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Abstract 

We provide additional descriptions of the steady-state waiting-time distribution in the M/G/1 queue with the last-in first- 
out (LIFO) service discipline. We establish heavy-traffic limits for both the cumulative distribution function (cdf) and the 
moments. We develop an approximation for the cdf that is asymptotically correct both as the traffic intensity p ~ 1 for each 
time t and as t ~ oo for each p. We show that in heavy traffic the LIFO moments are related to the FIFO moments by the 
Catalan numbers. We also develop a new recursive algorithm for computing the moments. (~) 1997 Elsevier Science B.V. 
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1. Introduction 

The purpose of this paper is to deduce additional 
properties of the steady-state waiting-time distribution 
(until beginning service) in the M/G/1 queue with the 
last-in first-out (LIFO) service discipline. We obtain 
our results here by applying results in our previous 
papers [1-6]. Our results here complement previous 
M/G/1 LIFO results by Vaulot [17], Wishart [19], 
Riordan [13, 14], Tak~cs [16] and Iliadis and 
Fuhrmann [10]. 

We start in Section 2 by establishing a heavy- 
traffic limit theorem for the M/G/1 LIFO steady-state 
waiting-time distribution. In Section 3 we give a new 
derivation for the large-time asymptotics of  the LIFO 
steady-state waiting-time distribution, complementing 
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our recent result in [1]. In Section 4 we then develop 
an approximation for the LIFO waiting-time distri- 
bution, called the asymptotic normal approximation, 
and show that it is asymptotically correct both as time 
t --* c~ for each value of the traffic intensity p and as 
p --* 1 for each t. Our approximation generalizes an 
approximation suggested for the M/M/1 model by 
Riordan [14, p. 109]. Sections 2 - 4  parallel and draw 
on our previous limiting results for the M/G/1 busy- 
period distribution in [5]. In Section 5 we give a nu- 
merical example showing that the asymptotic normal 
approximation for the LIFO steady-state waiting-time 
cdf performs very well. We show that it is much bet- 
ter than the large-time limit (the limit as t ~ c~ for 
each fixed p). 

In Section 6 we develop a new recursive algorithm 
for computing the M/G/1 LIFO waiting-time mo- 
ments. We believe that this algorithm is an attractive 
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alternative to previous algorithms developed by 
Takfics [16] and Iliadis and Fuhrmann [10]. The first 
four moments are given explicitly. In Section 7 we 
show that the moments have a very simple asymptotic 
form in heavy traffic. 

2. H e a v y - t r a t i i c l i m i t f o r  the L I F O c d f  

In this section we establish a heavy-traffic limit for 
the LIFO steady-state waiting-time cdf, denoted by 
WE. For this purpose, we establish heavy-traffic lim- 
its for the M/G/1 workload process moment cdf's. 
These workload results extend previous results for 
the M/M/1 special case in Corollary 5.22 of [3]. The 
heavy-traffic limits for the workload process are local- 
limit refinements (versions for densities) to theorems 
that can be deduced directly from older heavy-traffic 
limit theorems, e.g., in [18]. 

We use the following notation. For any cumulative 
distribution function (cdf) F,  let f be the associated 
probability density function (pdf) and let mk(F) be 
the kth moment. Let FC(t) - 1 - F(t)  be the associ- 
ated complementary cdf (ccdf) and let the associated 
equilibrium-excess ccdf be 

Fee(t) = ml(F) -1 FC(u). (2.1) 

The pdf of Fc is fc and its kth moment is mk(Fe). 
For k ~> 1, let Hk be the kth moment cdfofcanonical 

(drift 1, diffusion coefficient 1) reflected Brownian 
motion (RBM) {R(t): t~>0}, i.e., 

E[R(t )  k In(0) = 01 
Hk(t) = E[R(e~)k ] , t~>0. (2.2) 

By definition, Hk(t) as a function of t is the expecta- 
tion of a stochastic process, but it also has the structure 
of a cdf. Throughout this paper we relate the tail be- 
havior of cdf's to large-time asymptotics of stochastic 
processes. Properties of the RBM moment cdf's are 
established in [2]. Let hk be the density of ilk. Let 
be the standard (mean 0, variance 1 ) normal cdf and 
let ~b be its density. We shall primarily focus on the 
pdf hi, which has the formula 

h i ( t )  = 2t l /2 f lp( t l /2)  - 2 1 1  - q b ( t l / 2 ) ]  

