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Abstract

Effective approximations are developed for the blocking probability in a general stationary

loss model, where key independence and exponential-distribution assumptions are relaxed,

giving special attention to dependence among successive service times, not studied before.

The new approximations exploit heavy-traffic limits for the steady-state number of busy

servers in the associated infinite-server model with the same arrival and service processes.

In addition, a new heavy-traffic approximation is developed for the long-run proportion of

time that all servers are busy. These new approximations are then combined to develop new

approximations for the separate blocking probabilities of individual arrival streams in multi-

class loss models. Simulation experiments show that these approximations are effective.

Keywords: Loss models, Blocking probability, Infinite-server queueing models, Heavy

traffic, Time congestion, Parcel blocking

1. Introduction

There is growing interest in the performance evaluation of service systems, such as hospi-

tals and call centers. Just as for communication systems, stochastic loss models are proving

to be useful; they have been used in healthcare to manage the overflow of intensive care pa-
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tients [1], to model ambulance deployment [2], to determine the required number of hospital

beds [3] and to plan capacity for neonatal units [4]. They have also been used in revenue

management to model reusable resources such as hotel rooms and rental vehicles [5].

In this paper, we study the stationary G/G/s/0 loss model, allowing non-exponential dis-

tributions and dependence among successive interarrival times and among successive service

times. Throughout we assume that the service times are independent of the arrival process.

Since we allow dependence, we include an I in the Kendall queueing model notation if either

the interarrival times or service times are i.i.d. Since the steady-state distribution of the

number of busy servers in the MI/GI/s/0 loss model is insensitive to the service-time dis-

tribution beyond its mean (§5.7.2 of [6]), an extension to general service-time distributions

alone is not needed. It is well known that a non-Poisson arrival process alters the blocking

probabilities. The GI/MI/s/0 loss model has also been thoroughly analyzed [7, 8], but

other model generalizations make exact analysis difficult; otherwise simulation can be used.

There is a long history of studies developing approximations for the blocking probability

in loss models with general non-Poisson arrival processes, primarily motivated by the bursty

arrival processes arising when overflows from one or more loss systems are forwarded to

receive service at a secondary loss system [9, 10]. Such overflows commonly occur in alterna-

tive routing schemes, in which traffic that finds no capacity on an initial path is allowed to

seek capacity on a succession of alternative paths. These overflows have a big impact on the

blocking. Since the overflows only occur when the initial system is full, they tend to occur

in clumps, making the overflow process more “bursty” than a Poisson process. An effective

early approximation scheme is the equivalent random method [10], which makes use of the

specific structure of an overflow process of a Poisson process to a secondary system with

service times distributed the same as in the initial system. Overflows can play a key role

in service applications as well; e.g., hotel booking services suggest alternative hotels when a

current selection is unavailable.

2



1.1. The First Contribution: Dependent Service Times

The substantial literature on approximations for the blocking probabilities in loss models

with general non-Poisson arrival processes is restricted to the G/GI/s/0 model. Our first

contribution here is to include dependent service times in the loss model. Dependence among

service times can occur in a variety of settings. For example, response times of ambulances

from a centrally located base can be influenced by previous responses if an ambulance is sent

to respond to a call directly from a hospital rather than first returning to the base. In the

management of a reusable resource like hotel rooms, multiple reservations may be for some

major event located near the hotel and are therefore similar in length.

It is thus important to be able to predict the impact of dependence among service times

on loss model performance. It is even necessary to ask how the dependence should be charac-

terized, because dependence is a complicated notion. We will exploit the familiar correlations

among successive service times, which is an entire sequence of measurements, but it remains

to reduce this sequence to single measurements that are important for performance, and it

remains to see how the dependence in the service times interacts with the arrival process. An

important contribution of this study is to identify insightful measurements of dependence,

for both service times and interarrival times. Our proposed characterization of the depen-

dence is given in Theorem 1 and the following discussion in §2.1. Measurements of service

systems have been receiving considerable attention (see [11] and the many citations to it),

but dependence evidently has not yet been considered, possibly because (i) a convenient

characterization has been lacking and (ii) it was not known how it could be used.

Following the teletraffic tradition [9, 12, 13, 14, 15, 16, 17, 18, 19, 20], we exploit cor-

responding infinite-server (IS) models with the same arrival and service processes; we use

the peakedness, the ratio of the variance to the mean of the steady-state number of busy

servers in the IS model. In particular, as in [17, 18, 21, 22] we use the heavy-traffic limit

of the peakedness; the heavy-traffic limit is crucial for producing a relatively parsimonious

characterization of the dependence, capturing the main impact on performance. To treat the

dependent service times, we draw upon [21, 22], which establish a heavy-traffic (HT) limit
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for IS models with dependent service times and study its consequences for delay models. We

show that the HT peakedness can be used to generate effective approximations for the per-

formance of loss models with dependent service times provided that the number of servers is

not too small. In particular, we find that both the normal approximation obtained from the

heavy-traffic limit for the IS model (§4.1) and the Hayward approximation (§4.2) continue to

produce quite accurate approximations for the blocking probability with dependent service

times. In support, we show that these two approximations are asymptotically equivalent as

the scale increases (in the QED regime; see Theorem 5 and following discussion).

1.2. The Second Contribution: Time Congestion and Parcel Blocking Probabilities

We also consider the
∑

iGi/G/s/0 model with multiple independent arrival streams and

approximate the separate blocking probability of each stream, called the parcel blocking

probabilities. As a basis for the parcel blocking approximation, and for its own sake, we also

study the long-run proportion of time that all servers are busy or, equivalently, the proba-

bility that all servers are busy at an arbitrary time, often called the time congestion. The

time congestion directly describes the system as seen by an outside observer, and approxi-

mately describes the blocking experienced by a class of rare arrivals that itself contributes

negligibly to the overall system performance. By the celebrated Poisson Arrivals See Time

Averages (PASTA) property [23], the time congestion coincides with the call congestion

(blocking probability) when the arrival process is Poisson, but it does not more generally.

Thus, the time congestion and parcel blocking require additional analysis and have received

considerable attention [24, 14, 25, 26, 19], but not yet for dependent service times.

Our simulation experiments show that an associated normal approximation for the time

congestion ((19) here) from [17], based on a HT limit theorem stated without proof in [27],

performs badly for higher blocking probabilities with higher peakedness, even with i.i.d.

exponential service times. Our second contribution is to, first, establish a new HT limit

for the time congestion (Corollary 3), which implies that the theorem stated without proof

is in fact invalid, and, second, develop a new approximation for the time congestion based

on an approximation for the ratio of the call congestion to the time congestion, called the
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congestion ratio. We show that our new approximation remedies this problem and we apply

the new approximation for the time congestion to obtain corresponding good approximations

for parcel blocking probabilities.

1.3. Organization of the Paper

We begin in §2 with a review of infinite-server results that we will use in our multi-server

loss approximations, including the recent heavy-traffic result by [21] and the peakedness

properties of the general G/GI/∞ model developed by Eckberg [15]. In §3 we review two

models of dependent random variables that we use for service times and interarrival times.

In §4, we review two approximations for the blocking probability in loss models based on

peakedness; then in §5 we use simulation to evaluate their performance in our more general

setting. In §6, we expose the shortcomings of the existing HT approximation for the time

congestion and propose a significantly better approximation based on the congestion ratio.

Finally, in §7 we develop and evaluate the approximation for the parcel blocking probabilities.

Conclusions are drawn in §8. Additional material appears in the appendices.

2. Review of Infinite-Server Results

We will develop effective approximations for the steady-state blocking probability in the

stationary G/G/s/0 loss model, which has a sequence of stationary and possibly dependent

service times, each with mean µ−1, that is independent of a general stationary arrival process

with arrival rate λ. To do so, we will exploit the steady-state number of busy servers, N ,

in the corresponding stationary G/G/∞ infinite-server (IS) model with the same arrival

process and service times. By Little’s law, E[N ] = α ≡ λ/µ, the offered load. In addition

to the steady-state mean E[N ], we will exploit the steady-state variance V ar(N) via the

ratio ze ≡ zeG/G ≡ V ar(N)/E[N ], which is called the peakedness. (The superscript e denotes

“exact;” we will use z for the heavy-traffic approximation in §2.1. We will relate z and ze.)

The reference case is the MI/GI/∞ model, where N has a Poisson distribution with mean,

and thus variance, equal to α. Thus, the peakedness in the reference case is zeMI/GI = 1.

Assuming i.i.d. service times, arrival processes with zeG/GI > 1 such as overflow processes are
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called “bursty,” while arrival processes with 0 ≤ zeG/GI < 1 are called “smooth,” but more

generally the peakedness depends on both the arrival process and the service times.

2.1. The Heavy-Traffic Peakedness

The heavy-traffic (HT) peakedness is the limit of the peakedness as the arrival rate λ

is allowed to increase or, equivalently, as the mean service time µ−1 or the offered load α

is allowed to increase. Let A(t) count the number of arrivals in the interval [0, t] and let S

be a generic service time. It is necessary to specify how the models change in such a limit;

we assume that these changes occur by simple scaling. In particular, starting with a rate-1

arrival process, denoted by A(1)(t) and service times that have mean 1, denoted by S(1), we

consider the associated scaled arrival process A(λ)(t) ≡ A(1)(λt), which has rate λ, and the

associated scaled service times with S(µ) ≡ S(1)/µ, which has mean 1/µ. In this setting, the

HT approximation is obtained as λ ↑ ∞, as µ ↓ 0 or as α ↑ ∞.

