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MANY-SERVER HEAVY-TRAFFIC LIMIT FOR QUEUES
WITH TIME-VARYING PARAMETERS

By Yunan Liu∗ and Ward Whitt†

North Carolina State University and Columbia University

A many-server heavy-traffic FCLT is proved for the Gt/M/st+GI
queueing model, having time-varying arrival rate and staffing, a gen-
eral arrival process satisfying a FCLT, exponential service times and
customer abandonment according to a general probability distribu-
tion. The FCLT provides theoretical support for the approximating
deterministic fluid model the authors analyzed in a previous paper
and a refined Gaussian process approximation, using variance for-
mulas given here. The model is assumed to alternate between un-
derloaded and overloaded intervals, with critical loading only at the
isolated switching points. The proof is based on a recursive analy-
sis of the system over these successive intervals, drawing heavily on
previous results for infinite-server models. The FCLT requires careful
treatment of the initial conditions for each interval.

1. Introduction. This paper is a sequel to [11], in which we developed
and analyzed a deterministic fluid model approximating the Gt/GI/st +GI
queueing model, having a general arrival process with time-varying arrival
rate (the initial Gt), independent and identically distributed (i.i.d.) service
times with a general cumulative distribution function (cdf) G (the first GI),
a time-varying large number of servers (the st) and customer abandonment
from queue with i.i.d. patience times with a general cdf F (the final +GI).
The fluid model was assumed to alternate between intervals of underloading
(UL) and overloading (OL). We conducted simulation experiments showing
that the fluid approximation is effective for approximating individual sample
paths of stochastic processes of very large systems (e.g., with hundreds of
servers) and the mean values of smaller systems (e.g., with tens of servers,
provided that these systems are not critically loaded or too nearly so. See
[2, 4, 6, 14, 17, 18] for background on methods to analyze the performance
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of queues with time-varying arrival rates and their application.
The present paper establishes many-server heavy-traffic limits that pro-

vide mathematical support for both the previous fluid approximation and
a refined Gaussian process approximation in the special case of exponential
(M) service times. Based directly on the limit theorems here, we propose
approximating the time-varying number in system, Xn(t), by a Gaussian
distribution for each t, in particular,

(1.1) Xn(t) ≈ nX(t) +
√

nX̂(t)
d
= N(nX(t), nσ2

X̂
(t)),

where N(m,σ2) denotes a Gaussian random variable with mean m and
variance σ2, X(t) is the deterministic fluid approximation proposed and
analyzed previously in [11], and now supported by the functional weak laws
of large numbers (FWLLN’s) in Theorems 4.1 and 5.1, while X̂(t) is a zero-
mean Gaussian process with variance σ2

X̂
(t) ≡ V ar(X̂(t)) obtained from the

functional central limit theorems (FCLT’s) in Theorems 4.2 and 5.1. Explicit
formulas for the variance function σ2

X̂
(t) are given in Corollary 4.2 to go with

the explicit expressions for the fluid function X(t) determined previously in
[11], and reviewed here in §3.

As in [11], we assume that the system alternates between UL intervals and
OL intervals, where the system loading is determined by the fluid model,
which has the same parameters; i.e., the system is said to be UL (OL) if the
fluid model is UL (OL). Sufficient conditions for the fluid model to alternate
between OL and UL intervals were given in §3 of [12]. In the terminology
of many-server heavy-traffic limits [3], that means that the system alter-
nates between quality-driven (QD) UL regimes and efficiency-driven (ED)
OL regimes. We assume that the system is never critically loaded, i.e., in the
quality-and-efficiency-driven (QED) regime, except at the isolated regime
switching points. That allows us to apply previous results for infinite-server
queues in [19] in our analysis of both UL and OL intervals.

Explicitly avoiding the QED regime runs counter to most of the extensive
research on many-server queues, e.g., as in [3, 5, 7, 8, 21]. However, we
think the alternating UL and OL model can provide useful approximations,
because it provides mathematical simplification. This regime has engineering
relevance with time-varying arrivals, because many systems are unable to
dynamically adjust staffing to respond adequately to time-varying arrival
rates, and thus do experience periods of overloading. Hospital emergency
rooms are examples.

The limits here extend previous limits for the Markovian Mt/M/st + M
models with time-varying arrival rates and staffing in [14, 15, 16, 20]. To
treat the model with general patience distribution, we exploit limits for
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two-parameter stochastic processes in infinite-server models in [19]; also see
[10, 22]. Heavy-traffic limits for the stationary G/M/s + GI model were
established in [26], where references on previous work can be found. A pre-
vious discrete-time many-server limit for the Gt/GI/s + GI model with
time-varying arrivals was established in [25]; in contrast, here the limit is
for a model with smooth parameters.

In [11] we saw that the analysis of the performance of the Gt/M/st + GI
fluid model depends critically on a careful analysis of the waiting time of the
fluid at the head of the line (that has been waiting in queue the longest).
That fluid head-of-the-line waiting time (HWT) w(t) was identified by care-
fully relating the new service capacity becoming available due to service
completion and changing capacity to the flow into service from the queue.
That led to an ordinary differential equation (ODE) characterizing the de-
terministic HWT function w(t), proved in Theorem 3 of [11] and reviewed
here in (3.8). Closely paralleling that ODE, we find that the stochastic limit
process for the FCLT-scaled HWT, Ŵ (t), is characterized by a stochastic
differential equation (SDE); see (4.9).

We primarily focus on the number in system Xn(t), as in (1.1), because
that process and the associated FCLT-scaled version (see (2.5) below)) tends
to be better behaved than the number in queue, Qn(t), and the number in
service, Bn(t), and the associated FCLT-scaled versions of them. This is
reflected by the limit processes for the FCLT-scaled versions. For each t in
the interior of an OL interval, (Q̂(t), B̂(t)) = (X̂(t), 0); for each t in the
interior of an UL interval, (Q̂(t), B̂(t)) = (0, X̂(t)); for each switching point
t, (Q̂(t), B̂(t)) = (X̂(t)+, X̂(t)−), where (x)+ ≡ max {x, 0} and (x)− ≡
min {x, 0}. Thus, in contrast to X̂, which has continuous sample paths, the
sample paths of Q̂ and B̂ are discontinuous and are typically neither right-
continuous nor left-continuous at each switching point.

Thus, even though limits can be obtained for FCLT-scaled versions of
the number in queue, Qn(t), and the number in service, Bn(t), yielding ap-
proximations such as Qn(t) ≈ nQ(t) +

√
nQ̂(t), paralleling (1.1), we instead

suggest approximating these processes by truncating the number in system
Xn(t) with respect to the time-varying service capacity sn(t); i.e., we propose
the alternative approximations

Qn(t) = (Xn(t) − sn(t))+ ≈ (nX̄(t) +
√

nX̂(t) − sn(t))+,

Bn(t) = Xn(t) ∧ sn(t) ≈ (nX̄(t) +
√

nX̂(t)) ∧ sn(t),(1.2)

exploiting (1.1). This approximation is convenient because formulas are
known for the means and variances of such truncated Gaussian variables.
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We study such refined engineering approximations based on the many-
server heavy-traffic limits established here, including (1.2), in a future paper
[13]. However, immediate insight can be obtained by considering the special
case of the Mt/M/st + M model with abandonment rate θ equal to the
service rate µ. As discussed in §6 of [2], the number in system in this model
is distributed the same as in the associated Mt/M/∞ model, for which the
number in system at each time has a Poisson distribution. In this case,
the approximation by (1.1) is known to perform very well. In that context,
clearly the approximations in (1.2) perform well too, whereas even the direct
approximation for the means, nQ(t) and nB(t) do not perform well near
critical loading.

Here is how the rest of this paper is organized: In §2 we specify the
sequence of Gt/M/st + GI queueing models we consider and the associated
scaled stochastic processes for the FWLLN and the FCLT. In §3 we review
the Gt/M/st +GI fluid model, which arises as the limit in the FWLLN and
provides centering terms for the FCLT. In §4 we state the new results for
each OL interval, while in §5 we state the (easier) new results for each UL
interval. In §6 we prove the FWLLN and FCLT for OL intervals; in §7 we
prove two corollaries for OL intervals; and in §8 we prove the FWLLN and
FCLT for UL intervals. In §9 we show the results of a simulation of a very
large queueing system, which confirm that the formulas for the variances
given in Corollary 4.2 are correct, thus providing practical confirmation for
all the results. We conclude in §10 by discussing an extension with extra

√
n

terms in the arrival rates and staffing functions.