= 2y(t) - y~(t), (2.3) 

where 7 is the gamma pdf with mean 
parameter ½, i.e., 

1 and shape 

7(t) = (2~t)-l/Ze-t/2, t>~O, (2.4) 

and ~e is the associated equilibrium-excess pdf. 
We consider a family of M/G/1 queueing sys- 

tems indexed by the arrival rate p. We assume that 
the service-time distribution is fixed, having cdf G 
with pdf 9, mean 1 and second moment m2(G). Let 
{Vp(t): t~>0} be the M/G/1 workload (unfinished 
work or virtual waiting time) process and, for k~> 1, 
let Hpk be its associated kth moment cdf, expressed 
as a function of the arrival rate p, i.e., 

Hpk(t) ---- E[Vp(t)k[ Vp(0) = 0] 
E[Vp(oo)k] , t~>0; (2.5) 

see [4]. Just as with Hk(t) in (2.2), Hpk(t) as a 
function of  t is simultaneously the expectation of  a 
stochastic process and a cdf for each p. Also let//no be 
the 0th-moment cdf or server-occupancy cdf, defined 
by 

Hpo(t) = (1 - Poo(t))/p, t>~O, (2.6) 

where Poo(t) is the probability of emptiness at time t 
starting empty at time 0 (with arrival rate p), as in 
(23) of [4]. 

The key formula connecting these expressions to 
the LIFO cdf WE is 

W~(t) = Poo(t) - (1 - p) = primo(t), (2.7) 

due to Takfics [16]; see (36) of [1] and (78) of [16, 
p. 500]. The next theorem describes the LIFO steady- 
state waiting-time cdf WE in heavy traffic. 

Theorem 2.1. For each t > 0, 

lim 2(1 - p) - I  W~(tmz(G)(1 - p)-2)  
p---+ 1 

= lim 2(1 - p ) - l H f o ( t m 2 ( G ) ( 1  - p ) - 2 )  
p---+ 1 

= lim m2(G)(1 - p)-2hpl(tm2(G)(1 - p)-2)  
p---+ 1 

= h i ( t )  

for hi in (2.3). 
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ProoL By (2.7), the first limit is equivalent to the 
second. By Theorem 2(b) of  [4], hpoe(t) = Hpl(t), so 
that hpl(t) = Hpo(t)/hpm. By Theorem 6(b) of  [4], 
hpm = p-lvpl = m2(G)/2p(1 - p). Hence, the third 
limit is equivalent to the second. 

By Theorems 3(a) and 4(b) of  [4], 

h.o l ( s )  = 1 - bp¢(s) 
sbpel(1  -- p "4- p b p e ( 8 ) ) '  

(2.8) 

where bp¢(s) is the transform of  the equilibrium-excess 
distribution associated with the busy period and bp~l 
is its mean. For brevity, let c -- (1 - p)2/m2(G) and 
note that hoe1 = (2c) -1 by Theorem 5(b) of  [4]. Then, 
by (2.8), 

211 - bp~(cs)] 
hpl(cs) = s(1 - p + pbpe(eS))" 

Since we have expressions for the transforms, we es- 
tablish the convergence using them. By Theorem 1 
of  [5], bpe(CS)~ hi(s)  as p---+ 1. (Eqs. (2.9) of  [5] 
should read hp( t ) - m2(1 - p )-2 bp~( tm2(1 - p ) -2 )  __ 
m2(1 - p)-lB~(tm2(1 - e)-2), with m2 there being 
m2(G) here. Incidentally, a space normalization - t y p -  
ically c(1 - p) for a constant c - is missing before 
Wp*(dt(1 - p ) -2 )  in Condition C2 on p. 589 in [5] as 
well.) Hence, 

Corollary.  For each t > O, 

lim Hpl(tm2( G)(1 - p ) - 2 )  = Hi(t) 
0---* 1 

=1 - 2(1 + t)[1 - q~(tl/2)] H- 2tl/2flp(tl/2). 

