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We present a simple algorithm for numerically inverting Laplace
transforms. The algorithm is designed especially for probability
cumulative distribution functions, but it applies to other func-
tions as well. Since it does not seem possible to provide
effective methods with simple general error bounds, we simul-
taneously use two different methods to confirm the accuracy.
Both methods are variants of the Fourier-series method. The
first, building on Dubner and Abatel'®! and Simon, Stroot, and
Weiss,[32] uses the Bromwich integral, the Poisson summation
formula and Euler summation; the second, building on Jager-
man,[23:24] yses the Post-Widder formula, the Poisson summa-
tion formula, and the Stehfest!*3] enhancement. The resulting
program is short and the computational experience is encour-

aging.

The recent emphasis on computational probability is in-
creasing the value of stochastic models in operations re-
search. It is becoming standard for modeling and analysis
to include algorithms for computing probability distribu-
tions of interest. Many tools have been developed and are
being developed for this purpose. Since probability distri-
butions can often be characterized in terms of transforms
(e.g., in queueing theory), it is natural to include numerical
transform inversion among these tools.

Our purpose in this paper is to present a convenient
algorithm for calculating probability cumulative distribu-
tion functions (cdf’s) and other functions by numerically
inverting Laplace transforms. We have described this algo-
rithm as part of a rather extensive review of the Fourier-
series method in [4]. Our purpose here is to give a concise
account that will be easy to understand and apply.

We contend that numerical inversion of Laplace trans-
forms is much easier than it is often made to seem. Never-
theless, it does not seem possible to provide effective meth-
ods with simple general error bounds that are independent
of the function under consideration. Hence, as suggested
by Davies and Martin,!"! we propose using two different
methods, each without a complete error analysis. Assum-
ing that the two methods agree to within desired precision,
we can be confident of the computation.

The two methods we describe are both variants of the
Fourier-series method, but they are dramatically different,
so that they can be expected to serve as useful checks on
each other. The Fourier-series method can be interpreted as
numerically integrating a standard inversion integral by
means of the trapezoidal rule (which turns out to be effec-
tive for the oscillating integrands under consideration). The
same formula is obtained by using the Fourier series of an
associated periodic function constructed by aliasing—hence
the name. The key mathematical result is the Poisson sum-
mation formula, which identifies the discretization error
associated with the trapezoidal rule and thus helps bound
it. For more information about the Fourier-series method,
including a survey of the literature and several numerical
examples, see [4].

Our object is to calculate values of a real-valued function
f(t) of a positive real variable t for various ¢ from the
Laplace transform

fs) = [0 et at, )

where s is a complex variable with nonnegative real part.
We think of f(t) as being a complementary cdf (the proba-
bility of the interval (¢,)), but this is not essential. (In
probability applications we typically know that we have a
complementary cdf, so that there is nothing extra to verify.)
However, we do use the fact that |f(#)| < 1 for all ¢ in our
error analyses. (This is sufficient for the Laplace transform
(1) to be well defined.) The methods work better when f is
suitably smooth. Indeed a different variant of the Fourier-
series method for generating functions should be used for
cdf’s of lattice distributions, see [5] and Section 5 of [4].
When f is otherwise not sufficiently smooth (continuous
and differentiable), it may help to perform convolution
smoothing before doing the inversion. This lack of smooth-
ness in f may be recognized from advanced knowledge
about f or it may be revealed by insufficient precision (lack
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of agreement of the two procedures) when using the algo-
rithm described here. If satisfactory precision cannot be
obtained by adjusting the parameters of the algorithm, then
it is natural to consider convolution smoothing, which is
discussed in Section 6 of [4]. The Laplace transform inver-
sion algorithm of Platzman, Ammons, and Bartholdi®” is a
variant of the Fourier-series method that exploits convolu-
tion smoothing from the start.

A feature of our algorithm is that it is intended for
computing f(t) at single values of t. This is suitable for
many applications, but if values at many time points are
desired, then it is natural to exploit the fast Fourier trans-
form (FFT), as discussed at the end of Section 4 in [4]. See
Dahlquist,'? Embrechts, Griibel, and Pitts,!1%  and
Gribel'! for recent work in this direction.

Our algorithm requires that we be able to evaluate the
real part of the Laplace transform f(s) at any desired
complex s. This is straightforward when the transform is
given explicitly. However, often the Laplace transform is
given implicitly via a functional equation, as with the
busy-period distribution in the M/G/1 queue. We discuss
methods for iteratively solving such functional equations in
fe).

A significant application of the algorithm here is to
compute the standard steady-state probability distributions
in the BMAP/G/1 queue, which has a batch Markovian
arrival process; see Lucantoni?”} Choudhury, Lucantoni,
and Whitt!'!! have combined the numerical inversion algo-
rithms here and in [4, 5] with the algorithms of Lucantoni!?’!
for this purpose. The overall algorithm has been applied to
evaluate simple exponential approximations for tail proba-
bilities in the BMAP/G/1 queue in Abate, Choudhury,
and Whitt.? 3 Choudhury and Lucantoni® have devel-
oped a numerical inversion algorithm to calculate any
number of moments plus the asymptotic decay rates and
associated asymptotic constants of the steady-state distri-
butions. Abate, Choudhury, and Whitt!!! have also applied
the algorithm here to compute the steady-state waiting-time
distribution in the GI/G/1 queue.

As indicated on p. 35 of [4], the inversion algorithm can
be extended to higher dimensions. Multi-dimensional in-
version algorithms are developed by Choudhury,
Lucantoni, and Whitt®! and applied to queueing problems
in {10, 28].

Here is how the rest of this paper is organized. In
Sections 1 and 2 we present the two methods. In Section 3
we discuss implementation and display sample versions of
the computer programs. In Section 4 we present a new
connection between the two methods (which does not pre-
vent them from providing useful checks on each other).
Finally, in Section 5 we draw conclusions.

1. The First Method: EULER

Our first method, which we call EULER because we em-
ploy Euler summation, is based on the Bromwich contour
inversion integral, which can be expressed as the integral of
a real-valued function of a real variable by choosing a
specific contour. Letting the contour be any vertical line

s = a such that f(s) has no singularities on or to the right of
it, we obtain

1 a+ 1o

2’”'1 a— 1

2 1= a+ )t fy ;
f(H) = estf(s)ds = Ef_we( *f(a + iu)du

eal

= —f (cos ut + isin ut)fla + iu)du
27/

et e N
= Ef,m[Re(f(a + iu))cos ut

—Im( f(a + iu))sin ut] du

2 ["Re( fa + iw)cos ut d
= 77[0 e(f(a + iu))cos ut du,

(2)

where i = Y= 1 and Re(s) and Im(s) are the real and
imaginary parts of s; see pp. 4, 18 of Doetsch.'Yl We
calculate the integral (2) approximately. We use the
Fourier-series method (the Poisson summation formula) to
replace the integral by a series (which corresponds to the
trapezoidal rule) with a specified discretization error. Since
the series is nearly alternating, we apply Euler summation
to accelerate convergence (approximately calculate the infi-
nite sum). This last step seems to be very effective, but for
it there is no error bound.

The Fourier-series method for numerically inverting
Laplace transforms (and identifying the discretization er-
ror) was first proposed by Dubner and Abate.!'* The use of
Euler summation in this context was proposed by Simon,
Stroot, and Weiss,®? but the approach was not widely
adopted. An essentially equivalent algorithm was devel-
oped by Hosono?" ?!! and popularized in Japan as the FILT
(fast inversion of Laplace transforms) in [22]); it can be
based on the complementary form of (2),

f) =

at o
‘ f Im(f(a + iu))sin ut du, 3)

™ 0
but Hosono actually derives it in a different way. Hosono’s
variant of EULER was applied by Bertsimas and
Nakazato.”!

As indicated above, we numerically evaluate the integral
(2) by means of the trapezoidal rule. If we use a step size ,
then this gives

heat
f() = fil{t) = TRe(fﬁ(a)

2he*t

kg

+

Y Re(f)(a + ikh)cos(kht). (4)
k=1

Letting h = w/2t and a = A/2t, we obtain the nearly
alternating series

ed/? A
flt) = —Zt-Re(fd(E)
Az = A+ 2kmi
+£ ):(—1)kRe(f)(~—+—"’~). ®)
t = 2t

(This is (21) of Dubner and Abate.'>))
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We now use the Poisson summation formula to identify
the discretization error associated with (5). The essential
idea is to replace the damped function g(t) = e~"f(t) for
b > 0 by the periodic function

b 27wk
g =Y 8(f + T)

k= —w

(6)

of period 27/h (which we assume can be done; it clearly
can when |f(t)] < 1 for all t). We then represent the peri-
odic function g, by its complex Fourier series

g = T cein,

k= -

V)
where ¢, is the kth Fourier coefficient of 8, ie,

h
w/h —ikht
= — t dt
Ck Zﬂf_r/hgp( )e

h

=5;f"/h Y

2km
(t + ——)e""“dt
—1r/hk=_°° h

h .=

= 2-[ g(B)ekht dt
TV -
h

= E—f e bf(t)e
™70

h
= 5 fb + k). ®)

Combining (6)-(8), we obtain a version of the Poisson
summation formula

s 2wk
g, =Y g(t+—-:—)

k= —

* 2wk

_ Z f(t+T)e—b(t+2‘rrk/h)

k= —o

BoE
= Y f(b + ikh)e' ™, 9
k=~

Letting h = 7/t and b = A/2¢ in (9), we obtain
ed/2 = A+ 2k7'ri)

v (—1)kRefA( T

k= —

f) = T

- Y eTFAA((Q2k + D). (10)
k=1
Note that the first term on the right in (10) coincides
with the trapezoidal-rule approximation in (5), so that the
second term on the right in (10) gives the discretization
error associated with the trapezoidal rule, i.e.,

ea = 3 e ¥Af((Q2k + D).
k=1

an

If, as in probability applications (e.g., when f(t) is a com-
plementary cumulative distribution function) | f(t)| < 1 for
all ¢, then the error is bounded by

e—A
(12)

legl < 1A’

which is approximately equal to e™* when ¢4 is small.

Hence, to have at most 1077 discretization error, we let
A = ylog10. (We often use A = 18.4 to achieve 10~8 dis-
cretization error.) Obviously (11) can also be used to obtain
discretization error bounds under other assumptions
about f.

The remaining problem is to numerically calculate (5),
which involves an infinite sum. Since the sum would be an
alternating series if Re(f((A + 2kwi)/2#)) would have
constant sign for all k, it is natural to consider acceleration
methods for alternating series. Following Simon, Stroot,
and Weiss,*?l we suggest using Euler summation. Euler
summation is one of the more elementary acceleration
techniques; see Johnsonbaugh®®! and Chapters 2 and 12 of
Wimp.P¥ We use it because of its simplicity. For practical
purposes, it seems to provide adequate computational effi-
ciency.

Euler summation can be very simply described as the
weighted average of the last m partial sums by a binomial
probability distribution with parameters m and p = 1/2.
(Surprisingly, the binomial averaging representation of Eu-
ler summation does not seem well known. This representa-
tion is discussed in §4.3.2 of Wimp,**! however. A variant
is used by Hosono”?) In particular, let s,(t) by the ap-
proximation f,() in (5) with the infinite series truncated to
n terms, i.e.,

e A2 A ¢A/2 n )
)= Re<f3(5)+ — L 00, (9
where
A+ 2kmi
4, (t) = Re(f‘)(T) (14)

We apply Euler summation to m terms after an initial 7, so
that the Euler sum (approximation to (5)) is

E(mon,t) = Y ("’)z~'"s,,+k(t), (15)

k=0 k

for s,(t) in (13). Hence, (15) is the binomial average of the
terms S,,S,.1,..., 5,4, (We typically use m =11 and
n = 15, increasing 1 as necessary. As in other contexts, the
acceleration typically drastically reduces the required com-
putation.) The overall computation is specified by (13)—(15).

In order to estimate the error associated with Euler sum-
mation, we suggest using the difference of successive terms,
ie, E(m,n+ 1,t) — E(m, n,t). Our experience indicates
that this usually is a good error estimate, but not always so.
For example, this is a poor estimate for the (non-smooth)
example in Section 11 of [4].

Remark 1. In order for Euler summation to be effective, we
would like a,(t) in (14) to be of constant sign for all
sufficiently large k (even though this condition is neither
necessary nor sufficient for Euler summations to be effec-
tive). It is significant that this property holds under extra
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smoothness conditions. (We thank our colleague John
Morrison for assistance here.) To see this, note that

Re(f(u + iv)) = fwcos vtg(t) dt, (16)
0

where g(t) = e”“'f(t). Assuming that f is twice continu-

ously differentiable, so is g. Assuming in addition that

f(0) = 1 and g() = g'(») = 0, we can apply integration by

parts twice to obtain

Re(f(u + iv)) = cosvtg” (£)dt. (17)

u—f0 1 (=
P o2 ];]
Assuming further that g”(#) is integrable, we can apply the
Riemann-Lebesgue lemma (p. 514 of Feller"®) to deduce
that
N . u— f(0) 1
Re(f(u + iv)) = — o tol 3| @ v (18)

Under (18), Re(f(u + iv)) is eventually positive for all suffi-
ciently large v provided that u > f(0), which holds when
u > 0 and f is a complementary cdf. Moreover, the approx-
imating function [u — f(0)]/v* has additional structure
which makes Euler summation effective. The real difficul-
ties with Euler summation in this context occur when f
does not have enough smoothness; see Remarks 6.8 and 6.9
and Sections 11 and 14 of [4]. As stated in the introduction,
when f does not have enough smoothness, we may wish to
perform convolution smoothing. This is achieved by multi-
plying the transform f by some other transform ¢ before
doing the inversion (in a controlled way, so that we have a
bound on the error introduced).

Remark 2. From the ¢ in the denominator of the argument
of Re(f) in (15), we may anticipate that the appropriate
value of n increases with f, and this often is the case.
According to Hosono,*?! the value of n(¢) to achieve pre-
scribed accuracy is often approximately a linear function of
t. Thus, on p. 58 of [22], Hosono suggests estimating this
linear function by considering two time points, using the
error estimate

m
E(m,n+1,t) —E(m,n,t) =Y, Z_m(rZ)uMkH(t)
k=0

(19)

before performing many runs at other time points (if in-
deed many time points are to be considered).

2. The Sscond Method: POST-WIDDER
Our second method, which we call POST-WIDDER, is
based on the Post-Widder Theorem, which expresses f(t)
as the pointwise limit as n — « of

(-D"(n+1
fult) = n! ( t

n+1
) Fo((n +1/8),  (20)

where F(s) is the nth derivative of the Laplace transform
f at s; see p. 233 of Feller!"® Feller shows that the Post-

Widder formula is easy to understand probabilistically. By
differentiating the transform, it is easy to see that f(t) =
E[f(X,, ), where X, , is a random variable with a gamma
distribution on (0, %) with mean ¢ and variance t/(n + 1).
Hence, X, , converges in probability as n - to the
random variable X, with P(X, =t) =1, so that f(t) -
f(t) as n — = for all bounded real-valued f that are contin-
uous at ¢ (and other f as well).

Following Jagerman,** 2! we numerically calculate f,(¢)
via a generating function

(n+1)

€0 1 N
G(x)= ¥ aft)z" = E—f(

n=0 t

a- z)), (21)

whose nth coefficient is f,(t), ie., a,(t) = f,(t). Using the
Cauchy contour integral, we obtain

1 G(z)

fult) = —wr dz (22)

2mwiJc, z

where C, is a circle of radius r. After making the change of

variables z = re', we obtain the inversion integral
1 2w
t) = G(re'")e™ """ du
) = 5— /O (re™)
n+1 1 omaf (n+ 1)
= 1 —re™)]e "™ du.
e T )

(23)

Next, paralleling our treatment of (2), we apply the
Fourier-series method (Poisson summation formula) to ob-
tain the trapezoidal-rule approximation to (23) with an
explicit error bound. Unlike (2), the integral in (23) is over a
finite interval, so that the resulting sum is finite (and
manageable), so that no truncation is necessary.

Starting from (23), for any n we can apply the discrete
Poisson summation formula to obtain the trapezoidal rule
approximation with step size w/n and the associated error
bound, i.e.,

n+1 2n k . n+1 ‘
= — — mik/n _
Filt) = g L (D) Re(f)( —-r )) e
n+1],
Y™ f(n+ 1A =-1)/t)
+(=D"f((n + DA + 1)/
n—1 . 1
+2Y (—1)kRe(f)(ft—(1 - re’”"/"))} —e,,
k=1
(24)
where
. tjzm \
ey = }glfn+]m(t + "+ 1)?’ m, (25)

Assuming that | f(#)| < 1 for all ¢, we have | f,(+)] < 1 for all
n and ¢, so that

r2n

legl < (26)

1 —r2"
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In particular, given that

]

¢(u) = Y ae*™ and a, =

k= —x

l 2‘”‘ —inu
__27rj(; d(u)e du,
27)

as occurs here with 4, = f,(1)r" and ¢(u) = G(re'™), we
can form the periodic sequence

o0
Z ak+]m

j=—

af = (28)
with period m, paralleling (6). If |f(¢)| < 1 for all ¢, then
If{() <1 for all t and n, so that Tf_ __la,] < ®. Next,
paralleling (7)-(9), construct the discrete Fourier transform
of {af}, see p. 51 of Rabiner and Gold,?! to obtain