2. A Sequence of Gt/M/st+GI Models. In this paper we consider
a sequence of Gt/M/st + GI queueing models indexed by n. Model n has
a general arrival process with time-varying arrival rate λn(t) ≡ nλ(t), i.i.d.
exponential service times with cumulative distribution function (cdf) G(t) ≡
1− e−µt, a time-varying number of servers sn(t) ≡ ⌈ns(t)⌉ (the least integer
above ns(t)) and customer abandonment from queue, where the patience
times of successive customers to enter queue are i.i.d. with general cdf F ,
where we assume that F is differentiable, with probability density function
(pdf) f with F c(x) > 0 and f(x) > 0 for all x. Our scaling of the fixed
functions λ and s induces the familiar many-server heavy-traffic scaling; the
functions λ and s are the arrival rate and staffing level in the associated fluid
model, assumed to be suitably smooth, as specified in the next section. The
arrival process, service times and patience times are mutually independent.
New arrivals enter service immediately if there is a free server; otherwise
they join the queue, from which they enter service in order of arrival, if they
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do not first abandon.
Let D ≡ D(I) be the usual space of right-continuous real-valued functions

with left limits on a subinterval I of R, endowed with the Skorohod J1

topology, which for continuous limits reduces to uniform convergence over
all compact subintervals of I. Let ⇒ denote convergence in distribution [24].
Let Nn(t) count the number of arrivals in [0, t]. We assume that the sequence
of arrival processes {Nn} satisfies a FCLT with time-transformed Brownian
limit; i.e.,

(2.1) N̂n(t) ≡ n−1/2(Nn(t) − nΛ(t)) ⇒ N̂(t) ≡ cλBλ(Λ(t)) in D,

as n → ∞, where Bλ is a standard Brownian motion (with the subscript
λ indicating that it is associated with the arrival process), Λ(t) is the total
arrival rate over the interval [0, t], i.e.,

(2.2) Λ(t) ≡
∫ t

0
λ(s) ds

and c2
λ is an arrival-process variability parameter. A principal case is Nn

being a nonhomogeneous Poisson process for each n, in which case cλ = 1
in (2.1). Other explicit arrival process models can be constructing from
random or deterministic time-changes of stationary processes (e.g., renewal
processes) known to satisfy a FCLT. For a rate-1 renewal process, c2

λ =
σ2

λ/m2
λ = σ2

λ, where mλ = 1 is the mean and σ2
λ is the variance of an

interrenewal time; see §7.3 of [24].
We will specify smoothness assumptions for the model data (λ, s,G, F )

in the next section. These assumptions allow the staffing function s to de-
crease in OL intervals. Thus, as discussed in §1 of [11], it is important to
consider what happens in the queueing system if the staffing must decrease
when the service facility is full. Here we simply assume that the required
number of customers are forced out of the system whenever that happens,
without having any future impact on the system, i.e., without altering the
queue content or generating subsequent retrials. Since the service times are
exponential, we need not pay attention to which customers are forced to
leave. However, in the next section we assume that the staffing function is
feasible for the fluid model (which can be achieved, since it is a deterministic
system). Moreover, we make conditions ensuring that the staffing function
is asymptotically feasible for the sequence of stochastic models. Hence, any
staffing function infeasibility is asymptotically negligible.

Let Bn(t, y) (Qn(t, y)) denote the number of customers in service (queue)
at time t that have been so for time at most y. Let Bn(t) ≡ Bn(t,∞)
(Qn(t) ≡ Qn(t,∞)), the total number of customers in service (queue). Let
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Xn(t) ≡ Bn(t) + Qn(t), the total number of customers in the system. Let
Wn(t) be the head-of-line waiting time (HWT), i.e., the elapsed waiting time
for the customer at the head of the line at time t (the customer who has been
waiting the longest). Let Vn(t) be the potential waiting time (PWT) at time
t, i.e., the virtual waiting time at time t (the waiting time if there were a new
arrival at time t) assuming that that customer never would abandon (but
without actually altering any arrival’s abandonment behavior). Let An(t)
be the number of abandonments and let Dn(t) be the number of departures
(service completions) in the interval [0, t]. We can exploit flow conservation
to write

(2.3) An(t) = Xn(0) + Nn(t) − Dn(t) − Xn(t), t ≥ 0.

Let the associated FWLLN-scaled or fluid-scaled processes be

B̄n(t, y) ≡ n−1Bn(t, y), Q̄n(t, y) ≡ n−1Qn(t, y),

X̄n(t) ≡ n−1Xn(t), D̄n(t) ≡ n−1Dn(t),

Ān(t) ≡ n−1An(t), t ≥ 0.(2.4)

The waiting times Wn(t) and Vn(t) are not scaled in the fluid limit. Let the
associated FCLT-scaled processes be

B̂n(t, y) ≡ n−1/2(Bn(t, y) − nB(t, y)),

Q̂n(t, y) ≡ n−1/2(Qn(t, y) − nQ(t, y)),

X̂n(t) ≡ n−1/2(Xn(t) − nX(t)), D̂n(t) ≡ n−1/2(Dn(t) − nD(t)),

Ân(t) ≡ n−1/2(An(t) − nA(t)), Ŵn(t, y) ≡ n1/2(Wn(t) − w(t)),

V̂n(t) ≡ n1/2(Vn(t) − v(t)),(2.5)

where (B(t, y), Q(t, y),X(t), A(t),D(t), w(t), v(t)) is the vector of fluid model
performance functions, which will arise as the deterministic limit functions
for the associated FWLLN-scaled processes, already identified in [11].

Our objective is to show that the FWLLN-scaled processes in (2.4) con-
verge in distribution to the previously studied deterministic fluid model
quantities and that the associated FCLT-scaled processes in (2.5) converge
in distribution to a nonstationary zero-mean Gaussian process and identify
the time-varying variance functions.

3. The Associated Deterministic Fluid Model. The associated de-
terministic Gt/M/st + GI fluid model depends on the same model data as
the Gt/M/st + GI queueing model except for the arrival process. The fluid
model depends on the arrival process only through the arrival-rate function
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λ. Thus the fluid model neither captures the full distribution of the arrival
processes nor the Brownian limit in (2.1). (However, the limit in (2.1) does
affect the FCLT.) The remaining functions (λ, s,G, F ) specify an associated
Gt/M/st + GI fluid model as studied in [11, 12]. All components play an
important role in its performance description, including the cdf F beyond
its mean.

For the fluid model, G(x) is the proportion of any quantity of fluid that
completes service by time x after it enters service, and F (x) is the proportion
of any quantity of fluid that abandons by time x after it enters the queue
if it has not already entered service. We assume that the assumptions for
the fluid model in [11] are satisfied here. Of special note is the smoothness
assumption: We assume that the functions Λ, s and F are differentiable with
derivatives λ, ṡ and f that are in the space Cpc, the subspace of D containing
piecewise-continuous functions, having only finitely many discontinuities in
each bounded interval. For the FCLT in OL intervals, Theorem 4.2, we also
assume that λ is differentiable as well. In addition, we assume that Gc(x) ≡
1 − G(x) = e−µx, F c(x) ≡ 1 − F (x) > 0 for all x, λinf ≡ inf0≤u≤t λ(u) > 0
and sinf ≡ inf0≤u≤t s(u) > 0.

Consistent with [11], but contrary the terminology for fluid scaled pro-
cesses in (2.4), we will denote the fluid performance measures without a bar;
thus B(t, y) (Q(t, y)) denotes the fluid content in service (queue) at time t
that has been so for time at most y. These quantities have densities, i.e.,

(3.1) B(t, y) =

∫ y

0
b(t, x) dx and Q(t, y) =

∫ y

0
q(t, x) dx.

Since we have exponential service here, it suffices to focus on the total fluid
content in service B(t) ≡ B(t,∞). Let Q(t) ≡ Q(t,∞) and X(t) ≡ B(t) +
Q(t). Let w(t) be the head-of-line waiting time (HWT), called the boundary
waiting time in [11]; let v(t) be the potential waiting time (PWT) of new
fluid input at time t, both defined essentially the same as Wn(t) and Vn(t)
in the queueing model.

We assume that fluid model starts out underloaded with initial fluid con-
tent X(0) = B(0), where necessarily B(0) ≤ s(0) and Q(0) = 0. Since the
service-time cdf G is exponential, we make no assumption about the length
of time that initial fluid has been in service. We assume that the fluid model
has only finitely many switches between underloaded (UL) and overloaded
(OL) intervals in any bounded time interval; conditions for that property to
hold are given in [12].

For clarity, we now review the way OL and UL intervals are defined in
[11]. In general, an OL interval starts at a time t1 with (i) Q(t1) > 0 or (ii)
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Q(t1) = 0, B(t1) = s(t1) and λ(t1) > s′(t1)+σ(t1), and ends at the overload
termination time

(3.2) T1 ≡ inf {u ≥ t1 : Q(u) = 0 and λ(u) ≤ s′(u) + σ(u)}.

Case (ii) in which Q(t1) = 0 and B(t1) = s(t1) is often regarded as criti-
cally loaded, but because the arrival rate λ(t1) exceeds the rate that new
service capacity becomes available, s′(t1) + σ(t1), we must have the right
limit Q(t1+) > 0, so that there exists ǫ > 0 such that Q(u) > 0 for all
u ∈ (t1, t1 + ǫ). Hence, we necessarily have T1 > t1.

A Ul interval starts at a time t2 with (i)Q(t2) < 0 or (ii) Q(t2) = 0,
B(t2) = s(t2) and λ(t2) ≤ s′(t2) + σ(t2), and ends at underload termination
time

(3.3) T2 ≡ inf {u ≥ t2 : B(u) = s(u) and λ(u) > s′(u) + σ(u)}.