3. Large-time asymptotics 

In [1] we used (2.7) and an integral representation 
for Poo(t) to establish the asymptotic behavior of  
W~(t) as t ~ cx~. Here we give an alternative deriva- 
tion based on asymptotics for the density wL(t). Let 
f(t)"~O(t) as t---~oo mean that f ( t ) / g ( t ) -+ l  as 
t ----+ OO. 

We start with the elementary observation that the 
conditional LIFO steady-state waiting time given that 
it is positive coincides with the busy period generated 
by the equilibrium excess of  a service time. Let b(t, O) 
be the density of  a busy period starting with a service 
time of  length 0. Then the LIFO waiting-time distri- 
bution has an atom of  size 1 - p at the origin and a 
density 

/7 WE(t) = p b(t,O)ge(O)dO, t > 0 .  (3.1) 

From (3.1), we reason as in [8] and [1] to obtain the 
following asymptotic result. 

hpl(CS) ~ 211 - hi (s ) ]  _ hie(S) : ]-/l(S), 
s a l ( s )  a l ( s )  

with the last step following from (2.6) of  [5] or [2, 
p. 568]. [] 

The LIFO approximation obtained from Theo- 
rem 2.1 is 

W~(t) ~ (1 - P)hl(t(1 - p)2/m2(G)). (2.9) 
2 

The M/M/1 special case of  Theorem 2.1 for hpl(t) 
is given in Corollary 5.2.2 of[3]. In [3] the time scaling 
is done at the outset; see (2.2) there. 

The limit for the density hpl implies a corresponding 
limit for the associated cdfHpl ,  by Scheff6's theorem 
of  Billingsley [7, p. 224]. The following result could 
also be deduced from standard heavy-traffic limits for 
the workload process [ 18]. 

Theorem 3.1. As t ~ c~, 

WL(t )  ~'~ (fO/Z)(~t 3 ) - -1~2e- t#  ( 3 . 2 )  

and 

W~( t ) "~ 6o(Ttt 3 ) -  l/2e-t/~, (3.3) 

where ~-1 is the asymptotic decay rate (reciprocal 
o f  the relaxation time), 9iven by 

z - l  = P + ( - PO(-~),  (3.4) 

is the unique real number u to the left o f  all singu- 
larities o f  the service-time moment 9eneratino func- 
tion ~( - s )  (assumed to exist) such that 

~ ' ( - u )  = _ p - l ,  (3.5) 

=pc t / (  2, (3.6) 

ct = [2p3~"( -~) ]  -t/2. (3.7) 
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Proofi We apply (19) of  [1] with (3.1) to obtain the 
integral representation 

wL(t) = (p / t )£ f - l ( - -~e(S)  exp(--pt(1 -- if(s))), 

(3.8) 

where L,e-t is the Laplace transform inversion opera- 
tor (Bromwich contour integral) 

1 fa+ioo 
L'e-](0(s))(t) = ~ Ja-ioo eS t f ( s )ds '  (3.9) 

where the contour Re(s) = a is to the right of all sin- 
gularities o f f ( s ) .  We then apply Laplace's method as 
in [8, p. 156] and Olver [12, pp. 80, 121 and 127] to 
obtain (3.2). We can also obtain the asymptotic result 
for wL(t) by relating (3.8) to the integral represen- 
tation for the busy-period density b(t)  in (3) of [1]. 
From [12, p. 127], we see that 

WE(t) ~ p2(--Ole(--()b(t) as t -+ oo, (3.10) 

where 

^ t  - g e ( - ~ )  = 1/(2P z, (3.11) 

so that 

wL(t )~  ~2zb(t)  as t---+o~. (3.12) 

Hence, we can invoke the known asymptotics for b(t)  
in (5) of[l] .  Finally, we integrate (3.2) to obtain (3.3); 
see [9, p. 17]. 

4. The asymptotic normal approximation 

In [5] we found that the tail of the M/G/1 busy- 
period ccdf is well approximated by an asymptotic 
normal approximation, which is asymptotically cor- 
rect as p ~ 1 for each t and as t ~ o¢ for each p. 
We now apply essentially the same reasoning to de- 
velop a similar approximation for the LIFO steady- 
state waiting-time ccdf. 

