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LIMITS AND APPROXIMATIONS

FOR THE BUSY-PERIOD
DISTRIBUTION IN
SINGLE-SERVER QUEUES

JOSEPH ABATE* AND WARD WHITTT

AT&T Belf Laboratories
Room 2C-178
Murray Hill, New Jersey 07974-0636

Limit theorems are established and relatively simple closed-form approxima-
tions are developed for the busy-period distribution in single-server queues. For
the M/G/1 queue, the complementary busy-period c.d.f. is shown to be asymp-
totically equivalent as ¢ — o to a scaled version of the heavy-traffic limit
{obtained as p — 1), where the scaling parameters are based on the asymptot-
ics as t — oo, We call this the asymptotic normal approximation, because it
involves the standard normal c.d.f. and density. The asymptotic normat
approximation is asymptotically correct as 1 — oo for each fixedpand as p— |
for each fixed ¢ and yields remarkably good approximations for times not too
small, whereas the direct heavy-traffic (p — 1) and asymptotic (f — o0) limits do
not yield such good approximations. Indeed, even the approximation based on
three terms of the standard asymptotic expansion does not perform well unless
t is very large. As a basis for generating corresponding approximations for the
busy-period distribution in more general models, we also establish a more gen-

eral heavy-traffic limit theorem.

1. INTRODUCTION

This paper is an extension of Abate and Whitt [3], in which we studied the
M/M/1 busy-period distribution and proposed approximations for busy-period
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distributions in more general single-server queues. Here we provide additional
theoretical and empirical support for two approximations proposed in Abate
and Whitt [3], the natural generalization of the asymptotic normal approxima-
tion in Eq. (4.3) there and the inverse Gaussian approximation in Eqs. (6.6),
(8.3), and (8.4) there. These approximations yield convenient closed-form
expressions depending on only a few parameters, and they help reveal the gen-
eral structure of the busy-period distribution. The busy-period distribution is
known to be important for determining system behavior.

We first establish a heavy-traffic limit for the busy-period distribution in the
M/G/1 queue, which involves letiing p — 1 from below, where p is the traffic
intensity (Theorem 1). This M/G/1 result is contained in Theorem 4 of Ott [26],
but we provide a different representation and an interesting new proof. We also
show that a variant of this heavy-traffic limit holds in much more general mod-
els (Theorem 6). Our heavy-traffic result for more general models complements
early analysis by Rice [27].

Next we show that asymptotics for the tail of the busy-period distribution
as { — oo in the M/G/1 queue in Section 5.6 of Cox and Smith [13] and Section
I11.7.3 of Cohen [12] can be expressed differently, in terms of a scaled version
of the heavy-traffic limit {(Eq. (2.15) in Theorem 2). This representation is our
asymptotic normal approximation. We show that it is asymptotically correct
both as p — | for each fixed ¢ and as f —+ oo for each fixed p less than 1. We show
that it provides excellent approximations, much better than either limit sepa-
rately, by making comparisons with exact numerical results for M/G/1 queues,
using numerical transform inversion as in Abate and Whitt [6,7].

Here is how this paper is organized. We establish several M/G/1 results in
Section 2, and we establish the heavy-traffic limit for other models in Section
3. In Section 4 we make the numerical comparisons with exact M/G/1 results.
All proofs are presented in Section 5. Finally, we provide an example in Sec-
tion 6 showing that a key equation for the asymptotics may have no reot.

2. M/G/1 QUEUE

We first consider the classical M/G/1 queue with one server, unlimited waiting
space, and some work-conserving discipline such as first-come first-served (see
Cohen [12, p. 249], Cox and Smith [13, Sect. 5.6], or Abate and Whitt [8]).
Customers arrive according to a Poisson process, whose rate we take to be p.
The service times are independent and identically distributed and independent
of the arrival process. Let the service-time distribution have c.d.f, G(¢) with
mean 1 and finite second moment m,. Thus, the traffic intensity is p. Let g(s) =
o e dG(t) be the Laplace-Stieltjes transform of G.

