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Abstract

This paper studies the last departure time from a queue with a terminating arrival process.

This problem is motivated by a model of two-stage inspection in which finitely many items

come to a first stage for screening. Items failing first-stage inspection go to a second stage

to be examined further. Assuming that arrivals at the second stage can be regarded as an

independent thinning of the departures from the first stage, the arrival process at the second

stage is approximately a terminating Poisson process. If the failure probabilities are not con-

stant, then this Poisson process will be nonhomogeneous. The last departure time from an

Mt/G/∞ queue with a terminating arrival process serves as a remarkably tractable approxi-

mation, which is appropriate when there are ample inspection resources at the second stage.

For this model, the last departure time is a Poisson random maximum, so that is possible to

give exact expressions and develop useful approximations based on extreme-value theory.

Key words: queues with terminating arrival processes, last departure time, infinite-server

queues, non-stationary queues, congestion caused by inspection, two-stage inspection, extreme-

value theory.

Short Title: Last Departure Time.





1. Introduction

In this paper we introduce what we believe is a new class of queueing problems: determining

the probability distribution for the last departure time from a queue with a terminating arrival

process. This problem arises from a model of two-stage inspection: Initially, at time 0, n items

start arriving to be inspected. There are two stages of inspection, with preliminary screening

done at the first stage and a more careful inspection done at the second stage for items “failing”

inspection at the first stage. Outcomes of successive first-stage inspections (passing or failing)

are regarded as independent and identically distributed (i.i.d.) Bernoulli random variables with

probability p of failure. There may be multiple inspectors (servers) at each stage, working in

parallel. The inspection times are i.i.d. random variables at each stage, with distributions

depending on the stage. Thus the two-stage inspection process can be directly modelled as an

acyclic open network of two multi-server queues, with Markovian routing for departures from

the first queue, some exiting while others move on to the second queue.

For the model to be developed here, we assume that the arrival process to the first stage

is sufficiently rapid relative to the service rate there that, from the perspective of the second

stage, we can assume that the entire batch of n items arrives at the first stage at time 0.

We also assume that the first-stage inspection process is a relatively routine process, nearly

deterministic in nature. Let the first-stage inspection time have mean d and low variability. Let

there be m servers working in parallel at stage 1. Then the time that all items finish first-stage

inspection is approximately the deterministic time τ ≡ nd/m. Under those assumptions, the

total arrival process for second-stage inspection can thus be regarded as being a terminating

arrival process, operating over the finite time interval [0, τ ]. We are interested in the last

departure time from the second stage, because that is when the second stage of inspection will

be finished.

If p is relatively small and n is relatively large, then the arrival process at the second stage

can be regarded as approximately a Poisson process with constant arrival rate λ = pm/d,

operating over the finite time interval [0, nd/m]. With s second-stage servers operating in

parallel, we can regard the second-stage inspection as approximately a standard M/G/s queue

with arrival rate λ = pm/d, where the arrival process is turned off at time τ = nd/m.

We were motivated by a mathematical model for inspecting shipping containers developed

by Wein et al. [13]. Their model is quite elaborate, addressing a wide range of important

issues. As a consequence, each specific issue - such as the congestion caused by the inspection
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scheme - had to depend on relatively simple sub-models. In particular, in [13] the extra delay

at the second stage of congestion was modelled approximately as the steady-state sojourn

time in the M/G/s model. The idea is that the system could be regarded as being in steady

state when the last container comes to the second stage of inspection. The remaining time

for that container to finish the second stage of inspection after the first-stage congestion is

complete should thus be conservatively approximated by the steady-state sojourn time at the

second stage. Our analysis here stems from the observation that, with multiple second-stage

inspection devices, inspections need not be completed in order of arrival, causing the expected

remaining time until the last completed inspection actually to be larger than the expected

steady-state sojourn time of the last arrival. Our analysis focuses on that phenomenon. We

analyze the shipping-container application further in [4].

So far, the arrival process at the second stage is homogeneous, but there are two compelling

reasons for letting the arrival process be nonhomogeneous. First, we may be able to classify

the items prior to inspection in a way that produces approximately independent failures, but

with varying failure probabilities. If so, it should be possible to reduce the expected last

departure time from second-stage inspection by inspecting the items that are more likely to

fail first-stage inspection earlier in the inspection process at the first stage. To specify the

arrival-rate function at the second stage, suppose that the kth item to be inspected at stage

1 has failure probability pk. Assuming that these failure probabilities are all relatively small,

the arrival process to the second station is approximately a nonhomogeneous Poisson process

with arrival-rate function

λ(t) =
m

d
pb(mt/d)+1c =

pkm

d
for

(k − 1)d
m

≤ t <
kd

m
, 1 ≤ k ≤ n , (1.1)

where bxc is the greatest integer less than or equal to x. Given (1.1), we have total arrival rate

∫ τ

0
λ(t) dt =

n∑

k=1

(pkm

d

)(
d

m

)
=

n∑

k=1

pk . (1.2)

Another way to get a nonhomogeneous arrival process at the second stage is to have multiple

groups of items undergoing inspection, at different times. For example, suppose that two sets

of items arrive to go through this two-stage inspection process. Let n1 items arrive at one

first-stage inspection station with m1 servers at time t1, while n2 items arrive at a second first-

stage inspection station with m2 servers at time t2. Let the first-stage inspection times at the

two stations have means d1 and d2 and low variability. Let the first-stage failure probabilities

be constant for each group, being p1 and p2, respectively. Let all items failing congestion
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from both groups proceed to a common second-stage inspection. Group i produces a Poisson

arrival process at the second stage with rate λi = pimi/di, operating over the finite interval

[t1, t1 + n1d1], but at rate 0 for all other times. Then the second stage can be regarded as

an Mt/G/s queue with nonhomogeneous Poisson arrival process, having a piecewise-constant

arrival-rate function equal to the sum of the two component arrival-rate functions.

Unfortunately, the distribution of the last departure time in an Mt/G/s queue is quite

complicated, even with a homogeneous Poisson arrival process. However, we observe that

great simplification occurs if we can consider either of the two extremes: s = 1 or s = ∞.

First, when s = 1, the remaining time Tτ after τ until the last departure time coincides with

the workload (or virtual waiting time) at time τ , provided that it is positive, which is the case

we are concerned with. The transient workload distribution is still somewhat complicated,

but there are established methods for calculating its distribution [2]. Since the algorithm in

[2] is for a piecewise-constant arrival-rate function, it is ideally suited for the multiple-group

inspection just mentioned.

This paper is devoted to the other idealized case: s = ∞. The Mt/G/∞ queue with a

terminating arrival process is appropriate when there are ample inspecting resources at the

second station. Equivalently, the approximation is appropriate when the dominant portion of

the time items spend at the second stage is the inspection time itself, rather than any waiting

required before inspection can begin.

Here is how this paper is organized: In §2 we show that the remaining time Tτ until the

last departure after τ can be represented as the maximum of a Poisson random number of i.i.d.

random variables, and so is remarkably tractable, allowing us to apply results from extreme-

value theory [6]. We give explicit expressions for the distribution of Tτ and its quantiles and

moments. The distribution simplifies when the Poisson arrival process is homogeneous and

when the service-time distribution is exponential or a finite mixture of exponentials.

Thereafter we focus on approximations, again drawing heavily on extreme-value theory.

In §3 we develop approximations for transient distributions for two classes of service-time

distributions: (i) those with a pure-exponential tail and (ii) those with a power tail. In §4 we

develop associated approximations for the case in which τ is sufficiently large that the queue

can be regarded as being approximately in steady state at time τ . We show that the transient

behavior is often well approximated by the steady-state behavior in the exponential-tail case,

provided that τ is not too small, but we identify difficulties in the power-tail case. These

difficulties arise in the power-tail case because the order of two iterated limits matter. We
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propose ways to resolve this power-tail problem.

In §5 we evaluate the approximations by comparing with exact values of the mean, variance

and several quantiles of the distribution of Tτ for several service-time distributions, obtained

from numerical calculations based on §2. Finally, in §6 we draw conclusions. Additional

numerical comparisons are contained in [8].

2. The Remaining Time Until the Last Departure

Henceforth we consider an Mt/G/∞ queue with a terminating arrival process. The service

times are i.i.d. random variables distributed according to a random variable S with cumulative

distribution function (cdf) G. The arrival-rate function λ ≡ {λ(t) : 0 ≤ t ≤ τ} is integrable.

Let D be the last departure time. We want to determine the distribution of T ≡ Tτ ≡ (D−τ)+,

the remaining time after τ until the last departure.

As reviewed in [5], the number in system at the arrival-process terminating time τ has a

Poisson distribution with mean

ντ =
∫ τ

0
λ(u)Gc(τ − u) du , (2.1)

where Gc(t) ≡ 1−G(t). Moreover, there is a Poisson-random-measure representation discussed

in the proof of Theorem 1 of [5] that enables us to calculate the conditional distribution of the

remaining service times at time τ , given any number of customers still in service. By applying

theorems about Poisson random measures; e.g., see Theorems 2.3-2.5 of [11], we obtain the

following generalization of the well-known property for the stationary M/G/∞ system; see p.