The HT peakedness can be obtained as a consequence of a more general stochastic HT

limit theorem. For the most general G/G/∞ model, we rely on recent results in [21], where

references can be found to previous results for the G/GI/∞ special case, the seminal one

being by Borovkov [28]. For the HT limit theorem, it suffices to assume only very general

regularity conditions. Very roughly, it suffices to assume that a functional central limit

theorem is valid for the arrival process and service times separately. For practical purposes,

this means that a normal approximation is valid for the arrival process over large intervals,

i.e.,
A(λ)(t)− λt√

λc2at
≈ N (0, 1) for all sufficiently large t, (1)

where c2a is a constant characterizing the variability (in the limit), N (µ, σ2) is a normal

random variable with mean µ and variance σ2, and ≈ means approximately equal in distri-

bution. For a renewal arrival process, the variability parameter c2a is the squared coefficient

of variation (SCV, variance divided by the square of the mean) of an interarrival time. In

general,

c2a = lim
t→∞

V ar(A(t))

E[A(t)]
. (2)
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Explicit formulas for c2a are available for a wide array of arrival process models; e.g., see §§7

and 9 of [29]. When there is dependence among successive interarrival times, we need weak

dependence as in §4.4 of [29], which is formally characterized by various mixing conditions;

see [21, 29] and references therein, but that is present in most applications, e.g., with overflow

processes. Violations of this condition are usually associated with infinite values of c2a, which

is usually easy to detect via exceptionally high estimates in data analysis.

The service times are assumed to be independent of the arrival process, but they are

allowed to be mutually dependent. However, just like the interarrival times, the service times

must be only weakly dependent. To approximately characterize that dependence, following

[21], let Hk(t1, t2) ≡ P (Sj ≤ t1, Sj+k ≤ t2) be the joint (bivariate) cdf of two service times

separated by k indices, which is independent of j because of the assumed stationarity. Let

Jk ≡ E[Sj∧Sj+k]/E[Sj], with ∧ the minimum, and I1 ≡ E[S1∧indepS2]/E[S] with S1∧indepS2

being the minimum of two independent random variables distributed as S.

Theorem 1. (HT peakedness from [21]) Under regularity conditions, as the offered load α

increases, the scaled steady-state number Nα of busy servers in the G/G/∞ model becomes

approximately normally distributed, i.e., (Nα − α)/
√
αz ≈ N (0, 1), where the constant z,

called the HT peakedness, has the explicit form

z ≡ zG/G(c2a, G,H) = 1 + µ(c2a − 1)

∫ ∞
0

[1−G(t)]2dt+ 2µ

∫ ∞
0

(
∞∑
k=1

(
Hk(t, t)−G(t)2

))
dt,

= 1 + (c2a − 1)I1 + 2
∞∑
k=1

(Jk − I1), (3)

with c2a being the arrival process variability parameter in (1), G being the cdf of a generic

service time with mean µ−1 and (Hk, I1, Jk), k ≥ 1, defined above.

The third term in formula (3) for the HT peakedness characterizes the impact of the

dependence among the service times; it drops out if the service times are mutually indepen-

dent, because then Jk = I1 for all k ≥ 1. The second term captures the consequence of a

non-Poisson arrival process; it drops out if c2a = 1, which occurs for Poisson arrival processes.

Thus, we obtain z = 1 for the MI/GI/∞ model. For further discussion, see [22].
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Note that the arrival process is characterized beyond its rate (which appears via the

offered load) by the single constant c2a, whereas the service times are characterized by the

constant I1 and the sequence {Jk : k ≥ 1}. Proposition 3 of [22] gives a simple approximation

for z that is exact in some instances, namely,

z ≈ 1 + (c2a − 1)I1 + 2(1− I1)Σρ, (4)

where Σρ is the sum of all correlations, i.e., Σρ ≡
∑∞

k=1Corr(Sj, Sj+k). The dependence

parameter Σρ is intimately connected to the asymptotic variability parameter c2s of the service

times, defined as in (1) and (2) or, equivalently, via the CLT for associated partial sums;

see §7.3 of [29]. In particular, Theorem 4.4.1 of [29] implies that Σρ = [(c2s/c
2
s,rp) − 1]/2,

where c2s,rp is the SCV of a single service time and thus the asymptotic variability parameter

in a renewal process with interrenewal times distributed as a single service time. Since the

common form of dependence is for the service times to be positively correlated, typically

Σρ ≥ 0 and c2s/c
2
s,rp ≥ 1. Thus well established ways to estimate c2s,rp and c2s from data

yield estimates of Σρ. One way to estimate Σρ is to estimate Corr(Sj, Sj+k) for a modest

number of k and fit a single functional form, such as to Corr(Sj, Sj+k) ≈ ρk for some ρ with

0 < ρ < 1. In that case, Σρ ≈ ρ/(1− ρ).

2.2. Exact Peakedness in the G/GI/∞ Model

An expression for the exact peakedness ze is not yet known for the G/G/∞ IS model

with dependent service times, but a nice account for the G/GI/∞ model with independent

service times was provided by Eckberg [15]. In many cases the exact peakedness of a general

G/GI/∞ model can be computed, but it often suffices to use asymptotic approximations,

as shown in Tables 1, 2 and 4 of [22] and as we will show here. We introduce a refined

second-order HT approximation that reveals how the HT peakedness differs from the exact

peakedness, and can be used to improve the HT approximation for smaller offered loads (and

thus in loss models with fewer servers).

A first rough approximation for the number of servers needed in the loss model is the

offered load, because the offered load is the expected number of busy servers in the IS
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model. (Little’s law implies that the expected number of busy servers in the loss model is

λ(1−B)/µ = (1−B)α, where B is the steady-state blocking formula. In order for B to be

suitably small, the actual number of servers must be roughly α + β
√
α by the HT limit in

§2.1, which tends to be not too much greater than α.)

In this section only, without loss of generality, we assume that the arrival rate is 1 and a

generic service time is S/µ where S is a mean-1 random variable with cdf G(x) ≡ P (S ≤ x),

so that the offered load is α = λ/µ = 1/µ. Let U(x) be the expected number of arrivals in an

interval of length x after an arbitrary arrival in the rate-1 arrival process, which we refer to

as the mean function. For a renewal process, the mean function U(x) is the familiar renewal

function, but we allow dependence among successive interarrival times. Let Gc(x) ≡ 1−G(x)

be the complementary cdf (ccdf).

Theorem 2. (exact peakedness from [15]) For the G/GI/∞ model, the peakedness is

ze(µ) ≡ zeG/GI(µ) ≡ V ar(Nµ)

E[Nµ]
= 1 + 2

∫ ∞
0−

(∫ ∞
µx

Gc(u)Gc(u− µx) du

)
dU(x)− µ−1. (5)

For the case of i.i.d. exponential service times, the peakedness takes a simple form

because the inner integral over u in (5) reduces to e−µx/2. Let Ûs(s) be the Laplace-Stieltjes

transform of the mean function U of the rate-1 arrival process, i.e.,

Ûs(s) ≡
∫ ∞
0−

e−st dU(t). (6)

Corollary 1. (exact peakedness with MI service from [15]) For the G/MI/∞ model,

zeG/MI(µ) ≡ 1 + Ûs(µ)− µ−1. (7)

By the same reasoning, we can obtain the corresponding result for mixtures of exponential

random variables, i.e, i.i.d. hyperexponential (HkI) service times, as we show for H2 in

Appendix B. For general stationary arrival processes, Theorem 2 and Corollary 1 are not

easy to apply because the mean function U and its Laplace-Stieltjes transform Ûs(s) in (6)

are not easy to determine.

However, in the special case of renewal arrival processes Laplace-Stieltjes transform Ûs(s)

in (6) can be expressed directly in terms of the Laplace transform of the interarrival-time
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density. Thus, for MI and H2I service, the peakedness can easily be computed for an

arbitrary renewal arrival process, provided that we can compute the Laplace transform of an

interarrival time pdf, as we illustrate now for the MI case. Let f be the pdf of an interarrival

time and let f̂(s) be its Laplace transform, i.e.,

f̂(s) ≡
∫ ∞
0

e−stf(t) dt. (8)

Corollary 2. (exact peakedness in the GI/MI/∞ model) For the GI/MI/∞ model having

interarrival time pdf f with mean 1 and i.i.d. exponential service times with mean 1/µ,

zeGI/MI(µ) =
f̂(µ)− 1 + µ

µ(1− f̂(µ))
. (9)

Proof. Since Ûs(s) = f̂(s)/(1− f̂(s)) for a renewal process with interarrival time pdf f , we

can apply Corollary 1.

We now develop a refined second-order HT approximation for the peakedness in the

GI/MI/∞ model. Let mk be the kth moment of the interarrival-time pdf f , assuming that

m1 = 1 as before. Recall that a function h(µ) is o(µ) if h(µ)/µ→ 0 as µ ↓ 0.