The busy period is the interval between the epoch of an arrival to an empty
system and the next epoch when the system is empty again. Let B(#) be the c.d.f.
of the busy period and b(s) = 5 e~ dB(t) its Laplace-Stieltjes transform. We
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assume that p < I; then, B(¢) is proper, i.e., B({) = 1 as { — oo, and it is char-
acterized by the Kendall functional equation

b(s) = g(s+ o — pb(s)). Q.1
Moreover,
oo f ,—AU n—1
Bon=3 | X 46wy, 20, 2.2)
n=1 Jo n!

where G,(t) is the c.d.f. of the n-fold convolution of G(¢).
For any c¢.d.f. F(¢) with mean m, let F<(¢) = 1 — F(t) be the complemen-
tary c.d.f. {c.c.d.f.}, and let

E(ty=m"! lec(u) du, t=0, 2.3)
0

be the associated stationary-excess c.d.f. {or equilibrium residual lifetime c.d.f.).
Note that {1 — f(s)] /sm is the Laplace-Stieltjes transform of F, when f(s) is
the Laplace-Stieltjes transform of F.

We characterize the heavy-traffic limit as the density. A, (¢) of the first-
moment c.d.f. H,(f) of regulated or reflecting Brownian motion (RBM) inves-
tigated in Abate and Whitt [2]. In particular, H,(¢) is the time-dependent
mean of RBM starting empty, normalized by dividing by the steady-state limit.
Its density &, (#) can be expressed explicitly as

(1) =2t712¢(£12) — 2[1 — ®(tV2)] =29 (2) — v.(t), t=0, 2.4

where ®(¢) is the c.d.f. and ¢(¢) is the density of a standard normal random
variable with mean 0 and variance 1; y(¢) is the gamma density with mean 1
and shape parameter 1, i.e.,

vy(tY = 27t) VY exp(—1/2), t=0; 2.5)

and ~.(#) is the associated stationary-excess density. From Eq. (2.4) we see
that A, (¢) is in convenient closed form; i.e., it is easy to evaluate directly, e.g.,
using rational approximations for the normal c.d.f. ®(¢) (e.g., Sect. 26.2.17 of
Abramowitz and Stegan [10]).

The density k,(¢) also has several other useful characterizations. It is the
density of the equilibrium time to emptiness for RBM, i.e., the density of the
first passage time to 0 starting with the exponential stationary distribution. In
other words, it is an exponential mixture of inverse Gaussian densities; see Sec-
tion 8 of Abate and Whitt [9]. The moment c.d.f. H,(¢) is the only c.d.f. on
[0,00) with mean 4 for which the 2-fold convolution coincides with stationary-
excess ¢.d.f., i.e., for which the transforms satisfy

hy(s)? = 2[1 — Ay (s)]; (2.6)
see Sections 1.2 and 1.3 of Abate and Whitt [2].
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Our heavy-traffic limit is obtained by simply increasing the arrival rate p.
It is possible to consider more general limits in which the service-time distribu-
tions also change with p, but as can be seen from Ott [26] the same limiting
behavior holds in considerable generality. To obtain our heavy-traffic limit, we
scale both inside (time) and outside the c.c.d.f. B;(#). We introduce the sub-
script p to indicate the dependence upon p. All proofs appear in Section 5.

TaEOREM 1: For each t > 0,
lirril my(1 — p) "' Bi(tma(1 — p)72) = hy(2). 2.7)
o

Theorem 1 can be obtained from Eq. (1.32) of Ott [26] by letting his param-
etersben, = (1 —p,) ', Ny =ma(l = p,) 7", pa = (1 —pa)pa/mz,and @ =g =1
and by identifying his integral limit with &, (¢). However, we give a different
proof.

The scaling in Eq. (2.7) is very important to establish the connection to
RBM. Indeed, without the scaling, B;(f) is continuous in p for all p > 0 for
each fixed ¢, so that the boundary for stability p = 1 plays no special role with-
out scaling. Moreover, the behavior of B;(¢) for small ¢ obviously depends
strongly on the form of the service-time distribution, but Theorem 1 shows that
for suitably large ¢ it does not. See Abate and Whitt [3} for more discussion.