161 of Takács [12]:

Theorem 2.1. (remaining service times) Conditional on there being n customers in service at

time τ , the remaining service times of those customers are i.i.d., each distributed as a random

variable Xτ with ccdf

Gc
τ (x) ≡ P (Xτ > x) ≡ 1

ντ

∫ τ

0
λ(u)Gc(τ + x− u) du , (2.2)

where ντ is the mean in (2.1)

To characterize the distribution of T , let {Xn : n ≥ 1} be a sequence of i.i.d. ran-

dom variables, each distributed as a random variable X ≡ Xτ having cdf Gτ . Let Mn ≡
max {X1, . . . , Xn}, n ≥ 1; it has cdf P (Mn ≤ x) = Gτ (x)n. Let N ≡ Nτ be a random variable

independent of {Xn : n ≥ 1} with a Poisson distribution having mean ντ . Then

T
d= MN . (2.3)
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That structure allows us to obtain a simple explicit expression for the distribution of T in

terms of ντ in (2.1) and Gτ in (2.2). See Embrechts et al. [6] for background on extreme-value

theory; see §4.3 and Example 5.3.5 there for the case of random indices.

When λ(t) = λ, it is convenient to work with the classical stationary-excess cdf

Ge(x) ≡ 1
E[S]

∫ x

0
Gc(u) du ; (2.4)

e.g., p. 432 of [10]. Let Se be a random variable with cdf Ge. It is well known that E[Sk
e ] =

E[Sk+1]/(k + 1)E[S].

For any random variable Y with a continuous cdf, let its quantile function be qY ≡ qY (x)

such that P (Y ≤ qY (x)) = x. We write f(x) ∼ g(x) as x →∞ when f(x)/g(x) → 1 as x →∞.

Theorem 2.2. (the cdf of T ) (a) For any x > 0,

P (T ≤ x) = e−ντ Gc
τ (x) , (2.5)

where ντ and Gc
τ are given in (2.1) and (2.2). As a consequence, P (T > x) ∼ ντG

c
τ (x) as

x →∞ and

qT (x) = qXτ

(
1− log (1/x)

ντ

)
, e−ντ < x < 1 . (2.6)

(b) If, in addition, λ(t) = λ for t ≥ 0, then ντ = λE[S]Ge(τ), Gc
τ (x) = [Ge(τ + x) −

Ge(x)]/Ge(τ) and

P (T ≤ x) = e−λE[S](Gc
e(x)−Gc

e(τ+x)) . (2.7)

Proof. Conditioning and unconditioning on N , we obtain

P (T ≤ x) =
∞∑

n=0

e−ντ νn
τ

n!
Gτ (x)n = e−ντ Gc

τ (x) . (2.8)

The limit for P (T > x) uses e−x = 1− x + x2/2 + o(x2) as x → 0.

We can calculate moments by combining (2.5) or (2.7) with the classical formula E[T j ] =
∫∞
0 jxj−1P (T > x) dx. The distribution of T has a remarkably simple form when the arrival

rate is constant and G is exponential. Indeed, then T has exactly a Gumbel distribution,

restricted to the positive halfline. Let W be a random variable with the (standard) Gumbel

distribution, i.e.,

P (W ≤ x) ≡ exp {−e−x}, −∞ < x < +∞ , (2.9)

with mode 0, E[W ] = 0.5772 (Euler’s constant), V ar(W ) = π2/6 = 1.644 and quantile function

qW (x) = − log log (1/x) [9]. Let d= mean equality in distribution. Let (x)+ ≡ max {x, 0}.
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Corollary 2.1. (exponential service times) If λ(t) = λ for t ≥ 0 and G is exponential with

mean 1/η, then Gτ = Ge = G, ντ = λ(1− e−ητ )/η and

P (T ≤ x) = e−(λ/η)(1−e−ητ )e−ηx
, x ≥ 0 , (2.10)

or, equivalently,

T
d=

1
η

(
log

(
λ(1− e−ητ )

η

)
+ W

)+

, (2.11)

where W is the standard Gumbel random variable in (2.9). Consequently,

qT (x) =
1
η

(
log

(
λ(1− e−ητ )

η

)
− log log (1/x)

)+

. (2.12)

When P (T = 0) = e−ντ is negligible, the approximation obtained from (2.11) by ignoring

the positive part function will be excellent, yielding

E[T ] ≈ 1
η

(
log

(
λ(1− e−ητ )

η

)
+ 0.5772

)
and V ar(T ) ≈ π2

6η2
=

1.644
η2

.

There also is a convenient explicit expression for the distribution of T when G is hyperexpo-

nential (a mixture of exponential distributions, denoted by Hk). To get it, we simply combine

Corollary 2.1 with the following mixture result. Let T (λ,G) denote the random variable T as

a function of the arrival-rate function λ(t) and the service-time cdf G.

Corollary 2.2. (mixtures) If

G(x) =
n∑

i=1

piGi(x), x ≥ 0 , (2.13)

where Gi is a cdf for each i, pi > 0 for each i and p1 + · · ·+ pn = 1, then

P (T (λ,G) ≤ x) =
n∏

i=1

P (T (piλ,Gi) ≤ x) , (2.14)

where P (T (λ,G) ≤ x) is given in (2.5).

Proof. This is easily verified from (2.5). It also can be proved by interpreting the service

time as depending on the “customer type,” where the customer is type i with probability pi.

Then the arrival processes of the different types are independent Poisson processes, so T (λ,G)

is the maximum of the last-departure times for the n types, which are independent, leading to

(2.14).

When the arrival rate is constant and τ is large, we can regard the infinite-server queue

as being in steady state. Moreover, the convergence as τ → ∞, is monotone in the sense of

stochastic order.
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Corollary 2.3. (steady state) If λ(t) = λ for t ≥ 0 and τ →∞, then

ντ = λE[S]Ge(τ) ↑ λE[S] ≡ ν∞ ≡ ν , (2.15)

Gc
τ (x) =

Ge(τ + x)−Ge(x)
Ge(τ)

→ Gc
e(x) for all x , (2.16)

ντG
c
τ (x) = λE[S](Gc

e(x)−Gc
e(τ + x)) ↑ λE[S]Gc

e(x) for all x , (2.17)

P (Tτ > x) = 1− e−ντ Gc
τ (x) ↑ 1− e−ν∞Gc

e(x) ≡ P (T∞ > x) for all x , (2.18)

and

qTτ (x) ↑ qT∞(x) = qSe

(
1− log (1/x)

λE[S]

)
, e−λE[S] < x < 1 . (2.19)

Since ντ , Gτ and P (T ≤ x) can be computed, we can directly determine when the steady-

state approximation is reasonable. The stochastic monotonicity implies that the steady-state

values serve as upper bounds. From (2.15), we see that (ν∞ − ντ )/ν∞ = Gc
e(τ), where Ge is

the stationary-excess cdf in (2.4), as in formula (23) of [5].

3. Approximations

In this section we develop approximations, using two approaches: (i) direct asymptotics

and (ii) extreme-value theory as in Ch. 3 of Embrechts et al. [6] and Crow et al. [3]. Both

depend on the tail-probability asymptotics for Gc. We consider two common cases: (i) a pure-

exponential tail and (ii) a power tail. We show that both extreme-value approximations are

asymptotically correct in heavy traffic, i.e., as the arrival rate increases.

3.1. A Pure-Exponential Tail

Let the service-time cdf G have a pure-exponential tail; i.e., Gc(x) ∼ γe−ηx as x → ∞ for

η > 0 and γ > 0. We first show that the pure-exponential-tail property is inherited by the

cdf Gτ in (2.2), leaving the asymptotic decay rate η unchanged. (For the following limit, we

apply the dominated convergence theorem using the assumed integrability of the arrival-rate

function.)