Paralleling Theorem 2 of [5], we can express the 
asymptotic relation in (3.3) in terms of ht (t), because 

h l ( t ) ~ 2 t - l y ( t )  as t---+oo (4.1) 

for 7 in (2.4). The following is our asymptotic normal 
approximation, obtained by combining (2.4), (3.1) 

and (4.1). The M/M/1 special case was proposed for 
the M/M/1 queue by Riordan [14, p. 109]. 

Theorem 4.1. I f (3 .3)  holds, then 

W~(t),-~2coz-3/2hl(2t/z) as t ~ co. 

for  ht( t )  in (2.3), z in (3.4) and o~ in (3.6). 

Theorem 4.1 shows directly that the asymptotic nor- 
mal approximation is asymptotically correct as t ~ oo 
for each p. Previous asymptotic relations for z and 09 
show that it is also asymptotically correct as p ~ 1 for 
each t. In particular, by (14) and (40) of [1], 

z - l - - ( 1 - - p ) 2 ( l + O ( 1 - - p ) )  as p--+ 1 (4.2) 
2m2(G) 

and 

~ = ~ - ~  m / - ~ G ) ( l + O ( 1 - p ) )  asp---+l, (4.3) 
AV Z 

which is consistent with (2.9). For the constant, note 
that 

2coz_3/2 ~ v/m2(G)/2z  ~ 1 - p as p ~ 1. (4.4) 
2 

5. A numerical example 

In this section we compare the approximations for 
the M/G/1 LIFO steady-state waiting-time ccdf W~(t) 
to exact values obtained by numerical transform in- 
version. We consider the gamma service-time distri- 
bution with shape parameter ½, denoted by Fl/2, which 
has pdf g in (2.4) and Laplace transform 

0(s) = l/x/1 +2s.  (5.1) 

Its first four moments are 1,3, 15 and 105. 
For the M/G/1 model there is no explicit result 

for the transform /PL(s). One way to proceed is to 
determine the transform values/50o(s) from the busy 
period via (36) of [4] or directly via the functional 
equation 

P o o ( s )  = 1 
s + pg(1/Poo(S)) (5.2) 

see (37) of [4], and then use (2.7). However, there 
is a more direct approach using the contour integral 
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representation 6. A recursive algorithm for the LIFO moments 

w~(t) 

= t -~  ~q~- t ( s -2  exp(-pt(1  - ~(s)))) - (1 - p), 

(5.3) 

where ~ - 1  is the inverse Laplace transform operator; 
see (34) of [1]. Eq. (3.8) above is a similar represen- 
tation for the density. 

Table 1 gives the results for WLC(t) for the case 
p = 0.75. In Table 1 we also display results for three 
approximations: (i) the standard asymptotic approxi- 
mation in (3.1), (ii) the heavy-traffic approximation in 
(2.9) and (iii) the asymptotic normal approximation 
in Theorem 3.1. 

For the standard asymptotic approximation, we 
need to derive the asymptotic parameters co and z -1. 
For this example, we find from the root equation (3.5) 
that 

= ½(1 - p2/3). (5.4) 

From (3.4), (3.7) and (3.6), 

I _ 23_p2/3, z - l  = p +  (5.5) 

p--2/ '3 

c t -  v ~  (5.6) 

and 

4p 1/3 
co = x/6(1 - p2/3)2" (5.7) 

Table 1 shows that the asymptotic normal approx- 
imation is remarkably accurate for t not too small, 
e.g., for t >~ 5. Moreover, the asymptotic normal ap- 
proximation is much better than the standard asymp- 
totic approximation based on (3.3). The heavy-traffic 
approximation is quite good though for t neither too 
large nor too small, e.g., for 1.0 ~< t ~< 120. The standard 
asymptotic approximation is not good until t is very 
large. From Table 1, note that the standard asymptotic 
approximation for the tail probability is consistently 
high, whereas the heavy-traffic approximation (2.8) 
crosses the exact curve twice. 

In this section we relate the kth moments of the 
steady-state FIFO and LIFO waiting-time distribu- 
tions, denoted by vk and w~, respectively. For previous 
related work, see [10, 16]. Iliadis and Fuhrmann show 
that the same relationship between LIFO and FIFO 
holds for a large class of models with Poisson arrivals. 

Let h0k be the kth moment of the server-occupancy 
cdf Ho0 in (2.6). By (2.7), 

wk = phok for all k >~ 1. (6.1) 

Theorem 6 of [4] gives an expression for the moments 
hok in terms of the moments bek of the busy-period 
equilibrium excess distribution, while Theorem 5 of 
[4] gives the recursive formula for the busy-period 
equilibrium-excess distribution moments bek in terms 
of the moments ok. These two results give a recur- 
sive algorithm for computing the LIFO moments wk 
in terms of  the FIFO moments vk. 

First, as in (43) of [4], we can relate the FIFO 
waiting-time moments to the service-time moments 
via a recursion. Let the kth service-time moment be 
denoted by gk- The recursion is 

P ~ gj+l 
vk - 1 - p "= ~ - ~ v k - j ,  (6.2) 

where v0 -- 1, so that the FIF0 moments vk are readily 
available given the service-time moments gk. 

By Theorem 3a of [4], the equilibrium-time to 
emptiness transform ~0(s) can be expressed as 

~ o ( S )  = 1 - p + p[~e(s),  (6.3) 

so that their moments are related by 

f~ok = pbek,  k t> 1. (6.4) 

Theorem 5 of [4] shows that these moments can be 
computed recursively, given the moments vk. To em- 
phasize the recursive nature, for any Laplace transform 

/5 f ( s )  = e-S~ f ( t ) d t ,  (6.5) 

let T , ( f )  be the truncated power series defined by 

T , ( f ) ( s )  = ~ ~ . , -  , , (6.6) 
k=O 
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Table 1 
A comparison of approximations with exact values of  the LIFO steady-state waiting-time ccdf WLC(t) in the 
M/Fi/2/1 model with p = 0.75 

Time Exact by Asymptotic normal Heavy-traffic Standard 
t numerical approximation, approximation, asymptotic 

inversion Theorem 4.1 (2.8) (3.3) 

10 -8  0.7500000 
0.1 0.6893962 1.9 1.6 
0.5 0.5354077 0.80 0.66 
1.0 0.4252065 0.53 0.44 
5.0 O. 1734549 O. 182 O. 15 
8.0 0.1217696 0.126 O.11 

15.0 0.0700599 0.071 0.062 
30.0 0.0328100 0.0331 0.030 
60.0 0.0119596 0.01203 0.011 
80.0 0.0070322 0.00706 0.0070 

120.0 0.0028268 0.002835 0.0030 
240.0 0.0003043 0.0003048 0.00038 
360.0 0.0000444 0.0000444 0.000066 

1,1 
0,40 
0,12 
0.029 
0.015 
0.0051 
0.00044 
0.000058 

where 

LOO SIn0 f k  = t k f ( t )  dt -- ( -  1 )kdkf(s) (6.7) 
ds k 

which is well defined assuming that the integrals in 
(6.7) are finite. Then Theorem 5(a) of [4] can be re- 
stated as 

f ,  ok = Y~ [Tk-l(~0)]~_y, (6.8) 
j = l  --  p 

where f i  is understood to the j th  moment, which is 
j ! ( -  1 )J times the j th  coefficient of the power series. 

Then we can calculate wk from 

wk = pbek - p Z bejWk_j, k ~> 1, (6.9) 
j: 

where w0 = p, which is obtained by combining (6.1) 
here with Theorem 6(a) of [4]. 

In summary, if we want to calculate wk, then we 
first calculate the first k FIFO waiting-time moments 
vt . . . . .  vk recursively via (6.2). Then we calculate 
the first k equilibrium-time-to-emptiness moments 
f~0t . . . . .  f~0k recursively via (6.8). We obtain the 
associated busy-period equilibrium-excess moments 
bet . . . . .  bek via (6.4). Finally, we obtain the LIFO 

waiting-time moments wl . . . . .  wk recursively via 
(6.9). For example, the first four are 

/)2 
W 1 = U1, W2 - -  

1 - p '  
V3 + 3V2V1 

w3 - (1 - p)2 ' (6.10) 

v4 + 8V3Vl + 12v2vZl + 6v 2 
W4 = (1 - -  p )3  ' 

which is consistent with Theorem 6 of [4]. In the case 
(e) of  Theorem 6 in [4] there is a typographical error in 
h04; all four terms there should be divided by p (1 -p )3 .  

