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Large Fluctuations in a Deterministic
Multiclass Network of Queues

Ward Whitt
AT&T Bell Laboratories, Murray Hill, New Jersey 07974-0636

In this paper we investigate a relatively simple deterministic four-class two-queue multiclass
open network of single-server FIFO queues with traffic intensity one at each queue. Our
purpose is to better understand the effect of feedback with class-dependent service times at the
queues. The example is sufficiently tractable that we are able to describe its transient behavior
in great detail. The transient behavior depends strongly on the initial conditions and, for some
initial conditions, the sample paths of the queue-length processes at individual stations have
sudden large fluctuations (a large jump up followed immediately by a large jump down). These
large fluctuations occur because batches of customers with short service times build up in the
queues. Consistent with recent work by Dai and Wang (1993) on Brownian network models,
these fluctuations rule out conventional heavy-traffic limit theorems. We show how to obtain
proper heavy-traffic limits for this example by weakening the topology or enlarging the space
of prospective limits (and changing the topology). This example also dramatically demonstrates
a disadvantage of the FIFO discipline compared to other disciplines like head-of-the-line pro-
cessor-sharing (HOL-PS) among the classes at each queue (under which, the large fluctuations
do not occur). Finally, the critical arrival rate for stability in our example actually depends on
the service discipline, being even lower if the classes with longer service times are given high
priority at each queue. This phenomenon can occur in the network setting because individual
queues can be empty when there is work in the network.

(Multiclass Queueing Networks; Open Queueing Networks; Class-Dependent Service Times; Heavy-

Traffic Limits; Diffusion Approximations; Priorities; Stability Criteria)

1. Introduction

A useful model for many applications (e.g., manufac-
turing systems and communication networks) is the
multiclass open network of queues (MONQ), in which
each class has its own (possibly non-Poisson, possibly
void) exogenous arrival process and its own (possibly
nonexponential) service times. Transitions among
classes occur according to a transient homogeneous
Markov chain: Upon completing service, a class-i cus-
tomer becomes a class- j customer with probability p;;,
and leaves the network with probability 1 — 2; p;, in-
dependent of all previous events. The queue is embod-
ied in the class, so that each class visits only one queue.
For further discussion here, we otherwise make every-
thing ?standard; i.e., let all queues have one server, un-
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limited waiting space and the first-in first-out (FIFO)
service discipline. Moreover, let all service times and all
exogenous interarrival times be mutually independent;
let the exogenous interarrival times for each class be
independent and identically distributed (i.i.d.) and let
the service times of each class be i.i.d., but allow dif-
ferent classes to have different service-time distributions
at each queue. Let all interarrival-time and service-time
distributions have finite means and variances.

The MONQ model above uses the standard descrip-
tion of classes, as in Harrison and Nguyen (1990, 1993).
A convenient (mathematically equivalent) alternative
is based on a framework of deterministic routes, as in
Segal and Whitt (1989). A deterministic route contains
the (usual) sequence of successive queues to be visited,
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the exogenous interarrival-time distribution (if any) and
the service-time distributions at each queue on the route.
(For two-moment approximation methods as in Segal
and Whitt (1989), only the first two moments of each
distribution need be given.) This deterministic-route
framework is appealing because a route in the model
typically corresponds to the natural notion of a type in
the application, e.g., a product in a manufacturing line.
Finally, the deterministic-route framework can include
probabilistic transitions from one queue visit on one
deterministic route to another queue visit on another
deterministic route. This makes the deterministic-route
framework fully equivalent to the standard multiclass
Markovian approach, while allowing it to more directly
match the application (which often has a non-Markov-
ian character without exploiting classes). However, here
we will use the conventional terminology.

In the stated generality, it is usually not possible to
calculate performance measures of interest for this
MONQ model. Thus, these MONQ's are not yet well
enough understood. We contribute to a better under-
standing of MONQ’s by carefully examining one ex-
ample and a few variants. In particular, we are interested
in the effect of class-dependent service times with feed-
back (customers can return to a queue where they pre-
viously received service).

Large Fluctuations and Instability

We find that feedback together with significant differ-
ences in class-dependent service times can have a dra-
matic impact. Even though customers may arrive in a
very regular way (e.g., deterministically and evenly
spaced ), batches of customers with short service times
can periodically build up in the queues. When these
customers reach the server, there can be a sudden surge
of departures. Moreover, a surge of departures from
one queue can be followed quickly by a surge of arrivals
to that queue. These surges can lead to dramatic fluc-
tuations in the queue-length processes at the stations
in the network.

The system evolution is also highly sensitive to the
initial conditions, as with deterministic chaos; see
Schuster (1988). Indeed, our model is similar to the
model of Erramilli and Forys (1991), which they
showed exhibits chaotic behavior. Related work on es-
sentially the same model was done by Kumar and Seid-
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man (1990) and Lu and Kumar (1991), and is reviewed
in Kumar (1993); also see Rybko and Stolyar (1992).
Kumar and Seidman show that the model with class-
dependent priorities can be unstable (have queue
lengths going to infinity) even when the traffic inten-
sities at each queue are strictly less than one. This in-
stability occurs because servers can be persistently idle
even when there is always work in the system. (See
§5.) Kumar and Seidman also show that nonacyclic
flows rather than feedback is the reason for this insta-
bility. Lu and Kumar (1991) establish positive stability
results for other service disciplines.

In this context, our results are interesting primarily
because we consider the FIFO discipline. Our example
suggests that the natural condition, requiring all traffic
intensities be strictly less than one, is the proper stability
condition with the FIFO discipline, but (added in proof)
remarkably this is not so; see Bramson (1993) and Seid-
man (1993). Our example shows unstable behavior and
large fluctuations at the critical point where all traffic
intensities equal one.

Sharifnia (1992) has recently shown that instability
can occur in a MONQ with the FIFO discipline for an-
other reason. In particular, instability can occur because
customers with server-dependent service times are as-
signed to the wrong servers.

Brownian Models and Heavy-Traffic Limits

A promising way to analyze MONQ's is via Brownian
models, as in Harrison (1988) and Harrison and Nguyen
(1990, 1993). Brownian models are especially attractive
for investigating control schemes. These Brownian
models can be regarded as direct approximations or the
consequence of heavy-traffic limit theorems. Heavy-
traffic limits for feedforward FIFO MONQ’s were es-
tablished by Johnson (1983) and Peterson (1991) and
heavy-traffic limits for a single multiclass FIFO queue
with feedback were established by Reiman (1988), but
so far heavy-traffic limits for general MONQ's have yet
to be established. Indeed, Dai and Wang (1991 ) recently
showed that a candidate Brownian model for a MONQ
does not exist. Our example “explains”’ the Dai-Wang
example; i.e., our example not only shows that there
need not be convergence to Brownian models for all
MONQ’s in heavy traffic, but there need not be con-
vergence in the familiar function space D of right-con-
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tinuous functions with left limits, endowed with one of
the usual Skorohod (1956) topologies; see Billingsley
(1968) and Whitt (1980). In particular, for our example,
we show that such convergence does not take place. In
our example, there are fluctuations of size O(W) in
time n as n = oo, instead of 0(1/;) as in single-class
networks. Since the heavy-traffic limit theorem for
MONQs would include our deterministic example as a
special case, our example is a bonafide counterexample
to the theorem. However, since our example is deter-
ministic, it still remains to determine whether fluctua-
tions of size O(VZ) in time n as n = oo can occur in
genuine stochastic models. Dai and Nguyen (1994) have
shown that this is possible (added in proof).

Laws (1991) has recently done a nice heavy-traffic
analysis of MONQs. He does not encounter the diffi-
culty above because he assumes that all service times
at each queue are i.i.d.

The reason that the normalized queue-length pro-
cesses in our MONQ example fail to converge is because
they have large fluctuations (a large jump up followed
immediately by a jump down), which rule out conven-
tional heavy-traffic limits. (Of course, the large fluctu-
ations in turn are a consequence of the model structure.)
The normalized queue-length processes behave like the
sequence of functions {x,: n = 1} in D[0, 1], defined
by

x.(t) = 1[2—1+"—1,2—1+2n—1)(t), (1.1)
where 1, is the indicator function of the set A. It is well
known and easy to verify that {x,} in (1.1) does not
converge as 1 —> oo in D[0, 1] with the standard Sko-
rohod (1956) J; topology in Billingsley (1968) or in any
of the other Skorohod (1956) topologies. This is easy
to see, because these topologies all reduce to uniform
convergence over bounded time intervals when the limit
function is continuous.