Theorem 3.1. (inheritance by Gτ ) If Gc(x) ∼ γe−ηx as x → ∞, then Gc
τ (x) ∼ γτe

−ηx as

x →∞ for cdf Gτ in (2.2), where

γτ = (γ/ντ )
∫ τ

0
λ(u)e−η(τ−u) du , (3.1)

with ντ in (2.1). If, in addition, λ(t) = λ for t ≥ 0, then ντ = λE[S]Ge(τ) and

γτ =
γ(1− e−ητ )
ηE[S]Ge(τ)

. (3.2)
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By Theorem 3.1, ντG
c
τ (x) ∼ ξe−ηx as x →∞, where

ξ ≡ γ

∫ τ

0
λ(u)e−η(τ−u) du = ντγτ . (3.3)

Based on this, we propose the direct asymptotic approximation

P (T ≤ x) = e−ντ Gc
τ (x) ≈ e−ξe−ηx

, x ≥ 0 , (3.4)

or, equivalently,

T ≈ 1
η

(log (ξ) + W )+ ≈ 1
η

(log (ξ) + W ) , (3.5)

where W is the Gumbel random variable in (2.9) and ξ is the constant in (3.3). When λ(t) = λ

for t ≥ 0,

ξ =
λγ(1− e−ητ )

η
. (3.6)

Note that approximation (3.5) with (3.6) coincides with the exact formula (2.11) when G is

exponential (where γ = 1). From (3.5), we obtain

E[T ] ≈ η−1[log (ντγτ ) + 0.5772] (3.7)

and, assuming that ντ is suitably large,

V ar(T ) ≈ 1.644
η2

. (3.8)

We now consider the second approach based on extreme-value theory. We will show that

a simple form of this new approximation coincides with approximation (3.5) above. This

second approach uses extreme-value theory to approximate the distribution of Mn. Let ⇒
denote convergence in distribution. As reviewed in [6], under the exponential-tail assumption

in Theorem 3.1, Mn − (log (nγτ )/η) ⇒ W/η as n →∞, which supports the approximation

Mn ≈ η−1[log (nγτ ) + W ] , (3.9)

for W in (2.9). From (3.9), we obtain the approximation

qMn(x) ≈ η−1[log (nγτ )− log log (1/x)] . (3.10)

Notice that Mn, as measured by qMn(x), grows like log (nγτ ) as n → ∞, but the spread, as

measured by qMn(x2) − qMn(x1), is asymptotically constant, so that the distribution of Mn

concentrates (relatively) as n increases.

Combining (2.3) and (3.9), we obtain the approximation

T
d= MN ≈ η−1[log (Nγτ ) + W ] , (3.11)
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where N and W are independent random variables with the Poisson and Gumbel distributions,

respectively. Assuming that the Poisson mean ντ is not too small, N is approximately normally

distributed. (We assume that the normal random variable has negligible probability of being

negative.) Further, we can use the more elementary approximation corresponding to N ≈
E[N ], yielding approximation (3.5) for ξ in (3.3) (which becomes (3.6) when λ(t) is constant).

Under (3.5), we can approximate the quantiles of T by

qT (x) ≈ η−1[log (ξ)− log log (1/x)] , (3.12)

for ξ in (3.3).

The analysis above shows that these approximations are asymptotically correct as the

arrival-rate function increases. That is the standard heavy-traffic limiting regime for infinite-

server models; see §10.3 of [14]. To formulate the heavy-traffic limit, we consider a sequence of

models indexed by n, letting the service-time cdf G and the time horizon τ remain unchanged.

We let the arrival-rate function in model n be λn(t) = nλ(t) for some initial arrival-rate

function λ and then let n →∞.

Theorem 3.2. (heavy-traffic limit) If n → ∞ in the sequence of models specified above with

λn(t) = nλ(t), 0 ≤ t ≤ τ , and fixed cdf G having an exponential tail as in Theorem 3.1, then

ντ,n = nντ,1 →∞ while γτ,n = γτ,1 in (3.1) for all n,

η [Tn − log (nντ,1γτ,1)] ⇒ W , (3.13)

where Tn denotes Tτ as a function of n and W has the Gumbel distribution in (2.9), and the

approximations above are asymptotically correct.

Proof. Let Nn be the number of customers in the system at time τ in model n, which we

have observed has a Poisson distribution. By the scaling, n−1Nn ⇒ ντ,1 as n → ∞. Use the

Skorohod representation theorem to replace that convergence in distribution by convergence

with probability 1 (w.p.1), see Theorem 3.2.2 of [14], and condition on one sample point,

yielding n−1Nn → ντ,1 w.p.1 as n →∞. Next apply the classic extreme-value theorem to get

η [Tn − log (Nnγτ,1)] ⇒ W , where W has the Gumbel distribution in (2.9). Finally, we get the

desired (3.13) from this limit and the convergence-together theorem, Theorem 11.4.7 of [14],

by noting that

log (Nnγτ,1)− log (nντ,1γτ,1) = log
(

Nnγτ,1

nντ,1γτ,1

)
→ 0 .

Since we get that convergence in distribution in the w.p.1 representation, we get the same

convergence in distribution in general.
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3.2. A Power Tail

Motivated by the possibility that the second-stage inspection-time distribution might have a

heavy tail, in this subsection we assume that the service-time cdf G has a power tail; i.e.,

Gc(x) ∼ γx−α as x →∞ , (3.14)

for α > 0 and γ > 0. Paralleling Theorem 3.1, we see that the power-tail property is inherited

by the cdf Gτ in (2.2), with the same exponent α.

Theorem 3.3. If Gc satisfies (3.14), then Gc
τ (x) ∼ γτx

−α as x →∞ for Gc
τ in (2.2), where

γτ = (γ/ντ )
∫ τ

0
λ(u) du , (3.15)

with γ from (3.14) and ντ in (2.1). If, in addition, λ(t) = λ for t ≥ 0, then ντ = λE[S]Ge(τ)

and γτ = γτ/E[S]Ge(τ).

Paralleling (3.4), we have the following direct asymptotic approximation based on Theorem

3.3:

P (T ≤ x) = e−ντ Gc
τ (x) ≈ e−ξx−α

, where ξ = ντγτ . (3.16)

Approximation (3.16) is equivalent to

T ≈ ξ1/αYα , (3.17)

where Yα is a random variable with the standard Fréchet distribution on [0,∞), i.e.,

P (Yα ≤ x) = e−x−α
, x ≥ 0 ; (3.18)

see Chapter 3 of [6], especially §3.3.1. The standard Frechet random variable Yα can be related

to the standard Gumbel random variable W in (2.9) by Yα
d= eW/α.

Paralleling (3.9), we can again apply extreme-value theory to approximate the distribution

of Mn. Under assumption (3.14), we have Mn/(γτn)1/α ⇒ Yα, which supports the approxima-

tion

Mn ≈ (γτn)1/α Yα . (3.19)

It is easy to see that the quantiles of Yα are

qYα(x) =
(

1
log (1/x)

)1/α

. (3.20)
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If x is close to 1, then log (1/x) ≈ (1/x)− 1 ≈ 1− x. Combining (3.19) and (3.20), we obtain

qMn(x) ≈
(

γτn

log (1/x)

)1/α

. (3.21)

In contrast to (3.10), (3.21) shows that, under (3.14), Mn grows like n1/α instead of log (n).

(But for finite n, we may well have n1/α < log (n).) Moreover, the spread, as measured by

qMn(x2)− qMn(x1), grows like n1/α instead of being asymptotically constant.

Now, returning to T , we can combine (2.3) and (3.19) to get

T
d= MN ≈ (γτN(ντ , ντ ))

1/α Yα = N(ντγτ , ντγ
2
τ )1/αYα , (3.22)

for α in (3.14), ντ in (2.1), and γτ in (3.15) . The mean thus has the approximation

E[T ] = E[MN ] ≈ E[
(
N(ντγτ , ντγ

2
τ )

)1/α
Yα] = E[N(ντγτ , ντγτ2)1/α]E[Yα] . (3.23)

If, in addition, the normal distribution can be approximated by its mean, then we have again

(3.17), which is equivalent to the direct asymptotic approximation in (3.16).

If, in addition, λ(t) = λ for t ≥ 0, then ξ = λγτ and we obtain associated approximations

for the mean and variance, paralleling those given in (3.7) and (3.8) (assuming α > 1 for the

mean formula and α > 2 for the variance formula):

T ≈ (λγτ)1/αYα , (3.24)

E[T ] ≈ (λγτ)1/αΓ(1− (1/α)), α > 1 , (3.25)

and

V ar[T ] ≈ (λγτ)2/α
(
Γ(1− (2/α))− Γ(1− (1/α))2

)
, α > 2 . (3.26)

Then we can combine (3.17) and (3.20) to obtain

qT (x) ≈
(

ξ

log (1/x)

)1/α

, (3.27)

for ξ in (3.16), which becomes λγτ when λ(t) = λ.

We conclude by stating an analog of Theorem 3.2 – the heavy-traffic limit that follows from

the analysis above. We consider the same sequence of models indexed by n, but where the

fixed cdf G now has a power tail instead of a pure-exponential tail. We omit the proof, which

is essentially the same as before.
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Theorem 3.4. If n → ∞ in the sequence of models specified above with λn(t) = nλ(t), 0 ≤
t ≤ τ < ∞, and fixed cdf G satisfying (3.14), then ντ,n = nντ,1 →∞ while γτ,n = γτ,1 in (3.15)

for all n,
Tn

(nντ,1γτ,1)1/α
⇒ Yα , (3.28)

where Tn denotes Tτ as a function of n and Y has the Fréchet distribution in (3.18), and the

approximations in (3.22)–(3.27) are asymptotically correct.

4. The Steady-State Approximation

In this section we suppose that the arrival-rate function λ is constant and E[S] < ∞,

so that the resulting stationary M/G/∞ model will approach steady state as time evolves.

If the termination time τ is relatively large, then the M/G/∞ system can be regarded as

approximately in steady state at the termination time τ , as indicated in Corollary 2.3.

In this case we can allow the termination time τ to be random, provided that it is inde-

pendent of the history of the queueing system. We want to determine the distribution of T∞,

the remaining time after the arrival process terminates until the last departure.

We will first describe the steady-state behavior for the case of a pure-exponential tail, and

show that steady-state approximations are often reasonable. Afterwards, we will consider the

more problematic case of a power tail.

4.1. The Case of a Pure-Exponential Tail

Suppose that the service-time cdf G has a pure-exponential tail as in Theorem 3.1. Then, just

as in that theorem, the stationary-excess cdf Ge also has a pure-exponential tail with the same

decay rate η. To show that, we can apply the following basic lemma from p. 17 of Erdélyi [7].

Lemma 4.1. If f(x) ∼ g(x) as x →∞, then
∫ ∞

x
f(u) du ∼

∫ ∞

x
g(u) du as x →∞ .

In particular, we can apply Lemma 4.1 to establish

Theorem 4.1. If Gc(x) ∼ γe−ηx as x →∞, then

Gc
e(x) ∼ γee

−ηx as x →∞ , (4.1)

for γe = γ/(ηE[S]).

12



As a consequence, we have

T∞
d= MN ≈ η−1[log (N(νγe, νγ2

e )) + W ] . (4.2)

Reasoning as in (3.7) and (3.8), for reasonably large λE[S], we get

E[T∞] ≈ η−1 [log (λγ/η) + 0.5772] (4.3)

and, assuming that ν = λE[S] is suitably large,

V ar(T∞) ≈ 1.644 + (1/ν)
η2

≈ 1.644
η2

. (4.4)

Further, we can approximate the normal random variable by its mean and get

T∞ ≈ η−1 [log (λγ/η) + W ] , (4.5)

qT∞(x) ≈ η−1 [log (λγ/η)− log log (1/x)] , (4.6)

We can state another heavy-traffic limit, which follows from the analysis above. The proof

is essentially the same as for Theorem 3.2.

Theorem 4.2. Consider a family of M/G/∞ models in steady state, indexed by the constant

arrival rate λ. Let Tλ denote T∞ as a function of λ. If λ →∞ with Gc(x) ∼ γe−ηx as x →∞,

then νλ = λE[S] →∞ while γe in Theorem 4.1 remains unchanged,

η [Tλ − log (λγ/η)] ⇒ W , (4.7)

and the approximations in (4.5)–(4.6) are asymptotically correct.

4.2. Two-Moment Approximations

For the case of a pure-exponential tail, we can go further, drawing upon [3], and approximate

the two asymptotic parameters η and γ by appropriate functions of the first two moments of

the cdf G or, equivalently, of the mean E[S] and the SCV c2. For this purpose, we apply

approximation (1.9)–(1.12) of [3], which is based on the hyperexponential distribution (H2,

mixture of two exponentials) for c2 ≥ 1 and the shifted-exponential distribution when c2 ≤ 1.

Letting c ≡
√

c2, the approximation is

1
η
≈





E[S]c2 , c2 ≥ 1 ,

E[S]c , c2 ≤ 1 ,
(4.8)
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and

γ ≈ ψ(c2) ≡





c2+1
2(c2)2

≈ 1
c2

, c2 ≥ 1 ,

e{(1−
√

c2)/
√

c2} ≈ 1
c , c2 ≤ 1 .

(4.9)

Note that this approximation makes γ < 1 when c2 > 1, but γ > 1 when c2 < 1,

Applying the simple rough approximations for η and γ in (4.8) and (4.9), we obtain simple

rough approximations for the distribution of T∞ and its first moments in (4.2)-(4.5) that

depend on only three parameters: λ, E[S] and c2. For example, for c2 ≥ 1, we can combine

(4.3)–(4.6), (4.8) and (4.9) to get the following approximations

T∞ ≈ E[S]c2 [log (λE[S]) + W ] ,

E[T∞] ≈ E[S]c2 [log (λE[S]) + .5772] ,

V ar[T∞] ≈ 1.644(E[S]c2)2 ,

qT∞(x) ≈ E[S]c2 [log (λE[S])− log log (1/x)] . (4.10)

Corresponding approximations hold for c2 ≤ 1.

4.3. Transition to Steady State with a Pure-Exponential Tail

Given the convergence in distribution of Tτ to T∞ established in Corollary 2.3, it would be

natural to expect the approximations for the distribution of T∞ to be the limit as τ → ∞
of the associated approximations for the distribution of Tτ . Indeed, that is the case with

a pure-exponential tail, since (λγ/η)(1 − e−ητ ) → λγ/η as τ → ∞. That shows that the

approximation for the distribution of Tτ , as given in (3.5) and (3.6), transitions in the limit to

the approximation for the distribution of T∞, as given in (4.5). This fortunate state of affairs

occurs because the two iterated limits limτ→∞ limx→∞ and limx→∞ limτ→∞ coincide when the

service-time distribution has a pure-exponential tail. We will soon see that property does not

hold with a power tail.

4.4. The Case of a Power Tail

We now turn to the case of a power tail in steady state, as in (3.14), which requires α > 1 in

order to have E[S] < ∞. Unlike for the cdf Gτ in Theorem 3.3, the stationary-excess cdf Ge

has a power tail with a different exponent. Even though Gτ → Ge as τ →∞, the asymptotics

are different. We again apply Lemma 4.1.
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Theorem 4.3. If the cdf G satisfies (3.14) with α > 1, then

Gc
e(x) ∼ γex

−(α−1) as x →∞ , (4.11)

for the stationary-excess cdf Ge in (2.4), where

γe =
γ

E[S](α− 1)
. (4.12)

Henceforth assume that α > 1. Now in steady state with a power-tail service-time dis-

tribution, paralleling (3.19), we can apply Theorem 4.3 to obtain the approximation Mn ≈
(γen)1/(α−1)Yα−1. Then, paralleling (3.22), we get approximation

T∞
d= MN ≈ (γeN(ν, ν))1/(α−1) Yα−1

d= N(νγe, νγ2
e )1/(α−1)Yα−1 . (4.13)

Again reasoning as in (4.3) and (4.4), if the normal distribution can be approximated by its

mean and the arrival rate is a constant λ (and α > 2 for the mean formula and α > 3 for the

variance formula)

T∞ ≈
(

λγ

α− 1

) 1
α−1

Yα−1 , (4.14)

E[T∞] ≈
(

λγ

α− 1

) 1
α−1

Γ
(

1− 1
α− 1

)
, α > 2 , (4.15)

and

V ar[T∞] ≈
(

λγ

α− 1

) 1
α−1

(
Γ

(
1− 2

α− 1

)
− Γ

(
1− 1

α− 1

)2
)

, α > 3 . (4.16)

If α ≤ 2, then the steady-state mean is infinite; if α ≤ 3, then the steady-state variance

is infinite. Paralleling (3.27) and using the above assumptions, here we get the following

approximation for the quantiles of the distribution of T :

qT∞(x) ≈
(

λγ

(α− 1) log (1/x)

)1/(α−1)

. (4.17)

We can state an analog of Theorems 3.4 and 4.2, which follows from the analysis above.

Theorem 4.4. Consider a family of M/G/∞ models in steady state, indexed by the constant

arrival rate λ. Let Tλ denote T∞ as a function of λ. If λ → ∞ with fixed cdf G satisfying

(3.14) with α > 1, then νλ = λE[S] →∞ while γe in (4.12) remains unchanged,

Tλ

(λγ/(α− 1))1/(α−1)
⇒ Yα−1 , (4.18)

and the approximations in (4.13) - (4.17) are asymptotically correct (with the specified condi-

tions on α).

Note that different scaling appears in Theorems 3.4 and 4.4. We thus should expect prob-

lems in the approximations for large τ .
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4.5. The Transition to Steady State with a Power Tail

Unlike what we saw in §4.3, when we take the limit as τ → ∞ of the approximation for the

transient distribution of Tτ as given in (3.24), we obtain (λγτ)1/αYα →∞ w.p.1. That clashes

with the approximation for the steady-state distribution given in (4.14).

To better understand this phenomenon, we examine the two iterated limits limτ→∞ limx→∞

and limx→∞ limτ→∞ for the distribution of Tτ . We will assume that λ(t) = λ, a constant,

and that the distribution of G is Pareto with shift parameter θ and exponent parameter α;

specifically, let the service-time ccdf be the Pareto ccdf

Gc(x) ≡ γ(x + θ)−α, x ≥ 0 , (4.19)

where γ = θα. To have mean E[S] = 1, we let θ = α−1. The associated SCV is c2 = α/(α−2),

for α > 2.

Using the form of Tτ given in (2.7), we will examine the two iterated limits with respect to

− log (P (Tτ ≤ x)) = λE[S] (Gc
e(x)−Gc

e(τ + x)) . (4.20)

For the Pareto ccdf in (4.19),

Gc
e(x) =

(
1

E[S]

) (
α− 1
x + θ

)α−1

, x ≥ 0 . (4.21)

Hence,

λE[S] (Gc
e(x)−Gc

e(τ + x)) = λ(α− 1)(α−1)

((
1

x + θ

)α−1

−
(

1
x + θ + τ

)α−1
)

(4.22)

= λ(α− 1)(α−1)

(
(x + θ + τ)α−1 − (x + θ)α−1

(x + θ)α−1(x + θ + τ)α−1

)
. (4.23)

Then, letting r ≡ r(x, τ, θ) ≡ (x + θ + τ)/(x + θ), we get

λE[S] (Gc
e(x)−Gc

e(τ + x)) = λ

(
α− 1
x + θ

)α−1 (
1− r−(α−1)

)
. (4.24)

There are now three cases to consider:

First, if x >> τ >> 0, which corresponds to the transient case and the iterated limit

limτ→∞ limx→∞, then

1− r−(α−1) = 1−
(

1 +
τ

x + θ

)−(α−1)

≈ 1− e−
τ(α−1)

x+θ ≈ τ(α− 1)
x + θ

(4.25)

and

λE[S](Gc
e(x)−Gc

e(τ + x)) ≈ λτ

(
α− 1
x + θ

)α

≈ λτ

(
α− 1

x

)α

, (4.26)
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implying that Tτ ≈ (α− 1)(λτ)1/αYα, which coincides with the transient approximation given

in (3.24) .

Second, if τ >> x >> 0, which corresponds to the steady-state case and the iterated limit

limx→∞ limτ→∞, then 1− r−(α−1) ≈ 1 and

λE[S](Gc
e(x)−Gc

e(τ + x)) ≈ λ

(
α− 1
x + θ

)α−1

≈ λ

(
α− 1

x

)α−1

, (4.27)

implying that

Tτ ≈ (α− 1)λ1/(α−1)Yα−1, (4.28)

which coincides with the steady-state approximation given in (4.14) . Notice that formulas

(4.26) and (4.27) differ in two ways: Formula (4.26) has an extra factor τ and a larger exponent

on the (α− 1)/x term. The τ factor causes Tτ to explode as τ →∞.

Indeed, when we actually are in steady state, we have an exact relation for the distribution

of T∞ associated with this Pareto distribution, paralleling Corollary 2.1. Combining Corollary

2.3 and (4.21), we obtain the steady-state formulas

P (T∞ ≤ x) = e−λ((α−1)/(x+θ))(α−1)
, x ≥ 0 , (4.29)

so that

P (T∞ + θ ≤ x) = P (T∞ ≤ x− θ) = e−λ((α−1)/x)(α−1)
, x ≥ 0, x ≥ θ , (4.30)

and

P
(
(α− 1)λ1/(α−1)T∞ + θ ≤ x

)
= P (Yα−1 ≤ x) ≡ e−x−(α−1)

, x ≥ θ . (4.31)

By (4.30), we see that the asymptotic steady-state approximation for higher quantiles of T

will exceed the exact values by exactly θ, provided that the system is indeed in steady state.

(That is borne out by the numerical examples; e.g., see Table 3.)

Finally, there is the third case in which τ ≈ x >> 0, where neither of the above approxima-

tions would be appropriate. In other words, the transient extreme value approximations are

only appropriate when x is very large relative to τ , and the steady-state approximations are

only appropriate when τ is very large relative to x. The third case represents an in-between

zone, where we would expect both our transient and steady-state approximations to fail.

As reasonable overall approximations for the moments and quantiles of Tτ , we can take the

minimum of the transient and steady-state approximations. This modified approximation is

supported by Corollary 2.3, which shows that the steady-state time T∞ is always a stochastic
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upper bound for the transient time Tτ . Moreover, we know that the transient approximations

diverge to infinity, so that they inevitably become inaccurate. So we should disregard the

transient approximation when it exceeds the steady-state approximation. From (3.27) and

(4.17), we see that the two approximations will coincide for the quantiles for the value of τ

satisfying the equation

qTτ (x) ≈
(

λγτ

log (1/x)

)1/α

=
(

λγ

(α− 1) log (1/x)

)1/(α−1)

≈ qT∞(x) , (4.32)

where γ = (α− 1)α, yielding the matching time

τ∗ =
(

λ

log (1/q)

)1/(α−1)

. (4.33)

This matching time τ∗ provides a rough approximation for the time that the system can be

considered to have reached steady state. The simple formula clearly shows the dependence

upon λ, x and α.

We now proceed to examine the third case more carefully. To do so, assume that y = bτ

for some positive constant b, and then let τ →∞. Then we have

r(y, τ, θ) ≡ r(τ, θ) =
(b + 1)τ + θ

bτ + θ
→ b + 1

b
as τ →∞ . (4.34)

Thus, from (4.24), we see that

λE[S] (Gc
e(y)−Gc

e(τ + y)) → λ

(
α− 1
y + θ

)(α−1) (
1− (b/(b + 1))α−1

)
as τ →∞ . (4.35)

Combining (4.20) and (4.35), we obtain an approximation for P (T ≤ y). Reasoning as in

(4.27), we obtain

λE[S](Gc
e(y)−Gc

e(τ + y)) ≈ λ

(
1−

(
b

b + 1

)(α−1)
)(

α− 1
y + θ

)α−1

,

≈ λ

(
1−

(
b

b + 1

)(α−1)
)(

α− 1
y

)α−1

, (4.36)

implying that

T ≈ (α− 1)λ1/(α−1)

(
1−

(
b

b + 1

)(α−1)
) 1

α−1

Yα−1, (4.37)

Paralleling (4.17), we get the following quantile approximation

qT (x) ≈ (α− 1)
(

λ

log (1/x)

)1/(α−1) (
1− (b/(b + 1))(α−1)

)1/(α−1)

=
(
1− (b/(b + 1))(α−1)

)1/(α−1)
qT∞(x) . (4.38)
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In this third limiting regime, the approximate quantile qT (x) is a fixed fraction of the steady-

state quantile qT∞(x) depending on b and α. The steady-state quantile is approached as b

decreases toward 0. We can expect this approximation depending upon b to perform well for

quantiles qT (x) = bτ when τ is suitably large.

5. Numerical Comparisons

We now see how the various approximations perform by making comparisons with exact

values from §2. We only consider the case of a homogeneous Poisson arrival process. We

consider values of τ for which the queue can be considered to be in steady state at time τ and

values for which it cannot. We first consider the case of a pure-exponential tail and then a

power tail. In all cases, we normalize so that E[S] = 1. We performed extensive calculations

for several service-time distributions over a wide range of arrival rates λ and terminal times τ .

Extensive results appear in [8]; we present the highlights here.

All exact computations were performed with Mathematica using the formulas in §2. We use

binary search with the exact cdf in (2.5) in order to numerically calculate the exact quantiles

of the distribution of T , just as in [3]. These values were also verified through simulation in

many cases. (For large values of ντ , it became prohibitively expensive to perform high-accuracy

simulations.)

For all distributions with a pure-exponential tail, we considered 7 values of λ and 9 values

of τ , yielding 7× 9 = 63 cases in all. The 7 values of λ are 22n−1 for n = 0, 1, . . . , 6, while the

9 values of τ are 2n−1 for n = 0, 1, . . . , 8. For all distributions with a power tail, we considered

6 values of λ and 10 values of τ , yielding 6× 10 = 60 cases in all. The 6 values of λ are 24n−1

for n = 0, 1, . . . , 5, while the 10 values of τ are 23n−1 for n = 0, 1, . . . , 9. We let both λ and τ

vary over a wider range for the power-tailed distributions. All numerical values are given to

four significant digits.

5.1. A Pure-Exponential Tail

We considered examples with c2 = 1, c2 = 0.6 < 1 and c2 = 4.0 > 1. For c2 = 1, we consider

an exponential distribution, as in §2 of [3]. For c2 = 0.6, we consider a hypoexponential

distribution, i.e., the convolution of two exponential distributions with different means, as in

§6 of [3]. Specifically, the service-time ccdf is

Gc(x) = 1.618e−1.38313x − 0.621e−3.61011x, x ≥ 0 . (5.1)
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For c2 = 4, we consider an H2 distribution, which has ccdf

Gc(x) = pe−ηx + (1− p)e−δx, x ≥ 0 . (5.2)

The three parameters η, δ and p in (5.2) are chosen so that the mean is 1, the SCV is c2 = 4.0

and the proportion of the mean provided by the dominant exponential component (with rate

η, where η < δ) is

r =
p/η

(p/η) + ((1− p)/δ)
=

p

η
. (5.3)

Formulas relating different parameterizations are given in [3]. In this case, Gc(x) ∼ γe−ηx as

x → ∞ with γ = p. We consider H2 distributions with three possible values of r: r = 0.25,

r = 0.50 and r = 0.75, as in §4 of [3].

Exponential Service Times. Consistent with Corollary 2.1, the results for the exponential

distribution are spectacular; results are shown in [8]. For the transient approximation, the

only error is due to the probability P (T = 0) = e−ντ . When ντ = 8, P (T = 0) = 0.0003, so

that for ντ ≥ 8, P (T = 0) is negligible and the transient approximation is accurate to four

significant digits. All approximations break down when ντ , the mean number in queue at time

τ , is too small. The breakdown point occurs approximately at ντ = 1. When ντ < 1, the

approximations are often negative.