As before, case (ii) in which Q(t2) = 0 and B(t2) = s(t1) is often regarded
as critically loaded, but because the arrival rate λ(t2) does not exceed the
rate that new service capacity becomes available, s′(t2) + σ(t2), we must
have the right limit Q(t2+) = 0. The underloaded interval may contain
subintervals that are conventionally regarded as critically loaded; i.e., we
may have Q(t) = 0, B(t) = s(t) and λ(t) = s′(t)+σ(t). For the fluid models,
such critically loaded subintervals can be treated the same as underloaded
subintervals. However, unlike an overloaded interval, we cannot conclude
that we necessarily have T2 > t2 for an underloaded interval. Moreover,
even if T2 > t2 for each underloaded interval, we could have infinitely many
switches in a finite interval. We directly assume that those pathological
situations do not occur. Sufficient conditions for such regularity are given in
§3 of [12].

In this paper, we impose the stronger assumption that the fluid model is
never critically loaded except at the finitely many switching points in any
bounded time interval. In particular, if [τ1, τ2] is a UL interval with switching
times at its endpoints, so that X(τi) = s(τi) for i = 1, 2, then we require
that X(t) < s(t) for all t, τ1 < t < τ2. On the other hand, if [τ1, τ2] is
a OL interval with switching times at its endpoints, then we require that
X(t) > s(t) for all t, τ1 < t < τ2.

The UL intervals are relatively elementary, because then the fluid model
is equivalent to an associated infinite-capacity model. However, the OL in-
tervals are more complicated. First, as in [11], it is important to assume that
the fluid staffing functions s is feasible, i.e., that its decreasing never forced
fluid out of service. In [11] we also showed how to construct the minimum
feasible staffing function greater than or equal to any given staffing function.
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Here we assume that the flow rate of fluid into service is strictly positive
throughout the OL interval [τ1, τ2]; i.e., we assume that the rate fluid enters
service due to new service capacity becoming available satisfies

(3.4) b(t, 0) = s(t)µ + ṡ(t) ≥ binf > 0, τ1 ≤ t ≤ τ2.

Together with the FWLLN, condition (3.4) implies that the probability the
staffing function sn(t) is feasible for the stochastic model throughout the
interval [τ1, τ2] converges to 1 as n → ∞.

We now review the fluid performance functions during a OL interval. From
§6 of [11], we know that with GI service the fluid density in an overloaded
interval requires solving a fixed point equation, but with M service the
service content density during an OL interval is given explicitly by

(3.5) b(t, x) = b(t − x, 0)Gc(x)1{x≤t} + b(0, x − t)
Gc(x)

Gc(x − t)
1{x>t}

where Gc(x) ≡ 1 − G(x) ≡ e−µx, b(t, 0) = ṡ(t) + s(t)µ, the rate fluid enters
service at time t, and b(0, x) is the initial service content density, part of the
initial data.

In [11] the queue during an overloaded interval is analyzed by focusing
on the fluid content density q̃(t, x) assuming no flow into service. Paralleling
(3.5), assuming an initially empty queue, it can be written explicitly as

(3.6) q̃(t, x) = λ(t − x)F c(x),

for x ≤ t, which is all we consider. By Corollary 2 of [11], the queue content
density itself is

(3.7) q(t, x) = q̃(t, x)1{x≤w(t)} = λ(t − x)F c(x)1{x≤w(t)},

so that q(t, x) is simply q̃(t, x) truncated in the second variable at its right
boundary, the HWT w(t).

By Theorem 3 of [11], the fluid HWT w is the unique solution to the ODE

(3.8) ẇ(t) ≡ dw

dt
(t) = 1 − b(t, 0)

q̃(t, w(t))
= 1 − ṡ(t) + s(t)µ

λ(t − w(t))F c(w(t))
,

where b(t, 0) = ṡ(t)+ s(t)µ is the rate that fluid enters service. Our assump-
tions imply that both the numerator and the denominator in the fraction in
(3.8) are strictly positive; thus −∞ < ẇ(t) < 1 for all t in the OL interval.
The ODE in (3.8) is equivalent to the integral equation

(3.9) w(t) =

∫ t

0

(

1 − b(u, 0)

q̃(u,w(u))

)

du, t ≥ 0,
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By Theorem 5 of [11], the fluid PWT v(t) is as the unique solution of the
equation

(3.10) v(t − w(t)) = w(t) or, equivalently, v(t) = w(t + v(t)),

which can be solved given the BWT w. Because of Assumption (3.4), v is a
continuous function. Indeed, both w and v are differentiable except at only
finitely many points. From (3.10), we see that the derivatives are related by

(3.11) v̇(t − w(t)) =
ẇ(t)

1 − ẇ(t)
or, equivalently, v̇(t) =

ẇ(t + v(t))

1 − ẇ(t + v(t))
,

which is bounded because of condition (3.4).
Since the service is exponential and the service facility is full in an OL

interval, the total fluid departure (service completion) in [0, t] is D(t) =
S(t)µ, where S(t) ≡

∫ t
0 s(u) du. Finally during an OL interval, the fluid

abandonment over [0, t] is

(3.12) A(t) =

∫ t

0
α(s) ds, where α(s) =

∫ ∞

0
Q(s, x)hF (x) dx,

with hF (x) ≡ f(x)/F c(x), the hazard rate function associated with the cdf
F , which is finite for all x because f is an element of D and F c(x) > 0 for
all x.

4. Heavy-Traffic Limits During an Overloaded Interval. Recall
that the system is said to be OL or UL if the associated fluid model is OL or
UL, which depends on the model parameters. The definitions were given in
§3. We establish the many-server heavy-traffic limits over successive UL and
OL intervals, using the limit at the right endpoint of the previous interval to
provide the limit for the initial conditions needed in the successive interval,
e.g., as in [9]. As indicated in the last section, we assume that the fluid model
is initially underloaded. Thus there are UL intervals [τ2i, τ2i+1], i ≥ 0, and
OL intervals [τ2i+1, τ2i+2], i ≥ 0, with some finite number of these covering
some overall finite time interval of interest [0, T ]. We consider these intervals
recursively, referring to each interval in question as [0, τ ]. It should be shifted
to the appropriate time.

For the first UL interval, we assume that we have a limit for the initial
conditions, in particular,

(4.1) X̄n(0) ⇒ X(0) and X̂n(0) ⇒ X̂(0) in R as n → ∞.

where X(0) is deterministic with X(0) ≤ s(0). For all subsequent intervals,
UL and OL, the limit in (4.1) will hold with X(0) = s(0) as a consequence
of the limit in the previous subinterval.



MANY-SERVER HEAVY-TRAFFIC LIMITS 11

We first consider the more challenging case of an overloaded interval [0, τ ],
assuming limits for the initial values as in (4.1), with X(0) = s(0). We first
state the FWLLN. The proofs are given afterwards in later sections. Unlike
[11], here we have assumed that the flow into service b(t, 0) = s(t)µ+ ṡ(t) >
binf (τ) > 0, so that the fluid PWT v satisfying (3.10) is continuous. Let D

k

denote the k-fold product space of D with the associated product topology.

Theorem 4.1. (FWLLN for each OL interval) Consider an OL interval

[0, τ ] with no critical loading except at the endpoints. Suppose that (4.1) holds

with X(0) = s(0). Then

(4.2) (N̄n, D̄n, X̄n, Q̄n, B̄n, Ān,Wn, Vn) ⇒ (Λ,D,X,Q,B,A,w, v)

in D
8([0, τ ]) as n → ∞, where the converging processes are defined in §2,

the limit (Λ,D,X,Q,B,A,w, v) is the vector of continuous deterministic

fluid-model functions defined in §3 and characterized in [11], having Q ≥ 0,
X = Q + s and B = s.

We next state the associated FCLT establishing the Gaussian refinement
to the fluid approximation in an OL interval. As indicated in the introduc-
tion, we primarily focus on the number in system, Xn(t). We express the
limit for Xn(t) with the general initial conditions in (4.1) in terms of an
associated limit for the special case in which all servers are busy and the
queue is empty. Let X∗

n(t) be the number in system for the special initial
condition in which all servers are busy and the queue is empty at time 0. Let
the other processes associated with this special initial condition be defined
similarly. We now assume that the arrival rate function λ is differentiable in
order to work with the partial derivative

(4.3) q̃x(t, x) ≡ ∂q̃(t, x)

∂x
.

Let B denote a standard (drift 0, diffusion coefficient 1) Brownian motion
(BM). (Recall that B(t) is already used to denote the fluid content in ser-
vice.) Let e denote the identify function in D, i.e., e(t) = t.