Theorem 3. (refined second-order HT peakedness in the GI/MI/∞ model) For the GI/MI/∞

model, if the interarrival time pdf f has finite third moment, then the exact peakedness has

the asymptotic form

zeGI/MI(µ) = γ2 + (γ22 − γ3)µ+ o(µ) as µ ↓ 0, (10)

where γ2 ≡ z = m2/2 = (c2a + 1)/2 and γ3 ≡ m3/6 with m1 = 1.

Proof. Assuming that the first k moments mk are finite, the Laplace transform admits the

Taylor series expansion

f̂(s) =
k∑
j=0

(−1)j
mjs

j

j!
+ o(sk); (11)

e.g., see Ch. 6 of [30]. Thus, we first obtain asymptotic expansions separately for the

numerator and denominator in (9):

f̂(µ)− 1 + µ = γ2µ
2 − γ3µ3 + o(µ3) as µ ↓ 0,

µ(1− f̂(µ)) = µ2 − γ2µ3 + γ3µ
4 + o(µ4) as µ ↓ 0, (12)
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from which we immediately obtain (10) from the asymptotic expansion of the ratio of two

series expansions, exploiting the algebra of power series.

As a quick check on Theorem 3, note that c2a = γ2 = γ3 = 1 for an exponential interarrival

time, so that zeMI/MI(µ) = 1 for all µ. Indeed, the steady-state distribution of Nµ in the

MI/GI/∞ model is insensitivity to the service-time distribution beyond its mean, so that

zeMI/GI(µ) = 1 for all service-time distributions and all µ.

Example 1. (the H2I/MI/∞ model) To illustrate, we consider a renewal arrival process

with a hyperexponential (H2) interarrival-time pdf f . We let the H2 distribution have

balanced means as in (3.7) on p. 137 of [31]; we let the SCV be c2a = 5 and the mean

interarrival time be m1 = 1. This H2 density has the explicit form (B.1) for p1 = 0.9082,

λ1 = 1.8165, p2 = 0.0918, λ2 = 0.1835. The associated parameters in Theorem 3 are

γ2 ≡ z = (c2a + 1)/2 = 3 and γ3 ≡ m3/6 = 15. Hence, formula (9) yields zeH2I/MI(µ) =

3 − 6µ + o(µ) as µ ↓ 0. Figure 1 compares the HT peakedness zH2I/MI = 3 and the

associated second-order HT approximation zH2I/MI,sec(µ) ≡ γ2 + (γ22 − γ3)µ = 3− 6µ to the

exact peakedness zeH2I/MI(µ) in Corollary 1. Figure 1 shows that the HT peakedness and the

second-order approximation are accurate to within about 10% and 1%, respectively, when

the offered load α = 1/µ (and thus the staffing) exceeds 30. The second-order approximation

performs well for 10 ≤ α ≤ 30, while the exact peakedness is needed for α ≤ 10.

We can also easily analyze the case with deterministic service times, as we show in

Appendix B. This section should be viewed as illustrative of what is possible; e.g., explicit

results as in Theorem 7 can also be obtained for many non-renewal processes, e.g., see [32].

This section also provides strong motivation for the more elementary HT approximation

provided by Theorem 1.

3. Models of Dependence

For applications with system measurements, it is significant that the the HT peakedness

approximation in §2.1 can be applied without directly constructing a specific loss model or
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Figure 1: A comparison of the heavy-traffic and the second-order heavy-traffic peakedness approximations to

the exact peakedness for the H2I/MI/∞ model where the hyperexponential interarrival times have balanced

means and SCV c2a = 5.

providing a detailed model of the dependence, because we can estimate the HT peakedness

from (system or simulation) data, as was done in §5.4 of [22]. However, in order to evaluate

the performance of the approximations using simulation, we need concrete models of the

dependent service times. Fortunately, there are many several models in the literature. We

will use two of these models from [22], which we quickly review here.

3.1. Two Models of Dependence

The first dependence model is the Randomly Repeated Service (RRS) process. In this

model, we start with a sequence {Bn, n ≥ 1} of i.i.d. service times and a probability p of

repeating the previous service time. Letting {In, n ≥ 2} be a sequence of i.i.d. Bernoulli

random variables with mean p and A1 = B1, the RRS process {An, n ≥ 1} is defined by

An = InAn−1 + (1− In)Bn, n ≥ 2. (13)
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This RRS process has a simple asymptotic variability parameter, c2s = c2B

(
1 + 2p

1−p

)
, where

c2B is the SCV of B1. Proposition 4 of [22] implies that the simple HT peakedness approxi-

mation in (4) is exact for the RRS process. That occurs primarily because the third term in

(3) has a simple analytic expression for RRS, i.e.

2µ

∫ ∞
0

(
∞∑
k=1

(
Hk(t, t)−G(t)2

))
dt =

2p

1− p

(
1− µ

∫ ∞
0

[1−G(t)]2dt

)
. (14)

The second dependence model is the Exponential Autoregressive-Moving Average (EARMA)

process introduced by [33]. The model is specified by three parameters: µ, β, and ρ. To

construct the process, we begin with three independent sequences of i.i.d. random variables

{Xn : n ≥ 0}, {Un : n ≥ 1}, and {Vn : n ≥ 1}, with Xn exponentially distributed with rate

µ, and Un and Vn Bernoulli random variables with probabilities β and ρ of being equal to 0.

The EARMA process {Sn : n ≥ 1} is then defined as

Sn = βXn + UnYn−1 and Yn = ρYn−1 + VnXn, n ≥ 2. (15)

The EARMA process has an exponential marginal distribution with rate µ. Its correlation

structure is identical to the Autoregressive-Moving Average ARMA(1,1) model:

ρk ≡ Corr(Sj, Sj+k) = γρk−1 and γ = β(1− β)(1− ρ) + (1− β)2ρ. (16)

Since we do not have an expression for the HT peakedness (3) for EARMA, we use simulation

to obtain a good estimate, as in §5.4 of [22].

3.2. The Peakedness Approximation with Dependent Service Times

The two models of dependent service times can be used to evaluate the approximation

of the exact peakedness by the HT peakedness. Such a study was conducted in §5 of [22], to

which we refer. For a large class of models, an error of less than 1% (10%) could be achieved

with an offered load of α = 100 (α = 10). However, for highly variable models (which we

would regard as pathological), the required offered loads were much higher, e.g, α = 1000

(α = 100);
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4. Approximations for the Blocking Probability

In this section we review two approximations for the blocking probability based on

peakedness, which have been found to be quite accurate for the G/GI/s/0 model, with-

out dependent service times. We will be using these same approximations with dependent

service times, using the HT peakedness in Theorem 1.

4.1. The IS HT Approximation: A Normal Approximation Plus the Conditioning Heuristic

Let Yα be the steady-state number of busy servers G/G/s/0 model at an arbitrary time.

Following [17], we can use Theorem 1 plus a simple conditioning heuristic to generate the

approximation

P (Yα = r) ≈ P (Nα = r)/P (Nα ≤ s) for 0 ≤ r ≤ s. (17)

This relation is exact for the MI/GI/s/0 system. We then apply Little’s law with (17),

Theorem 1 and the property E[N (0, 1)|N (0, 1) ≤ c] = φ(c)/Φ(c), where φ(x) and Φ(x)

are the pdf and cdf of N (0, 1), respectively, to obtain the approximation for the blocking

probability, which we denote BC (with subscript C for call congestion):

BC = 1− E[Yα]

α
≈
√
z

α

(
φ ((s− α)/

√
αz)

Φ ((s− α)/
√
αz)

)
. (18)

From Theorem 1 and (17), we can also approximate the distribution of Yα. For example,

we have the following approximation for the time congestion, denoted BT :

BT ≡ P (Yα = s) ≈ P (s− .5 ≤ N (α, αz) ≤ s+ .5)

P (N (α, αz) ≤ s+ .5)
≈ φ ((s− α)/

√
αz)√

αzΦ ((s− α + .5)/
√
αz)

. (19)

The IS HT approximations (18) and (19) suggest that BT ≈ BC/z. This is exactly true if

the arrival process is Poisson and service times are independent, for which z = 1, due to the

familiar PASTA property from [23]. However, we will see that this relation is not accurate in

general, so that we will need to develop an improved approximation for the time congestion.

An important theoretical reference point is an early heavy-traffic limit.
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Theorem 4. (HT limit from Borovkov [27]) for the GI/MI/s/0 model, as α → ∞ with

(s− α)/
√
α→ β for any constant β, −∞ < β < +∞,

√
αBC →

√
zφ(β/

√
z)/Φ(β/

√
z), (20)

where z ≡ (c2a + 1)/2, the HT peakedness.

The scaling in Theorem 4 produces the familiar Quality-and-Efficiency-Driven (QED)

many-server heavy-traffic regime. Thus, we expect the IS HT approximation to perform

better in the QED regime than in the ED regime, where (s−α)/
√
α→ −∞ or, for practical

purposes β < −2
√
z, or the QD regime, where (s−α)/

√
α→ +∞ or, for practical purposes

β > 2
√
z. Borovkov [27] also gives a theorem without proof, cited by [17], stating that (19)

is also asymptotically correct in the QED regime, but we will present a new theorem in §6

showing that must be incorrect.

4.2. The Hayward Approximation

Our second approximation for the blocking probability is attributed to Walter Hayward

of Bell Laboratories, and given a heuristic explanation by Fredericks [13]. The approximation

makes use of the well-known Erlang loss formula, B(s, α) = (αs/s!)/(
∑s

i=0(α
i/i!). Hayward’s

approximation for G/G/s/0 systems uses the peakedness z to scale both s and α, yielding

BC ≡ BC(s, α, z) ≈ B (s/z, α/z) . (21)

Since the heuristic development in [13] provides helpful intuition, we briefly review it

here. Consider a loss system with constant service times each of size 1/µ, a batch Poisson

arrival process with total arrival rate αµ, so that the offered load is α, where the batches sizes

are all z, assumed to be an integer, and s servers with s a multiple of z. Thus the s servers

can be split into z groups with each group handling one arrival from each batch. Since the

service times are deterministic, the groups are always identical. Hence, each group behaves

as an MI/D/(s/z)/0 model with arrival rate αµ/z and offered load α/z, so that the blocking

probability of each group, which equals the total blocking probability, is given by the Erlang
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loss formula with parameters s/z and α/z, exactly as in (21). (Recall the insensitivity of

the blocking to the service time distribution beyond its mean in the MI/GI/s/0 model.)

Now let us consider the associated IS model. The infinitely many servers can also be

divided into z groups. The steady-state number in each group is distributed exactly as

Poisson with mean α/z and thus distributed approximately as N (α/z, α/z). Hence, the

steady state number of customers in the entire IS system is distributed as zN (α/z, α/z),

which is distributed the same as N (α, zα), implying that the exact peakedness is z.

A rough generalization of this idea is that the servers in a loss system facing bursty traffic

(z > 1) can be divided into groups, and the arrivals can be allocated in such a way that each

group has approximately the same number of busy servers, the same blocking probability,

and peakedness one. Equation (21) is then approximately correct for each group, and the

total blocking probability is approximately that of the groups. Loss systems facing smooth

traffic (z < 1) are treated similarly, but the original system is viewed as the result of splitting

a larger system as before.

Unlike the IS HT approximation, which gives an approximate blocking probability of

the exact system, the Hayward approximation uses the exact blocking probability of an

approximate system. However, the two very different approximations are tightly linked, and

thus each provides support for the other. As a consequence of the asympotic behavior of the

Erlang loss function from [34] or the HT limit by [27], we have the following result.

Theorem 5. (asymptotic equivalence of the two approximations) Suppose that the assump-

tions on the arrival and service processes are as in Theorem 1. If α→∞ with (s−α)/
√
α→

β, −∞ < β <∞, then the Hayward and IS HT approximations for the scaled blocking prob-

ability
√
αBC in the G/G/s/0 with either the HT peakedness or the exact peakedness both

converge to the same nondegenerate limit
√
zφ(β/

√
z)/Φ(β/

√
z), and so their difference is

asymptotically negligible.

Proof. First, by Theorem 1 the exact peakedness converges to the HT peakedness under the

assumptions. Then observe that both approximations for the blocking probability remain

the same if we divide all components of the vector (s, α, z) by z, yielding (s/z, α/z, 1). For
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the Hayward approximation, we apply asymptotics for the MI/GI/∞ model or the Erlang

loss formula.

In practice, the parameter s/z will often not be an integer, so the Erlang loss formula

cannot be used directly, but the continuous extension in [34], based on the integral repre-

sentation of B(α, s)−1, has been found to be very effective. We use

B (s, α) =

[
Γ (s+ 1)

e−ααs
−
∞∑
k=1

αk

(s+ 1) · · · (s+ k)

]−1
, (22)

with Γ denoting the gamma function, from Theorem 5 of [34]. For very large arguments, we

can use asymptotic expansions, which essentially means the IS HT approximation.

5. Evaluating the Extension to Dependent Service Times

In this section we apply both the IS HT approximation for the blocking probability BC

in (18) and the Hayward approximation in (21) with dependent service times, using the HT

peakedness in Theorem 1. We also evaluate the HT approximation for the time congestion

BT in (19). We find that the blocking approximations (call congestion) consistently performs

well, but the associated IS time congestion approximation in (19) does not, even with i.i.d.

service times. In §6 we explain the difficulty with the time congestion and develop a new

approximation for it.

5.1. Results of Simulation Experiments

We test the accuracy of these approximations using simulation to estimate the true

values. The obvious method is to fully specify a system, including the number of servers,

and compare the simulated blocking probability to the approximation. However, in practice

we are primarily interested in staffing under a constraint on the blocking probability, so we

adopt that view; i.e., we select a target blocking probability and find the minimum number

of servers such that the blocking probability (simulated or approximate) is below the target.

Besides being practical, this method of evaluating the approximations has an additional

advantage over simply comparing blocking probabilities. Since the number of servers can only
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take discrete integer values, the blocking probabilities can only take finitely many values,

which tend to differ greatly with few servers. As a consequence, a direct comparison of

blocking probabilities will often be overly pessimistic, whereas the staffing approach does

not have that problem.

The previous evaluations of the blocking probability approximations in [17] were per-

formed with analytic results rather than simulation and are limited to GI/MI/s/0 models.

For those cases, those experiments showed that both the IS HT and Hayward approximations

are accurate for the blocking probability. Here we expand upon those experiments using sim-

ulation. Besides the usual exponential distribution for interarrival and service times, we will

use the Erlang (Ek) and hyperexponential (Hk) distributions. The Ek distribution is less

variable than the exponential, with SCV = 1/k; we use E4. The Hk distribution is more

variable than exponential and admits any SCV > 1. As before, we use H2 with balanced

means as on p. 137 of [31] and SCV = 4.

Tables 1-4 show results of our simulation experiments for a number of systems using

the staffing approach. Errors are emphasized. A difference of 1 server is not considered an

error. An error of 2 or 3 servers is indicated by showing the value in italics, while an error of

more than 3 servers is indicated by boldface values. Most of the serious errors occur in the

time congestion, which we discuss in the next section. The quality of the approximations

depends on the case. The quality tends to deteriorate as the peakedness increases, with the

peakedness increasing in the arrival process variability and the dependence (with positive

correlations in our dependence models), but decreasing in the service time SCV.

First, Table 1 shows that there is no error (> 1 server) in the staffing by the IS HT

approximation for the MI/GI model, In this case, the HT peakedness coincides with the

exact peakedness z = 1 and the Hayward approximation is exact. For the MI/RRS(M)

model, Table 1 shows that the dependence significantly increases the required staffing. Using

the simple MI/GI model would result in unacceptable errors in all cases. Table 1 shows that

the Hayward approximation has no error, while the IS HT approximation overemphasizes

the required staffing with the high blocking target of 0.1. At least the IS HT approximation
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Table 1: Comparison of the blocking probability and time congestion approximations to simulated values for

a Poisson arrival process. Shown are the minimum number of servers required to achieve the given target.
System α Target Sim Block IS Block Hayward Sim Time IS Time Ratio Time

MI/GI 10 0.001 21 20 21 21 20 20

z = 1 0.01 18 18 18 18 18 18

0.1 13 13 13 13 13 13

50 0.001 71 71 71 71 71 71

0.01 64 64 64 64 64 64

0.1 51 52 51 51 51 52

100 0.001 128 128 128 128 128 128

0.01 117 117 117 117 117 117

0.1 97 97 97 97 97 97

MI/RRS(M) 10 0.001 26 25 27 26 24 25

z = 2 0.01 21 21 22 21 20 21

p = .5 0.1 14 16 15 14 13 16

50 0.001 81 80 82 81 78 80

0.01 70 71 71 70 67 71

0.1 54 56 55 54 47 56

100 0.001 141 141 142 141 137 141

0.01 126 127 127 126 122 127

0.1 100 103 101 100 87 103

MI/EARMA 10 0.001 24 23 25 24 22 23

z ≈ 1.526 0.01 20 20 20 20 19 20

(β, ρ) = (.5, .75) 0.1 14 15 14 14 13 15

50 0.001 76 76 77 76 75 76

0.01 67 68 68 67 66 68

0.1 52 54 53 52 49 54

100 0.001 135 135 136 135 133 135

0.01 121 123 123 121 120 123

0.1 98 100 99 98 92 100
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Table 2: Comparison of various approximations for the blocking probability and time congestion to simulated

values. Values indicate the minimum number of servers required to achieve a blocking probability/time

congestion below the given target. All H2 distributions have balanced means and SCV = 4.
System α Target Sim Block IS Block Hayward Sim Time IS Time Ratio Time