When τ ≥ 8, the M/G/∞ queue can be regarded as being in steady state; as anticipated

from (2.15). Then the steady-state approximation agrees with the transient approximation.

For smaller values of τ , especially for τ ≤ 2, the transient approximation is significantly better

than the steady-state approximation, as we would expect.

Hypoexponential Service Times. Results for the hypoexponential distribution with c2 =

0.6 are displayed in Table 1. We show results for 4 values of λ: 2, 8, 32 and 2048, and 2 values

of τ : 0.5 and 8.0. We display the mean and variance and three quantiles: qT (0.50), qT (0.95),

and qT (0.9999).

For the two higher quantiles, qT (0.95), and qT (0.9999), the transient approximation per-

forms well for all these cases. The only poor performance of the transient approximation for

other characteristics occurs for λ = 2 and τ = 0.5, where ντ = 0.881 < 1. For τ = 8.0, the

steady-state approximations agree with the transient approximations, with the exception of

the variance when λ = 2.0. For almost all cases with τ = 8, the approximations are yielding

accuracy to all four significant digits displayed.
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hypoexponential service-time distribution with c2 = 0.6
model parameters

λ 2.0 2.0 8.0 8.0 32 32 2048 2048
τ 0.5 8.0 0.5 8.0 0.5 8.0 0.5 8.0
ντ 0.881 1.996 3.522 7.982 14.09 31.93 901.6 2043
γτ 1.326 1.172 1.326 1.172 1.326 1.172 1.326 1.172

ντγτ 1.168 2.340 4.672 9.358 18.69 37.43 1196 2396
P (T = 0) = e−ντ 0.415 0.136 0.030 0.000 0.000 0.000 0.000 0.000

performance measures
E[T ] 0.612 1.033 1.511 2.030 2.532 3.036 5.541 6.043

transient approx. 0.530 1.032 1.532 2.034 2.534 3.036 5.541 6.043
steady st. approx. 1.032 1.032 2.034 2.034 3.036 3.036 6.043 6.043
steady st. 2-mt. 0.984 0.984 2.058 2.058 3.132 3.132 6.353 6.353

V ar[T ] 0.669 0.831 0.896 0.868 0.864 0.861 0.860 0.860
trans. & steady st. 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860
steady st. 2-mt. 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.987

qT (0.50) 0.273 0.864 1.371 1.880 2.381 2.884 5.389 5.891
transient approx. 0.377 0.880 1.380 1.882 2.382 2.884 5.389 5.891
steady st. approx. 0.880 0.880 1.882 1.882 2.884 2.884 5.891 5.891
steady st. 2-mt. 0.821 0.821 1.895 1.895 2.968 2.968 6.190 6.190

qT (0.95) 2.259 2.762 3.262 3.764 4.264 4.767 7.271 7.773
transient approx. 2.260 2.762 3.262 3.764 4.264 4.767 7.271 7.773
steady st. approx. 2.762 2.762 3.764 3.764 4.767 4.767 7.773 7.773
steady st. 2-mt. 2.838 2.838 3.911 3.911 4.985 4.985 8.207 8.207

qT (0.9999) 6.771 7.274 7.774 8.276 8.776 9.278 11.78 12.29
transient approx. 6.771 7.274 7.774 8.276 8.776 9.278 11.78 12.29
steady st. approx. 7.274 7.274 8.276 8.276 9.278 9.278 12.29 12.29
steady st. 2-mt. 7.671 7.671 8.745 8.745 9.819 9.819 13.04 13.04

Table 1: A comparison of approximations with exact values for the characteristics of the
distribution of T , the remaining time until the last departure. The service distribution G is
hypoexponetial, the convolution of two exponentials, having mean E[S] = 1 and c2 = 0.6; the
ccdf is in (5.1). The arrival rate is a constant λ. The arrival process is turned off at time τ .
The key model parameters ντ and γτ are as given in formulas (2.1) and (3.2). The transient
approximations for the mean, variance and quantiles are given in (3.7), (3.8) and (3.12). The
steady-state approximations for the mean, variance and quantiles are given in (4.3), (4.4) and
(4.6). The corresponding two-moment steady-state approximations for the mean, variance and
quantiles are given in (4.3)–(4.6) with (4.8) and (4.9).

Overall, we conclude that, for service-time distributions with a pure-exponential tail and

c2 ≤ 1, the transient approximation should perform well provided that ντ ≥ 1. Moreover, the

steady-state approximation ought to agree with the transient approximation for τ ≥ 8. As

with the exponential distribution, the transient approximation should be significantly better

than the steady-state approximation when τ ≤ 2.
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Finally, we discuss the steady-state two-moment approximation presented in §4.2. The

two-moment steady-state approximation also performs quite well in this case, consistently

producing errors less than 10%. As in [3], we conclude that it performs quite well for c2 ≤ 1

when c2 does not differ greatly from 1.

Hyperexponential Service Times. We display results for H2 service times with c2 = 4.0

and r = 0.5 in Table 2. We show results for 3 values of λ: 8, 128 and 2048, and 3 values

of τ : 1.0, 8.0 and 32.0. We consider larger values of τ in Table 2 than in Table 1 because it

takes the system longer to reach steady state with the H2 service-time distribution. Referring

to (2.15), we see that the “mean time to approach steady state,” E[Se] = (c2 + 1)/2 = 2.5

here, compared to E[Se] = (c2 + 1)/2 = 0.8 for the hypoexponential service-time distribution

considered above.

As before, we display the mean, the variance and the three quantiles: qT (0.50), qT (0.95),

and qT (0.9999). As in the previous two examples, the transient approximation for the high

quantiles is accurate in all cases to the full four significant digits displayed. The steady-state

approximation differs significantly from the transient approximation for τ = 1, differs only

slightly for τ = 8.0 and is identical (to the four digits displayed) for τ = 32.0.

Overall, poor performance is only seen in the minimal case with λ = 8.0 and τ = 1.0.

That can be explained by the product ντγτ = 0.807 < 1. The important role of ντγτ for the

hyperexponential distribution is discussed in [3]. (From (2.16) we see that Gτ is indeed an

H2 cdf when G is H2 and λ(t) = λ.) In the asymptotic extreme-value approximation for the

maximum of hyperexponential random variables, all but the dominant term of the hyperexpo-

nential mixture (that component exponential with greatest mean) are ignored. Viewing each

hyperexponential service time as being drawn from each component distribution with some

probability, ντγτ represents the expected number of service times in the maxima computation

that have the dominant distribution. If the dominant component occurred too infrequently,

we would expect the asymptotic approximation to perform badly, since extreme value theory

does not hold for maxima of very few random variables. In particular, experience indicates

that significant difficulties occur if ντγτ ≤ 1. (This same criterion applies to the exponential

distribution, because then ντγτ = ντ , since γτ = 1.)

Again the two-moment steady-state approximation performs quite well, but it is tuned to

perform well for r near 0.5. Indeed, our other tables show that the performance for H2 service

times with c2 = 4.0 depends strongly on the third parameter r, just as in [3]. The main
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hyperexponential service-time distribution with c2 = 4.0 and r = 0.5
model parameters

λ 8.0 8.0 8.0 128.0 128 128 2048 2048 2048
τ 1.0 8.0 32.0 1.0 8.0 32.0 1.0 8.0 32.0
ντ 4.129 7.341 7.997 66.06 117.5 128.0 1057 1879 2047
γτ 0.196 0.455 0.500 0.196 0.455 0.500 0.196 0.455 0.500

ντγτ 0.807 3.341 3.997 12.92 53.46 63.95 206.6 855.3 1023
P (T = 0) = e−ντ 0.016 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

performance measures
E[T ] 3,479 8.021 8.767 13.91 20.21 21.01 26.21 32.51 33.31

transient approx. 1.611 7.912 8.708 13.91 20.21 21.01 26.21 32.51 33.31
steady st. approx. 8.711 8.711 8.711 21.01 21.01 21.01 33.31 33.31 33.31
steady st. 2-mt. 10.63 10.63 10.63 21.72 21.72 21.72 32.81 32.81 32.81

V ar[T ] 17.64 30.73 31.41 32.36 32.38 32.38 32.38 32.38 32.38
trans. & steady st. 32.38 32.38 32.38 32.38 32.38 32.38 32.38 32.38 32.38
steady st. 2-mt. 26.32 26.32 26.32 26.32 26.32 26.32 26.32 26.32 26.32

qT (0.50) 1.749 6.978 7.773 12.98 19.28 20.07 25.28 31.58 32.37
transient approx. 0.676 6.978 7.773 12.98 19.28 20.07 25.28 31.58 32.37
steady st. approx. 7.776 7.776 7.776 20.08 20.08 20.08 32.38 32.38 32.38
steady st. 2-mt. 9.784 9.784 9.784 20.87 20.87 20.87 31.96 31.96 31.96

qT (0.95) 12.23 18.53 19.32 24.53 30.83 31.62 36.83 43.13 43.93
transient approx. 12.23 18.53 19.32 24.53 30.83 31.62 36.83 43.13 43.93
steady st. approx. 19.33 19.33 19.33 31.63 31.63 31.63 43.93 43.93 43.93
steady st. 2-mt. 20.20 20.20 20.20 31.29 31.29 31.29 42.38 42.38 42.38

qT (0.9999) 39.91 46.21 47.01 52.21 58.51 59.31 64.51 70.81 71.61
transient approx. 39.91 46.21 47.01 52.21 58.51 59.31 64.51 70.81 71.61
steady st. approx. 47.01 47.01 47.01 59.31 59.31 59.31 71.61 71.61 71.61
steady st. 2-mt. 45.16 45.16 45.16 56.25 56.25 56.25 67.34 67.34 67.34

Table 2: A comparison of approximations with exact values for the characteristics of the
distribution of T , the remaining time until the last departure. The service distribution G
is hyperexponential, the mixture of two exponentials, having mean E[S] = 1, c2 = 4.0 and
r = 0.5; the ccdf is in (5.2). The arrival rate is a constant λ. The arrival process is turned
off at time τ . The key model parameters ντ and γτ are as given in formulas (2.1) and (3.2).
The transient approximations for the mean, variance and quantiles are given in (3.7), (3.8)
and (3.12). The steady-state approximations for the mean, variance and quantiles are given
in (4.3), (4.4) and (4.6). The corresponding two-moment steady-state approximations for the
mean, variance and quantiles are given in (4.10).

transient and steady-state approximations apply for these other values of r, just as for r = 0.5,

but the two-moment approximations remain unchanged, and thus perform quite badly for those

other values of r. For example, for λ = 8.0 and τ = 32, qT (0.9999) = 75.88, 47.01 and 35.48

for r = 0.25, 0.50 and 0.75, respectively. The two-moment approximation qT (0.9999) ≈ 45.2

serves for all three. It should be recognized that the two-moment approximations are only
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rough approximations, comparable to what you would get if you used an H2 distribution with

r = 0.5 as an approximation for some other H2 distribution.

5.2. A Power Tail

To illustrate a power tail, we consider the Pareto ccdf in (4.19). To have mean E[S] = 1, we

let θ = α − 1. The associated SCV is c2 = α/(α − 2), for α > 2. We considered 3 examples

with this Pareto distribution having parameter triples (α, θ, c2) = (8, 7, 1.33), (4, 3, 2.00) and

(2.5, 1.50, 5.0). For the case (2.5, 1.50, 5.0), a finite steady-state variance, V ar(T∞), does not

exist since α = 2.5 < 3. We display a subset of these results for the cases (4, 3, 2.00) and

(2.5, 1.5, 5.0) in Tables 3 and 4.

Due to slower convergence to steady state and the necessity of larger λ for the approxi-

mations to be highly accurate, λ and τ must be allowed to take much larger values than in

the exponential-tail setting. In Table 3 we consider 3 values of λ: 23 = 8, 211 = 2048 and

215 = 32, 770 and 3 values of τ ; 22 = 4, 211 = 2048 and 217 ≈ 1.31E5 ≡ 1.31 × 105. Table

4 takes a different view, considering a very high arrival rate, but 8 different values for the

termination time τ , ranging from 0.5 to 8.389E6 ≡ 8.389× 106.

As noted in §4.5, the approximations for E[T ] and the quantiles of T are actually approxi-

mations for T +θ, which arises since the asymptotics approximate 1/(x+θ) by 1/x. As λ goes

to infinity, the approximations are nevertheless asymptotically correct, since θ is just some

constant. Thus the ratio of the approximation to the true value still goes to 1. Once we make

this adjustment, we see greater accuracy for Pareto service times.

The main observation from Table 3 is that we do not get the consistent high accuracy

across almost all cases that we saw with the distributions having a pure-exponential tail. The

story is very different for a power tail. A principal problem is the inconsistency between

the transient and steady-state approximations discussed in §4.5. That section is important

background for interpreting Table 3. As suggested there, we do indeed obtain a much better

overall approximation for moments and quantiles if we use the minimum of the transient and

steady-state approximations.

Even for the very large values of λ and τ considered in Table 3, we have only limited

accuracy. But if we look closely, we see that the accuracy is not too bad. First, the steady-

state approximation is consistently accurate for the two larger times τ = 2048 and τ = 1.311E5,

consistent with (4.29). In most cases the error in the steady-state approximation is precisely

the shift θ = 3.0. After that adjustment, the steady-state approximations in these cases are
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Pareto service-time distribution with α = 4.0 and c2 = 2.0
model params.

λ 8.0 8.0 8.0 2048 2048 2048 32,770 32,770 32,770
τ 4.0 2048.0 1.311E5 4.0 2048 1.311E5 4.0 2048 1.311E5
ντ 7.370 8.000 8.000 1887 2048 2048 3.02E4 3.28E4 3.28E4
γτ 351.7 1.66E5 1.06E7 351.7 1.66E5 1.06E7 351.7 1.66E5 1.06E7

ντγτ 2592 1.33E6 8.49E7 6.64E5 3.40E8 2.17E10 1.06E7 5.44E9 3.48E11
P (T = 0) = e−ντ 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
perf. measures

E[T ] 4.143 5.125 5.125 30.08 48.58 48.59 65.00 126.9 127.0
trans. approx. 8.744 41.59 117.6 34.97 166.4 470.61 69.95 332.7 941.1

stdy. st. approx. 8.125 8.125 8.125 51.59 51.59 51.59 130.0 130.0 130.0
V ar[T ] 13.14 30.33 30.43 219.9 1201 1226 881.7 7385 7784

trans. approx. 13.79 312 2496 220.6 4992 3.99E4 882.4 2.00E4 1.60E5
stdy. st. approx 30.43 30.43 30.43 1227 1227 1227 7790 7790 7790

qT (0.50) 3.226 3.780 3.780 26.39 40.05 40.05 57.61 105.5 105.5
trans. approx. 7.820 37.2 105.2 31.28 148.8 420.8 62.56 297.6 841.7

stdy. st. approx. 6.780 6.78 6.78 43.05 43.05 43.05 108.5 108.5 108.5
b = 0.1 6.778 6.778 6.778 43.04 43.04 43.04 108.5 108.5 108.5
b = 1.0 6.485 6.485 6.485 41.18 41.18 41.18 103.8 103.8 103.8
b = 10.0 4.264 4.264 4.264 27.07 27.07 27.07 68.23 68.23 68.23
qT (0.95) 10.21 13.15 13.15 55.03 99.53 99.54 115.0 255.3 255.4

trans. approx. 14.99 71.32 201.7 59.97 285.3 806.9 119.9 570.6 1614
stdy. st. approx. 16.15 16.15 16.15 102.5 102.5 102.5 258.4 258.4 258.4

b = 0.1 16.15 16.15 16.15 102.5 102.5 102.5 258.3 258.3 258.3
b = 1.0 15.45 15.45 15.45 98.04 98.04 98.04 247.2 247.2 247.2
b = 10.0 10.16 10.16 10.16 64.46 64.46 64.46 162.5 162.5 162.5

qT (0.9999) 66.4 126.3 126.3 280.4 811.4 817.8 565.8 1980 2065
trans. approx. 71.35 339.4 960 285.4 1358 3840 570.8 2715 7680

stdy. st. approx. 129.3 129.3 129.3 820.8 820.8 820.8 2068 2068 2068
b = 0.1 129.3 129.3 129.3 820.6 820.6 820.6 2068 2068 2068
b = 1.0 123.7 123.7 123.7 785.1 785.1 785.1 1978 1978 1978
b = 10.0 81.31 81.31 81.31 516.2 516.2 516.2 1300 1300 1300

Table 3: A comparison of approximations with exact values for the characteristics of the
distribution of T , the remaining time until the last departure. The service distribution G is
Pareto with mean ES = 1, c2 = 2.0, α = 4.0 and θ = 3.0. The arrival rate is a constant
λ. The arrival process is turned off at time τ . The key model parameters ντ and γτ are as
given in Theorem 3.3. The transient approximations for the mean, variance and quantiles are
given in (3.25), (3.26) and (3.27). The steady-state approximations for the mean, variance and
quantiles are given in (4.15), (4.16) and (4.17). The approximation for the quantiles depending
on the parameter b are given in (4.38).

mostly accurate to the four displayed significant digits.

In Table 3, the performance of the transient approximation is significantly worse than the

steady-state approximation, even in its best regions. However, the transient approximation is
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Pareto service-time distribution with α = 2.5 and c2 = 5.0
params.

λ 5.243E5 5.243E5 5.243E5 5.243E5 5.243E5 5.243E5 5.243E5 5.243E5
τ 0.5 4.0 256.0 2048 1.638E4 1.311E5 1.049E6 8.389E6
ντ 1.838E5 4.496E5 5.241E5 5.243E5 5.243E5 5.243E5 5.243E5 5.243E5
γτ 3.931 12.85 705.8 5644 4.515E4 3.612E5 2.890E6 2.312E7

ντγτ 7.224E5 5.779E6 3.699E8 2.959E9 2.367E10 1.894E11 1.515E12 1.212E13
P (T = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
pf. meas.