Theorem 4.2. (FCLT for each OL interval) Consider an OL interval

[0, τ ] with no critical loading except at the endpoints. Assume that the arrival

rate function λ is differentiable and the patience pdf f is continuous. Suppose

that (4.1) holds with X(0) = s(0). Then

(N̂∗
n, D̂∗

n, X̂∗
n, Q̂∗

n, B̂∗
n, Ŵ ∗

n , V̂ ∗
n , Â∗

n, X̂n)

⇒ (N̂∗, D̂∗, X̂∗, X̂∗, 0e, Ŵ ∗, V̂ ∗, Â∗, X̂) in D
9([0, τ ]),(4.4)
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where the superscript ∗ denotes the special initial condition with all servers

busy and an empty queue, the converging processes are defined in §2 and the

limit process with the special initial condition, (N̂∗, D̂∗, X̂∗, X̂∗, Ŵ ∗, V̂ ∗, Â∗),
is a mean-zero Gaussian process having continuous sample paths. If X̂(0)
is Gaussian with mean 0, then X̂ is a mean-zero Gaussian process too. The

limit processes are N̂∗(t) ≡ cλBλ(Λ(t)) and D̂∗(t) ≡ Bs(D(t)), while

X̂(t) ≡ X̂∗(t) + X̂(0)F c
w(t), X̂∗(t) ≡

3
∑

i=1

X̂∗
i (t),

F c
w(t) ≡ e−

∫

t

0
hF (w(u)) du, X̂∗

i (t) ≡
∫ t

0
Ki(t, u) dBi(u),(4.5)

Ŵ ∗(t) ≡
3
∑

i=1

Ŵ ∗
i (t), Ŵ ∗

i (t) ≡
∫ t

0
Ji(t, u) dBi(u),

V̂ ∗(t) ≡ Ŵ ∗(t + v(t))

1 − ẇ(t + v(t))
,

Â∗(t) ≡ N̂∗(t) − D̂∗(t) − X̂∗(t), t ≥ 0,

where hF (x) ≡ f(x)/F c(x) is the patience hazard rate, w(t) is the fluid

HWT, v(t) is the fluid PWT, B1 ≡ Bλ, B2 ≡ Bs, and B3 ≡ Ba are indepen-

dent (standard) BM’s,

H(t, u) ≡ exp

{
∫ t

u
h(v) dv

}

,

h(t) ≡ b(t, 0)q̃x(t, w(t))

q̃2(t, w(t))
= (1 − ẇ(t))

q̃x(t, w(t))

q̃(t, w(t))

= (1 − ẇ(t))

(

−λ̇(t − w(t))

λ(t − w(t))
− hF (w(t))

)

(4.6)

and

Ji(t, u) ≡ Ii(u)H(t, u),

I1(u) ≡ Iλ(u) ≡ cλ

√

F c(w(u))b(u, 0)

q̃(u,w(u))
, Ī1(u) ≡ cλ F c(w(u))b(u, 0)

q̃(u,w(u))
,

K1(t, u) ≡ Kλ(t, u) ≡ cλF c(t − u)
√

λ(u)1{t−w(t)≤u≤t}

+ q̃(t, w(t))
√

λ(u)Ī1

(

L−1(u)
)

H
(

t, L−1(u)
)

1{0≤u≤t−w(t)},

(4.7)
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I2(u) ≡ Is(u) ≡ −
√

b(u, 0) − ṡ(u)

q̃(u,w(u))
,

K2(t, u) ≡ Ks(t, u) ≡ q̃(t, w(t))Js(t, u) = −
√

b(t, 0) − ṡ(t)H(t, u),

I3(u) ≡ Ia(u) ≡ −
√

F (w(u))b(u, 0)

q̃(u,w(u))
, Ī3(u) ≡ −

√

F c(w(u))F (w(u))

q̃(u,w(u))
,

K3(t, u) ≡ Ka(t, u) ≡ −
√

λ(u)F (t − u)F c(t − u)1{t−w(t)≤u≤t}

+ q̃(t, w(t))
√

λ(u)Ī3

(

L−1(u)
)

H
(

t, L−1(u)
)

1{0≤u≤t−w(t)},

(4.8)

and L−1 is the inverse of the function L(t) = t−w(t). The limit process Ŵ ∗

is also characterized as the unique solution to the SDE

(4.9) dŴ ∗(t) = h(t)Ŵ ∗(t) dt + I(t)dB(t),

for B a BM, h(t) in (4.7) and

(4.10) I(t)2 ≡
3
∑

i=1

I2
i (t) =

b(t, 0) − ṡ(t) + [F (w(t)) + c2
λF c(w(t))]b(t, 0)

q̃2(t, w(t))
.

Remark 4.1. (additivity of variability) It is significant that the three
sources of randomness appear additively (independently) in the limit process
(X̂∗, Ŵ ∗) in (4.5). The arrival process variability is captured by (X̂∗

1 , Ŵ ∗
1 )

and the BM B1 ≡ Bλ; the service-time variability is captured by (X̂∗
2 , Ŵ ∗

2 )
and the BM B2 ≡ Bs; while the patience-time variability is captured by
(X̂∗

3 , Ŵ ∗
3 ) and the BM B3 ≡ Ba, where the three BM’s are mutually inde-

pendent. Moreover, the four separate sources of randomness, including X̂(0)
for the initial condition in (4.1), which is independent of (B1,B2,B3), appear
additively in the limit process X̂.

This nice separation of the components of the variability can be under-
stood by considering the two-parameter process Qn(t, y), which depicts the
number of customers in the queue at time t with elapsed patience time at
most y in model n during an OL interval. The arrivals influence this process
at y = 0, the lower limit of y, because new arrivals have elapsed patience
time 0. Because of the FCFS service discipline, the flow into service occurs
from the upper limit of y, at y = Wn(t); the customers enter from the head
of the queue; i.e., those who have waited the longest enter first. Finally,
the abandonment influences the process throughout the entire region, and is
thus not primarily determined by the behavior at the extreme endpoints. In
particular, the abandonment rate for a customer with elapsed patience time
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x is precisely the patience hazard rate hF (x) ≡ f(x)/F̄ (x), which operates
at time t for all x satisfying 0 < x < Wn(t) and thus 0 < x < w(t) in the
fluid limit.

Except for the process X̂n(t), representing the scaled number in system,
Theorem 4.2 states conclusions about the various processes for the special
initial condition, with all servers busy but no queue. From Theorem 4.2, we
can deduce a corresponding FCLT for the other processes with the general
initial condition in (4.1), provided that we exclude the interval endpoints.
Recall that convergence to a continuous limit in D

k((0, τ)) is equivalent to
uniform convergence over each compact subinterval [t1, t2] with 0 < t1 <
t2 < τ .

Corollary 4.1. (Limits for other processes under (4.1)) Under the as-

sumptions of Theorem 4.2, all the processes with the initial conditions in

(4.1) converge in the space D((0, τ)); in particular,

(4.11) (X̂n, Q̂n, B̂n, Ŵn, V̂n, Ân)) ⇒ (X̂, X̂, 0e, Ŵ , V̂ , Â) in D
6((0, τ)),

where X̂ is given above in (4.5),

V̂ (t) ≡ V̂ ∗(t) +
X̂(0)F c

w(t + v(t))

s(t + v(t))µ + ṡ(t + v(t))

=
q̃(t + v(t), v(t))Ŵ ∗(t + v(t)) + X̂(0)F c

w(t + v(t))

s(t + v(t))µ + ṡ(t + v(t))
,

Ŵ (t) ≡ (1 − ẇ(t))V̂ (t − v(t)) = Ŵ ∗(t) +
X̂(0)F c

w(t)

q̃(t, w(t))
,

Â(t) ≡ N̂∗(t) − D̂∗(t) − X̂(t) + X̂(0).(4.12)

At the interval endpoints t = 0 and t = τ , there is the limit in R
4

(4.13)
(

X̂n(t), Q̂n(t), B̂n(t), V̂n(t)
)

⇒
(

X̂(t), X̂(t)+, X̂(t)−,
X̂(t)+

s(t)µ + ṡ(t)

)

.

Consequently, for t an interval endpoint, if P (X̂(t) < 0) > 0, then there is

no FCLT for Q̂n and V̂n in D([0, τ)); If P (X̂(t) > 0) > 0, then there is no

FCLT for B̂n in D([0, τ)).

Remark 4.2. (switching points) We get limits like (4.13) above and
(5.10) in Theorem 5.1 at all switching points. However, unlike the limit pro-
cess X̂(t) for the scaled number in system, X̂n(t), which has continuous
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sample paths, the resulting limit processes for the other scaled processes
Q̂n(t), B̂n(t) and V̂n(t), obtained by combining (4.11) and (4.13), will typi-
cally have sample paths that are neither left continuous nor right continuous
at the switching points. In particular, the failure to have convergence at the
left endpoint 0 in (4.11) occurs because, under the stated condition, the
limit process would need to have a discontinuity point at the left endpoint,
which is not allowed in the space D. If the switching point occurred at time
τ within a larger interval, then convergence could be obtained in the open
interval (0,∞) in the M1 topology, after redefining the limits at the switch-
ing points, but not the J1 topology; see Chapter 12 of [24]. In any case, there
are limits at the switching points, but the limit process obtained for each t
typically has discontinuities at all switching points. However, this difficulty
does not occur for the scaled number in system X̂n(t); it has a continuous
limit process, as given in Theorem 4.2.

Practical engineering approximations can be based on the resulting Gaus-
sian approximations, for which we need the time-dependent variances, to go
with the time-varying means provided by the fluid limit. The key process
is X̂, so we are primarily interested in the variance V ar(X̂(t)), denoted by
σ2

X̂
(t). Let σ2

X̂∗
(t) ≡ V ar(X̂∗(t)) and σ2

X̂∗,Ŵ ∗
(t) ≡ Cov(X̂∗(t), Ŵ ∗(t)), and

similarly for the other processes.