E4I/E4I 10 0.001 17 17 17 18 17 17

z = 0.46 0.01 15 15 15 16 16 15

0.1 12 12 12 13 13 13

50 0.001 64 63 64 65 65 64

0.01 59 58 58 60 60 60

0.1 49 49 48 51 53 51

100 0.001 119 118 118 120 120 119

0.01 111 110 110 113 113 112

0.1 94 94 94 99 101 98

E4I/MI 10 0.001 18 18 19 19 18 19

z = 0.63 0.01 16 16 16 17 16 17

0.1 12 12 12 13 13 13

50 0.001 66 66 66 67 67 67

0.01 60 60 60 61 62 62

0.1 49 50 49 52 52 52

100 0.001 121 121 121 123 123 123

0.01 113 113 113 115 115 115

0.1 95 95 95 99 100 99

E4I/H2I 10 0.001 19 19 20 20 19 19

z = 0.74 0.01 16 16 17 17 17 17

0.1 12 13 12 13 13 14

50 0.001 67 67 68 69 68 68

0.01 61 61 61 62 62 63

0.1 49 50 50 52 52 53

100 0.001 123 123 123 125 124 125

0.01 114 114 114 116 116 116

0.1 95 96 95 99 99 100

E4I/EARMA 10 0.001 22 21 22 22 21 22

z ≈ 1.151 0.01 18 18 19 19 18 19

(β, ρ) = (.5, .75) 0.1 13 14 13 14 13 15

50 0.001 72 72 73 73 72 74

0.01 64 65 65 65 64 67

0.1 50 52 52 53 50 55

100 0.001 129 130 131 131 129 132

0.01 117 119 119 119 118 122

0.1 96 98 98 100 95 103
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Table 3: Comparison of various approximations for the blocking probability and time congestion to simulated

values. Values indicate the minimum number of servers required to achieve a blocking probability/time

congestion below the given target. All H2 distributions have balanced means and SCV = 4.
System α Target Sim Block IS Block Hayward Sim Time IS Time Ratio Time

H2I/E4I 10 0.001 27 29 33 26 27 28

z = 3.18 0.01 23 25 26 22 22 24

0.1 16 18 17 14 12 17

50 0.001 86 89 92 85 84 87

0.01 75 78 78 73 70 75

0.1 57 60 58 53 41 55

100 0.001 150 153 155 147 145 150

0.01 133 136 136 130 124 133

0.1 104 108 106 97 75 100

H2I/MI 10 0.001 26 27(26) 30(28) 25 25(24) 26(25)

z = 2.5 0.01 22 23(22) 24(23) 21 21(20) 22(21)

0.1 15 17(16) 16(16) 14 13(13) 15(15)

50 0.001 83 84(83) 86(86) 81 80(80) 83(82)

0.01 73 74(74) 75(74) 71 69(69) 72(72)

0.1 56 57(57) 56(56) 51 44(45) 53(53)

100 0.001 145 146(146) 148(148) 143 141(140) 144(144)

0.01 130 131(131) 131(131) 126 123(123) 128(128)

0.1 103 105(105) 103(103) 96 82(82) 98(98)

H2I/H2I 10 0.001 25 25(24) 27(26) 24 24 (23) 25 (23)

z = 2.05 0.01 21 21(21) 22(21) 20 20 (19) 21 (20)

0.1 15 16(15) 15(15) 14 13 (13) 15 (14)

50 0.001 80 81(80) 82(82) 79 78 (78) 79 (79)

0.01 71 71(71) 72(71) 69 68 (67) 69 (69)

0.1 55 56(56) 55(55) 51 46 (47) 52 (52)

100 0.001 141 141(141) 143(142) 139 137(137) 139 (139)

0.01 127 127(127) 128(127) 124 122(122) 125 (124)

0.1 102 103(103) 102(101) 95 86(87) 96 (96)

H2I/RRS(H2) 10 0.001 31 30 33 30 27 29

z = 3.35 0.01 25 25 27 24 22 24

p = .5 0.1 16 18 18 15 12 17

50 0.001 91 90 93 89 84 88

0.01 78 79 79 75 70 76

0.1 58 60 59 54 40 56

100 0.001 155 154 157 152 146 152

0.01 136 137 138 133 125 134

0.1 105 108 106 99 73 101

H2I/EARMA 10 0.001 29 29 32 28 27 28

z ≈ 3.026 0.01 23 24 26 22 22 23

(β, ρ) = (.5, .75) 0.1 16 18 17 14 13 16

50 0.001 87 88 91 85 83 86

0.01 75 77 78 73 70 75

0.1 56 59 58 52 42 55

100 0.001 149 151 154 147 144 149

0.01 133 135 135 129 124 132

0.1 104 107 105 97 77 100
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Table 4: Comparison of various approximations for the blocking probability and time congestion to simulated

values. Values indicate the minimum number of servers required to achieve a blocking probability/time

congestion below the given target. All H2 distributions have balanced means and SCV = 4.
System α Target Sim Block IS Block Hayward Sim Time IS Time Ratio Time

RRS(M)/E4I 10 0.001 28 27 29 27 25 26

z = 2.453 0.01 22 23 24 21 21 22

p = .5 0.1 15 17 16 14 13 16

50 0.001 84 84 86 82 80 83

0.01 72 74 74 70 69 72

0.1 55 57 56 51 45 55

100 0.001 145 146 148 142 140 144

0.01 129 131 131 126 123 129

0.1 101 105 103 96 82 100

RRS(M)/MI 10 0.001 27 25 27 25 24 25

z = 2 0.01 21 21 22 20 20 21

p = .5 0.1 15 16 15 13 13 15

50 0.001 81 80 82 79 78 79

0.01 70 71 71 68 67 70

0.1 54 56 55 51 47 53

100 0.001 141 141 142 139 137 139

0.01 126 127 127 123 122 125

0.1 101 103 101 96 87 99

RRS(M)/H2I 10 0.001 26 24 25 24 23 23

z = 1.7 0.01 21 20 21 19 19 20

p = .5 0.1 14 15 15 13 13 14

50 0.001 79 78 79 77 76 77

0.01 69 69 69 67 66 68

0.1 53 55 54 50 48 52

100 0.001 138 137 138 136 135 136

0.01 124 124 124 121 121 123

0.1 100 101 100 95 90 97

RRS(M)/EARMA 10 0.001 29 30 27 27 25 26

z ≈ 2.526 0.01 23 24 23 21 21 22

p = .5 0.1 15 16 17 14 13 16

(β, ρ) = (.5, .75) 50 0.001 84 87 84 83 81 83

0.01 73 75 74 71 69 73

0.1 55 56 58 51 44 55

100 0.001 146 148 146 143 141 145

0.01 129 132 131 126 123 129

0.1 101 103 105 96 82 101
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is conservative in its staffing recommendation.

Second, Table 2 shows excellent performance with the smooth E4I arrival process. Again

the departure from the basic MI/GI model leads to significantly different staffing, but with

the smooth E4I arrival process, the required staffing is less than with a Poisson arrival

process.

Next, Table 3 shows that the bursty H2I arrival process leads to significantly different

staffing than for MI arrivals, but now much greater staffing, consistent with the higher

peakedness. Notice that the case H2I/E4I is especially difficult, combining a bursty arrival

process with a low-variability service distribution, which makes even higher peakedness.

However, on the positive side, note that the IS HT staffing is consistently high by from 2−4

servers across all offered loads and performance targets, showing that a simple correction can

be consistently applied. In general, Table 3 shows that the bursty H2I arrival process is the

most difficult. However, in general, because of our staffing perspective, the approximations

perform quite consistently across all three offered loads, Thus, in practice, one could use

some rule-of-thumb adjustment to the approximations that depends only on the variability

of the arrival process and service distribution.

The H2I/MI/s/0 case in Table 3 has extra data in parentheses that represents values

if actual peakedness is calculated from Corollary 2 and used instead of the heavy-traffic

peakedness. Consistent with Figure 1, we see no change at all for α ≥ 50, but we do for

α = 10. The tables show that the HT peakedness is reasonable for the approximations, but

some improvement can be expected by using the exact peakedness for lower offered loads.

For the performance of the even smaller offered loads of α = 1 and 5, see Appendix E.1.

Finally, Table 4 shows corresponding results with the non-renewal RRS(M) arrival pro-

cess. We see that the approximations continue to behave as before in this more bursty

setting, with one exception. A significant error is seen in the IS HT approximation for high

peakedness with the high offered load α = 100 and low quality-of-service (QoS) target 0.1.

This might seem inconsistent with the HT limit in Theorem 4, but it actually is not, because

the scaled blocking probability
√
αBC tends to converge to a proper limit in the QED HT
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regime. As a consequence, for the high offered load α = 100 and the low QoS target 0.1,

the system tends to be in the ED many-server heavy-traffic regime, where BC → 1− ρ−1 as

α→∞ with α/s = ρ > 1 held fixed, independent of z; for partial support, see §6.3 of [17].

6. Time Congestion

In this section, we study the time congestion. We begin in §6.1 by analyzing the perfor-

mance of the infinite-server time congestion approximation (19). Then in §6.2 we present an

improved approximation based on the ratio of the blocking probability to the time conges-

tion, called the congestion ratio.

6.1. The IS HT Time Congestion Approximation

We can see from Tables 1-4 that the IS HT time congestion approximation (19) performs

well except for bursty models with z > 1. Moreover, for z > 1, the IS HT approximation for

BT tends to perform worse as the offered load increases, raising doubts about the claimed

HT limit. In fact, we will prove that the claimed HT limit is in fact not correct. The IS HT

approximation is especially bad for high performance targets, being remarkably bad for the

low QoS target 0.1.

We offer two heuristic explanations: first, in these difficult cases with z > 1, we have

BC > BT , Hence, staffing to meet BT will require fewer agents, but that lower level of

staffing will cause additional blocking, and that additional blocking may in fact smooth the

arrival process, making the carried arrival process (consisting of the non-blocked arrivals)

less bursty than the original arrival process. Second, the lower staffing may in fact push

the system out of the QED regime into the ED regime, where different asymptotic behavior

occurs. However, in any case, we will show that a different HT limit holds.

That analysis suggests a relatively simple heuristic adjustment to the IS HT time conges-

tion approximation. Assuming that some traffic smoothing is taking place, we can replace

the given peakedness z > 1 with z ≈ 1 whenever the traffic intensity is above some thresh-

old. We propose to make this adjustment whenever the traffic intensity is greater than 1,

i.e., when α > s. To see that this is effective, note that the problem cases in Tables 1-4
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occurring when the target for BT is 0.1 and the offered loads are 50 and 100 would all be

staffed at 51 and 97 (taken from the MI/GI/s/0 system in Table 1), respectively, which

gives an error of at most three servers among all the systems. Nevertheless, we next develop

a new approximation, which provides performs better.

6.2. The Congestion Ratio

The underlying idea of the new approximation for the time congestion is to find it in-

directly by leveraging the accurate approximation for the blocking probability. Specifically,

we approximate the blocking probability BC and the ratio of the blocking probability to the

time congestion BR ≡ BC/BT , called the congestion ratio. If both values are accurate, then

the ratio of the two approximations should give a good approximation for BT . Here we use

the IS HT approximation (18) for BC .

The congestion ratio is not an especially intuitive performance measure, but it has been

successfully analyzed for GI/MI/s/0. We give a proof that suggests an approximation for

the more general G/G/s/0 model. Let Ûs(s) be the Laplace transform of the mean function

U as in (6) and let f be the interarrival time pdf with f̂(s) being its Laplace transform as

in (8).

Theorem 6. (congestion ratio for GI/MI/s/0 from [8] and [7]) For GI/MI/s/0 model with

arrival rate 1 and individual service rate µ = 1/α,

BR ≡
BC

BT

=
sf̂(s/α)

α(1− f̂(s/α))
= (s/α)Ûs(s/α). (23)

We give an alternate proof, which is useful for generating an approximation more gener-

ally.

Proof. For the GI/MI/s/0 model, the instances that all servers become busy constitute

regeneration times. Thus, there is an alternating renewal process of full times distributed as

X and non-full times distributed as Y . By the renewal reward theorem, we can write

BT =
E[X]

E[X + Y ]
and BC =

E[A(X)]

E[A(X + Y )]
. (24)
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Thus,

BR ≡
BC

BT

=

(
E[A(X)]

E[X]

)(
[X + Y ]

E[A(X + Y )]

)
. (25)

Since X is exponential with mean α/s, E[X] = s/α. By the renewal reward theorem again,

E[A(X + Y )]/E[X + Y ] = λ = 1. Finally, the GI/MI/s/0 structure allows us to deduce

that the number of arrivals during a full period is geometrically distributed with parameter

p =
∫∞
0
f(x)e−(s/α)x dx, so that

E[A(X)] =
p

1− p
=

f̂(s/α)

1− f̂(s/α)
= Ûs(s/α). (26)

We can immediately apply Theorem 6 to obtain a many-server HT limit for the congestion

ratio BR

Corollary 3. (many-server HT limit for the congestion ratio) If α → ∞ with α/s → 1 in

the GI/MI/s/0 model, then

BR ≡ BR(f, s, α)→ B∗R ≡ Ûs(1) =
f̂(1)

1− f̂(1)
, (27)

for Ûs in (6) where U(x) is the renewal function.

As a consistency check, note that BR = 1 for all s and α when f is exponential. If the

approximation (19) were asymptotically correct as α → ∞ with α/s → 1, then we should

have B∗R = z = (c2a+1)/2, but that does not hold. We can combine Theorem 4 and Corollary

3 to obtain the following limit for the time congestion.

Corollary 4. (many-server HT limit for the time congestion) If α→∞ with (α−s)/
√
α→

β, −∞ < β <∞, in the GI/MI/s/0 model, then

√
αBT →

√
zφ(β/

√
z)

Ûs(1)Φ(β/
√
z)
. (28)

Remark 1. (the role of the arrival process) Corollaries 3 and 4 show that, unlike the HT

peakedness z and the associated approximation for the blocking probability, the congestion

ratio and the time congestion depend on the arrival process through more than the arrival

rate and the asymptotic variability parameter c2a.

26



Example 2. (renewal processes with Hb
2 and E4 interrenewal times) For the Hb

2 distribution

with balanced means, mean 1, where necessarily c2a > 1, from p. 137 of [31] we have

f̂(1) =
2c2a + 2

3c2a + 5
>

1

2
and B∗R(c2;Hb

2) =
2c2a + 2

c2a + 3
> 1, (29)

with f̂(1) = 1/2 and B∗R = 1 in the limiting exponential case when c2a = 1. We have

B∗R = z ≡ (c2a + 1)/2 if and only if c2a = 1.

For the Ek distribution with mean 1, we have

f̂k(1) = (k/(k + 1))k ≥ 1

2
and B∗R(Ek) < 1, (30)

with f̂(1) = 1/2 andB∗R = 1 in the limiting exponential case when k = 1. Since f̂k(1)/f̂k+1(1) >

1, we see that f̂k(1) is decreasing in k approaching f̂∞(1) = f̂D(1) = e−1.

We base our proposed approximation for the congestion ratio in the more generalG/G/s/0

loss model on the following conjecture.

Conjecture 1. The first relation in Corollary 3 also holds for the more general G/G/s/0

loss model, with U(x) more generally being the mean function when the arrival process is

non-renewal.

Supporting reasoning. First, and most important, we can approximate the full time X by

an exponential random variable with mean α/s, exactly as in the GI/MI/s/0 case, by

using the fact that a superposition of mutually independent stationary point processes is

asymptotically Poisson; see Theorem 9.8.1 of [29]. For this step, we think of all s servers

being busy, which should be approximately correct if s is not too small; then the departure

process can be viewed as the superposition of the s service-completion processes for the

separate servers. If the service times are i.i.d., then this is a superposition of independent

renewal processes, but the limit holds in greater generality. We act as if this limit is valid.

That approximation gives us E[X] ≈ α/s as α → ∞ with α/s → 1. Second, we can

use ergodic theory associated with stationary processes satisfying suitable mixing conditions
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instead of the renewal reward theorem to again obtain E[A(X + Y )]/E[X + Y ] = λ = 1.

Finally, paralleling (26), we use the approximation

E[A(X)] ≈ Ûs(s/α). (31)

Here we are assuming that the mean function at the beginning of a full period is approxi-

mately the same as at an arbitrary arrival, which need not be the case.

When the arrival process is not renewal, we can estimate Ûs(x) for 0.5 < x < 3 to use with

the approximation. (See Appendix C.3 for our specific method.) The main approximation

using the exact Ûs(s/α) is referred to as “Ratio Time” in §5, where it is shown to be quite

effective. This approximation tends to perform worst for non-exponential service times under

light loads, where the exponential approximation for the full time is not well justified.

7. Parcel Blocking

The term parcel blocking comes from telecommunications, though the concept can apply

to more diverse settings. The general heterogeneous blocking problem is a loss system

facing k mutually independent individual arrival streams, each having the same service

distributions, and the goal is to find the blocking probability for each stream, called the

parcel blocking probabilities. This problem has been studied in the past, and there are exact

results for certain special cases. For example, the parcel blocking probabilities are given

exactly for the GI + MI/MI/s/0 system in [25], though the solution is inconvenient to

compute. Approximations have also been found that are at the same time accurate and easy

to calculate, and it is these that we focus on.

We number the arrival streams from 1 to k, and for each arrival stream i, we denote the

offered load and peakedness in relation to the service distribution by αi and zi, respectively.

We also let α and z be the offered load and peakedness of the entire superposition arrival

process; α is just the sum of the αi’s, and the independence of the separate streams gives

z =

∑k
i=1 αizi∑k
i=1 αi

. (32)
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The approximation we use here is simple and reasonably precise. Here it is presented in the

form given in [19]:

Bi ≈ BT +
zi − 1

z − 1
(BC −BT ). (33)

Note that this approximation requires the blocking probability and time congestion of the

entire system, but these can be approximated with our previous methods. We discuss the

derivation of (33) in Appendix D.

Table 5 shows the results of some experiments with a variety of systems with two inde-

pendent arrival streams. Just as in Tables 1-4, we staff according to a target overall blocking

probability. However, we then measure the other probabilities directly at this staffing level

and present them as ratios of the blocking probability to show the differences and the ac-

curacy of the approximations more directly. Further simulation data for these systems can

be found in Appendix E.2. The total blocking probability is approximated with the infinite-

server approximation (18), and the time congestion is approximated with the congestion

ratio (23). Table 5 shows that the parcel blocking probability can be significantly different

from the total blocking probability and that the approximation (33) works well for different

systems including those with dependent service times. It should be noted that, just as the

performance of a loss system with Poisson arrivals is the same for any independent sequence

of service times, the first three systems in Table 5 are not affected if the arrivals from the

Poisson stream face a different independent service process.

8. Conclusions

We have applied simulation to show that the truncated-normal and Hayward approx-

imations in (18) and (21) for the blocking probability in the general G/G/s/0 stationary

loss model remain effective when there is dependence among successive service times as well

as among successive interarrival times, and non-exponential distributions, when the depen-

dence is captured by the heavy-traffic (HT) peakedness z in (3), provided that the offered

load is not too small. (The approximations may also be useful for low offered loads as well,

as illustrated by Table E.1.) We have shown in Theorem 5 that these two approximations
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Table 5: Comparison of approximate parcel blocking probabilities to simulated values. Staffing level is set

according to target BC , and BT and B1 are given as ratios to BC . Both arrival streams have equal rates,

and the H2I distribution has balanced means with SCV = 4. BC is approximated with the infinite-server

approximation (18), B1 is approximated with (33), and the BT approximation uses the congestion ratio (23)

System α Target Sim BC Approx Sim BT /BC Approx Sim B1/BC Approx

H2I +MI/MI 10 0.001 24 24 0.82 0.89 1.21 1.11

z = 1.75 0.01 20 20 0.82 0.89 1.19 1.11

z1 = 2.5 0.1 14 15 0.83 0.89 1.17 1.11

z2 = 1 50 0.001 77 78 0.82 0.89 1.18 1.11

0.01 68 69 0.83 0.89 1.18 1.11

0.1 53 55 0.84 0.89 1.16 1.11

100 0.001 137 138 0.82 0.89 1.18 1.11

0.01 124 125 0.83 0.89 1.17 1.11

0.1 100 101 0.84 0.89 1.16 1.11

E4I +MI/MI 10 0.001 20 19 1.26 1.24 0.75 0.76

z = .8125 0.01 17 17 1.23 1.22 0.78 0.78

z1 = .625 0.1 13 13 1.18 1.18 0.82 0.82

z2 = 1 50 0.001 69 68 1.19 1.19 0.81 0.81

0.01 62 62 1.18 1.18 0.83 0.82

0.1 50 51 1.15 1.15 0.85 0.85

100 0.001 125 125 1.17 1.18 0.83 0.82

0.01 115 115 1.17 1.17 0.84 0.83

0.1 96 96 1.14 1.15 0.86 0.85

H2I +MI/H2I 10 0.001 23 23 0.81 0.89 1.19 1.11

z = 1.525 0.01 19 20 0.82 0.89 1.18 1.11

z1 = 2.05 0.1 14 15 0.83 0.89 1.17 1.11

z2 = 1 50 0.001 76 76 0.82 0.89 1.18 1.11

0.01 67 68 0.83 0.89 1.18 1.11

0.1 53 54 0.84 0.89 1.16 1.11

100 0.001 135 135 0.82 0.89 1.18 1.11

0.01 122 123 0.83 0.89 1.17 1.11

0.1 99 100 0.84 0.89 1.16 1.11

H2I +MI/RRS(M) 10 0.001 28 28 0.82 0.89 1.17 1.05

p = .5 0.01 22 23 0.83 0.89 1.17 1.05

z = 2.75 0.1 15 17 0.85 0.89 1.15 1.05

z1 = 3.5 50 0.001 85 86 0.84 0.89 1.16 1.05

z2 = 2 0.01 74 75 0.85 0.89 1.16 1.05

0.1 55 58 0.86 0.89 1.14 1.05

100 0.001 148 149 0.85 0.89 1.15 1.05

0.01 131 133 0.85 0.89 1.15 1.05

0.1 102 106 0.87 0.89 1.13 1.05
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are asymptotically equivalent in the QED many-server heavy-traffic regime. In §2.2 we have

also reviewed the exact peakedness for the G/GI/s/0 model from [15] and shown how it is

related to the HT peakedness, in part via the refined second-order heavy-traffic approximate

peakedness with i.i.d. exponential service times in Theorem 3.

In §6 we have shown that the corresponding normal approximation for the time congestion

from [27] and [17] is not accurate and developed a new HT approximation based on the

congestion ratio, which we showed is effective. Significantly, the new approximation for the

time congestion depends on the arrival process beyond its rate and asymptotic variability

parameter c2a in (1) and (2). We then applied this new approximation for the time congestion

to develop a new approximation for the parcel blocking in multiclass loss models in §7, which

we showed is also effective.

Among the many directions for future research, it remains to (i) exhibit the exact peaked-

ness for the G/G/s/0 model considered here, (ii) extend Theorem 1 and the approximations

here to cover dependence between the service times and the arrival process, (iii) study block-

ing approximations in Gt/G/st/0 models with time-varying arrivals and staffing, drawing on

§7 of [22], and (iv) it remains to measure the dependence in arrival and service processes in

applications, hopefully exploiting Theorem 1.
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Appendix A. Overview

In these appendices we present additional material supplementing the main paper. First,

in Appendix B we supplement §2.2 by giving additional results about the exact peakedness

for hyperexponential (H2) and deterministic (D) service times. Next, in Appendix C we

describe our simulation procedure in more detail. In Appendix D we review one derivation

for the parcel blocking approximation in (33). Finally, in Appendix E we present additional

results of the simulation experiments.
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Appendix B. More on the Exact Peakedness

We now supplement §2.2 with a few additional results about the exact peakedness for

the G/GI/∞ model. We first give the exact peakedness for H2 service times; i.e., let the

mean-1 random variable S have probability density function (pdf)

f(t) = p1λ1e
−λ1t + p2λ2e

−λ2t, t ≥ 0, (B.1)

with E[S] = (p1/λ1) + (p2/λ2) = 1. We apply Theorem 2 to obtain the following corollary.

Corollary 5. (exact peakedness with H2I service) For the G/H2I/∞ model with service pdf

in (B.1),

zeG/H2I
(µ) ≡ 1 +

(
p21
λ1

+
2p1p2
λ1 + λ2

)
Ûs(λ1µ) +

(
p22
λ2

+
2p1p2
λ1 + λ2

)
Ûs(λ2µ)− µ−1. (B.2)

where Ûs(s) is the Laplace-Stieltjes transform of the rate-1 arrival process mean function in

(6).

We can also easily analyze the case with deterministic service times. Recall that the

arrival counting process A is assumed to be a stationary point process (with stationary

increments), which is the equilibrium renewal process if the interarrival times are i.i.d. (which

is a delayed renewal process associated with the given renewal arrival process in which the

first renewal is distributed according to the interarrival-time stationary-excess distribution)

if the interarrival times are i.i.d.

Theorem 7. (exact and second-order HT peakedness with D service) For the G/D/∞ model,

zeG/D(µ) = µV ar(A(µ−1)). For the special case of a renewal arrival process with interarrival

time pdf f having finite third moment,

zeGI/D(µ) = µV ar(A(µ−1)) = c2a + 2(γ22 − γ3)µ+ o(µ) as µ ↓ 0, (B.3)

where γ2 = m2/2 = (c2a + 1)/2 and γ3 = m3/6 with m1 = 1.
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Proof. We exploit the fact that Nµ coincides with A(t)−A(t− µ−1) when the service times

are all deterministic taking the value 1/µ. Hence, zeG/D(µ) = µV ar(A(µ−1)), as stated above.

Then, for GI arrivals, µV ar(A(µ−1)) satisfies (B.3) by (18) on p. 58 of [35].

As a quick check on Theorem 7, note that c2a = γ2 = γ3 = 1 for an exponential interarrival

time, so that zeMI/D(µ) = 1 for all µ, which again is consistent with the fact that zeMI/GI(µ) =

1 for all service-time distributions and all µ.

Example 3. (the E2I/D/∞ model) For an explicit example, consider a renewal arrival

process with interarrival times that are Erlang E2 with mean 1. For the E2I/D/∞ model

the exact peakedness is

zeE2I/D
(µ) = µV ar(A(µ−1)) =

1

2
+
µ

8
− µe−4µ

−1

8
=

1

2
+
µ

8
+ o

(
e−4µ

−1
)

as µ ↓ 0; (B.4)

see p. 57 of [35]. In this case, m1 = 1, m2 = 3/2 and m3 = 3, so that γ2 = 3/4 and γ3 = 1/2,

from which we see that (B.4) is consistent with (B.3), with the error in the second-order

approximation decreasing exponentially.

Appendix C. Description of Simulation Procedures in §5.1 and §7

Here we give a more detailed description of the procedures used in our loss model sim-

ulation experiments, the results of which are found in Tables 1-4 of §5.1 and Table 5 of

§7.

Appendix C.1. Individual Replications

In all cases (each defined by an arrival process, a service process, and the number of

servers), a single replication starts with an empty system and runs for 150/µ units of time,

where 1/µ is the mean service time. To ensure that performance is measured in steady

state, data is only taken in the time interval [50/µ, 150/µ]; we have verified for each case

that 50/µ units of time is long enough to reach steady state by plotting the estimated mean

and variance of the system size over time in for 1000 simulated runs and ensuring that these

variables appear constant graphically. The estimated blocking probability in a replication is
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the number of blocked arrivals over total arrivals, and when there are multiple arrival streams

as in the parcel blocking experiment in §7, separate blocking probabilities are estimated for

each stream in the same way. The time congestion is estimated by the time the system

spends full divided by the total observation ! time (100/µ).

Appendix C.2. Multiple Replications and Confidence Intervals

To estimate a performance measure, we execute four independent sets of independent

replications and take the sample mean in each set. We then take the mean of these four

independent estimates for our final estimate, and a 95% confidence interval (CI) is calculated

using the t-distribution with three degrees of freedom (if σ̂2 is the sample variance, then the

confidence interval has half-width 3.182σ̂/
√

4). For the staffing levels given in Tables 1-5,

enough replications are executed so that the CI lies entirely below the target at the given

number of servers and entirely above the target when one more server is included. Up to

5,000 replications for each of the four sets are performed to achieve the necessary precision,

and in the event that this is not enough replications, the lowest staffing level that produces

a CI containing the target is listed. When a performance measure is directly estimated as in

Table 5! , 10,000 replications are done for each set so that there are at least two significant

digits.

Appendix C.3. Estimation of the Mean Function

As shown in equation (31), an important component of our congestion ratio approxi-

mation is the use of Ûs, the Laplace-Stieltjes transform in (6) of the mean function U(x)

to estimate the expected arrivals during a full period. For a renewal arrival process, this

is easily calculated with the Laplace transform of the interarrival time pdf, as shown in

(26), but it presents difficulty for more general arrival processes. As mentioned in §6.2,

our method throughout was to directly estimate the mean function U(x) using simulation.

To do this, we performed one million independent replications of the rate-1 arrival process.

Each replication was 10 time units long, and we measured the number of arrivals every

0.01 time units so that each replication consisted of 1000 data points. We averaged all
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of the replications to estimate U(x), and then we estimated the derivative U ′(x) linearly:

U ′(x) ≈ (U(x+ .01)−U(x− .01))/.02. The final integral was approximated! with rectangles.

Appendix D. Derivation of the Parcel Blocking Approximation in (33)

The approximation (33) has been derived a number of ways, including a birth-death

argument with state dependent birth rates by [14]. [24] also provide a nice derivation that

considers a special case where the relation is exact, which we now review. Let there be k = 3

arrival streams. Arrival streams 1 and 2 are identical general processes, while arrival stream

3 is a Poisson process. According to the PASTA property, B3 = BT , which is also given by

(33). It remains to find the parcel blocking probability B1 for stream 1, which is equal to

B2, and the blocking probability of the superposition of streams 2 and 3, which we denote

B23. In general, we must have the balance equation

2α1B1 + α3B3 = αBC , (D.1)

which can be rearranged after BT is substituted for B3 to give

B1 = BT +
α

2α1

(BC −BT ). (D.2)

This is in fact identical to (33), which can be seen by substituting (32) into (33). To find

B23, we use an additional balance equation:

α1B1 + (α2 + α3)B23 = αBC . (D.3)

Combining (D.2) and (D.3), we get a formula similar to (D.2),

B23 = BT +
α

2(α2 + α3)
(BC −BT ), (D.4)

and this is also given by (33) when the system is viewed as having two arrival streams (stream

1 and the superposition of streams 2 and 3).
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Table E.1: Comparison of various approximations for the blocking probability and time congestion to simu-

lated values in the case of smaller offered loads, specifically for α = 1 and 5. Values indicate the minimum

number of servers required to achieve a blocking probability/time congestion below the given target. All H2

distributions have balanced means and SCV = 4.
System α Target Sim Block IS Block Hayward Sim Time IS Time Ratio Time

M/GI 1 0.001 6 5 6 6 5 5

z = 1 0.01 5 4 5 5 4 4

0.1 3 3 3 3 3 3

5 0.001 14 13 14 14 13 13

0.01 11 11 11 11 11 11

0.1 8 8 8 8 8 8

H2/M 1 0.001 7 7 (6) 10 (7) 7 7 (6) 7 (6)

z = 2.5 0.01 6 6 (5) 8 (6) 5 6 (5) 6 (5)

0.1 4 5 (4) 5 (4) 3 4 (3) 4 (3)

5 0.001 17 17 (16) 20 (18) 16 16 (15) 17 (16)

0.01 14 15 (14) 16 (14) 13 13 (13) 14 (13)

0.1 9 11 (10) 10 (10) 9 8 (8) 10 (9)

H2/H2 1 0.001 7 7 (5) 9 (7) 7 6 (5) 6 (5)

z = 2.05 0.01 6 6 (5) 7 (5) 5 5 (5) 5 (4)

0.1 4 4 (4) 4 (3) 3 4 (3) 4 (3)

5 0.001 16 16 (15) 18 (17) 16 15 (15) 16 (15)

0.01 13 14 (13) 15 (13) 13 13 (12) 13 (12)

0.1 9 10 (9) 10 (9) 8 8 (8) 9 (9)
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Appendix E. Additional Simulation Data

Appendix E.1. Performance of the Approximations at Small Offered Loads

Most of the approximations presented throughout are supported by heavy-traffic limits,

and we have shown that they are accurate for high offered loads (α = 100, 500). We also

used the case of α = 10 to demonstrate that the approximations work well even for lower

offered loads. Here we consider even smaller offered loads to address the question of how far

the approximations can be pushed.

Table E.1 is formatted identically to Tables 1-4 except the offered loads are α = 1, 5. In

addition, for all three of the systems presented, the exact peakedness is known in addition

to the heavy-traffic peakedness, so we can isolate the effects of approximating the exact

peakedness with the heavy-traffic peakedness. It seems the approximation methods retain

their accuracy in low traffic, as the cases are off by at most three servers. It is not clear from

the data which step is the bigger cause of error, and while the approximations are not well

supported by heavy-traffic limits at these smaller offered loads, the data suggest they may

still be useful.

Appendix E.2. Parcel Blocking Experiments extending §7

Table E.2 is a complement to the data provided in Table 5 of §7 using the same pairs

of arrival and service processes. Unlike the previous experiments, performance measures are

directly given here rather than taking the staffing approach. Offered loads range from 10

to 500, and the number of servers was chosen so that the performance measures would fall

approximately in our range of interest.

At the higher offered load of 500, all of the approximations perform well including the

parcel blocking approximation (33). The approximations are only slightly worse as the offered

load drops to 100, but they do not appear to be accurate at an offered load of 10. In fact, even

the blocking probability approximation (18) seems to perform poorly at this offered load,

though experiments in §5.1 suggested that this approximation produces accurate staffing

levels at offered loads as low as 10 for a variety of systems. This highlights the point made
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Table E.2: Comparison of approximate parcel blocking probabilities to simulated values. Both arrival

streams have equal rates, and the H2I distribution has balanced means with SCV = 4. The total blocking

probability is approximated with the infinite-server approximation (18), the parcel blocking probabilities are

approximated with (33), and the time congestion approximation uses the congestion ratio (23)

.
System α s Sim Block Approx Sim Time Approx Sim Block1 Approx

H2I +MI/MI 500 450 0.12 0.12 0.10 0.11 0.14 0.14

z = 1.75 500 0.045 0.047 0.038 0.042 0.052 0.052

z1 = 2.5 550 0.0053 0.0059 0.0044 0.0053 0.0061 0.0066

z2 = 1 100 80 0.24 0.26 0.21 0.23 0.28 0.28

100 0.095 0.11 0.080 0.094 0.11 0.12

120 0.015 0.018 0.013 0.016 0.018 0.020

10 10 0.25 0.33 0.21 0.30 0.28 0.37

15 0.062 0.092 0.051 0.082 0.073 0.10

20 0.0067 0.0097 0.0055 0.0086 0.0080 0.011

E4I +MI/MI 500 450 0.11 0.11 0.13 0.13 0.10 0.097

z = .8125 500 0.031 0.032 0.036 0.037 0.027 0.027

z1 = .625 550 0.00078 0.00075 0.00090 0.00087 0.00066 0.00063

z2 = 1 100 80 0.22 0.23 0.25 0.26 0.20 0.20

100 0.069 0.072 0.079 0.083 0.059 0.061

120 0.0033 0.0031 0.0038 0.0036 0.0027 0.0026

10 10 0.20 0.23 0.22 0.26 0.17 0.19

15 0.025 0.025 0.030 0.031 0.020 0.020

20 0.00068 0.00024 0.00086 0.00030 0.00053 0.00018

H2I +MI/H2I 500 450 0.12 0.12 0.10 0.11 0.14 0.13

z = 1.525 500 0.044 0.044 0.037 0.039 0.050 0.049

z1 = 2.05 550 0.0045 0.0044 0.0037 0.0040 0.0052 0.0049

z2 = 1 100 80 0.24 0.25 0.21 0.23 0.27 0.28

100 0.092 0.099 0.077 0.088 0.11 0.11

120 0.013 0.014 0.011 0.013 0.015 0.016

10 10 0.24 0.31 0.21 0.28 0.27 0.34

15 0.055 0.076 0.046 0.068 0.065 0.085

20 0.0052 0.0059 0.0042 0.0052 0.0061 0.0066

H2I +MI/RRS(M) 500 450 0.13 0.13 0.11 0.12 0.14 0.14

p = .5 500 0.054 0.059 0.047 0.053 0.062 0.062

z = 2.75 550 0.012 0.013 0.010 0.012 0.013 0.014

z1 = 3.5 100 80 0.25 0.28 0.22 0.25 0.28 0.29

z2 = 2 100 0.11 0.13 0.10 0.12 0.13 0.14

120 0.029 0.036 0.024 0.032 0.033 0.038

10 10 0.26 0.42 0.23 0.37 0.29 0.44

15 0.086 0.16 0.073 0.14 0.10 0.17

20 0.019 0.035 0.016 0.031 0.022 0.037
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in §5.1 that direct comparison of performance measures can be overly strict as a method of

evaluating approximations, particularly when staffing is the more common application.
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