7. Heavy-tral~e limits for the LIFO moments 

We now show that the LIFO waiting-time moments 
have a simple asymptotic form in heavy traffic. As in 
Section 6, let 9k and wk be the kth moments of the 
service time and LIFO waiting time, respectively. 

Theorem 7.1. A s s u m e  that  9n+2 < zx~. Then wn+l < 

oo and 

(2n - 2)! w~ 
w ,  ~ - -  as p--+ 1. (7.1) 

(n - 1)! (1 - p)n-1  

To put Theorem 7.1 in perspective, it should be con- 
trasted with the known heavy-traffic results for first-in 
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first-out (FIFO) and random order of service (ROS). 
For FIFO, the waiting-time distribution is asymptoti- 
cally exponentially distributed as p --~ 1, so that 

v ~ n ! v ~  a s p ~ l .  (7.2) 

For ROS, with WR as the cdf, Kingman [11] showed 
that 

1 - V~(t) ~ 2 ~ K I ( 2 x / t / w R  1 ) 

where K1 is the Bessel function, so that 

WRn"~(n!)2W~1 as p--+ 1. (7.3) 

Of course, w~ = WR1 = v~. It is interesting that, as 
p --~ 1, the nth moments Vn, WRN and w, in (7.1)-  (7.3) 
are v~ times n!, (n!) 2 and ( 2 n - 2 ) / ( n -  1)!(1 _ p ) , - l ,  
respectively. Hence, v, and WRN are O((1 -- p ) - " )  as 
p---~ 1, while Wn is O((1 - p)-(2,-1)). 

We give another expression using the Catalan num- 
bers. Let C, be the nth Catalan number, i.e., 

Cn - ; (7.4) 
n + l  

e.g., 1, 1,2,5, 14,...; see [15]. The Catalan numbers 
have the self-convolution property 

C~+1 = ~ CiCn-,, n>~ 1. (7.5) 
i : 0  

The Catalan numbers are also associated with the dis- 
tribution of the number of customers served in an 
M/M/1 busy period; see [14, p. 65]. We combine The- 
orem 7.1 and (7.2) to obtain the following represen- 
tation. 

Corollary. Under the conditions of Theorem 7.1, 

V?/ 
Wn ~ Cn- I  (1 - D,n_ 1 )  as  p --~ 1. 

The corollary should provide a better approximation 
than Theorem 7.1, e.g., it is exact for n = 2. 

Proof  of Theorem 7.1. Theorem 2.1 can be interpreted 
as convergence of ccdf's, because hi(t) = hoe(t) = 
2H~(t). Hence, we can obtain convergence of the as- 
sociated moments under the regularity condition of 

uniform integrability; see [7, p. 32]. The direct mo- 
ment calculation from Theorem 2.1 is 

wn ~nhl,n-12nw~/(1 - p)n--l as p---* 1, (7.6) 

where hr, is the nth moments of hi(t) in (2.3). By 
(10.15) of [6], 

h~, - (2n)! (7.7) 
(n + 1)]2 n 

Combining (7.6) and (7.7) gives the formula. 
The extra moment condition that gn+2 be finite 

is used to establish the required uniform integra- 
bility. From (6.2), (6.4), (6.8) and (6.9) we see 
that vk, f~ok, ba and wk are all finite for k<~n when 
gk+l <c~. To establish upper bounds implying uni- 
form integrability, note that by (6.2), 

vk ~< gk+12k (7.8) 6= k 
Using (7.8) and (6.8), 

Kk (7.9) 
f~k <~ (1 -- p)2k' 

where Kk is ~t constant independent of p. Finally, by 
(6.9) and (7.9), 

wk ~< Mk (7.10) 
( l  --  p ) 2 k - 1  ' 

where Mk is a constant independent of p. The bounds 
in (7.8)-(7.10) provide the uniform integrability to go 
from convergence of distributions to associated con- 
vergence of moments. 

Alternatively, a proof can be based on the recursion 
(6.9) and asymptotics for the moments ben. By (7.2) 
and the recursion (6.8), 

be, C~n!v'~ as p ~ 1. (7.11) 
(1 - p ) "  

From (6.9), (7.5) and (7.11), we get the conclu- 
sion. 
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