Corollary 4.2. (variances) Consider an OL interval [0, τ ] satisfying

(4.1). The variances and covariances are

σ2
X̂

(t) = σ2
X̂∗(t) + V ar(X̂(0))(F c

w(t))2,

σ2
X̂∗(t) =

3
∑

i=1

σ2
X̂∗

i

(t) =

∫ t

0

3
∑

i=1

Ki(t, u)2 du,

=

∫ t

t−w(t)
λ(s)F c(t − s)

(

C2
λ F c(t − s) + F (t − s)

)

ds

+q̃2(t, w(t))σ2
Ŵ ∗(t),

σ2
Ŵ ∗(t) =

3
∑

i=1

σ2
Ŵ ∗

i

(t) =

∫ t

0

3
∑

i=1

Ji(t, u)2 du

=

∫ t

0
H2(t, u)I2(u) du,

σ2
V̂ ∗(t) =

σ2
Ŵ ∗

(t + v(t))

(1 − ẇ(t + v(t)))2
,

σ2
V̂

(t) = σ2
V̂ ∗(t) +

V ar(X̂(0))(F c
w(t + v(t)))2

(s(t + v(t))µ + ṡ(t + v(t)))2
,
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σ2
Ŵ

(t) = (1 − ẇ(t))2σ2
V̂

(t − v(t))

= σ2
Ŵ ∗(t) +

V ar(X̂(0))(F c
w(t))2

q̃(t, w(t))2
,

σ2
X̂∗,Ŵ ∗(t) =

3
∑

i=1

σ2
X̂∗

i
,Ŵ ∗

i

(t) =

∫ t

0

3
∑

i=1

Ji(t, u)Ki(t, u) du,

where Ki, Ji, H and I are given in (4.7) and F c
w is given in (4.5).

5. Heavy-Traffic Limits During an Underloaded Interval. We
now consider the easier case of the UL intervals. As before, we assume
convergence of the initial values, as in (4.1). Clearly, X̄n(0) ≥ 0, so that
necessarily X(0) ≥ 0. For the initial interval, we can have any nonnegative
deterministic value for X(0) provided that X(0) ≤ s(0). For all subsequent
UL intervals, the limit over the previous OL interval will force X(0) = s(0).

As before, we focus on Xn instead of Bn, because after the initial interval
we can have Xn(0) > sn(0), whereas we necessarily have Bn(0) ≤ sn(0). The
important observation here is that, under our assumption that there is no
critically loading in the fluid model except at the switching points, in each
UL interval the processes X̄n and X̂n are asymptotically equivalent to the
associated processes X̄∞

n and X̂∞
n in the associated Gt/M/∞ infinite-server

model with the same arrival process, service times and initial conditions,
X∞

n (0) ≡ Xn(0). Thus we can apply many-server heavy-traffic (MSHT) lim-
its established for that model in [19]; also see [1, 10, 22]. (Previous references
suffice here; the full force of [19] is only needed to treat the more general
Gt/GI/∞ model associated with OL intervals.)

For the infinite-server model, we can separate the new arrivals from the
customers initially in the system at time 0. Since there are infinitely many
servers, these customers do not interact when they enter service. Moreover,
by the Brownian limit in FCLT in (2.1), the arrivals after any time t are
asymptotically independent of the arrivals before that time t. To treat the
new arrivals, we can assume that the system starts empty. We use a subscript
e to denote quantities associated with the system starting empty, and we
use the subscript z to denote quantities associated with the initial content
at time zero. Let ‖ · ‖a,b denote the uniform norm over the interval [a, b],
with ‖ · ‖b also denoting the case in which a = 0.

Theorem 5.1. (FWLLN and FCLT for UL interval) Consider a UL

interval [0, τ ] under condition (4.1), allowing no critical loading except at

the interval endpoints. Then

(5.1) X̄n ⇒ X ≡ Xe + Xz and X̂n ⇒ X̂ ≡ X̂e + X̂z in D([0, τ ])
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as n → ∞, where

(5.2) Xe(t) =

∫ t

0
Gc(t − s)λ(s) ds and Xz(t) ≡ X(0)Gc(t), t ≥ 0,

and X̂e and X̂z are independent stochastic processes, with X̂e being a mean-

zero Gaussian diffusion process satisfying the (SDE)

dX̂e(t) = −µX̂e(t) dt + cλdBλ(Λ(t)) − dBs

(

µ

∫ t

0
Xe(u)du

)

d
= −µX̂e(t) dt +

√

c2
λλ(t) + µXe(t)dB(t),(5.3)

where Bλ, Bs and B are independent standard BM’s and X̂(0) ≡ 0. The

limit process associated with the initial conditions is

(5.4) X̂z(t) ≡ X̂(0)Gc(t) +
√

X(0)B0(Gc(t)),

where B0 is a standard Brownian bridge independent of X̂(0) and the BM’s

in (5.3). Equivalently, the limit process X̂ satisfies the single SDE

dX̂(t) = −µX̂(t) dt + cλdBλ(Λ(t)) − dBs

(

µ

∫ t

0
X(u) du

)

d
= −µX̂(t) dt +

√

c2
λλ(t) + µX(t) dB(t),(5.5)

where X̂(0) is given in (4.1).
If X̂(0) is a mean-zero Gaussian random variable, then X̂z and X̂ are

mean-zero Gaussian processes with σ2
X(t) ≡ V ar(X̂(t)) = σ2

e(t) + σ2
z(t),

σ2
e(t) ≡ V ar(X̂e(t)) = (c2

λ − 1)

∫ t

0
(Gc(t − s))2λ(s) ds

+

∫ t

0
Gc(t − s)λ(s) ds(5.6)

and

(5.7) σ2
z(t) ≡ V ar(X̂z(t)) = X(0)G(t)Gc(t) + V ar(X̂(0))(Gc(t))2.

In addition, ‖B̄n − X̄n‖τ ⇒ 0, so that

(5.8) (X̄n, B̄n, Q̄n) ⇒ (X,X, 0e) in D
3([0, τ ]) as n → ∞,

while, restricted to the open interval (0, τ),

(5.9) (X̂n, B̂n, Q̂n) ⇒ (X̂, X̂, 0e) in D
3((0, τ)).
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At the interval endpoints t = 0 and t = τ),

(5.10) (X̂n(t), B̂n(t), Q̂n(t)) ⇒ (X̂(t), X̂(t)−, X̂(t)+) in R
3.

Consequently, the limit process X̂(t) for the scaled number in system X̂n(t)
has continuous sample paths, whereas the limit processes for the scaled num-

ber in queue and in service, Q̂n(t) and B̂n(t), typically have sample paths

that are neither left continuous nor right continuous at the switching points.

Thus, if X(0) = s(0) and P (X̂(0) < 0) > 0, then there is no FCLT for Q̂n

in D([0, τ)); if X(0) = s(0) and P (X̂(0) > 0) > 0, then there is no FCLT

for B̂n in D([0, τ)).

The remainder of this paper is concerned with proving all the stated
results.

6. Proofs of Theorems 4.1 and 4.2 for Overloaded Intervals.
The proof of Theorems 4.1 and 4.2 is rather long, so we start by giving
a brief overview. As in Theorem 4.2, we focus on the number in system,
Xn(t). To do so, it is convenient to first consider the number in system
during the OL interval starting with all servers busy and an empty queue.
Hence, we will initially consider the OL interval under this special initial
condition. We will then establish the limit for Xn(t) with general initial
conditions in §6.8. We do not use the notation with the superscript ∗ until
§6.8.

In §6.1 we show that any idleness right after time 0 is asymptotically neg-
ligible, implying that the departure process is asymptotically equivalent to
a nonhomogeneous Poisson process with the rate s(t)µ. In §6.2 we state pre-
liminary results for the queue-length process ignoring all flow into service;
these results follow directly from the infinite-server results in [19]. In §6.3 we
establish important representations for the queue-length process during the
OL intervals, allowing flow into service. In §6.4 we show that many-server
heavy-traffic limits for the queue-length process follow from corresponding
limits for the HOL waiting times. In §6.5 we establish an important rep-
resentation for the HOL waiting times. In §§6.6 and 6.7, respectively, we
exploit the results above to prove the FWLLN and the FCLT, still under
the special initial condition. Finally, in §6.8 we prove that corresponding
limits hold for the general initial condition in (4.1).

6.1. Arrivals and Departures with the Special Initial Condition. We start
by considering the special initial condition with all servers busy and an
empty queue. Since we are in an OL interval with Λ(t) > D(t) for all t,
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0 < t < τ , with the initial net input rate to service λ(0) − s(0)µ − ṡ(0) > 0
and the abandonment hazard rate bounded above, even though some servers
could become idle shortly after time 0, all servers become busy and remain
busy throughout an interval [t1,n, t2] for 0 < t1,n = O(1/

√
n) < t2 < τ .