There are two natural approaches to this problem.
The first approach is to ignore the jump by weakening the
topology. For example, we could obtain convergence to
the zero function if we defined convergence to mean
pointwise convergence or pointwise convergence at al-
most all ¢ (with respect to Lebesgue measure). Alter-
natively, with the familiar L norm on [0, 1], i.e,,

Ixll, = ( [ lx(t)l"dt)‘/",

O0=<t=<l1,

(1.2)
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we have ||x, — x|, > 0asn - oo forany p, 0 <p
< o0, where x(t) = 0, 0 <t < 1. This approach can also
be applied to our MONQ example.

The second approach is to focus on the jump by en-
larging the space of possible limits (and changing the to-
pology as well). This can be done by identifying each
function x in D with the closure of its graph, i.e.,

L,={( r):x(t)=r or

x(t=)=r,0<t=<1}, (1.3)

with x(0—) not defined, as in Pomarede (1976). Over
closed bounded time intervals, the graphs are compact
subsets of R?. We can then use the Hausdorff metric
on the space of compact subsets of [0, 1] X R, as is often
done in the theory of random sets, i.e.,

m(A, B)

= max {sup inf |x — y|, sup inf [x —yl}; (1.4)
XEB yEA YyEA xEB

see page 15 of Matheron (1975). With the Hausdorff
metric, it is easy to see that we have convergence
m(T,,, I') > 0 as n = oo, where

T={(t0):0=<t=<1}U{&, 1} (15)

Again, this same approach works for our MONQ ex-
ample. We believe that with these approaches it will be
possible to establish nondegenerate heavy-traffic limits
for general MONQs, but the task seems challenging.

Organization of the Paper
Here is how the rest of this paper is organized. In §2

‘we introduce our basic deterministic four-class two-

queue MONQ example. It has both queues critically
stable; i.e., the traffic intensity at queue i is p; = 1 for
each i. In §3 we describe the transient behavior of this
example. In §4 we consider variants of the basic model
that are stable. There we study the heavy-traffic be-
havior of a sequence of associated stable MONQ's in-
dexed by n, with p,; < 1 for all n but p,, > 1 as n -
oo . In §5 we discuss the variant of the basic model with
class-dependent priorities.

These examples are admittedly very special, but minor
perturbations of the models satisfy standard assump-
tions, so that the observed behavior can occur in con-
ventional stochastic settings. For example, it is possible
to construct related stochastic renewal arrival processes

MANAGEMENT SCIENCE/Vol. 39, No. 8, August 1993
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by letting each arrival not come with some small prob-
ability, where successive arrivals are treated indepen-
dently. Thus, we conclude that we are describing im-
portant phenomena, which can occur in real systems.

2. The Basic Deterministic Example
Our basic example consists of two queues, each with
single server, unlimited waiting space and the first-in
first-out (FIFO) service discipline. All customers follow
the route (1, 2, 2, 1) with the class changing after each
service completion, as depicted in Figure 1. Thus, there
are four customer classes, two associated with queue 1
and two associated with queue 2. We shall refer to the
four classes as classes 0 and 1 at queue 1, and classes
0 and 1 at queue 2. The service times are all determin-
istic, with the vector of successive service times being
(0, 1,0, 1); i.e., at both queues, the service times are j
for class j (where jis 0 or 1).

There is an external arrival process only for class 0
at queue 1. Customers of class 0 at queue 1 arrive ex-
ogenously at every positive integer time point; i.e., the
interarrival times are 1. Each customer of class 0 at queue
1 after completing service goes to queue 2 as a class 1
customer. After completing service, each class 1 cus-
tomer at queue 2 becomes a class 0 customer at queue
2. After completing service, each class 0 customer at
queue 2 becomes a class 1 customer at queue 1. Finally,
each class 1 customer at queue 1 leaves the network
after completing service.

Notice that all events take place at integer time points.
Since we may have multiple transitions at each integer,
we must specify the order for events scheduled for the
same epoch. For this example, this scheduling can make
quite a difference. We first admit the new arrival and
move him to queue 2 if queue 1 is empty. Then we
perform services at queue 2 and finally we perform ser-

Figure 1 The Class Transition Diagram

QUEUE 1 QUEUE 2

__@__
__®__

A

—_—p-—(0)-- >
EXTERNAL @
ARRIVALS
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vices at queue 1. Since no customer has two consecutive
0 service times, we need go no further.