E[T ] 326.7 751.1 3856 8211 1.502E4 2.115E4 2.427E4 2.546E4
tran. ap. 328.4 754.6 3983 9150 2.102E4* 4.829E4 1.109E5 2.549E5
st. ap. 2.613E4 2.613E4 2.613E4 2.613E4 2.613E4 2.613E4 2.613E4 2.613E4
V ar[T ] 1.154E5 6.093E5 1.697E7 8.920E7 4.530E8 1.974E9 6.918E9 2.128E10

tran. ap. 1.154E5 6.093E5 1.697E7 8.958E7 4.728E8 2.496E9 1.317E10 6.952E10
st. ap. ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

qT (0.50) 253.6 583.2 2970 6174 1.036E4 1.224E4 1.244E4 1.245E4
tran. ap. 255.4 586.7 3097 7114* 1.634E4 3.755E4 8.626E4 1.982E5
st. ap. 1.245E4 1.245E4 1.245E4 1.245E4 1.245E4 1.245E4 1.245E4 1.245E4
b = 0.1 1.222E4 1.222E4 1.222E4 1.222E4 1.222E4 1.222E4 1.222E4 1.222E4
b = 1.0 9308 9308 9308 9308 9308 9308 9308 9308
b = 10.0 3247 3247 3247 3247 3247 3247 3247 3247
qT (0.95) 721.8 1659 8645 1.916E4 3.895E4 6.182E4 6.911E4 7.061E4
tran. ap. 723.6 1662 8774 2.016E4 4.631E4* 1.064E5 2.444E5 5.615E5
st. ap. 7.065E4 7.065E4 7.065E4 7.065E4 7.065E4 7.065E4 7.065E4 7.065E4
b = 0.1 6.935E4 6.935E4 6.935E4 6.935E4 6.935E4 6.935E4 6.935E4 6.935E4
b = 1.0 5.282E4 5.282E4 5.282E4 5.282E4 5.282E4 5.282E4 5.282E4 5.282E4
b = 10.0 1.843E4 1.843E4 1.843E4 1.843E4 1.843E4 1.843E4 1.843E4 1.843E4

qT (0.9999) 8778 2.017E4 1.063E5 2.436E5 5.538E5 1.227E6 2.495E6 3.961E6
tran. ap. 8780 2.017E4 1.065E5 2.446E5 5.619E5 1.291E6 2.966E6* 6.814E6
st. ap. 4.527E6 4.527E6 4.527E6 4.527E6 4.527E6 4.527E6 4.527E6 4.527E6
b = 0.1 4.444E6 4.444E6 4.444E6 4.444E6 4.444E6 4.444E6 4.444E6 4.444E6
b = 1.0 3.385E6 3.385E6 3.385E6 3.385E6 3.385E6 3.385E6 3.385E6 3.385E6
b = 10.0 1.181E6 1.181E6 1.181E6 1.181E6 1.181E6 1.181E6 1.181E6 1.181E6

Table 4: A comparison of approximations with exact values for the characteristics of the
distribution of T , the remaining time until the last departure. The service distribution G is
Pareto with mean ES = 1, c2 = 5.0, α = 2.5 and θ = 1.5. The arrival rate is held fixed
at a constant λ = 5.243 × 105. The arrival process is turned off at time τ for 8 values of
τ over a broad range, from 0.5 to 8.389 × 106. The key model parameters ντ and γτ are as
given in Theorem 3.3. The transient approximations for the mean, variance and quantiles are
given in (3.25), (3.26) and (3.27). The steady-state approximations for the mean, variance and
quantiles are given in (4.15), (4.16) and (4.17). For each performance measure, an asterisk
marks the smallest transient approximation value that is less than the corresponding steady-
state approximation value.
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actually reasonably accurate for the shorter time τ = 4.0. For very small τ , such as τ = 0.5,

there is an error of almost exactly θ = 3.0, just as for the steady-state approximation, but this

error grows as τ increases. For τ = 4.0, we see an absolute error of about 5 in all cases. For

the extremely large values of λ we consider, this nearly constant error of about 5 at τ = 4.0

becomes relatively negligible.

With respect to the time at which steady-state is reached, we can still use the relation (2.15).

The cdf Ge will show that the rate of approach to equilibrium is indeed much slower now. As

a rough estimate, we can use the time τ∗ in (4.33) at which the transient approximation

equals the steady-state approximation. We see the advantage of the special approximation

for quantiles in (4.38) in one case: When τ = 2048 and b = 1, we have the approximation

qT (0.9999) ≈ 1978 ≈ bτ = 2048; consistent with that, the exact value there is 1980.

Table 4 considers the most variable Pareto distribution (of the four we consider) with

α = 2.5. Here the remaining time until the last departure in steady-state, T∞, fails to have a

finite variance. Accordingly, we see the transient variances steadily increasing without bound.

In this case, the approach to steady state is very slow. We see that the lower quantile qT (0.5)

has reached steady-state for the last three values of τ , but the highest quantile qT (0.9999) has

not reached steady state even by the final termination time τ = 8.4× 106.

In this view, including very large λ and smaller τ , we see that the transient approximation

looks very good in many cases, while the steady-state approximation does not. For the smallest

value of τ , τ = 0.5, the error in the transient approximation is very close to the shift θ = 1.5. As

τ increases, the error in the transient approximation increases, but here the relative accuracy

is consistently good.

6. Conclusions

Motivated by the two-stage inspection problem, we studied the remaining time T after the

arrival-process termination time τ until the last departure in the Mt/G/∞ queue. Formula

(2.3) shows that T can be represented as the maximum of a Poisson random number of i.i.d.

random variables each distributed as the cdf Gτ in (2.2), where the Poisson random number

has mean ντ in (2.1). As a consequence, we were able to give explicit expressions for the the cdf

and the quantiles of the distribution of T in Theorem 2.2. That result implies the important

Corollaries 2.1, 2.2 and 2.3. They give convenient explicit expressions for the distribution of

T for exponential and hyperexponential service-time cdf’s and establish that the steady-state

cases serve as limiting upper bounds for the corresponding transient cases in the stochastic-
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order sense.

Most of the paper went beyond the exact relations in §2 to study approximations. We

applied asymptotic methods to develop approximations for the distribution and characteristics

of T for service-time cdf’s G that (i) have an exponential tail and (ii) have a power tail. In §§3
and 4 we considered the transient and steady-state cases. In all four cases, we established heavy-

traffic limits (allowing λ to increase) under which these approximations are asymptotically

correct.

Consistent with previous experience, e.g., [1] and [3], we found that the power-tail cases

presented many difficulties, including lower-quality approximations. We observed that the two

iterated limits for P (T > x) involving limx→∞ limτ→∞ and limτ→∞ limx→∞ agree for the case

of a pure-exponential tail, but do not agree for the case of a power tail. That explains why the

exponents in the heavy-traffic limits in Theorems 3.4 and 4.4 do not agree. To obtain insight

and new approximations, in §4.5 we introduced a new double limit in which limx→∞ and

limτ→∞ with x = bτ for some constant b, and applied it to Pareto service-time cdf’s. For the

power-tail case, we suggested using the minimum of transient and steady-state approximations

for moments and quantiles.

We evaluated the approximations by performing extensive numerical comparisons, most

of which appear in [8]. Highlights were presented in four tables here. The numerical results

show that the approximations are remarkably effective for the exponential-tail case, provided

that certain conditions are satisfied, as detailed in §5. In particular, we must be sure that

the mean ντ is not too small. The steady-state approximation coincides with the transient

approximation when τ is large enough, but can greatly overestimate if it is not. The required

value for τ is of order E[Se], as shown by (2.15). The two-moment approximations from [3]

were introduced in §4.2 and shown to be useful for the exponential-tail case here too. Simple

rough two-moment approximations for the case c2 ≥ 1 are given in (4.10). Formulas (4.8) and

(4.9) can be used to obtain corresponding formulas for c2 ≤ 1.

The power-tail case is much more problematic. Tables 3 and 4 show that the approxima-

tions can yield good results here too, but care is required. The parameters λ and τ were much

larger in these Pareto tables. Unlike the exponential-tail case, the transient approximation for

quantiles of T gets arbitrarily bad if we increase τ enough. We suggested the minimum of the

transient and steady-state approximations for moments and quantiles as overall approxima-

tions. So far, we conclude that the approximations in the power-tail case are less reliable, so

that checking with exact calculations is more important. Nevertheless, we showed that it is
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possible to generate useful approximations in the power-tail case.
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[12] L. Takács, Introduction to the Theory of Queues, Oxford University Press, New York,

1962.

[13] L. M. Wein, A. H. Wilkins, M. Baveja and S. E. Flynn, Preventing the importation of

illicit nuclear materials in shipping containers. Risk Analysis, 26 (2006) 1377–1393.

30



[14] W. Whitt, Stochastic-Process Limits, Springer, New York.

31