Thus there are at most O(
√

n) empty servers for a period of only O(1/
√

n).
Thus, the total service completion process differs from the nonhomogeneous
Poisson process with rate nD(t) by only O(

√
n) × O(1/

√
n) = O(1) as

n → ∞. Similar reasoning also applies at the right endpoint τ . Hence, we
can conclude that the departure (service completion) process satisfies a joint
FWLLN with the arrival process of the form

(6.1) (N̄n(t), D̄n(t)) ⇒ (Λ(t),D(t)) in D
2([0, τ ])

and a corresponding joint FCLT:

(N̂n(t), D̂n(t)) ⇒ (N̂(t), D̂(t)) in D2([0, τ ]), where

N̂(t) ≡ cλBλ(Λ(t)) and D̂(t) ≡ Bs(D(t)), t ≥ 0,(6.2)

with Bλ and Bs being two independent BM’s.
As a consequence of the results above, we determine (relatively trivial)

limits for the number in service, in particular,

(6.3) B̄n ⇒ s and B̂n ⇒ 0e in D([0, τ ]) as n → ∞.

As a consequence, we deduce for the number in queue that

(6.4) ‖X̄n − (Q̄n + s)‖τ ⇒ 0 and ‖X̂n − Q̂n‖τ ⇒ 0 as n → ∞.

Hence, to establish limits for X̄n and X̂n in D([0, τ ]), it suffices to focus on
Q̄n and Q̂n, which is what we do in the following subsections.

6.2. The Queue Length Ignoring Flow into Service. To study the fluid
model in overloaded intervals, in [11] we introduced the fluid function q̃(t, x),
which is the fluid content density in queue, disregarding the flow into ser-
vice, i.e., under the condition that the flow into service is turned off. It is
convenient to do the same in order to develop stochastic refinements. Let
Q̃n(t, y) be the two-parameter stochastic process giving the number in queue
in model n at time t that have been so for at most time y, under the condi-
tion that the flow into service is turned off. Until §6.8, we have the special
initial conditions with all servers busy and an empty queue.

When we turn off all flow into service, the number in service in the
Gt/M/st + GI queueing model with our special initial condition is asymp-
totically equivalent to the number in the associated Gt/GI/∞ queueing
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model, starting empty, where the abandonment cdf F plays the usual role
of the service-time cdf in the infinite-server model. Hence, we consider the
stochastic process Q̃n(t, y) in the queueing model, disregarding flow into
service. Thus, we can apply the FCLT for the Gt/GI/∞ queueing model
established by [19].

We exploit the representation of Q̃n(t, y) from [19]. Let 1A(t) be the in-
dicator function of the set A, i.e., 1A(t) = 1 if t ∈ A and 0 otherwise. First,
we can write

(6.5) Q̃n(t, y) =

Nn(t)
∑

i=Nn((t−y)−)+1

1(τn
i + ηi > t), t ≥ 0, 0 ≤ y ≤ t,

where τn
i is the ith arrival time, ηi is the ith patience time (the patience time

of the arrival at τn
i ) and Nn(t) is the arrival counting process in model n. The

representation in (6.5) is valid because the first Nn((t−y)−) arrivals will have
come before time t. (The limit process will have continuous sample paths,
so that the consequence of an arrival exactly at time t is asymptotically
negligible.) Hence, the sum in (6.5) counts all arrivals in the interval [t−y, t]
who will not have abandoned by time t.

Following [10], the next step in [19] is to obtain an alternative repre-
sentation exploiting the sequential empirical process associated with the
successive patience times,

(6.6) K̄n(t, y) ≡ 1

n

⌊nt⌋
∑

i=1

1(ηi ≤ y), t ≥ 0, y ≥ 0.

In particular, representation (6.5) is equivalent to the alternative represen-
tation

(6.7) Q̃n(t, y) ≡ n

∫ t

t−y

∫ ∞

0
1(x + s > t) dK̄n(N̄n(s), x),

for t ≥ 0 and 0 ≤ y ≤ t. The representation (6.7) allows us to exploit the
limits K̄n(t, x) ⇒ tF (x) and

(6.8) K̂n(t, x) ≡
√

n(K̄n(t, x) − F (x)) ⇒ K̂(t, x) ≡ U(t, F (x))

in D([0,∞),D([0, 1], R)), where the limit K̂ is a deterministic transformation
of the standard Kiefer process U(t, x).
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From Lemma 2.1 of [19], we obtain the alternative representation

Q̃n(t, y) ≡ Q̃n,1(t, y) + Q̃n,2(t, y) + Q̃n,3(t, y),

Q̃n,1(t, y) ≡
√

n

∫ t

t−y
F c(t − s) dN̂n(s),

Q̃n,2(t, y) ≡
√

n

∫ t

t−y

∫ ∞

0
1(x + s > t) dR̂n(s, x),

Q̃n,3(t, y) ≡ n

∫ t

t−y
F c(t − s)λ(s) ds,(6.9)

where, just as in (2.16) of [19],

(6.10) R̂n(t, y) ≡
√

nK̄n(N̄n(t), y) − N̂n(t)F (y) −
√

nΛ(t)F (y),

with K̄n(t, y) being the sequential empirical process in (6.6).
Thus, from [19] and (6.2), it follows that

(Ẑn,1(t, y), Ẑn,2(t, y)) ≡ n−1/2(Q̃n,1(t, y), Q̃n,2(t, y))

⇒ (Ẑ1(t, y), Ẑ1(t, y)) in D
2([0, τ ], D([0,∞), R)),(6.11)

jointly with the limit in (6.2), where

Ẑ1(t, y) ≡
∫ t

t−y
F c(t − s) dBλ(Λ(s)),

Ẑ2(t, y) ≡
∫ t

t−y

∫ t

0
1(x + s > t) dR(s, x),(6.12)

with Bλ being a BM and

(6.13) R(t, y) ≡ K(Λ(t), y),

where K(t, y) ≡ U(t, F (y)) and U(t, x) is the standard Kiefer process, with
(K,R) independent of Bλ. As a consequence, by the continuous mapping
theorem with addition,

(6.14) Ẑn ≡ Ẑn,1 + Ẑn,2 ⇒ Ẑ1 + Ẑ2 in D([0, τ ], D([0,∞), R))

for Ẑi in (6.12).
From (6.12) and (6.13), we see that the limit process Ẑ1 in (6.11) depends

on the randomness in the arrival process through the BM Bλ, while the
limit process Ẑ2 in (6.11) depends on the randomness in the patience times
through R, and thus the Kiefer process K, associated with the abandonment
times. Since flow into service has not yet been considered, the BM Bs does
not appear yet. We will exploit this established convergence in (6.11) in
order to establish our desired FWLLN and FCLT.
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6.3. Representation of the Queue Length Process. We now obtain a rep-
resentation of the queue-length process Qn(t) in this overloaded interval,
where now we are allowing the usual flow into service. We do so by modifying
the representation for Q̃n(t, y) constructed above. In particular, paralleling
(6.5), for t > 0, we obtain the representation

(6.15) Qn(t) = Q̃n(t,Wn(t)) =

Nn(t)
∑

i=Nn((t−Wn(t))−)+1

1(τn
i + ηi > t), t > 0.

We could also obtain a corresponding representation for the two-parameter
process Qn(t, y), as in (6.5), but here we focus on the one-parameter pro-
cesses. The FCFS service discipline is crucial for obtaining representation
(6.15); it ensures that customers enter service from the head of the line.
Representation (6.15) does not tell the whole story, however, because the
HOL waiting time Wn(t) remains to be determined. Moreover, among the
first Nn((t − Wn(t))−) arrivals, (6.15) does not show which entered service
and which abandoned.

Nevertheless, paralleling (6.9) above, we obtain the alternative represen-
tation

Qn(t) ≡ Qn,1(t) + Qn,2(t) + Qn,3(t),

Qn,1(t) ≡
√

n

∫ t

t−Wn(t)
F c(t − s) dN̂n(s),

Qn,2(t) ≡
√

n

∫ t

t−Wn(t)

∫ ∞

0
1(x + s > t) dR̂n(s, x),

Qn,3(t) ≡ n

∫ t

t−Wn(t)
F c(t − s)λ(s) ds, t > 0,(6.16)

where R̂n is given in (6.10).

6.4. Limits for Q̂n Given Limits for Ŵn. Given limits Wn ⇒ w and
Ŵn ⇒ Ŵ in D([0, τ ]) for Ŵn in (2.5), where w is the differentiable fluid HWT
satisfying the ODE in (3.8) and Ŵ has continuous sample paths, which we
will establish below, we can obtain limits for Q̄n and Q̂n in D([0, τ ]) directly
from the representation in (6.16) and the limits in (6.11) by applying the
continuous mapping theorem. In particular,

Q̄n,i(t) ≡ n−1Qn,i(t) ⇒ (0e)(t) for i = 1, 2,

Q̄n,3(t) ≡ n−1Qn,3(t) ⇒ Q3(t) ≡
∫ t

t−w(t)
λ(s)F c(t − s) ds,(6.17)
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in D([0, τ ]) and

Q̂n,1(t) ≡ n−1/2Qn,1(t) ⇒ Q̂1(t)

≡ Cλ

∫ t

t−w(t)
F c(t − s) dB̃λ(Λ(s)),(6.18)

≡ Cλ

∫ t

t−w(t)
F c(t − s)

√

λ(s) dBλ(s),

Q̂n,2(t) ≡ n−1/2Qn,2(t) ⇒ Q̂2(t)

≡
∫ t

t−w(t)

∫ t

0
1(x + s > t) dR(s, x)

d
= −

∫ t

t−w(t)

√

F (t − s)F c(t − s) dB̃a(Λ(s))(6.19)

d
= −

∫ t

t−w(t)

√

F (t − s)F c(t − s)λ(s) dBa(s).