Understanding of Theorem 1 is enhanced by recognizing that the left side
of Eq. (2.7) is a scaled version of the density of the busy-period stationary-excess
c.d.f., which in turn is a time-scaled version of the density of the equilibrium
time to emptiness in the M/G/1 model conditional on the system not being
empty; i.e.,

Ro(1) = bye(tma(1 ~ p)72) = my(1 — p) 7' Bi(tmy (1 — p)7%),  £120.Q2.8)

Theorem 1 thus can be regarded as a local limit theorem establishing conver-
gence of the time-scaled M/G/1 conditional equilibrium-time-to-emptiness
density #,(¢) to the RBM equilibrium-time-to-emptiness density #,(#). {The
M/G/1 conditioning event has probability p and, thus, convergesto 1 asp— 1.)
As a consequence of the Lebesgue-dominated convergence theorem (page 111
of Feller [16]), plus inequality (5.1) below, we also obtain convergence of the
associated scaled conditional equilibrium-time-to-emptiness c.d.f.’s from Theo-
rem 1. The form of the limit comes from Corollary 1.1.1 and Eq. (4.3) of Abate
and Whitt [2].

CoroLrLary: For each { = 0,
lim H,(¢) = H (1) =1 —2(1 + £){1 — &)} + 2¢V2(¢17%).
o1
‘We now turn to the asymptotic behavior as /1 — . Let f(f) ~g(¢f) ast -
mean that f(£}/z{t) — 1 as { - co. Assume that the busy-period c.d.f. has a den-

sity b(¢). Under considerable generality (see Eq. (49) on page 156 of Cox and
Smith [13] or Eqs. (11)-(13) of Abate, Choudhury, and Whitt [1]),
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ae—:/z.ﬁ
b(t) ~ =at '8y (t/B) ast— oo, 2.9
2783
so that
B(t) ~ 28b(t) ~ 20t "'y (t/B) ast— oo, (2.10)

where -y (¢) is the gamma density in Eq. (2.5) and « and 3 are constants depend-
ing on p and G(¢). In particular, 8 = 7/2, where 7 is the relaxation time, with

T =p+ - pg(=9), 2.11)
where ¢ is the unique real number u satisfying the equation
g(—u)y=-p~! 2.12)

when it exists, which we assume is the case. In general, Eq. (2.12) need not have
a solution, in which case Eq. (2.9) does not hold; we give an example in Sec-
tion 6. The parameter « in Eqgs. (2.9) and (2.10) is

a=[p'B7IE"(—=]"2 (2.13)

The following result is obtained by simply integrating both sides of Eq. (2.9)
over the interval (f,00). The key is to recognize that the right side is indeed
integrable and then identify what that integral is. For this purpose, note that
B~1v(t/B) is a density function and, from Eq. (2.4), that the derivative of
Ay (t) has the remarkably simple form

Bi(t) = -ty (1), =0, 2.14)
so that A; () ~ 2t 'y (¢) as { — oo,
TaEOREM 2: If Eq. (2.9) holds, then
Bi(t)y ~ af R (1/B) ast— o 2.15)
Sfor k() in Eq. (2.4) and o and 8 in Egs. (2.9)-(2.13).

Integrating over the interval (#,00) once again, we obtain the following
result from Eq. (2.15).

CororLary: If Eg. (2.15) holds, then
HE(t) ~ «H{(t(1 — pY/myB) ast— oo (2.16)
Sfor h (¢t} in Eq. (2.4) and « and (8 in Egs. (2.9)-(2.13).
We previously suggested approximation (2.15) for the M/M/1 queue in
Eq. (4.3) of Abate and Whitt [3]; as before, we call it the asymptotic normal
approximation, because it uses the normal density and c.d.f. in Eq. {2.4). The
general idea of using 4, (¢) for approximations seems to have been first pro-

posed for the M/M/1-LIFO waiting-time distribution by Riordan [28, p. 109],
but it does not seem to have been pursued.
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The difference between the two asymptotic expressions in Egs. (2.15) and
(2.16) is due to the fact that H;(¢) has been time-scaled whereas B°(¢) has not.
The expressions in Theorem 2 are to be contrasted with the standard asymptotic
expansions, which are of the form

BE(t) ~ e B8t 732 + 8,02 + 834772+ O(t7%?)) ast— oo, (21T
where §; are constants, with
& = aV2B/w (2.18)

from Eq. {2.9); see Section 4 of Abate and Whitt [3]. As shown for the M/M/1
queue in Abate and Whitt [3], Eq. (2.15) is a vastly superior approximation than
the first few terms of Eq. (2.17). Interestingly, the direct asymptotics for the
busy-period density yields a better approximation than the direct asymptotics
for the busy-period c.d.f. (e.g., see Table 1 of Abate et al. [1]), and this good
quality is inherited by the integral. The integral A, (¢) in Eq. (2.15) has struc-
ture not inherited by its asymptotic form.

The good performance of Eq. (2.15) can be partly explained theoretically,
because it is asymptotically exact as both p — 1 for any fixed ¢ (Theorem 1) and
as { — oo for any fixed p (Theorem 2). To see the connection to Theorem 1, we
need to know how 8 and o behave as p — 1. As shown in Abate et al. [1],

PR
1= L a—pma-p
2
+ (1 —p)*[1 — £(2 — (9/4)E) — ¢]
+ O((1 —p)*) (2.19)
and
a=(1-p) "1+ (1—p)I—-£)+0(1—-p)) (2.20)

as p — 1, where £ = m;/3m#, ¥ = m,/12m3, and m, is the kth moment of the
service time. Hence, we see that

Bo ' BS(Bt) ~ my(1 — p) 7' By (tmy (1 — p) %) ~ hy (£) (2.21)

as p — 1 for each fixed positive ¢.

In Theorem 3.5 of Abate and Whitt [5], convergence was also established
for the normalized M/M/1 busy-period density function as p — 1. We also
obtain such a result for M/G/1 under extra conditions. First, the busy-period
c.d.f. must have a density. A sufficient condition is for the service-time c.d.f.
G(?) to be absolutely continuous. If the service-time c.d.f. G(¢) is absolutely
continuous with a density g(#), then so are all n-fold convolutions G, [16,
p. 146). Thus, from Eq. (2.2) and Fubini [16, p. 111}, B(¢) is absolutely con-
tinuous with density

o —At n—1
b(t) = Z:l e (D)

pY g.(t), =0, (2.22)
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where g,{¢) is the density of G, (¢), from which we see that 5{0) = g(0) and
b'(0) = 2°(0).

TuEOREM 3: Suppose that the service-time c.d.f. G(t) is absolutely continuous
with density g(t), so that the busy-period c.d.f. B(t) is absolutely continuous
with density b(t), where b(0) = g(0). If (0) < o0 and b(t) is monotone, then

lim m3(1 — p) 2b(tmy(1 — p)72) = Aj(¢) = Qnt3 )y 2", t>0.
p—1
2.23)

Because b'(0) = g’(0), where in general this is understood to be a one-sided
derivative, a necessary condition in order for H(¢) to be monotone is g'(0) < 0.
Keilson [20] has shown that b(¢) is completely monotone (a mixture of expo-
nentials) and thus monotone if g(¢) is completely monotone. Hence, a sufficient
condition for Theorem 3 is the complete monotonicity of the service-time den-
sity. However, under this condition we can establish an even stronger result. For
any function f(¢), let f£*}(¢) be the kth derivative of f at ¢.

THEOREM 4: If the service-time density g(t) is completely monotone, then for
alik=0

Hm m3te(1 — p)=C+20pO(my(1 — p)2) = h{(1), t=0. (.24

p—+1

Theorem 4 describes a remarkable degree of local convergence. However,
the good behavior is easy to understand via the complete monotonicity. By
Theorem 2.1 of Keilson [20], b(¢) in Eq. (2.22) and thus B(¢) and A,(#) in
Eq. (2.8) are completely monotone when g(¢) is completely monotone; i.e., for
eachp, 0 < p <1,

h,,(t)zf xle~"* dW, (x), t=0, (2.25)
0

for some mixing c.d.f. W,(x}). Theorem 4 follows easily from a limit theorem
for the mixing c.d.f.’s.

THEOREM 5: If the service-time density g(t) is completely monotone, so that
h,(1) in Eq. (2.8) admits spectral representation (2.25), then for each x > 0

X
lim W,(x) = W(x) =f w; () du, (2.26)
p—1 0
where
0, x> 2,

= — ) 2.27

w1 () 2 x,_ 0=x=<2, ( )
TVX

Is the mixing density of h,(t) in Eq. (2.4).
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where
AL
In=>V t=0, 3.5)
i=1
V; is the ith service time, and N (0,1) is a standard (mean 0, variance 1) normal
random variable.

Combining Egs. (3.2) and (3.3), we see that the heavy-traffic limit for
GI1/M/1 depends on the general interarrival-time distribution only through its
first two moments. However, this nice property that holds for M/G/1 and
GI/M/1 does not hold for general GI/G/1 queues. More generally, the busy-
period mean is a relatively difficult quantity to obtain. For the X,,/G/1 queue,
we can deduce that Condition C2 holds and we can calculate b from Eq. (5.205)
of Cohen [12, p. 330]. From this expression, we see that b depends on the
interarrival-time and service-time distributions beyond their first two moments.
In particular, it depends on the 7 roots of the transform equation

&(—s)B(s) =1, (3.6)

where & (s) and B(s) are the Laplace-Stieltjes transforms of the interarrival-time
and service-time distributions. For many other models, the mean busy period
can be calculated nmumerically. For more on the GI/G/1 busy period, see Cohen
{12}, Kingman {24] and Rice [27].

For practical purposes we suggest using the Kraemer and Langenbach-Belz
[25] approximation, also given in Eq. (49) of Whitt [32]:

1 1

EB. = = . 3.7
£OPW,=0) (1 —p)(1 —p(cZ— h(p,ct,ct)
where
1+ ¢2+ pc? 2 < 1
14 p(c2— 1)+ p2(4c2 + )’ =
h{p,c2,c?) = : (3.8)
4o ci=1
c2 + p24ck + c2)’ T
From Eqgs. (3.7) and (3.8), we obtain
1
b 3.9

T 1 (2 - DA, gcl)

For insights into the way the mean EB depends on the parameters ¢2 and c2,
see Whitt [33].

We remark that Theorem 6 is consistent with Eq. (75) of Rice [27]. His
approximate asymptotic formula for the busy-period density can be obtained
from Eq. (3.1) by first taking the derivative and then letting f — oo. The corre-
sponding formula for B;(¢) is
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b(1— p)
d

=~ (b/{1 — p)*)N2d/wt? exp(—t(1 — p)*/2d)

~ EBD/nt3e~ " (3.10)

for D= (1 — p)*/2d and EB = P(W = 0)"! = b/(1 — p). Formula (3.10) is
intended for high p and large ¢.

Theorem 6 provides a pure heavy-traffic approximation for B¢(¢) in very
general single-server queues. However, we do not regard Eq. (3.1) as our prin-
cipal proposed approximation for B(¢). Our actual proposed approximation
is Eq. (2.15) for « and § determined by Eq. (2.10), assuming that Eq. (2.10)
holds for the more general model. We intend to discuss asymptotics of the form
in Eq. (2.10) for other GI/G/1 models in a future paper. For GI/M/1 the
asymptotics can be obtained by exploiting the duality between M/G/1 and
GI/M/1 (see Eq. (77) of Takdcs {30]). More generally, we can obtain the desired
parameters o and 3 in Eq. (2.10) numerically using the inversion algorithm in
Choudhury and Lucantoni [11]. Rice’s [27] formula (3.10) provides support for
both Eq. (2.10) and the asymptotic behavior of the parameters o and § as in
Eqgs. (2.19) and (2.20},

Bi(t) = hi (21 — p)*/d)

4. NUMERICAL EXAMPLES

This section extends the numerical investigation of approximations for the busy-
period c.c.d.f. B(t) done for the M/M/1 queue in Abate and Whitt [3] to
M/G/1 queues, Our previous investigation showed that even three terms of
asymptotic expansion {2.17) yield a remarkably poor approximation; see Ta-
ble 10 there. Hence, we do not consider the approximations for B°(t) in the
M/G/1 queues based on the asymptotics as ¢ — oo in Eq. (2.10) or (2.17).

Here we consider three candidate approximations. First, we consider the
pure heavy-traffic approximation obtained from Theorem 1, namely,

Be(t) = (1 — p)yms ' by (1 — p)*t/m3). 4.1

Formula (4.1) is obtained from Eq. (2.7) by moving the normalizing constants
to the right-hand side.

Our second approximation is the asymptotic normal approximation pro-
vided by Theorem 2, i.e., Eq. (2.15). The heavy-traffic approximation can be
regarded as an approximation to the asymptotic normal approximation in which
the asymptotic parameters § and « from Egs. (2.9)-(2.13) in Eq. (2.15) are
replaced by the first terms in their heavy-traffic expansions in Egs. {2.19) and
(2.20). Thus, we can see how these first two approximations differ by evaluat-
ing the quality of the one-term approximations in Egs. (2.19) and (2.20). As we



592 J. Abate and W, Whitt

would anticipate, these approximations get closer as p increases, but the pure

heavy-traffic approximation has significantly bigger errors for lower values of p.
The third approximation considered here is the inverse Gaussian (IG)

approximation in Eqs. (6.6) and (8.3) of Abate and Whitt [3],

Be(t) = IGS((1 — p)2t/(1 + ¢2);v,x), .2)
where
1IG<(t;v,x) = ®°((t — x)/vt) — X" &£ + x)/\vt) 4.3)

with $°(x) the normal c.d.f. and

and »=1—x. 4.4)

This scaling matches the first two moments.

Given that RBM is a natural heavy-traffic approximation for the workload
process, the IG approximation is a natural approximation for the busy-period
distribution, because it is a first-passage time distribution for RBM. This idea
was the basis for an IG approximation proposed by Heyman {18], but our IG
approximation is a significant improvement, both because it is closed-form and
because it yields better results, as shown for the M/M/1 queue before. For the
M/M/1 queue, the asymptotic normal and IG approximations were the lead-
ing approximations among a fairly large set, with the asymptotic normal
approximation performing better for large times and the IG approximation per-
forming better for small times; see Tables 10 and 11 of Abate and Whitt [3].

Cur numerical experience here for M/G/1 queues with other service-time
distributions confirms our previous experience for M/M/1 queues. To illustrate,
we display numerical results for B°(¢) for two different service-time distribu-
tions and three traffic intensities. The service-time distributions are E,, the
four-stage Erlang with ¢Z = 0.25, and I, ,, the gamma density in Eq. (2.5) with
shape parameter 1/2 and, thus, ¢2 = 2. Clearly, E, is less variable than an
exponential, whereas I";; is more variable than an exponential. As before, the
mean service time is always 1. The three traffic intensities are 0.5, 0.75, and 0.9.

The exact values of B(¢) and the three approximations are given for the
six cases in Tables 1-6. The exact values are obtained by numerical transform
inversion, using Abate and Whitt [6,7]. Unlike for the M/M/1 queue, here
we do not scale time within B¢(¢); the different tables would be more closely
related if we did. As before, the asymptotic normal approximation in Eq. (2.15)
performs remarkably well for times not too small, and all approximations im-
prove as p increases.

The two service-time distributions we consider are both gamma distribu-
tions. In general, the gamma service-time transform is

g(s;0)y=(1 + s/w)™™ 4.5)
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TasLe 1. A Comparison of Approximations with Exact Values of the
Busy-Period c.c.d.f. B¢(¢) in the M/E,/1 Queue with p = 0.5

Asymptotic
Exact by IG Normal Heavy-Traffic
Transform Approximation Approximation Approximation
Time Inversion in Egs. (4.2)-(4.4) in Eq. (2.15) in Eq. (4.1)
0.5 0.881 0.811 1.10 0.66
I 0.582 0.560 0.617 0.384
2 0.289 0.306 0.300 0.202
3 0.175 0.188 0.180 0.130
5 0.0800 0.0852 0.0815 0.0667
9 0.0239 0.0240 0.0242 0.0248
12 0.0110 0.0106 0.0112 0.0135
15 0.00551 0.00494 0.00555 0.00781
20 0.00186 0.00152 0.00188 0.00340
32 0.000175 0.000113 0.000176 0.000578

for w > 0, where w is the shape parameter and the mean is fixed at 1. The
moments satisfy the recursions: m;, = I and my,; = {1 + k/w)m,, k= 1. For
the gamma transform in Eq. (4.5), the root of Eq. (2.12) is

t=w(l —plthray, 4.6)

TasiLE 2. A Comparison of Approximations with Exact Values of the
Busy-Period c.c.d.f. B°(¢) in the M/E4/1 Queue with p = 0.75

Asymptotic
Exact by 1G Normal Heavy-Traffic
Transform Approximation Approximation Approximation
Time Inversion in Egs. (4.2)-(4.4) in Eq. (2.15) in Eq. (4.1)
0.5 0.891 0.800 1.05 0.82
I 0.640 0.599 0.670 0.531
2 0.399 0.400 0.410 0.329
6 0.159 0.166 0.161 0.134
10 0.0924 0.0964 0.0930 0.0780
15 0.0554 0:0575 0.0556 0.0493
30 0.0179 0.0182 0.0180 0.0174
40 0.00982 0.00978 0.00986 0.01005
80 0.00136 0.00126 0.00136 0.00170
120 0.000252 0.000218 0.000252 0.000382
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TasLE 3. A Comparison of Approximations with Exact Values of the
Busy-Period c.c.d.f. B°(¢) in the M/E,/1 Queue with p = 0.9

. Asymptotic
Exact by IG Normal Heavy-Traffic
Transform Approximation Approximation Approximation
Time Inversion in Eqs. (4.2)-(4.4) in Eq. (2.15) in Eq. (4.1)
0.5 0.897 0.796 1.02 0.93
1 0.671 0.618 0.697 0.637
5 0.265 0.266 0.268 0.246
15 0.124 0.127 0.125 0.115
30 0.0703 0.0717 0.0704 0.0656
60 0.0353 0.0360 0.0354 0.0334
120 0.0147 0.0148 0.0147 0.0141
200 0.00626 0.00628 0.00626 0.00620
400 0.00125 0.00123 0.00125 0.00131
600 0.000330 0.000318 0.000330 0.000366
so that the asymptotic parameters in Eq. (2.10) are
BT =2(p+w— (1 +wp ) o @.7
and
a=p /(1 + w7}, whereg= Qw+ 1)/2(ew + 1). 4.8)

TasLe 4. A Comparison of Approximations with Exact Values of the
Busy-Period c.c.d.f. B¢(¢) in the M/T',,,/1 Queue with p = 0.5

Asymptotic
* Exact by IG ‘ Normal Heavy-Traffic
Transform Approximation Approximation Approximation
Time Inversion in Eqgs. (4.2)-(4.4) in Eq. (2.15) in Eq. (4.1)
0.1 0.755 0:94 2.0 1.3
1 0.369 0.368 0.467 0.313
2 0.237 0.223 0.269 0.186
5 0.103 0.095 0.109 - 0.081
8 0.0585 0.0546 0.0606 . 0.0477
15 0.0218 0.0211 0.0222 0.0197
20 0.0123 0.0122 0.0125 0.0120
30 0.00452 0.00476 0.00457 0.00512
40 0.00186 0.00207 0.00188 0.00244
60 0.000378 0.000466 0.000380 0.000657
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TasLe 5. A Comparison of Approximations with Exact Values of the
Busy-Period c.c.d.f. B(¢) in the M/T,5/1 Queue with p = 0.75

Asymptotic
Exact by IG Normal Heavy-Traffic
Transform Approximation Approximation Approximation
Time Inversion in Eqs. (4.2)-(4.4) in Eq. (2.15) in Eq. (4.1)
0.1 0.757 0.94 1.7 1.4
1 0.392 0.404 0.457 10.382
5 0.152 0.147 0.157 0.133
8 0.106 0.102 0.108 0.093
15 0.0607 0.0587 0.0615 0.0537
30 0.0284 0.0276 0.0286 0.0258
60 0.0103 0.0102 0.0104 0.0099
80 0.00607 0.00605 -0.00609 0.60599
120 0.00244 0.00248 0.00244 0.00256
250 0.000222 0.000239 0.000222 0.000282

‘We obtain deterministic {I}) service by letting « — o0 in Eq. (4.5); i.e., then
g(s;w) > e, = —logp,

oo

B=20og(p™ ) — (U —p)=0—p) 3 (1 -2 +k/2) 4.9

and

a =B/p.

k=0

(4.10)

TapiLe 6. A Comparison of Approximations with Exact Values of the
Busy-Period c.c.d.f. B¢(¢) in the M/T'|,»/1 Queue with p = 0.9

Asymptotic
Exact by IG Normal Heavy-Traffic
Transform Approximation Approximation Approximation
Time Inversion in Egs. (4.2)~-(4.4) in Eq. (2.15}) in Eq. (4.1)
0.1 0.758 0.93 1.5 1.4
1 0.406 0.424 0.458 0.428
5 0.183 0.181 0.186 0.174
10 0.121 0.119 0.122 0.115
20 0.0772 0.0762 0.0777 0.0731
50 0.0392 0.0387 0.0393 0.0372
100 0.0212 0.0209 0.0212 0.0202
250 0.00738 0.00732 0.00738 0.00716
500 0.00241 0.00241 0.00241 0.00240
1000 0.000470 0.000475 0.000470 0.000488
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Our two numerical examples involve the special cases o = 4(E,;) and w =
1/2(T;/2). The first four moments for E, are 1, 5/4, 15/8, and 105/32 and for
T\, are 1, 3, 15, and 105. The auxiliary parameters in Eq. (2.19) are £ = 2/5
and v =7/50 for E;and £ =5/9 and ¥ = 35/108 for Iy 5.

We have noted that the heavy-traffic approximation is equivalent to the
asymptotic normal approximation with the first terms of the heavy-traffic
expansions for $7! and « in Eqs. (2.19) and (2.20). Refined heavy-traffic ap-
proximations can be obtained by using more terms in Eqgs. (2.19) and (2.20). Let
B+ be the approximation of 8 based on k terms of the heavy-traffic asymptotic
expansion for 8 in Eq. (1.19) and similarly for . Table 7 shows the quality of
these approximations for 8 for different values of p for the I'y,; and D service.
We use D because from Eq. (2.19) we see that the single term 3, performs worst
in that case because 1 — § is largest for that case. We do not show any refined
approximations in Tables 1-6. The approximations based on (o3, 8;) and (a5, 83)
are successive improvements over the basic heavy-traffic approximation based
on (¢;,B3;). They fall between the heavy-traffic approximation based on
(a1, 1) and the asymptotic normal approximation based on («, 8). The (3, £3)
refined approximation tends to be essentially the same as the asymptotic nor-
mal approximation at p = 0.75, but not at p = 0.25.

We might also evaluate the asymptotic normal approximation from a
moment or integral-average point of view; i.e., we can ask about the quality of
the approximation

meC(t)a’t = ocfmtﬁ“hl(t/ﬁ)dt, 4.11)
4] .

0

TasLe 7. A Comparison of Heavy-Traffic
Expansion Approximations for the
M/G/1 Asymptotic Parameter 8

Exact 3 Terms 2 Terms 1 Term
0 B Bs/B B,/8 B:/8
I’y > Service-Time Distribution
0.25 3.232 1.12 1.24 -1.65
0.50 9.084 1.03 1.08 1.32
0.75 42.43 1.003 1.02 1.13
0.90 286.5 1.000 1.002 1.05
D Service-Time Distribution
0.25 0.786 1.27 - 1.51 2.26
0.50 2.59 1.06 1.16 1.55
0.75 13.26 1.007 1.03 1.21

0.90 93.33 1.000 1.005 1.07
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from which we get
by/2 = af3/2, 4.12)
where b, is the £ th busy-period moment. However, b, = «, 8 and, by Eqgs. (2.19)
and (2.20),
aB =0 Bi(1+ 0l -p)) asp—], 4.13)
so that the error in Eq. (4.11) is only O((1 — p)?) as p — 1.

5. PROOFS

Proor or Tueorem 1: By Chebychev’s inequality using the first moment,
page 152 of Feller [16], B{(¢) = 1/t{1 — p) and

B (t) = my(1 — p) "' BS(tmy(1 — p)~2) < L/t G.1)

for all ¢ and p. Because B°(¢) is monotone, we can thus apply the Helly selec-
tion theorem, page 267 of Feller [16], to conclude that any sequence {4, (¢):
n = 1} with p, — 1 has a subsequence that converges to a monotone function
Sf(t) (depending on the subsequence) with 0 < f(f) < 1/f, where the convergence
is pointwise at all continuity points of f. We establish convergence to A, by
showing that 4, is the only possible limit for a convergent subsequence. To do
this we work with the transforms and functional Eq. (2.1).

We begin by expressing busy-period functional Eq. (2.1} in terms of the
busy-period stationary-excess transform 5,(s). First,

b(sy=g(s+sp(1 —p) ' b.(s)) (5.2)
and then

A =p)[1-5( _ (1=p)
s 5

be(s) = (1 — (s +5p(1 — p) b (s)). (5.3)

We then change the time scale to obtain forms (2.8) and (5.3),

| e A
h,(8) = bo((1 — p)?my's) = —”12——-(1 —é((l 0) S[l + lip hp(s)])).

(1—p)s ny
B.49

Now we assume ﬁp(s) — f(s) as p— 1 for some subsequence and show that
we must have f(s) = h,(s). Note that the service-time distribution does not
change with p, but the argument of £ in Eq. (5.4) is getting small as p — 1.
Because the service-time distribufion has a finite second moment,

mys?

2

gs)=1—-s+ + o(s) ass— 0. (5.5)

Expanding ¢ in Eq. (5.4), we obtain
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