1 m-1
ﬁf - apexza-rk]/m
m ! 7
j=0

1 m-1 =

= Z a}+1m61277-jk/m
M a0 1= -w
1 2 _— 1

== Y ae?*"m = —pQmk/m) (29)
m m

@

)=
and applying the inversion formula for discrete Fourier
transforms to obtain

m-1
Z d}pe-IZ'rr;k/m
=0

af =

~

(30)

f
BN

m—1
Z ¢(27rj/m)e“2”f"/”’.
j=0

Combining (28) and (30) yields the discrete Poisson sum-
mation formula

0
E Byt kms

k= —w

m
Y gQ@mk/m)e=k2mn/m = (31)
k=1

which with (23) implies that

n+1 ™ (n+1
o Zf‘( ; a- rezkh))e—mkh —e,, 32)
k=1

tjm i
n+1)

Letting m = 2n in (32) yields (24).

We can make the error in the calculation of f,(t) by (24)
suitably small by a proper choice of 7; i.e., to obtain 10~
accuracy, we let r = 1077/2, However, roundoff problems
increase as r decreases. Roughly speaking (3y,/2)-digit ac-
curacy is required to produce accuracy to 107 ?; see Remark
5.8 of [4].

The gap in POST-WIDDER is that we have indicated
how to calculate the approximating function f,(t) in (20)
instead of f(t) itself. Moreover, f,(t) is known to converge
to f(t) quite slowly as n — © (of order #n~!) and the
computation gets more difficult as n increases. In order to

f(t) =

with k = 27/m and

€y = an+]m(t+ (33)
=1

enhance the accuracy, we use a linear combination of the
terms, ie.,

m

fom(®) = X wlk, m)fy(t),

k=1

34

e.g, with j =10 and m = 6. In particular, we suggest
using the linear combination developed by Stehfest.’*]
From Jagerman [23, 24], it follows that the error in (20)
has the asymptotic form
[l = f(1) ~ X c()n).

=1

(35)

Hence it is natural to use (34) where the weights w(k, m)
are chosen to cancel the leading coefficients ¢ (t) in (35). In
fact, Jagerman does this in [23, 24] for the case m = 2.
General weights for knocking out all these coefficients were
found by Stehfest®; they are

km
m—k
= —1 —_—

wlk,m) = (D" e (36)

as can be seen from the combinatorial identity

- - k! 0, j=12,...,m-1

_ m-k{ m - ’ ] 7%, 3

k§1( Y (k)m! {1' j =0and m; @7

see (12.7) and (12.17) on pp. 64-65 of Feller.'”l (Also see p.
35 of Wimp.*4) Hence, our final approximation is (34). We
start with j =10 and m = 6 and increase them if neces-
sary. We found that the Stehfest enhancement in (34) pro-
vides substantially greater accuracy than Jagerman’s?*! o
enhancement (for examples such as those in [4]).

3. Implementation

The two methods presented here have the virtue that they
are easy to understand and easy to perform. Programs
implementing the algorithms can be written in less than
fifty lines, as illustrated in Exhibits I and II.

The sample programs are written in UBASIC, which is a
public-domain high-precision version of BASIC created by
Kida”®! to do mathematics on a personal computer; see
Neumann.”! UBASIC permits complex numbers to be
specified conveniently and it represents numbers and per-
forms computations with up to 100-decimal-place accuracy.
(Diskettes containing UBASIC and the algorithms are avail-
able from the authors.) However, other languages such as
FORTRAN and C are also fine, but they should be used
with double precision.

The displayed sample programs compute a function F(t)
(depending on two parameters Rho and Mean) whose
Laplace transform is

R ® 1-4.(s)
c = —stpc = —_——
F(s)_foe Fe(t)dt Aol (38)
where
Loy 1—g(s)
849~ Ndeanvs) ©?
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Exhibit I. The UBASIC Program for EULER
"The Algorithm EULER

‘A variant of the Fourier-series method
‘using Euler summation
“applied to the M/G /1 transform (39)

dim SU(13), C(12)

C(1) = 1:C(2) = 11:C(3) = 55:C(4) = 165:C(5) = 330:
C(6) = 462

C(12) = 1:C(11) = 11:C(10) = 55:C(9) = 165:
C(8) = 330:C(7) = 462

input “TIME = "; T

A =184

Ntr = 15

U = exp(A/2)/T

X = A/(2*T)

H = #pi/T

Sum = fnRf(X, 0)/2
for N =1toNtr: Y = N*H

Sum += (—1)"N*mRf(X, Y):next

SU(1) = Sum

forK =1to 122N = Ntr + K'Y = N*H

SU(K + 1) = SU(K) + (—1)"N*fnRf(X, Y)next
Avgsu = 0:Avgsul =0

for] =1to 12

Avgsu += C())*SU(Q)

Avgsul += C(J)*SU( + 1):next
Fun = U*Avgsu /2048:Funl = U*Avgsul /2048

Errt = abs(Fun — Funl)/2

print

print “TIME = *;T,”FUNCTION = ";using(2,7),Funl
print

print “Truncation Error Estimate = ";using(1,7),Errt
end

fnRA(X, Y)

S = X + #i*Y

Rho = 0.75:Mean = 1

Gs = 1/sqrt(1 + 2*S)

Gse = (1 — Gs)/(Mean*S)

Fs = (1 — Gse)/(S*(1 — Rho*Gse))

Rfs = re(Fs)

return(Rfs)

and

® 1
& = —st = —, 4
$(s) fo e *tg(t)dt — 40)

The function F(s) is specified in lines 92-95 of the two
programs. Different problems can be solved by inserting
different transforms here.

The function F%(t) whose transform is given in (38) is the
complementary cdf of the waiting time in an M/G/1
queue, after eliminating the known atom at the origin,
when the service-time distribution is gamma with mean 1

Exhibit II. The UBASIC Program for POST-WIDDER
"The Algorithm POST-WIDDER

1
2
3 'The Jagerman-Stehfest method

4  ’based on the Post-Widder inversion formula
5 ’for inverting Laplace transforms

6 ‘applied to the M/G/1 transform (39)

7

10 NN =6
11 dimG(NN)

20 input “TIME = ;T

30 forl=1toNN

31 N =10*

32 E=8

33 R =1/10"(E/(2*N))

34 U=(N + 1)/(T*2*N*R'N)

35 H = #pi/N
36
40 Sum =0

41 forJ=1toN -1

42 S=N + D*1 - R*exp(#i*H*]))/T

43 Sum += (—1) J*nF(S)mext ]

44 Sum = fnF(N + 1)*(1 — R)/T) + 2*Sum
+(—= 1 'N*nF(N + 1)*(1 + R)/T)

45 7

46 G(I) = U*Sum:next I
47 7’

50 Fun =20

51 for K =1to NN

52 Wt =(-1)"(NN — K)*k NN /({(K)*'(NN — K))
53  Fun += Wt*G(K):next

54 ’

60 print

61 print “TIME = ";T,”FUNCTION = ”;using(2,7),Fun
62 end

63 '

91 F(©S)

92 Rho = 0.75:Mean = 1

93 Gs = 1/sqrt(1 + 2*S)

94 Gse = (1 — Gs)/(Mean*S)

95 Fs = (1 — Gse)/(5*(1 — Rho*Gse))

96 return(re(Fs))

Copyright © 2001 All Rights Reserved



42

Abate and Whitt

and shape parameter 0.50 and the traffic intensity (which
equals the arrival rate) is p = 0.75, as in the second part of
Section 9 in [4]. In particular, the service-time distribution
has probability density

e t/2

gt) = ==, t>

OI
2wt

(41)

and Laplace transform (40). The programs compute the
complementary cdf F(t) =1~ F(t), where W(¢) is the
steady-state waiting-time cdf and W(t) =1 — p + pF(t).
Thus, F(t) is the cdf of the conditional steady-state waiting
time given that a customer is delayed. We remove the
known atom of (1 — p) at the origin in order to obtain a
smoother function. (This is more important when Euler
summation is not used, i.e., when the series in (5) is simply
truncated.) By virtue of the Pollaczek-Khintchine formula,
the Laplace transform of F<(t) is (38).

For the program EULER, the computation is (15). There
are three parameters: the discretization-error parameter A
in (11)~(14) and the parameters m and 7 in the Euler sum
(15).

The parameter A has been set at 18.4 in line 21 of the
program. As is indicated after (12), this produces a dis-
cretization error of about 1072, This is appropriate to get
accuracy to 1077 (having the seventh decimal correct). In
order to have a discretization error of 1077, we let A =
v log10, but much higher values of A (much smaller
discretization errors) can cause computational difficulties
(e.g., roundoff error).

We have specified the binomial coefficients associated
with Euler summation in lines 10-12. We have chosen
m = 11, so that there are 12 binomial coefficients. It should
not be necessary to change m. In line 22 we have set
n = 15. This makes the computation a sum of 27 terms. It
may be necessary to increase n, and it is easy to do so.
(Considering different parameter triples ( A, m, n) provides
an additional check.)

For the program POST-WIDDER, the computation is
in (34) and (24). There are three parameters: the discretiza-
tion-error parameter as specified below (33), and the Ste-
hfest weight parameters j and m in (34). We have made the
discretization error about 1078 by setting y = E = 8 in line
32 of the program. The associated parameter 7 in (33) is
then 107772, As with EULER, computational problems can
occur if we try to make y too big (r too small). We have
specified the Stehfest weights as m = NN = 6 in line 10
and j = 10 by setting N = 10* [ in line 31. (Computational
problems also can occur if we try to make m too large.)

With the parameter settings described here, there should
be no serious roundoff errors with double precision, but
double precision is recommended.

4. A Connection Between the Two Methods

From the Post-Widder theorem, we know that f,(t) in (20)
approaches f(t) as n — . Hence, it is natural to consider
how the sum in (24) is related to the sum in (5) as n — o, If
we let 7, =1~ (A/2n), so that r" - ¢ 4/2 as n - x,
then the sum in (24) approaches the sum in (5) term by

term as n — . (The two procedures still serve as valid
checks on each other, because we do not consider large n.)

In particular, the sum in (24) becomes
n+1 i
2nr™t J=— (=1

fn+1
(—1)’Re(f(-t—(1 - re””/"))), (42)

after replacing j by j — 2n for n + 1 < j < 2n. First, note
that

n+1 e4/?

T THE @)
and
n+1 n+1 T .. 7
(1 —re'mi/n) = 1 — rcos— — risin—
t n n
4, m (4)
—— — ©
T Foen ’

because r, =1 - (A/2n), cos(mj/n) > 1 as n —» © and
sin(wj/n) ~ wj/n as n — . The limits in (43) and (44)
imply that

Re(f'(f—-:—l—(l - rei"//"))) - Re(f(% + ?))

as n - o, (45)
Hence (42) approaches
ed/z = A imj
-1)/ —_ 4 —Z
5 j:z_:w( 1) Re(fA(Zt + = )) (46)

which coincides with (5).

5. Conclusions

We have presented two methods for numerically inverting
Laplace transforms of cumulative distribution functions or
complementary cumulative distribution functions. The
probabilistic structure (i.e., the fact that | f(#)| < 1) enables
us to obtain simple effective bounds on the discretization
error associated with the trapezoidal-rule approximation of
the inversion integrals, but in each case there is another
step for which we have no bounds. In both cases we can
estimate the final errors by considering the improvement
obtained upon successive refinement. However, we rely on
the agreement of the two methods to confirm accuracy. The
resulting programs and run times are very short, so the
procedure is easily carried out. For further discussion, see

[4].

Acknowiedgments

We thank Dimitris Bertsimas, Bharat Doshi, Kerry Fendick,
Daniel Heyman, Toshio Hosono, David Jagerman, John
Morrison, and Henk Tijms for assistance. In particular, we thank
John Morrison for his contribution to Remark 1 and Kerry Fendick
for writing C + + versions of the programs.

1. J. ABATE, G.L. CHOUDHURY, and W. WHITT, 1993. Calculation of
the GI/G/1 Waiting-Time Distribution and its Cumulants
from Pollaczek’s Formulas, Archiv fiir Elektronik und
Ubertragungstechnik 47, 311-321.

Copyright © 2001 All Rights Reserved



43

2.

10.

11.

12.

13.

14.

15.

Inversion of Laplace Transforms

J. ABATE, G.L. CHOUDHURY, and W. WHITT, 1994. Asymptotics
for Steady-State Tail Probabilities in Structured Markov
Queueing Models, Stochastic Models, 10, 99-143.

. J. ABATE, G.L. CHOUDHURY, and W. WHITT, 1995. Exponential
Approximations for Tail Probabilities in Queues, I: Waiting
Times, Operations Research, to appear.

. J. ABATE and W. WHITT, 1992. The Fourier-Series Method for
Inverting Transforms of Probability Distributions, Queueing
Systems 10, 5-88.

. ]. ABATE and W. WHITT, 1992. Numerical Inversion of Probabil-
ity Generating Functions, Operations Research Letters 12,
245-251.

. J. ABATE and W. WHITT, 1992. Solving Probability Transform
Functional Equations for Numerical Inversion, Operations Re-
search Letters 12, 275-281.

. D. BertsiMAS and D. Naxazata, 1992. Transient and Busy
Period Analysis for the GI/G/1 Queue; the Method of Stages,
Queueing Systems 10, 153—-184.

. G.L. CHOUDHURY and D.M. LUCANTONI, 1995. Numerical Com-
putation of the Moments of a Probability Distribution from its
Transforms, Operations Research, to appear.

. G.L. CHOUDHURY, D.M. LUCANTONI and W. WHITT, 1994, Multi-

Dimensional Transform Inversion with Applications to the

Transient M/G/1 Queue, Annals of Applied Probability 4,

719-740.

G.L. CHOUDHURY, D.M. LucaNTONI, and W. WHITT, 1995. Nu-

merical Solution of M,/G,/1 Queues, Operations Research, to

appear.

G.L. CHOUDHURY, D.M. LucantoNi, and W. WHITT, 1995.

Squeezing the Most Out of ATM. IEEE Transactions on Commu-

nications, to appear.

G. DAHLQUIST, 1993. A “Multigrid” Extension of the FFT for

the Numerical Inversion of Fourier and Laplace Transforms,

BIT 33, 85-112.

B. Davies and B.L. MARTIN, 1970. Numerical Inversion of

Laplace Transforms: A Critical Evaluation and Review of

Methods, Journal of Computational Physics 33, 1-32.

G. DOETSCH, 1974. Introduction to the Theory and Application of

the Laplace Transformation, Springer-Verlag, New York.

H. DUBNER and ]. ABATE, 1968. Numerical Inversion of Laplace

Transforms by Relating Them to the Finite Fourier Cosine

Transform, JACM 15, 115-123.

. P. EMBRECHTS, R. GRUBEL, and S.M. PiTts, 1993. Some Applica-

17.

18.

19.

20.

21.

22.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

tions of the Fast Fourier Transform Algorithm in Insurance
Mathematics, Statistica Neerlandica 47, 59-75.

W. FELLER, 1968. An Introduction to Probability Theory and its
Applications, Vol. I, 3rd ed., Wiley, New York.

W. FELLER, 1971. An Introduction to Probability Theory and its
Apphications, Vol. II, 2nd ed., Wiley, New York.

R. GRUBEL, 1991. Algorithm AS265: G/G/1 Via Fast Fourier
Transform, Applied Statistics 40, 355-365.

T. HOsONO, 1981. Numerical Inversion of Laplace Transform, J.
Inst. Elec. Eng. Japan A54-A64, 494 (in Japanese).

T. HosonO, 1981. Numerical Inversion of Laplace Transform
and Some Applications to Wave Optics, Radio Science 16,
1015-1019.

T. HOsONO, 1984. Fast Inversion of Laplace Transform by BASIC,
Kyoritsu Publishers, Japan (in Japanese).

. D.L. JAGERMAN, 1978. An Inversion Technique for the Laplace

Transform With Applications, Bell System Tech. ]. 57, 669-710.
D.L. JAGERMAN, 1982. An Inversion Technique for the Laplace
Transform, Bell System Tech. J. 61, 1995-2002.

R. JOHNSONBAUGH, 1979. Summing an Alternating Series, Amer.
Math. Monthly 86, 637-648.

Y. Kipa, 1990. UBASIC Version 8.12, Faculty of Science,
Kanazawa University, 1-1 Marunouchi, Kanazawa 920, Japan.
D.M. Lucantoni 1991. New Results on the Single Server
Queue with a Batch Markovian Arrival Process, Stochastic
Models 7, 1-46.

D.M. LUcaNTONI, G.L. CHOUDHURY, and W. WHITT, 1994. The
Transient BMAP /G /1 Queue, Stochastic Models, 10, 145-182.
W.D. NEUMANN, 1989. UBASIC: A Public-Domain BASIC for
Mathematics, Notices Amer. Math. Soc. 36, 557—559.

LK. PLaTzMAN, J.C. AMMONS, and JJ. BarTHOLDI, 1988. A
Simple and Efficient Algorithm to Compute Tail Probabilities
from Transforms, Operations Research 36, 137-144.

LR. RaBINER and B. Goup, 1975. Theory and Application of
Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ.
RM. SiMoN, M.T. StrooT, and G.H. WEIss, 1972. Numerical
Inversion of Laplace Transforms with Application to Percent-
age labeled Experiments, Comput. Biomed. Res. 6, 596-607.

H. StedresT, 1970. Algorithm 368. Numerical Inversion of
Laplace Transforms, Comm. ACM 13, 479-490 (erratum 13,
624).

. J. Wimp, 1981. Sequence Transformations and Their Applications,

Academic Press, New York.

Copyright © 2001 All Rights Reserved