Q̂n,3(t) ≡ n−1/2(Qn,3(t) − nQ(t))(6.20)

⇒ Q̂3(t) ≡ q(t, w(t))Ŵ (t).

Q̂n(t) ≡ Q̂n,1(t) + Q̂n,2(t) + Q̂n,3(t)

⇒ Q̂(t) ≡ Q̂1(t) + Q̂2(t) + Q̂3(t) in D((0, τ)),

where the three limit processes in the last line are independent. This is not
entirely obvious because Q̂3 involves Ŵ , which in turn involves the two BM’s
Bλ and Ba appearing in Q̂1 and Q̂2. However, a close observation reveals that
Q̂1 and Q̂2 involve the two BM’s B̃λ and B̃a from time Λ(t − w(t)) to time
Λ(t), according to the representations in (6.18) and (6.19); on the other
hand, we will see from (6.65) of §6.7.2 that Ŵ involves B̃λ and B̃a from
time Λ(0) = 0 to time Λ(t − w(t)), which thus concludes the independence.
After we establish the limit for Ŵ , we can appropriately group the terms
and separate these three independent BM’s. The representation in Theorem
4.2 will thus follow.

We now justify the convergence just stated above. We start with the
FWLLN. The separate FWLLN’s for Nn, Zn,i and Wn obtained from (6.1),
(6.11) and by assumption to deterministic limits imply the joint FWLLN.
Since we divide by n, the terms Q̄n,1 and Q̄n,2 obtained from (6.20) and
X̄n(0)+ become asymptotically negligible Using the assumed FWLLN for
Wn(t), we can apply the continuous mapping theorem with the composition
map, specifically Theorem 2.4 of [23], which extends continuity properties for
composition maps to the two-parameter setting, to the second (y) coordinate
of Q̃n,3(t, y) to obtain Q̄n,3 ⇒ Q in Theorem 4.1, which implies that Q̄n ⇒ Q.
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We now turn to the FCLT refinement. Given the FCLT jointly for Nn,
Zn,i and Wn obtained from (6.2), (6.11), again we can apply the continuous
mapping theorem with the composition map in Theorem 2.4 of [23], applied
to the second (y) coordinate of Ẑn,i(t, y) in (6.11) to obtain the desired
conclusions for Q̂n,i(t), for i = 1, 2. Note that we only need the FWLLN for
Wn(t) for this step; we do not need the more involved Theorem 2.5 of [23].
From this step, we obtain the convergence of the vector processes, i.e.,

(6.21) (N̂n, D̂n, Ẑn,1, Ẑn,2, Ŵn, Q̂n,1, Q̂n,2) ⇒ (N̂ , D̂, Ẑ1, Ẑ2, Ŵ , Q̂1, Q̂2).

Next, we treat Q̂n,3 in (6.20) by noting that

Q̂n,3(t) =
√

n

(

∫ t

t−Wn(t)
F c(t − s)λ(s) ds −

∫ t

t−w(t)
F c(t − s)λ(s) ds

)

,

=
√

n

(

∫ t−w(t)

t−Wn(t)
F c(t − s)λ(s) ds

)

,(6.22)

so that we can exploit the continuity of the integrand q̃(t, t − s) = F c(t −
s)λ(s) to deduce that

(6.23) sup
0≤t≤τ

{|Q̂n,3(t) − Ŵn(t)q̃(t, w(t))|} = o(‖Ŵn‖τ ) as n → ∞,

so that Q̂n,3 ⇒ Q̂3 in D([0, τ ]) jointly with the limit in (6.21) for Q̂3(t) ≡
q̃(t, w(t)Ŵ (t) if Ŵn ⇒ Ŵ in D([0, τ ]). Given that joint convergence, we can
apply the continuous mapping theorem with addition to obtain the limit
Q̂n ⇒ Q̂ jointly with the other processes, as stated in the final line of (6.20).

6.5. Representation of the HOL waiting times Wn(t). It thus remains
only to treat the waiting times. Paralleling the proof of Theorem 3 of [11],
we treat the HWT process Wn(t) by equating two different expressions for
the number of customers to enter service in an interval [t, t+ ǫ], where ǫ is a
small positive number. Let En(t) be the number of customers to enter service
in the interval [0, t]. On the one hand, since the fluid model is overloaded
with Λ(t) > D(t) for all t, 0 < t < τ , the number of customers to enter
service is asymptotically equivalent to the new capacity made available by
departures and changes in the staffing, i.e., as n → ∞,

(6.24) sup
0≤t≤τ

{|En(t) − (Dn(t) + ⌈ns(t)⌉ − ⌈ns(0)⌉)|} = o(
√

n).

Let Ēn(t) ≡ En(t)/n and Ên(t) ≡ √
n(Ēn(t) − E(t)) be the associated

FWLLN and FCLT scaled processes, where E(t) ≡ D(t) + s(t) − s(0). It
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follows from (6.24) and the FCLT for Dn in (6.2) that

(6.25) Ēn(t) ⇒ E(t) and Ên ⇒ Ê in D as n → ∞,

where

(6.26) Ê(t) = D̂(t) = Bs(D(t)), t ≥ 0,

as in (6.2).
On the other hand, the flow into service most come from customers leaving

the queue. Because the service discipline is FCFS, that flow must come
from the customers who have been in service the longest. We can again use
representation (6.15) to represent the flow into service over an interval. Let
En(t, ǫ) ≡ En(t + ǫ)−En(t) and similarly for the other processes. As in the
proof of Theorem 3 of [11], if we make the interval short enough, then the
abandonments will be asymptotically negligible. Thus, paralleling equation
(28) in [11] for the fluid model, from (6.15) we obtain

En(t, ǫ) = In(t, ǫ) − AI
n(t, ǫ), where

In(t, ǫ) ≡
Nn(t+ǫ−Wn(t+ǫ))

∑

i=Nn((t−Wn(t))−)+1

1(τn
i + ηi > t);(6.27)

i.e., In(t, ǫ) is the number of customers removed from the right boundary of
the queue in the time interval [t, t + ǫ], and AI

n(t, ǫ) is the number of those
In(t, ǫ) customers that actually abandon. Note that Wn(t + ǫ) ≤ Wn(t) + ǫ
because the waiting time of each customer that remains in queue increases
at rate 1. Hence the upper limit of summation in (6.27) always is greater
than or equal to the lower limit of summation there.

We now want to show that AI
n(t, ǫ) is appropriately asymptotically negli-

gible relative to In(t, ǫ). For that purpose, observe that

(6.28) 0 ≤ AI
n(t, ǫ) ≤ Jn(t, ǫ) ≡

Nn(t+ǫ−Wn(t+ǫ))
∑

i=Nn((t−Wn(t))−)+1

1(t < τn
i + ηi ≤ t + ǫ);

i.e., Jn(t, ǫ) is the number of customers in the system at time t, but not at
time t + ǫ, who would abandon before time t + ǫ if they do not enter service
first in the interval [t, t + ǫ]. The remaining In(t, ǫ) − Jn(t, ǫ) customers
necessarily enter service in the interval [t, t + ǫ], because they would not
abandon before time t + ǫ.

We now show that the bound Jn(t, ǫ) in (6.28) is asymptotically negligible
relative to In(t, ǫ) as ǫ ↓ 0, uniformly in n and t, so that we can ignore
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AI
n(t, ǫ) by choosing ǫ suitably small. We prove that by bounding Jn(t, ǫ)

above. First, we observe that 0 ≤ τn
i ≤ τ for the arrival times τn

i under
consideration. Thus

(6.29) Jn(t, ǫ) ≤ In(t, ǫ) sup {P (t ≤ τn
i + ηi ≤ t + ǫ|t ≤ τn

i + ηi)},

where

sup {P (t ≤ τn
i + ηi ≤ t + ǫ|t ≤ τn

i + ηi)}
≤ sup

0≤t≤τ
{F c(t) − F c(t + ǫ)} ≤ ‖f‖τ ǫ + o(ǫ) as ǫ ↓ 0,(6.30)

where ‖f‖τ < ∞ because the cdf F has the density f , which has been
assumed to be in Cpc ⊆ D. To summarize,

(6.31) AI
n(t, ǫ) ≤ Jn(t, ǫ) ≤ KǫIn(t, ǫ)

for some constant K (depending on the cdf F and τ) for all ǫ suitably small,
uniformly in n and t.

We can characterize the asymptotic behavior of the HWT process Wn(t)
by equating the two expressions for En(t, ǫ) from (6.24) and (6.27). Here we
act as if the system is always overloaded, and thus use the infinite-server
model representation; as in (6.24), the error in this step is asymptotically
negligible. Now, reasoning as in (6.5)–(6.9), we obtain an alternative repre-
sentation for In(t, ǫ) in (6.27). In particular,

(6.32) In(t, ǫ) = n

∫ t+ǫ−Wn(t+ǫ)

t−Wn(t)

∫ ∞

0
1(s + x > t)dK̄n(N̄n(s), x),

where K̄n(t, x) again is the sequential empirical process in (6.6), and then

(6.33) In(t, ǫ) = In,1(t, ǫ) + In,2(t, ǫ) + In,3(t, ǫ),

where

In,1(t, ǫ) =
√

n

∫ t+ǫ−Wn(t+ǫ)

t−Wn(t)
F c(t − s)dN̂n(s),

In,2(t, ǫ) =
√

n

∫ t+ǫ−Wn(t+ǫ)

t−Wn(t)

∫ ∞

0
1(s + x > t)dR̂n(s, x),

In,3(t, ǫ) = n

∫ t+ǫ−Wn(t+ǫ)

t−Wn(t)
F c(t − s)λ(s)ds,(6.34)

where R̂n is from (6.10).
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6.6. Proof of Theorem 4.1: the FWLLN. We now prove the FWLLN, still
under our special initial conditions imposed in §6.1. We have (N̄n, D̄n, Z̄n) ⇒
(Λ,D, Q̃) in D([0, τ ])2 × D([0, τ ],D([0, 1], R) for N̄n(t) ≡ n−1Nn(t) and
D̄n(t) ≡ n−1Dn(t) in (2.4) and Z̄n(t, y) ≡ n−1Q̃n(t, y) in (6.5)–(6.11), where
(Λ,D, Q̃) are the components of the fluid model in §3, based on the FCLT’s
in (2.1), (6.2) and (6.11). As shown above, we also obtain the FWLLN for
Q̄n once we obtain the FWLLN for Wn.

We now prove the FWLLN for Wn; i.e., Wn ⇒ w. We prove the FWLLN
for Wn by applying the compactness approach, as in §11.6 of [24]. In partic-
ular, we show that the sequence {Wn} is C-tight in D([0, τ ]) and then char-
acterize the limit of every converging subsequence. The C-tightness means
that it satisfies the criteria for tightness in the subspace C, as in Theorem
11.6.3 of [24]. The C-tightness implies that every subsequence has a fur-
ther converging subsequence with all limits having continuous sample paths
w.p.1. We demonstrate full convergence by showing that all the convergent
subsequences have the same limit.

6.6.1. Tightness of {Wn}. First, the sequence {Wn} is bounded, because
Wn(t) ≥ 0 and Wn(t) increases at most at rate 1. The OL interval under
question falls within a larger finite interval [0, τ∗]. Since the system has been
assumed to start empty in the initial UL interval, a crude bound is Wn(t) ≤
τ∗. Within the current OL interval, we also can show that Wn(0) ⇒ 0, so
that lim supn→∞ Wn(t) ≤ τ .

Next, the modulus of continuity is bounded above, because Wn(t + δ) −
Wn(t) ≤ δ. It remains to bound Wn(t + δ) − Wn(t) below uniformly in
t. For that purpose, we work with the representation for Wn in §6.5. Let
Īn,j ≡ n−1In,j for In,j in in (6.34). We first observe that n−1In,1 ⇒ 0e and
n−1In,2 ⇒ 0e in D([0, τ ]), so that ‖Īn − Īn,3‖τ ⇒ 0. However, by (6.25), we
already know that Ēn ⇒ E for E(t) ≡ D(t) + s(t) − s(0). Hence, we have
Īn,3(t, δ) − ĀI

n(t, δ) ⇒ E(t, δ) in D([0, τ ]) for Īn,3 in (6.34) and ĀI
n(t, δ) in

(6.27). However, by (6.31), we can henceforth ignore ĀI
n(t, δ).

By the assumptions for λ and F in §3, the integrand of In,3 in (6.34) is
bounded below by c ≡ F̄ (τ)λinf (τ) > 0. Hence, we have the inequality

(6.35)
Īn,3(t, δ)

c
≥ Wn(t) − Wn(t + δ) + δ,

so that we can write

(6.36) Wn(t) − Wn(t + δ) ≤ Īn,3(t, δ)

c
− δ ≤ Ēn(t, δ)

c
,
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and then combine the relations above to obtain

(6.37) lim sup
n→∞

{Wn(t) − Wn(t + δ)} ≤ D(t, δ) + s(t, δ)

c
≡ Cδ,

for some constant C. Hence, the sequence {Wn(t) : 0 ≤ t ≤ τ} is C-tight.
In addition, the limit of any subsequence must be Lipschitz continuous.
Along the way, we have also shown that the sequences {Īn,3(t)}, {Īn(t)} and
{ĀI

n(t)} are tight as well.

6.6.2. Limit of Convergent Subsequences of {Wn}. Since tightness im-
plies that every subsequence has a convergent subsequence, we complete the
proof of the FWLLN for Wn(t) by showing that every convergent subse-
quence of {Wn} converges to w in D. It suffices to show that any limit of a
convergent subsequence must satisfy the ODE in (3.8) w.p.1 or, equivalently,
the integral representation in (3.9), because w has been characterized as the
unique solution to those equations.

First, by (6.24) and (6.25), we know that

(6.38) Ēn(t, ǫ) ⇒ E(t, ǫ) =

∫ t+ǫ

t
b(s, 0) ds.

in D as n → ∞. Moreover, as ǫ → 0, the limit in (6.38) approaches b(t, 0) =
s(t)µ + ṡ(t).

We also consider the flow out of the queue in (6.27). Recall that Īn(t, ǫ) is
asymptotically equivalent to Īn,3(t, ǫ) in (6.34). By the assumed convergence
of Wn ⇒ W and the continuous mapping theorem applied to Īn,3(t, ǫ), we
have

(6.39) Īn(t, ǫ) ⇒ I(t, ǫ) ≡
∫ t+ǫ−W (t+ǫ)

t−W (t)
F c(t − s)λ(s) ds in D([0, τ ]);

i.e., the limit I(t, ǫ) is determined once we know the limit W . From (6.38)
and (6.39), we also have

(6.40) ĀI
n(t, ǫ) = Ēn(t, ǫ) − Īn(t, ǫ) ⇒ AI(t, ǫ) ≡ E(t, ǫ) − I(t, ǫ).

Thus both limits I(t, ǫ) and AI(t, ǫ) are determined given the limit W .
In summary, we have the limits related by

E(t, ǫ) = I(t, ǫ) + AI(t, ǫ)

=

∫ t+ǫ−W (t+ǫ)

t−W (t)
F c(t − s)λ(s) ds + AI(t, ǫ).(6.41)
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Again we can apply (6.31) to deduce that AI(t, ǫ) is negligible relative to
I(t, ǫ) for all suitably small ǫ, so that we can disregard AI(t, ǫ) in (6.41).
Hence, combining (6.38), (6.41) and (6.31), we obtain

(6.42) E(t, ǫ) = b(t, 0)ǫ + o(ǫ) = F c(t − W (t))λ(W (t))(1 − Ẇ (t)) + o(ǫ)

as ǫ ↓ 0 for almost all t and almost all sample paths of the limiting stochastic
process W . In other words, the proof of Theorem 3 of [11] can be applied
to W to show that W satisfies the ODE (3.8) w.p.1, i.e., that Theorem 3 of
[11] holds for W w.p.1. Since there exists a unique solution to that ODE,
we must have P (W = w) = 1. Since this same conclusion holds for all limits
of convergent subsequences, we conclude that indeed Wn ⇒ w, as claimed.
Along the way, since we must have W = w, we determine the fluid limits
I(t, ǫ) and AI(t, ǫ) as well; they are the limits above with W (t) replaced by
w(t). We thus have two representations for E(t) ≡ E(0, t):

(6.43) E(t) = D(t) + s(t) − s(0) =

∫ t−w(t)

0
F c(t − s)λ(s)(1 − ẇ(s)) ds

6.6.3. The FWLLN for Vn(t). By the definitions of the HWT and PWT,
we necessarily have the PWT Vn satisfying the equation

(6.44) Vn(t − Wn(t)) = Wn(t) or, equivalently, Vn(t) = Wn(t + Vn(t)),

given Wn(t); see Theorem 5 of [11]. We already have established the FWLLN
for Wn(t), yielding Wn ⇒ w, where w is a continuous function. Moreover,
w has left and right derivatives everywhere, which are bounded.

We now exploit Theorems 3-6 of [11] establishing key properties of the
HWT and PWT fluid functions w and v. The additional property (3.4)
here implies that there exists a constant γ > 0 such that ẇ(t) < 1 − γ,
0 ≤ t ≤ τ . By Theorems 5 and 6 of [11], v is continuous, where v is the
unique solution to the corresponding fluid equations, e.g., as in (3.10). Hence,
from the construction of v in the proof of Theorem 5 of [11] and (3.11), we
deduce, first, for the given fluid functions (w, v) and any other (w1, v1) that
‖v1 − v‖τ < ‖w1 − w‖τ/γ. Hence, we deduce that

(6.45) ‖Vn − v‖τ < ‖Wn − w‖τ/γ.

Since, ‖Wn −w‖τ ⇒ 0, also ‖Vn − v‖τ ⇒ 0. Hence, the proof of the FWLLN
is complete.
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6.7. