [14,15] for t= 3 minutes, for the 20

subintervals of [8,18] for t= 30 minutes and for the 4 overlapping 5-hour subintervals of [9,17], from [9,14] to

[12,17], for t= 300 minutes.

t W̄ (t) W̄L,λ(t) |∆W (t)| ∆rel
W (t) |U | |A| |B| |C| |D| |E| |F | |F | − |B|

3 3.32 3.43 0.713 20.3% 311 34.8% 19.5% 14.3% 3.1% 8.9% 19.4% 6.3%

30 3.80 3.80 0.241 5.6% 1101 9.7% 9.2% 0.0% 62.8% 9.4% 8.8% 4.5%

300 3.44 3.44 0.016 0.5% 9754 1.4% 1.2% 0.0% 94.9% 1.2% 1.3% 0.4%

In Table 3 we see that the relative error ∆rel
W (t)≡∆W (t)/W̄L,λ(t) takes the values 20.3%, 5.6%

and 0.5%, respectively for t= 3, 30 and 300 minutes. For the regions in Figure 2, for t≥ 30 minutes,

we see that |C| = 0, the areas of regions B, C, E and F are approximately independent of t,

while the area of D is proportional to t. Table 3 shows the area of the union of all six regions,

U ≡ A ∪B ∪ C ∪D ∪E ∪ F , and the percentages of that total area made up by each of the six

regions, as well as |F |− |B|. The simple case occurs when region D dominates the six regions. The

percentage of the total area provided by D is 94.9% for t= 300 minutes, 62.8% for t= 30 minutes

and 3.1% for t= 3 minutes.

3.4.2. Additional Error from the Altered Definitions The altered definitions in §2.3

become more unattractive with batch means, because the shorter intervals distort the meaning

even more. The average truncated waiting times W̄c(t) in (9) tend to be even less than the true

average waiting times W , while the average augmented arrivals λ̄i(t) in (9) tend to be even more

than the true average arrival rate λ. The altered definitions lead to double counting for arrivals.

Customers that are in the system during more than one interval are counted as arrivals in all these

intervals.
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To illustrate, we consider the call center data over the interval [10,16]. Without using batches,

we have λ̄(t) = 9.44 arrivals per minute and W̄ (t) = 3.38 minute, while the estimators using the

altered definitions in (9) are λ̄i(t) = 9.55 and W̄c(t) = 3.33. With m batches, 1 ≤ m ≤ 20, the

estimator λ̄(t) is unchanged and the estimator W̄ (t) differs by only 0.001 from the original value

of 3.38 for m= 1. In contrast, λ̄i(t) assumes the values 9.55, 9.88, 10.33 and 11.16 for m= 1, 5,

10 and 20, respectively. Similarly, W̄c(t) assumes the values 3.33, 3.22, 3.09 and 2.86 for m= 1, 5,

10 and 20, respectively. For m= 20, the errors in λ̄i(t) and W̄c(t) are 18% and 15%, respectively.

When confidence intervals are formed based on batch means (for non-negligible m), the systematic

errors caused by the altered definition far exceed the halfwidth of the confidence interval. Hence

we recommend not using the modified definitions in (9).

4. Confidence Intervals: Theory and Methodology

We now consider how to apply the estimator W̄L,λ(t) in (3) to estimate a confidence interval (CI)

for W in a stationary setting and for E[W̄ (t)] in a nonstationary setting, without observing the

waiting times. We will be using statistical methods commonly used in simulation experiments.

However, unlike simulation, we anticipate that system data is likely to be limited, so we may not

be able to achieve high precision. Nevertheless, we want to have some idea how well we know the

estimated values. With that in mind, we suggest applying standard statistical methods. In order

to evaluate how well these statistical procedures should perform, e.g., to verify that CI coverage

should be approximately as specified, we advocate studying associated idealized simulation models

of the system more closely as suggested in §1.2.2, and as illustrated in §3.2.

For the common case in which we have only a single sample path segment, we advocate apply-

ing the method of batch means, as specified in §4.3. That method depends on the batch means

being approximately i.i.d. and normally distributed. We point out that there is a risk that these

assumptions may not be justified, so that estimated CI’s should be used with caution. We suggest

using multiple i.i.d. replications of the supporting simulation model to confirm these properties

and evaluate the confidence interval coverage. If these standard methods do not perform well for
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the supporting simulation models, then we can consider more sophisticated estimation methods,

as in Alexopoulos et al. (2007), Tafazzoli et al. (2011), Tafazzoli and Wilson (2011) and references

therein.

4.1. A Ratio Estimator

In both stationary and nonstationary settings, a CI (interval estimate) for E[W̄ (t)] without observ-

ing the waiting times can be obtained using W̄L,λ(t) if we can apply the following theorem, imple-

menting the delta method; see §III.3 and Proposition §IV.4.1 of Asmussen and Glynn (2007) for

related results.

Theorem 4. (asymptotics for the ratio of low-variability positive normal random variables) If

there is a sequence of systems indexed by n such that

√
n
(
L̄(n)(t)−L, λ̄(n)(t)−λ

)
⇒N(0,Σ) in R2 as n→∞, (12)

where L and λ are positive real numbers and N(0,Σ) is a mean-zero bivariate Gaussian random

vector with variance vector (σ2
L, σ

2
λ) and covariance σ2

L,λ, and W̄ (n)(t) satisfies

W̄ (n)(t)/W̄
(n)
L,λ(t)⇒ 1 as n→∞, (13)

for W̄
(n)
L,λ(t)≡ L̄(n)(t)/λ̄(n)(t), then

√
n
(
W̄ (n)(t)− (L/λ)

)
⇒N(0, σ2

W ) in R as n→∞ (14)

for

σ2
W =

1

λ2

(
σ2
L−

2Lσ2
L,λ

λ
+
L2σ2

λ

λ2

)
. (15)

Proof. Apply a Taylor expansion with the function f(x, y)≡ x/y, having first partial derivatives

fx = 1/y and fy =−x/y2, to get

L̄(n)(t)

λ̄(n)(t)
=
L

λ
+
L̄(n)(t)−L

λ
− L(λ̄(n)(t)−λ)

λ2
+ o(max{|L̄(n)(t)−L|, |λ̄(n)(t)−λ|}), (16)
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so that

√
n
(
W̄

(n)
L,λ(t)− (L/λ)

)
=

√
n(L̄(n)(t)−L)

λ
−
√
nL(λ̄(n)(t)−λ)

λ2
+ o(1) as n→∞, (17)

from which (14) follows, given (12) and (13).

We can apply the theorem if our system can be regarded as system n for n sufficiently large

that we can replace the limits with approximate equality. The approximate confidence interval

estimate for E[W̄ (n)(t)] would then be [W̄
(n)
L,λ(t)− 1.96σW/

√
n, W̄

(n)
L,λ(t) + 1.96σW/

√
n], where σW is

the square root of the variance σ2
W in (15). Since the variance σ2

W in (15) is typically unknown, we

must estimate it. That can be done by inserting estimates for all the components of (15). Assuming

that the estimates converge as n→∞, we still have asymptotic normality with the estimated values

of the variance σ2
W .

The sequence of systems indexed by n satisfying condition (12) in Theorem 4 can arise in two

natural ways: First, condition (12) is typically satisfied if the averages are collected from a single

observation over successively longer time intervals in a stationary environment, i.e., if t is allowed

to grow with n, with tn →∞. Then, of course, E[W̄ (n)(t)]→W as n→∞, and we are simply

estimating W . Second, whether or not there is a stationary environment, condition (12) is satisfied

if the averages indexed by n correspond to averages taken over n multiple independent samples for

a fixed interval [0, t]. The second case is important for the common case of service systems with

strongly time-varying arrival rates over each day, provided that multiple days can be regarded as

i.i.d. samples.

Condition (13) in Theorem 4 is of course also satisfied if the averages are collected from a single

observation over successively longer time intervals in a stationary environment. However, condition

(13) may well not be satisfied, even approximately, if the averages indexed by n correspond to

averages taken over n multiple independent samples for a fixed interval [0, t], because the bias may

be significant, and it does not go away with increasing n; see §5.
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4.2. The Supporting Central Limit Theorem in a Stationary Setting

With one sample path segment, we suggest applying the method of batch means. A partial basis

for that is the central limit theorem (CLT) version of Little’s law in Glynn and Whitt (1986)

and Whitt (2012). To apply it, we assume that the system is approximately stationary over the

designated subinterval [0, t]. Hence we regard the finite averages in (1) as estimators of the unknown

parameters L, λ and W . The CLT states that, under very general regularity conditions,

(L̂(t), λ̂(t), Ŵ (t), L̂W,λ(t), λ̂L,W (t), ŴL,λ(t))⇒ (XL,Xλ,XW ,XL,Xλ,XW ) in R6 (18)

as t→∞, where

(L̂(t), λ̂(t), Ŵ (t)) ≡
√
t
(
L̄(t)−L, λ̄(t)−λ, W̄ (t)−W

)
,

(L̂W,λ(t), λ̂L,W (t), ŴL,λ(t)) ≡
√
t
(
L̄W,λ(t)−L, λ̄L,W (t)−λ, W̄L,λ(t)−W

)
, (19)

with the averages given in (1) and (3), and the limiting random vector (XL,Xλ,XW ) is an essentially

two-dimensional mean-zero multivariate Gaussian random vector with XW = λ−1(XL−WXλ)), so

that the variance and covariance terms are related by

σ2
W ≡ V ar(XW ) =E[X2

W ] = λ−2(σ2
L− 2Wσ2

λ,L +W 2σ2
λ),

σ2
L,W ≡ Cov(XL,XW ) =E[XLXW ] = λ−1(σ2

L−Wσ2
λ,L),

σ2
W,λ ≡ Cov(XW ,Xλ) =E[XWXλ] = λ−1(σ2

λ,L−Wσ2
λ). (20)

Note that σ2
W in (20) agrees with (15).

Under general regularity conditions (essentially, if t1/2T
(r)
W (t)⇒ 0 for T

(r)
W (t) in (5)), a functional

central limit theorem (FCLT) generalization of the joint CLT in (18) is valid if a FCLT is valid

in R2 for any two of the first three components. For example, it suffices start with the (FCLT

generalization of) the bivariate CLT

√
t(L̄(t)−L, λ̄(t)−λ)⇒ (XL,Xλ) in R2 as t→∞, (21)
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where the limit (XL,Xλ) is a bivariate mean-zero Gaussian random vector with variances σ2
λ,

σ2
L and covariance σ2

λ,L. Natural sufficient conditions are based on regenerative structure for the

stochastic process {L(t) : t≥ 0}, as in §VI.3 of Asmussen (2003) and Glynn and Whitt (1987). We

directly assume that the limit in (18) is valid, and discuss how to apply it. Note that condition

(21) coincides with condition (12) in Theorem 4, but now the conclusion directly gives a CLT for

W̄ (t) as well as for W̄L,λ(t).

The form of the limit in (18) implies that the alternative estimators L̄W,λ(t), λ̄L,W (t) and W̄L,λ(t)

in (3) not only converge to the same limits L, λ and W just as the natural estimators L̄(t), λ̄(t)

and W̄ (t) in (1) do, but also the corresponding CLT-scaled random variables are asymptotically

equivalent as well, i.e., ‖(L̂(t), λ̂(t), Ŵ (t))− (L̂W,λ(t), λ̂L,W (t), ŴL,λ(t))‖⇒ 0 as t→∞, where ‖ · ‖

is the Euclidean norm on R3.

In summary, the CLT version of L = λW implies that the asymptotic efficiency (halfwidth of

confidence intervals for large sample sizes) is the same for the alternative estimators in (3) as it

is for the natural estimators in (1) (in a stationary setting). However, if one of the parameters

happens to be known in advance, one estimator can be more efficient than the other; see Glynn

and Whitt (1989). For example, with simulation, the arrival rate is typically known in advance.

4.3. Estimating Confidence Intervals by the Method of Batch Means

Assuming that the conditions for the CLT in the previous section are satisfied, given the sample

path segments {(A(s),L(s)) : 0 ≤ s ≤ t} and {Wk : R(0) + 1 ≤ k ≤ R(0) + A(t)} over the time

interval [0, t] (or only two of these three segments), we can use m batches based on measurements

over the m subintervals [(k − 1)t/m,kt/m], 1 ≤ k ≤ m. To define the batch averages, let Rk ≡

R(kt/m), the number of customers remaining in the system at time kt/m from among those

that arrived previously. Let Āk(t,m), L̄k(t,m) and W̄k(t,m) denote the averages over the interval

[(k− 1)t/m,kt/m], i.e.,

Āk(t,m) ≡ (m/t)Ak(t,m), L̄k(t,m)≡ (m/t)Lk(t,m), W̄k(t,m)≡ (1/Ak(t,m))Wk(t,m), (22)
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Ak(t,m) ≡ A(kt/m)−A((k− 1)t/m), Lk(t,m)≡
∫ kt/m

(k−1)t/m
L(s)ds, Wk(t,m)≡

Rk−1+Ak(t,m)∑
j=Rk−1+1

Wj.

The FCLT version of the CLT in the previous section implies that, as t→∞, the vector of

scaled batch means
√
t/m(Āk(t,m)−λ, L̄k(t,m)−L,W̄k(t,m)−W ), 1≤ k≤m, are asymptotically

m i.i.d. mean-zero Gaussian random vectors with variances σ2
λ, σ2

L and σ2
W , and covariances σ2

L,λ,

σ2
λ,W and σ2

L,W . By Theorem 4, as t→∞, the associated scaled vector
√
t/m(W̄L,λ,k(t,m)−W ),

1≤ k≤m, are asymptotically m i.i.d. mean-zero random variables with variance σ2
W in (15). Hence,

as t→∞, also ∑m

k=1(W̄L,λ,k(t,m)− W̄ (m)
L,λ (t))√

S2
(m)(t)/m

⇒ tm−1, (23)

where tm−1 is a random variable with the Student t distribution with m− 1 degrees of freedom,

W̄
(m)
L,λ (t)≡ 1

m

m∑
k=1

W̄L,λ,k(t,m) and S2
(m)(t)≡

1

m− 1

m∑
k=1

(W̄L,λ,k(t,m)− W̄ (m)
L,λ (t))2. (24)

Thus, [W̄
(m)
L,λ (t) − t0.025,m−1S(m)(t)/

√
m,W̄

(m)
L,λ (t) + t0.025,m−1S(m)(t)/

√
m] is an approximate 95%

confidence interval for W based on the t distribution and the average W̄
(m)
L,λ (t) of batch means. Of

course the same procedure applies to other averages of batch means as well.

It remains to choose the number of batches, m. Since we obtain larger batch sizes, and thus more

nearly approximate the asymptotic condition t→∞, if we make m small, we advocate keeping it

relatively small, e.g., m= 5. Nevertheless, in our examples we consider a range of m values.

5. Estimating and Reducing the Bias

We now discuss ways to estimate and reduce the bias in the estimator W̄L,λ(t) in (3) as an estimator

for E[W̄ (t)] for W̄ (t) in (1). In doing so, we are primarily concerned with nonstationary settings.

In stationary settings, W̄ (t) in (1) is typically a biased estimator of W , while W̄L,λ(t) is typically

a biased estimator of both W and E[W̄ (t)], but these biases are less likely to be serious, e.g., see

§5.4.

An important conclusion from our analysis is that the bias depends on the underlying model.

We demonstrate by considering two idealized paradigms: the infinite-server and single-server
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paradigms. We emphasize the infinite-server paradigm, which often is appropriate for call centers.

In §5.4, we show that the bias in W̄ (t) for estimating W tends to be negligible in the infinite-server

paradigm.

5.1. Bias in W̄L,λ(t) as an Estimator of the Expected Average Wait E[W̄ (t)]

Since the bias in W̄L,λ(t) as an estimator for E[W̄ (t)] is E[∆W (t)] for ∆W (t)≡ W̄L,λ(t)− W̄ (t) in

(7), we can apply Theorem 2 to obtain an exact expression for the bias E[∆W (t)]. We also give the

conditional bias E[∆W (t)|Ot] given the observed data over the interval [0, t], which we assume is

O(t)≡ (t, L̄(t), λ̄(t),R(0),L(t)), from which we can also deduce A(t). We use the conditional bias

to create a refined estimator given the observed data.

Corollary 1. (exact bias and conditional bias) The bias in W̄L,λ(t) in (3) as an estimator for

E[W̄ (t)] for W̄ (t) in (1) is E[∆W (t)] =E[E[∆W (t)|O(t)]], where ∆W (t) is given in (7), the vector

of observed data is O(t)≡ (t, L̄(t), λ̄(t),R(0),L(t)) and the conditional bias is

E[∆W (t)|Ot] =

∑R(0)

k=1 E[W r,0
k |Ot]−

∑L(t)

k=1E[W r,t
k |Ot]

A(t)
. (25)

Proof. Apply Theorem 2 using (5).

5.2. Two Approximations

The bias in Corollary 1 is not easy to analyze. Given that (R(0),L(t),A(t)) is observed, it remains

to estimate the conditional residual waiting times E[W r,0
k |Ot], 1≤ k ≤R(0), and E[W r,t

k |Ot], 1≤

k ≤ L(t). The conditional expectations E[W r,0
k |Ot] are complicated, because we are conditioning

on events in the future after the observation time 0. Thus, we develop two approximations and

then show that they apply to the infinite-server paradigm.

5.2.1. Simplification from the Bias Approximation Assumption As t increases, we

expect the “initial edge effect” {R(0),W r,0
k ; 1≤ k≤R(0)} to be approximately independent of the

“terminal edge effect” {L(t),W r,t
k ; 1≤ k ≤ L(t)} and the total number of arrivals A(t). With that

in mind, we use the following approximation, which primarily means that we are assuming that t

is sufficiently large.



Kim and Whitt: Little’s Law
26 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Bias Approximation Assumption (BAA). For O(t)≡ (t, L̄(t), λ̄(t),R(0),L(t)), t≥ 0,

E[W r,0
k |Ot]≈E[W r,0

k |R(0)], 0≤ k≤R(0), and E[W r,t
k |Ot]≈E[W r,t

k |L(t)], 0≤ k≤L(t).

Invoking the BAA, we obtain the following approximation directly from Corollary 1:

E[∆W (t)|Ot]≈
∑R(0)

k=1 E[W r,0
k |R(0)]−

∑L(t)

k=1E[W r,t
k |L(t)]

A(t)
. (26)

We think that BAA is reasonable if t is sufficiently large. That is easy to see for stationary

models, because then as t→∞ (i) L̄(t)→ L and λ̄(t)→ λ and (ii) under regularity conditions

(e.g., regenerative structure), {R(0),W r,0
k ; 1 ≤ k ≤ R(0)} will be asymptotically independent of

{L(t),W r,t
k ; 1≤ k≤L(t)}.

5.2.2. Using W̄L,λ(t) to Estimate the Residual Waiting Times We can obtain an appli-

cable estimate of the conditional bias E[∆W (t)|Ot] in (25) if we estimate all the remaining condi-

tional waiting times by the observed W̄L,λ(t). In doing so, we are ignoring the inspection paradox

(since these are remainders of waiting times in progress), the model structure and the available

information O(t). This step is likely to be justified approximately if the distribution of the waiting

times is nearly exponential.

That step yields the approximation

E[∆W (t)|Ot]≈
(R(0)−L(t))W̄L,λ(t)

A(t)
for O(t)≡ (R(0),L(t), L̄(t), λ̄(t)). (27)

We can apply approximation (27) to obtain the new candidate refined estimator of E[W̄ (t)], exploit-

ing the observed vector (R(0),L(t),A(t)):

W̄L,λ,r(t)≡ W̄L,λ(t)−E[∆W (t)|Ot]≈ W̄L,λ(t)

(
1− R(0)−L(t)

A(t)

)
. (28)

(The refined estimator W̄L,λ,r(t) in (28) is a candidate refinement of the indirect estimator W̄L,λ(t)

(3).) The associated approximate relative conditional bias is thus

E[∆rel
W (t)|O(t)]≡ E[∆W (t)|Ot]

E[W̄ (t)]
≈ E[∆W (t)|Ot]

W̄L,λ(t)
≈ R(0)−L(t)

A(t)
. (29)
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In the next section we show that the analysis in (27)-(29) can be supported theoretically in the

infinite-server paradigm when the waiting times are exponential, so we propose the refined estimator

in (28) as a candidate estimator for many-server systems. However, the crude analysis above is not

justified universally; e.g., it is not good for the single-server models, as we show in §5.5.

5.3. The Infinite-Server Paradigm

If, in addition to BAA, we consider the Gt/M/∞ IS model with exponential service times having

mean E[S], then (26) becomes

E[∆W (t)|Ot]≈ (R(0)−L(t))E[S]/A(t). (30)

Since the waiting times coincide with the service times in the IS model, it is natural to use the

observed W̄L,λ(t) as an initial estimate of E[S]. If we use W̄L,λ(t) as an estimate of E[S] in (30), then

the formula in (30) reduces to the bias approximation in (27). Thus, under these approximations,

the refined estimator (28) becomes unbiased. Hence, we propose the refined estimator in (28) for

light-to-moderately-loaded many-server systems with service time distributions not too far from

exponential.

To better understand the consequence of non-exponential service times in the infinite-server

paradigm, we now consider the Mt/GI/∞ IS model with non-exponential service times. We assume

that it starts empty at some time in the past (possibly in the infinite past) having bounded

time-varying arrival rate λ(t), i.i.d. service times, independent of the arrival process, with generic

service-time S having cdf G(x)≡ P (S ≤ x) with E[S2]<∞ and thus finite squared coefficient of

variation (SCV) c2S ≡ V ar(S)/E[S]2. Let Gc(x)≡ 1−G(x) be the complementary cdf. Let Se be an

associated random variable with the associated stationary-excess or residual-lifetime distribution,

P (Se ≤ x)≡ 1

E[S]

∫ x

0

Gc(u)du and E[Ske ] =
E[Sk+1]

(k+ 1)E[S]
. (31)

For this IS model, we can characterize the conditional expected value of the remaining work T
(r)
W (t)

in (5) and (7) given L(t), but it requires the full waiting-time cdf G.
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Theorem 5. (total remaining work for the Mt/GI/∞ infinite-server model) For the Mt/GI/∞

model above,

E[T
(r)
W (t)|L(t)] =

L(t)
∫∞
0
λ(t−u)E[S−u;S > u]du

E[L(t)]
, (32)

for T
(r)
W (t) in (5), where E[S − u;S > u] = E[S − u|S > u]P (S > u), E[S − u|S > u] =

∫∞
0

(Gc(x−

u)/Gc(u))dx, and

E[L(t)] =

∫ ∞
0

λ(t−u)Gc(u)du=E[λ(t−Se)]E[S], t≥ 0. (33)

Proof. Conditional on L(t) = n, the n customers remaining in service have i.i.d. service times

distributed as St with

P (St >x) =

∫∞
0
λ(t−u)P (S > x+u)du

E[L(t)]
, (34)

for E[L(t)] given in (33), by Theorem 2.1 of Goldberg and Whitt (2008), which draws on Eick et

al. (1993a). There the system starts empty at time 0, but the result extends to the present setting,

given that we have assumed that the arrival rate function is bounded and E[S2]<∞. The second

expression in (33) is given in Theorem 1 of Eick et al. (1993a).

If we now invoke the BAA for the Mt/GI/∞ model, then we obtain the approximation

E[∆W (t)|Ot]≈
E[T

(r)
W (0)|L(0)]−E[T

(r)
W (t)|L(t)]

A(t)
, (35)

where (32) can be used to compute both terms in the numerator.

In practice, we presumably would not know the full service-time cdf, so that the approximation

in (35) based on Theorem 5 would not appear to be very useful, but we now show that it provides

strong support for the refined estimator in (28) if the service-time is not too far from exponential.

For that purpose, we observe that the complicated formula above simplifies in special cases. First,

for Mt/M/∞, formula (32) reduces to E[T
(r)
W (t)|L(t)] =L(t)E[S], taking us back to (27). Second,

for the stationary M/GI/∞ model starting empty in the infinite past, St in (34) is distributed as

Se in (31), so that formula (32) reduces to E[T
(r)
W (t)|L(t)] = L(t)E[Se] = L(t)E[S](c2s + 1)/2 and

(35) reduces to E[∆W (t)|Ot] = (R(0)− L(t))E[S](c2s + 1)/2A(t), depending only on the first two

moments of the distribution.
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This result for the stationary M/GI/∞ model applies to the nonstationary Mt/GI/∞ system if

the arrival rate is nearly constant just prior to the two times 0 and t, where we would be applying

Theorem 5. Thus, we conclude that this section provides strong support for the refined estimator

W̄L,λ,r(t) in (28) in the common case where (i) the arrival rate changes relatively slowly compared

to the mean service time and (ii) the service-time SCV c2s is not too far from 1, as is often the case

in call centers, e.g., here (where c2s = 1.017) and in Brown et al. (2005). We could obtain a further

refinement if we could estimate the SCV c2s.

5.4. Bias of W̄ (t) in the Infinite-Server Paradigm

We now observe that the bias of W̄ (t) as an estimator of W should usually not be a major factor

in the infinite-server paradigm. We do so by showing that the bias is quantifiably small for an IS

model. We use the Gt/GI/∞ model with general, possibly nonstationary, arrival counting process

A. The key assumption is that the waiting times, which coincide with the service times, are i.i.d.

with mean W and independent of the arrival process. Using that independence, we can write

E[W̄ (t)|A(t)> 0] =E[E[W̄ (t)|A(t)]|A(t)> 0] =E[W |A(t)> 0] =W. (36)

Given that we have defined W̄ (t)≡ 0 when A(t) = 0, we have the following result.

Theorem 6. (conditional bias of the average waiting time in the Gt/GI/∞ model) For the

Gt/GI/∞ infinite-server model, having i.i.d. service times with mean W , that are independent of

a general arrival process,

E[W̄ (t)] =WP (A(t)> 0). (37)

For a stationary Poisson arrival process with rate λ, W −E[W̄ (t)] =We−λt, t≥ 0.

5.5. The Single-Server Paradigm

To show that the refined estimator W̄L,λ,r(t) in (28) is not always good and that the bias can be

analyzed exactly in some cases and can be significant, we now consider a single-server model. Let

L(t) be the number of customers waiting in queue in a single-server Gt/GI/1 queueing model with
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unlimited waiting space and the first-come first-served service discipline, with a general arrival

process possibly having a time-varying arrival-rate function λ(t) and service times Si that are inde-

pendent and identically distributed (i.i.d.) and independent of the arrival process, each distributed

as a random variable S having cdf G(x). In addition to the model structure, we assume that we

know the mean E[S], which in practice may be based on a sample mean estimate.

We now assume that T
(r)
W (0) in (5) is observable, which is reasonable because customers depart

in order of arrival in the single-server model. It is also necessary for all these customers to have

departed by time t, which is reasonable if t is not too small. Let S(r)(t) be the residual service time

of the customer in service at time t, if any, In this setting, the total remaining waiting time of all

customers in the system at time t is given by

T
(r)
W (t)≡

L(t)∑
k=1

W r,t
k =L(t)S(r)(t) +

L(t)−1∑
k=1

(L(t)− k)Sk+1, (38)

where Sk, k≥ 2, are i.i.d. and independent of L(t) and S(r)(t), but in general L(t) and S(r)(t) are

dependent. Further simplification occurs if S is exponential.

Theorem 7. (bias reduction for the Gt/M/1/∞ model) For the Gt/M/1/∞ model,

E[T
(r)
W (t)|L(t),E[S]] =L(t)(L(t) + 1)E[S]/2. (39)

so that, if T
(r)
W (0) is fully observable in [0, t], then

E[∆W (t)|Ot] =
T

(r)
W (0)−L(t)(L(t) + 1)E[S]/2

A(t)
for O(t)≡ (L(t), L̄(t), λ̄(t), T

(r)
W (0),E[S]). (40)

Proof. Formula (40) follows directly from (39), which in turn follows from (38) given that S(r)(t)

has the same exponential distribution as S1 and 1 + · · ·+ (n− 1) = n(n− 1)/2.

We apply Theorem 7 to obtain the single-server refined estimator

W̄L,λ,r,1(t)≡ W̄L,λ(t)− T
(r)
W (0)−L(t)(L(t) + 1)E[S]/2

A(t)
. (41)

Even if we do not know the mean E[S], formulas (39)-(41) provide important insight, showing that

E[T rW (t)|L(t),E[S]] is approximately proportional to L(t)2 instead of L(t) as in (27) and §5.3. We

next show that the bias in (40) can be significant by considering a transient M/M/1 example.
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A Simulation Example: the M/M/1 Queue Starting Empty. To illustrate the bias for single-

server models discussed in §5.5, we report results from a simulation experiment for the M/M/1

queue with mean service time 1/µ= 1 starting empty over the interval [0,10] for 3 values of the

constant arrival rate λ: 0.7, 1.0 and 2.0. The respective 95% confidence intervals (CI’s) for the exact

value of E[W̄ (t)] estimated by the sample average of 1000 replications of W̄ (t) were 1.88± 0.08,

2.70± 0.12 and 6.36± 0.19; the sample means are regarded as the exact values. (In an application

of Little’s law, these direct estimates would not be available.) To see that the refined estimator

W̄L,λ,r,1(t) in (41) has essentially no bias at all, without expense of wider CI’s, the corresponding

CI’s for it based on the same 1000 replications were 1.90± 0.08, 2.68± 0.11 and 6.38± 0.18. In

contrast, the unrefined W̄L,λ(t) in (3) produced the corresponding tighter erroneous CI’s 1.47±0.06,

1.82±0.06 and 2.85±0.06. From the analysis above, we should not expect that the Gt/M/∞ refined

estimator (28) should perform well here. That is confirmed by the corresponding CI’s 1.83± 0.08,

2.46± 0.10 and 4.46± 0.11. That is pretty good for λ= 0.7, but it misses badly for λ= 2.0.

6. Confidence Intervals for the Refined Estimator

We now see how the two statistical techniques in §§4 and 5 can be combined. We estimate confidence

intervals for the refined estimators in (28) and (41) as well as the other estimators in (1) and (3).

6.1. Confidence Intervals for the Mean Wait in the Transient M/M/1 Queue

We now give an example in which both bias reduction and estimating confidence intervals contribute

significantly to our understanding. To see large bias, we return to the example of the transient

M/M/1 queue in §5.5. We now show how the sample average approach can be applied to estimate

confidence intervals for the refined estimator in (41) that eliminates the bias. We now consider 10

i.i.d. samples of the same M/M/1 model over the interval [0,10], starting empty at time 0. We

study the CI coverage by performing 1,000 replications of the entire experiment.

Table 4 shows that the unrefined estimator W̄L,λ(t) in (3) does a very poor job in estimating the

mean wait because of the bias, but the performance of the refined estimator W̄L,λ,r(t) in (28) and

the direct estimator W̄ (t) is not too bad. It is known that residual skewness of the estimates can
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degrade the performance of confidence intervals, but we find that our estimates are not extreme

examples of non-normality and skewness; see §EC.4 for details. In an effort to obtain a better

estimate of confidence intervals, one can consider using appropriate confidence interval inflation

factor. We estimate it to be about 1.55, 1.45 and 1.05 for λ= 0.7, 1.0 and 2.0 respectively (details

in §EC.4). For more discussion on skewness-adjusted CI, see Johnson (1978), Willink (2005); in

context of batch means and their residual skewness and correlations, see Alexopoulos and Goldsman

(2004), Tafazzoli et al. (2011), Tafazzoli and Wilson (2011) and references therein.

Table 4 Confidence intervals for the mean wait in the transient M/M/1 Queue for λ= 0.7,1.0, and 2.0. Results

are based on 1000 replications of 10 i.i.d. samples of the same M/M/1 model over the interval [0,10], starting

empty at time 0. True mean wait values are estimated using 100,000 simulation runs and assumed to be 1.8913,

2.6354 and 6.3786 for λ= 0.7,1.0, and 2.0, respectively.

λ L̄(t) λ̄(t) W̄ (t) cov. W̄L,λ(t) cov. W̄L,λ,r(t) cov.

0.7 1.10± 0.57 0.70± 0.17 1.89± 0.85 90.3% 1.46± 0.57 58.3% 1.88± 0.82 89.9%

1.0 1.91± 0.88 1.00± 0.21 2.63± 1.16 90.5% 1.80± 0.63 31.5% 2.62± 1.11 92.2%

2.0 5.82± 1.74 2.00± 0.29 6.36± 2.07 91.3% 2.83± 0.63 0.0% 6.38± 1.95 93.1%

6.2. Evaluating the Refined Estimator with the Call Center Data

Given that the call center should approximately fit the infinite-server paradigm and that the

waiting-time distribution is approximately exponential, we can apply equation (29) to see that the

bias should be relatively small in the call center example. We now use data from the 18 weekdays

in May 2001 for the call center example in §3 to confirm that observation and show that the refined

estimator in (28) is effective in reducing the bias.

Since we observe strong day-to-day variation in the average waiting times, we do not try to

estimate the overall mean over all days, but aim to estimate the mean of specified intervals on each

day (for sample averages over all days and their associated confidence interval, see Section 6.3). In

particular, we compute the average over the 18 days of the absolute errors |W̄L,λ(t)−W̄ (t)| (AAE)

and associated average squared errors (ASE) for each of the 17 hours and 34 half hours of the day.

We choose hours and half hours, because they represent typical staffing intervals in call centers; see
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Green et al. (2007). Table 5 highlights the results; AAE and ASE of each subinterval (hours and

half hours) are again averaged over the intervals [6,10], [10,16], [16,23] and all day. More details

appear in Tables 15 and 16 in Kim and Whitt (2012)

Table 5 Comparison of the refined estimator W̄L,λ,r(t) in (28) to the unrefined estimator W̄L,λ(t) in (3):

Average over the day of the average absolute errors (AAE) and average squared errors (ASE) for each time interval

over 18 weekdays in the call center example.

Subinterval Intervals unrefined in (3) refined in (28)

Length averaged over W̄L,λ(t) AAE ASE W̄L,λ,r(t) AAE ASE

hours [6,10] 3.32 0.241 0.117 3.54 0.082 0.018

[10,16] 3.61 0.076 0.010 3.60 0.058 0.006

[16,23] 4.46 0.271 0.160 4.28 0.153 0.057

all 3.89 0.195 0.097 3.86 0.103 0.030

half hours [6,10] 3.27 0.303 0.198 3.49 0.169 0.068

[10,16] 3.62 0.161 0.052 3.60 0.110 0.020

[16,23] 4.55 0.533 0.673 4.25 0.340 0.322

all 3.92 0.347 0.342 3.84 0.219 0.156

Table 5 shows that the refined estimator reduces the AAE from 0.195 (about 5.0% of the overall

average wait, 3.89) to 0.103 (2.6%) for hours over all hours, while the refined estimator reduces

the AAE from 0.347 (8.9%) to 0.219 (5.6%) for half hours over all half hours. In both cases, there

is more bias and more bias reduction at the ends of the day when the system is nonstationary. In

addition, we note that the unrefined estimator underestimates W̄ (t) during [6,10] when the arrival

rate is increasing, and that it overestimates W̄ (t) during [16,23] when the arrival rate is decreasing,

as expected.

6.3. Sample Averages Over Separate Days

For many service systems, whether stationary or not, we may be able to estimate CI’s for E[W̄ (t)]

in (1) without observing the waiting times via E[W̄L,λ(t)] in (3) using sample averages over multiple

days, regarding those days as approximately i.i.d. We assume that the time average operation makes

the vector (L̄(t), λ̄(t)) approximately Gaussian for each day. Thus, by Theorem 4, the associated

random variable W̄L,λ(t) should be approximately Gaussian as well with (unknown) variance given

in (15). We also assume that any refinement W̄L,λ,r(t) is approximately Gaussian as well.
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Based on n days regarded as i.i.d., we can construct CI in the usual way. Let Xi denote the time

average W̄L,λ(t) or (preferably) its refinement W̄L,λ,r(t) based on the bias analysis described in §5

for day i. Let the sample mean and variance be

X̄n ≡
1

n

n∑
i=1

Xi and S2
n ≡

1

n− 1

n∑
i=1

(Xi− X̄n)2. (42)

Then (X̄n −E[W̄ (t)])/
√
S2
n/n should be approximately distributed as tn−1, Student t with n− 1

degrees of freedom. Then X̄n± tα/2,n−1Sn/
√
n is a 1−α CI for E[W̄ (t)].

To assess how well indirect estimators perform in estimating E[W̄ (t)] over separate days and in

different settings, we again consider our call center data and divide each day into 3 intervals, [6,10],

[10,16] and [16,23] so that the arrival rate is increasing in [6,10], approximately stationary in

[10,16] and decreasing in [16,23]. The performance of two indirect estimators, the refined estimator

W̄L,λ,r(t) in (28) and the unrefined estimator W̄L,λ(t) in (3), as well as that of direct estimator

is illustrated in Table 6. (Additional estimation results appear in Tables 17-19 of Kim and Whitt

(2012).) We see that the refined estimator W̄L,λ,r(t) behaves very similar to the direct estimator

in all cases. The unrefined estimator performs well in the stationary region [10,16], but shows the

impact of bias in nonstationary regions, [6,10] and [16,23], as expected.

Table 6 Estimating E[W̄ (t)] and its associated 95% confidence interval over 18 weekdays in the call center

example: comparison of the refined estimator W̄L,λ,r(t) in (28) to the unrefined estimator W̄L,λ(t) in (3)

Intervals direct estimator unrefined in (3) refined in (28)

W̄ (t) W̄L,λ(t) W̄L,λ,r(t)

[6,10] 3.47± 0.22 3.35± 0.23 3.47± 0.23

[10,16] 3.60± 0.11 3.61± 0.11 3.60± 0.11

[16,23] 4.24± 0.26 4.35± 0.26 4.22± 0.25

7. Conclusions

Little’s law is an important theoretical cornerstone of operations research, but it does not apply

directly to applications involving measurements over finite time intervals. As reviewed in §2.3, it is

possible to modify the definitions so that the relation L̄(t) = λ̄(t)W̄ (t) always holds for finite aver-

ages, but we advocate not doing so. Instead, we advocate taking a statistical approach, estimating
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confidence intervals (§4) and considering modified estimators that reduce bias (§5), which exploit

the extended finite-time Little’s law in Theorem 2. We have illustrated the statistical approach by

applying it to the call center example in §3. We have focused on the problem of estimating the

unknown mean values W and E[W̄ (t)] using W̄L,λ(t)≡ L̄(t)/λ̄(t) when the waiting times cannot

be directly observed.
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E-Companion

EC.1. Overview

In this e-companion we supplement the main paper. In §EC.2 we provide the stationary test results

for our call center data. In §EC.3 we supplement §3 and §5.3 by showing how idealized simulation

models for the call center example were constructed. In §EC.4 we elaborate on the confidence

intervals for the mean wait in the transient M/M/1 queue discussed in §6.1. We show that the

distribution of the estimates are nor too far from being normal, and show ways to adjust the

confidence interval halfwidths to get targeted coverage.

Additional material is in a report available online from the authors’ web pages (Kim and Whitt

2012). Following an introduction in §1, in §2 we present additional information about the call

center data used. In §3 we discuss an alternative way to construct the confidence intervals using

the method of batch means and in §4 we elaborate on the bias discussed in §5, discussing the

bias in the estimator W̄ (t) in (1) for W in a stationary setting in §4.1. In §4.2 we discuss the

bias in the alternative estimator W̄L,λ(t) in (3) for E[W (t)] in a nonstationary setting and W in a

stationary setting. In §5we introduce an alternative algorithm to estimate confidence intervals in

approximately stationary intervals by batch means, exploiting Theorem 2. However, this algorithm

did not improve the estimation for the call center example, so we do not emphasize it. The negative

result itself is interesting, because it is natural to consider such alternatives. It remains to be seen

if the new algorithm can be useful in other contexts. Finally, in §6we present additional figures and

tables.

EC.2. Results for the Stationarity Tests

In this section, we provide detailed results for the three tests for stationarity applied to the call

center data in §3.2. The three test are the turning points test, the difference-sign test and the rank

test for randomness, all discussed on p. 312 of Brockwell and Davis (1991). Given a sequence of

observations {y1, ..., yn}, these tests basically check the hypothesis that {yi} is an i.i.d. sequence.
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For the turning points test, we say that the data has a turning point at time i if yi−1 < yi

and yi > yi+1 or yi−1 > yi and yi < yi+1. Let T be the number of turning points of the sequence

{yi}. If {yi} are observations of an i.i.d. sequence, the expected number of turning points is µT =

2(n− 2)/3 with variance σ2
T = (16n− 29)/90, and T is approximately N(µT , σ

2
T ). A large value of

T − µT means the sequence is fluctuating more rapidly than expected for a random sequence. A

large (in magnitude) negative value of T −µT suggests a positive correlation between neighboring

observations. The difference-sign test counts the number (S) of values of i such that yi > yi−1,

i = 2, ..., n. Under the i.i.d. sequence assumption, µS = 1
2
(n − 1) with variance σ2

S = (n + 1)/12,

and S is approximately N(µS, σ
2
S). The rank test counts the number (P ) of pairs (i, j) such that

yj > yi, j > i, i= 1, ..., n−1. If {yi} are observations of an i.i.d. sequence, then µP = 1
4
n(n−1) with

variance σ2
P = n(n− 1)(2n+ 5/8), and P is approximately N(µP , σ

2
P ). A large positive (negative)

value of S−µS or P −µP indicates an increasing (decreasing) trend in {yi}.

We apply the aforementioned three tests on arrival counts over successive subintervals of varying

lengths, 1, 5 and 10 minutes. Table EC.1 provides the result. If we use significance level α= 0.95,

we have Φ1−α/2 = 1.96. The test results depend on the subinterval length, but they mainly accept

the hypothesis that the arrival counts are i.i.d sequence in [10,16], but reject it outside of the

interval [10,16]. The results of the rank test, which is particularly useful for detecting a linear

trend, is especially strong.

EC.3. Details for the Simulation Experiments in Section 4

In §1.2.2, we suggest applying simulation to study how the estimation procedures proposed in this

paper work for an idealized queueing model of the system. In this section, we describe in detail

how we construct the idealized simulation models in §3.2 for the call center example.

EC.3.1. Fitted Arrival Rate Function

In order to construct an idealized model to evaluate how the estimation procedure perform for the

actual data, we need to mimic the behavior of the actual arrival process of the call center as much

as possible. Given arrival rates measured in units of 10 minutes over the working day [6,23], we fit
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Table EC.1 Testing for stationarity: the assumption that {yi} are observations from an i.i.d sequence is

rejected if | · −µ·|/σ· >Φ1−α/2 where Φ1−α/2 is the 1−α/2 percentage point of a standard normal distribution.

Subinterval Interval T µt |T −µT |/σT S µS |S−µS|/σS P µP |P −µP |/σP
1 [6,10] 112 158.7 7.17 96 119.5 5.24 21517 14340.0 3.85

[10,16] 207 238.7 3.97 159 179.5 3.74 29207 32310.0 0.91

[16,23] 179 278.7 11.56 144 209.5 11.06 15294 43995.0 6.66

5 [6,10] 21 30.7 3.37 25 23.5 0.74 968 564.0 2.39

[10,16] 49 46.7 0.66 31 35.5 1.82 1208 1278.0 0.23

[16,23] 44 54.7 2.79 36 41.5 2.07 567 1743.0 3.03

10 [6,10] 12 14.7 1.34 14 11.5 1.73 244 138.0 1.75

[10,16] 19 22.7 1.49 18 17.5 0.28 299 315.0 0.15

[16,23] 24 26.7 1.00 16 20.5 2.38 109 430.5 2.32

the arrival rate function to a continuous piecewise-linear function, with one increasing piece over

[6,10], a constant piece over [10,16] and two decreasing linear pieces over [16,18] and [18,23]. We

force two extra constraints: (i) the arrival rate starts and ends at 0, and hence the arrival rate is

0 at t= 6 and t= 23 and (ii) the arrival rate of successive pieces agree at endpoints. Figure EC.1

illustrates the result. The exact arrival rate function is given by

λ(t) =


140(t− 6) on [6,10],

560 on [10,16],

560− 230(t− 16) on [16,18],

100− 20(t− 18) on [18,23].

(EC.1)

We used the same 1000 arrival sample paths for all the infinite-server and finite-server models

used in this paper. We generated these arrival processes by thinning a homogeneous arrival process

with rate λ∗ = 560. The homogeneous Poisson process generates potential arrivals. We then let

a potential arrival at time t be an actual arrival in the nonhomogeneous arrival process with

probability λ(t)/λ∗.

EC.3.2. Histogram of the Waiting Time Distribution in the Call Center

We assumed that all the service times were i.i.d. with a distribution obtained to match the observed

waiting time distribution. In particular, we consider the waiting times (time spent in the system)

over the interval [10,16] on May 25, 2001. Figure EC.2 shows a histogram of the waiting times.
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Figure EC.1 Fitted arrival rate function for the arrivals at the call center on May 25, 2001.

An exponential approximation with mean 3.38 was found to be a good fit and was used. Thus,

service times were generated according to an exponential distribution with mean 3.38 for 1,000

replications. The same set of generated service times were used for all the infinite-server and finite-

server models used in this paper. (Consistent with many call center empirical studies Brown et al.

(2005), a lognormal distribution with mean 3.38 and squared coefficient of variation c2 = 1.017 was

also found to be a good fit, even better in the neighborhood of the origin, but we were not concerned

that the mode falls to the right of 0. Simulation shows that the results are not significantly altered

by using the fitted lognormal distribution. The exponential distribution makes the staffing easier

for the Mt/GI/st model; e.g., by applying Eick et al. (1993a).)

EC.3.3. Staffing for the Mt/GI/st Models

For the call center example, we have data on the arrival times and waiting times as well as the

number in system L(s), 0 ≤ s ≤ t, but we do not have data on the staffing and the complex

call routing. Thus, in order to evaluate the estimation procedures, we simulate the single-class

single-service-pool Mt/GI/∞ IS model and associated Mt/GI/st models with time-varying staffing

levels chosen to yield good performance. Specifically, we use the fitted arrival rate function (from



ec6 e-companion to Kim and Whitt: Little’s Law

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

time spent in the system (minutes)

fr
eq

ue
nc

y

µ  = 3.382

σ  = 3.411

c2 = 1.017

Figure EC.2 The histogram (empirical distribution) of the times spent in the system of all arrivals during the

interval [10,16] on May 25, 2001.

§EC.3.1) and assume service times are exponentially distributed with mean 3.38 (from §EC.3.2).

We then compute m(t), the offered load which is the time-varying mean number of busy servers

in the IS model, using formulas (6) and (7) of Jennings et al. (1996). Finally, the staffing function

s(t) is determined by the SRS formula using a range of Quality-of-Service (QoS) parameters,

β = 2.5,2.0,1.5,1.0. Figure EC.3 illustrates the offered load as well as staffing levels for different

values of β.

EC.3.4. Sample Paths for Different Values of β

One way to diagnose whether simulated Mt/GI/st models with different values of β are working

as expected is to plot some sample paths of the number in the system, L(t), along with the staffing

levels, s(t). In Figures EC.4 - EC.7, we provide one single sample path of each Mt/GI/st model with

different values of β = 2.5,2.0,1.5,1.0 to illustrate that our simulation models work as expected.

EC.4. More on Confidence Intervals for the M/M/1 Example

In this section, we provide more details on confidence intervals for the mean wait in the transient

M/M/1 queue, discussed in §6.1. Recall that we have 10 i.i.d. samples of the same M/M/1 model



e-companion to Kim and Whitt: Little’s Law ec7

6 7 8 9 1011121314151617181920212223
0

10

20

30

40

50

t

s(
t)

 

 

m(t)
β=1
β=1.5
β=2
β=2.5

Figure EC.3 The offered load, m(t), and staffing levels, s(t), for different values of β.

over the interval [0,10], starting empty at time 0. To see how the sample average approach in

§6.3 can be applied to estimate CIs for the refined estimator in (41), CI coverage was studied by

performing 1,000 replications of the entire experiment.

In Table 4, we observed that the unrefined estimator W̄L,λ(t) in (3) does a very poor job in

estimating the mean wait because of the bias. The performance of the refined estimator W̄L,λ,r(t)

in (28) and the direct estimator W̄ (t) is not perfect, either, yielding coverage of about 90% instead

of the targeted 95%. To see whether this coverage issue is due to the residual skewness of the

estimates, we perform the Shapiro-Francia normality test, discussed on p. 314 of Brockwell and

Davis (1991). The Shapiro-Francia normality test is specifically designed to address issues related

with large sample sizes. Table EC.2 gives the test results; normality is rejected at 5% significance

level in most cases. We also plot the histogram of the estimators as well as their normality plots,

from which we can see evidence of the heavy tails (skewness). However, we see that these are not

extreme examples of non-normality and skewness.
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Figure EC.4 One sample path of Mt/GI/st

with β = 1.0.
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Figure EC.5 One sample path of Mt/GI/st

with β = 1.5.
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Figure EC.6 One sample path of Mt/GI/st

with β = 2.0.
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Figure EC.7 One sample path of Mt/GI/st

with β = 2.5.

Table EC.2 Shapiro-Francia normality test (discussed on p. 314 of Brockwell and Davis (1991)) of the direct

and indirect mean waiting time estimator values over 1000 replications.

W̄ (t) W̄L,λ(t) W̄L,λ,r(t)

λ R2 p-value R2 p-value R2 p-value

0.7 0.9794 0.0000 0.9941 0.0011 0.9813 0.0000

1.0 0.9892 0.0000 0.9936 0.0006 0.9905 0.0000

2.0 0.9945 0.0019 0.9990 0.8284 0.9977 0.1562
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Figure EC.8 Histogram of W̄ (t) for the M/M/1

model with λ= 0.7.
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Figure EC.9 Normality plot of W̄ (t) for the

M/M/1 model with λ= 0.7.
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Figure EC.10 Histogram of W̄L,λ(t) for the

M/M/1 model with λ= 0.7.

1 1.5 2 2.5

0.001
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 

0.997
0.999

indirect unrefined mean waiting times

P
ro

ba
bi

lit
y

Normal Probability Plot

Figure EC.11 Normality plot of W̄L,λ(t) for the

M/M/1 model with λ= 0.7.
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Figure EC.12 Histogram of W̄L,λ,r(t) for the

M/M/1 model with λ= 0.7.
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Figure EC.13 Normality plot of W̄L,λ,r(t) for

the M/M/1 model with λ= 0.7.
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µ=2.65

Figure EC.14 Histogram of W̄ (t) for the

M/M/1 model with λ= 1.0.

1 1.5 2 2.5 3 3.5 4 4.5 5

0.001
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 

0.997
0.999

direct mean waiting times

P
ro

ba
bi

lit
y

Normal Probability Plot

Figure EC.15 Normality plot of W̄ (t) for the

M/M/1 model with λ= 1.0.

0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

indirect unrefined mean waiting times

fr
eq

ue
nc

y

 

 
µ=1.81

Figure EC.16 Histogram of W̄L,λ(t) for the

M/M/1 model with λ= 1.0.
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Figure EC.17 Normality plot of W̄L,λ(t) for the

M/M/1 model with λ= 1.0.
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µ=2.66

Figure EC.18 Histogram of W̄L,λ,r(t) for the

M/M/1 model with λ= 1.0.
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Figure EC.19 Normality plot of W̄L,λ,r(t) for

the M/M/1 model with λ= 1.0.
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µ=6.37

Figure EC.20 Histogram of W̄ (t) for the

M/M/1 model with λ= 2.0.
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Figure EC.21 Normality plot of W̄ (t) for the

M/M/1 model with λ= 2.0.
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µ=2.84

Figure EC.22 Histogram of W̄L,λ(t) for the

M/M/1 model with λ= 2.0.
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Figure EC.23 Normality plot of W̄L,λ(t) for the

M/M/1 model with λ= 2.0.
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µ=6.40

Figure EC.24 Histogram of W̄L,λ,r(t) for the

M/M/1 model with λ= 2.0.
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Figure EC.25 Normality plot of W̄L,λ,r(t) for

the M/M/1 model with λ= 2.0.
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One way to try to obtain a better estimate of confidence interval is to use appropriate confidence

interval inflation factor. The idea is to estimate the inflation factor x such that mean ± x confidence

interval halfwidth has targeted (e.g., 95%) coverage. For our transient M/M/1 model, we test

inflation factors ranging from 1.00 to 2.00, with increments of size 0.05. Table EC.3 provides the

results for different values of the inflation factor. Given this result, we would estimate it to be

about 1.55, 1.45 and 1.05 for λ= 0.7, 1.0 and 2.0, respectively.

Table EC.3 Estimating confidence interval inflation factor.

λ= 0.7 λ= 1.0 λ= 2.0

x Cov. of W̄ (t) Cov. of W̄L,λ,r(t) Cov. of W̄ (t) Cov. of W̄L,λ,r(t) Cov. of W̄ (t) Cov. of W̄L,λ,r(t)

1.00 87.3% 87.8% 90.2% 90.7% 94.0% 95.1%

1.05 88.5% 89.3% 91.4% 91.9% 95.4% 95.8%

1.10 89.2% 89.9% 92.3% 92.8% 96.4% 96.9%

1.15 90.2% 90.8% 93.2% 93.3% 96.9% 97.2%

1.20 91.3% 91.6% 93.6% 94.1% 97.2% 97.7%

1.25 91.8% 92.6% 93.9% 95.0% 97.8% 98.1%

1.30 92.7% 93.6% 94.2% 95.2% 98.1% 98.5%

1.35 93.4% 93.9% 94.4% 95.4% 98.5% 98.7%

1.40 93.8% 94.2% 94.7% 95.6% 98.6% 98.9%

1.45 94.2% 94.4% 95.2% 95.6% 98.7% 99.5%

1.50 94.5% 95.1% 95.7% 95.7% 98.7% 99.5%

1.55 94.9% 95.3% 95.9% 96.0% 99.0% 99.7%

1.60 95.2% 95.4% 96.2% 96.3% 99.1% 99.7%

1.65 95.6% 95.7% 96.5% 96.3% 99.3% 99.7%

1.70 95.9% 95.8% 96.7% 96.6% 99.5% 99.7%

1.75 96.3% 96.0% 97.0% 96.6% 99.5% 99.7%

1.80 96.4% 96.1% 97.3% 97.1% 99.6% 99.7%

1.85 96.6% 96.4% 97.3% 97.4% 99.6% 99.7%

1.90 96.9% 96.7% 97.3% 97.5% 99.6% 99.7%

1.95 96.9% 96.9% 97.4% 97.8% 99.6% 99.7%

2.00 97.1% 97.2% 97.6% 97.8% 99.6% 99.7%