We shall look at the system at integer time points
after all transitions at that time have been made. The
state of the system at any such time can be represented
by an ordered pair of finite (possibly empty) sequences
of positive integers. The pair

(M1, Mz, - o, k), (M21, N2, o ooy o))

denotes that queue 1 contains ny; + 11 + « -+ + 1y
customers, with the first n,; being class 1, the next n,,
being class 0, the next 1,3 being class 1 and so forth,
while queue 2 contains 1y + 115 + + « + + 11, customers,
with the first 11,; being class 1, the next n,, being class
0 and so forth. There are k such groups of consecutive
1’s or 0s in queue 1, while there are m in queue 2. Let
¢ denote an empty queue.

Let X;(n) be the state of queue i at time n and let
X (n) = (X;(n), X,(n)) be the state of the entire system.
Note that the sequence of future states {X (k):k = n}
is completely determined by the present state X (1) for
any n and any X (n). Hence, we have an appropriate
state description.

We shall also be interested in the numbers of each
class at each queue. Let Qf(n) be the number of class
J customers at queue i after all the events at time n. Let
Qi(n) = QP (n)+ Q1 (n), Q/(n) = Qi(n) + Q%(n) and
Q(n) = Qi(n) + Q2(n) = Q°(n) + Q'(n).

3. The Transient Behavior of the

Basic Example

In this example it is natural to define the traffic intensity
pi at queue i as the total expected service requirement
at queue i per external arrival (since the arrival rate is
1). Since each arrival requires exactly 1 unit of service
at each queue (during his incarnation as a class 1 cus-
tomer at that queue), we have p; = p, = 1. For a single
queue with a work-conserving discipline, the traffic in-
tensity p; = 1 is typically the critical level for stability;
i.e., for p; > 1 the number in system typically goes to
infinity w.p.1 as t = oo, while for p; < 1 the number
in system typically converges in distribution to a proper
limit. Thus, in this example the queues are at least nom-
inally at the critical value for stability and so we say
that the MONQ is in heavy traffic.
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We first note that the number in system is nonde-
creasing, increasing at most by 1 each transition.

LEMMA 3.1. For all n and all initial conditions, Q(n)
=Q(n+1)=Q(n)+ 1.

PROOEF. There is one class 0 arrival to queue 1 every
transition. There is a departure from the network of at
most one class 1 customer from queue 1. This occurs if
and only if queue 1 was previously nonempty. O

We next note that it is possible for the system to reach
a fixed point or a fixed cycle. For any finite string of
numbers ny, 1y, ..., 1, let {ny, ny, ..., nx}n denote
the finite string obtained by concatenating m identical
copies of the given string; e.g., ({1, 2}3, 1, 1) denotes
the sequence (1,2, 1,2,1,2,1,1).

ProPOSITION 3.1.  If X(0) = ((m), ({m, m},, m))
forany k=1 and m = 1, then X (nm) = X (0) for all n.

PROOEF. Easy to verify. O

Proposition 3.1 can be interpreted as demonstrating
that the arrival rate 1 is the critical arrival rate for stability
in this example. To formulate this notion precisely in
general, we need to define a family of models indexed
by the arrival rate. For this purpose, let a reference col-
lection of external arrival processes {A;(t): t = 0} be
given, with A;(t) counting the number of class j arrivals
in the interval [0, t]. Without loss of generality (by
choosing the time units), let the total arrival rate be 1;
ie,

2 A(t)/t—>1 as t—> .
j

(3.1)

Then define the system with arrival rate A by using ar-
rival processes A,; defined by simply scaling time by A;
ie.,

A(t) = A((M), =0, (3.2)

and otherwise keeping the model fixed.

In this setting, we say that a sufficient condition for A*
to be a critical arrival rate for stability is to have, for
each positive number I, a number m and initial condi-

tions such that
Il<Qu(t)<l+m forallt, (3.3)

where (,(t) is the number in system with arrival
rate A.
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It remains to show that if such a critical arrival rate
exists, then it is unique and that the customary stability
and instability hold for A < A* and A > A*; e.g., see §1
of Heyman and Whitt (1984). Here we only establish
(3.3). Note that Proposition 3.1 implies that Q(n) = 2k
+ 2 for all n when m = 1, so the arrival rate 1 is indeed
a critical arrival rate for stability according to (3.3). We
conjecture that {Q\(t):= 0} is tight (see Billingsley
1968) for all A < 1 and that Q,(t) = oo as t = oo for
all A > 1 in this example.

We now show that the number in system can grow
without bound with the given unit arrival rate. From
Lemma 3.1 and its proof, we know that this will occur
if and only if queue 1 is empty infinitely often.

PrROPOSITION 3.2. If X(0) = ((n), (n + 1)) for any
n = 1, then X (k) evolves as described in Table 1, with
XGn+6)=((n+1),(n+2)).

PROOF.
Table 1. O

It is easy to verify the successive steps in

REMARK 3.1. Proposition 3.2 has an extension to the
model in which batches of size m arrive every m units
of time. If X(0) = ((nm), (nm + m)), then

X(5nm + 6m) = ((nm+ m), (nm+ 2m)). O

We now consider what happens when we start empty.
Let T(((n — 1), (n))) be the first time that the system
state reaches ((n — 1), (1)) and let T (n) be the first time
that the total number in the system reaches .

PropPosITION 3.3. If X(0) = (&, &), then X(7)
= ((1), (2)), after which the evolution is described by
Table 1. As a consequence,

Table 1 The Evolution from State ((n), (7 + 1))

to State ((n + 1), (n + 2))
Time State Time State
0 ((n), (n + 1)) IN+3  ((n+2),(n+1)
n—1 (,n=1)@n=1) 40n+3 (2,01, n)
n (F, (1,n,n) 4n + 4 (1,n+1,n+1), )
n+1 ((n), (n+1,1)) 4n+5 ((n+1,1),(n+ 1)
2n (1, n—1),(2, n) 5n+5 A, n+1),01,n)
2n +1 (F, (1,n+1,n) 51+ 6 ((n+1),(n+2)
2n+2  (n+1),(n+1,1)
n+2  (1,n,(,n+1)

MANAGEMENT SCIENCE/Vol. 39, No. 8, August 1993
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Table 2 The First Eleven States Starting \out Empty

Time State Time State
0 (&, D) 6 (1), (1)
1 (@, (1)) 7 (1), (2))
2 (@, (1,1) 8 (2, 0,1,1)
3 (1), (1, 1) 9 (1), 2 1)
4 (2), (1)) 10 (Z,(1,2,1))
5 (1,1,1), 2) " (2,2 1)

(a) Q(n) > o0 asn—> oo;

(b) T(((n — 1), (n))) = (5n* = 3n) /2 forall n = 2;

(c) T(2n) = (5n*—=n)/2foralln=1;

(d) 1Q(n)—2V2n/5 — 1| < 4 for all n;

(e) Q(n)/VE—» 2\/2—(5 asmn — oo,

(f) Q(nt)/l/; — 2V2t/5 as n = oo uniformly for t
in compact intervals.

PrROOF. Itis easy to check that the first eleven states

are as in Table 2. Then apply Proposition 3.2 starting
with X (7) = ((1), (2)). Hence,

T = 1), () = 7+ 3 (5k + 6) = 2"
k=1

From Table 1, note that Q(k) = 2n for the first time
exactly n transitions after reaching the state ((n — 1),
(n)), and thus (c) is true. By (¢), |Q(k) —2n—1| <1
for

2 _
skss(n+1) (n+1).
2 2

Since (5n* —n)/2=5(n—1)*>/2and[5(n + 1)*— (n
+1)]/2<5(n+1)%/2,

— 2 2
5(n—1)*_ _5(n+1)
2 2

2k 2k
2%—152n+1s2\/;+3

so that (d) holds. It is easy to see that (e) and (f) follow
from (d). O

From Proposition 3.3 and Tables 1 and 2, we see that
the total number in system grows smoothly when we
start out empty, but the number in each queue does
not. From Table 1 we see that during the nth growth

and

MANAGEMENT SCIENCE/Vol. 39, No. 8, August 1993

cycle (going from state ((n), (n + 1)) to state
((n + 1), (n + 2)) the number in queue 1 experiences
sudden jumps down and immediately back up again at
times #n (from time n — 1 to time n + 1) and 2n + 1,
while queue 2 does similarly at time 4n + 4. Thus the
analog of (f) for the individual queue lengths does not
hold. We will explore these sudden large fluctuations
further in the context of stable models in §4.

REMARK 3.2. As mentioned earlier, one of the char-
acteristic properties of deterministic chaos is that a minor
perturbation of the initial condition leads to dramatically
different behavior. It is significant that a discrete analog
of this phenomenon is observed here. For example, by
Proposition 3.1, ((1), (1, 1, 1)) is a fixed point, but
from the “nearby” states s; = ((1), (1, 1)) and s,
= ({, (1, 1, 1)) the number in system grows without
bound. Indeed, states s; and s, are easily seen to be the
third and eighth states starting from (&, &), i.e., totally
empty; see Table 2. Moreover, these examples show a
lack of monotonicity: More initial customers does not
mean larger queue lengths in the future. [

REMARK 3.3. The sojourn times behave similarly to
the queue lengths. It is easy to see that the sojourn time
in the network for an external arrival at time n is Q(n)
+ 1, so it is relatively stable. However, the waiting time
before beginning service at each queue is obviously the
number of class-1 customers ahead of him in the queue
upon his arrival (which may depend strongly on his
position in a batch). Thus, the waiting times before be-
ginning service at the individual queues exhibit large
fluctuations too.

REMARK 3.4. It is instructive to compare the FIFO
discipline with the head-of-the-line processor-sharing
discipline (HOL-PS), which is known to have advan-
tagesin MONQ's; e.g., see Demers, Keshav and Shenker
(1989) and Fendick and Rodrigues (1991). With the
HOL-PS discipline at each queue, the service rate is
shared among the first customers in each class at each
queue if customers from both classes are present. For
our model, this is equivalent to immediate service for
class 0 customers at each queue. Thus, our model with
HOL-PS is equivalent to the FIFO network in which
each customer goes first to queue 2 and then to queue
1, having a service time of 1 at each queue. Thus, with

1025



WHITT
Large Fluctuations in a Deterministic Multiclass Network of Queues

HOL-PS, if Q1(0) = k; and Q3(0) = kz, then Q;(n)
=k, and Q,(n) = k, for all n = 1, so that all irregular
behavior is removed. [

4, Associated Stable Models

The model analyzed in §§2 and 3 is unstable. We now
discuss its implications for stable models. In this section
we indicate two ways to construct stable models from
the unstable model.

Our first stable model is constructed by adding a third
FIFO queue with service times 1 and an arbitrary arrival
process with arrival rate A < 1. Let all external arrivals
come to this new queue before they go to the rest of
the network, but otherwise let the rest of the network
be the same. During the busy periods of the new queue,
the rest of the network obviously has the transient be-
havior of the unstable deterministic model just described
(with unspecified initial conditions).

In our second approach, we construct a sequence of
stable models. Let a subscript n index the models. In
the nth model, let the initial state be ((n), (n + 1)). We
make adjustments so that the nth growth cycle in Table
1 ends at state ((n), (n + 1)) instead of ((n + 1), (n + 2)),
so that the cycle repeats. First, at time 51 + 6 we assume
that there is no arrival, which is equivalent to assuming
that the interarrival time after time 51 + 5 is 2 instead
of 1. Next we assume that the arrival at time 3n + 4
has 0 service time as a class 1 customer at queue 1,
while arrival 4n + 5 has 0 service time as a class 1
customer at queue 2. Since at time 51 + 5, the second
customer in queue 1 is arrival 4n + 5, while the second
customer is queue 2 is arrival 3n + 4, we transition to
((n), (n + 1)) instead of to ((n + 1), (n + 2)) at time
5n + 6. We then let the cycle repeat. We can make
the model stationary by letting the initial state be
uniformly distributed over the 5n + 6 states associated
with the cycle, but we will assume that we start in state
((n), (n + 1)) at time 0. The important point is that this
model is stable; it is periodic with period 5n + 6.

Due to the adjustments, the interarrival times are not
iid., and the service times are not independent of the
arrival process in the stationary model construction.
However, the model still seems to have the same char-
acter. Due to the adjustments, in the nth model the
arrival rate is (5n + 5)/(5n + 6), while the average
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service requirement per external arrival at each queue
is (5n + 4)/(5n + 5). Hence, the traffic intensity at
queue i in model n is

pni = (51 + 4) /(51 + 6), (4.1)

so that 1 — p,; is of order n!.

One might object to the initial condition ((n), (n
+ 1)), but it is essentially the steady-state behavior as-
sociated with model 1, so we believe it is natural.

We now describe the asymptotic behavior of the se-
quence of models as n = oo. For this purpose, let | x|
be the greatest integer less than or equal to x. The fol-
lowing is an easy consequence of Table 2. Now we use
the Hausdorff metric in (1.4).

PROPOSITION 4.1. Consider the models above indexed
by n.

(a) |Qu(k) —2n + 2| < 2 for all k, so that
Q.(Lntl])/n—>2 asn—> oo uniformly in t.

(b) Qi:(1nt1)/n = Xi(t) as n — oo in the Skorohod
(1956) ], topology, where

X3(t) = X3(t) = 1 - Xi(t) = 1 = Xa(t) = t — [ t].

(¢) Qui(Lnt])/n— 1asn —> co uniformly for all t in
compact sets not containing an integer, but fails to converge
in D[0, co) with any of the Skorohod (1956) topologies.

(d) Fort€&|[0, 5k}, the graphs of Qu1(Lnt]1)/n converge
in the Hausdorff metric as n = oo to the set

{(t,1): 0 <t <5k} U {(5j+1,0), (5] +2,0),
(5j+4,2),j=0,1,..., k—1}.

(e) Fort€& [0, 5k], the graphs of Qu2(Lnt]) /n converge
in the Hausdorff metric to the set

((t,1):0<t =<5k} U{(5j+1,2),(5]+22),
(5j+4,0),j=0,1,...,k—1}.

Part (c) shows that we fail to get a functional central
limit theorem (FCLT) for this example with the usual
topology. It may seem to rule out a functional law of
large numbers (FLLN) too, but it does not, because the
proper normalizations for the FCLT and FLLN are
Qni(n?t) /n and Q,:(n*t)/n?, respectively, when 1 — p,;
= O(n™'). Part (c) rules out this FCLT, but not the
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FLLN. Part (c) also shows how we can obtain conver-
gence to a limit in D (in fact continuous) by weakening
the topology. Parts (d) and (e) show how we can obtain
convergence to a limit that reflects the oscillations by
enlarging the space of prospective limits and changing
the topology.

5. Class-Dependent Priorities

Itis also instructive to compare the FIFO discipline with
class-dependent priorities at the queues. If class 0 has
priority at each queue, then the irregularity is eliminated,
as in Remark 3.4. However, if class 1 has priority at
each queue, then the behavior is even worse, as in Ku-
mar and Seidman (1990), Erramilli and Forys (1991)
and Kumar (1993). Then the critical arrival rate for sta-
bility is evidently 4 instead of 1. It is significant that the
critical traffic intensity for stability depends on the queue
discipline.

The following is an analog of Proposition 3.1 previ-
ously established by Kumar and Seidman. We find a
fixed cycle with arrival rate ;. This result shows that \
= } is a critical arrival rate for stability according to
(3.3) when the FIFO discipline is replaced by appro-
priate class-dependent priorities.

PROPOSITION 5.1.  Consider the MONQ example in
82, modified by having interarrival times of 2 instead of 1
and class-dependent priorities at the queues. Let class 1
have high priority at each queue. If X (0) = (J, n), then
X(2n) = ((2n), &) and X (4n) = (L, (n)).

On the other hand, if the arrival rate is 1, then there
are no departures at all when we start out empty, as is
implied by the following result.

PROPOSITION 5.2.  Consider the MONQ example in
Proposition 5.1, but with arrival rate 1. If X(0)
= (D, D), then X (n) = (<, (1, n — 1)) for all n.

Proposition 5.2 shows that it is not easy to deduce
the critical arrival rate for stability by observing the out-
put rate associated with an unstable arrival rate. In
Proposition 5.2, the external arrival rate is 1 but the
departure rate is 0. We might think that the critical ar-
rival rate for stability must be 0.!
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! I thank Jim Dai and Mike Harrison for bringing my attention to Dai
and Wang (1993), which was the primary motivation for this work;
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Lagarias, Steve Pincus and the referees for helpful comments on the
presentation.
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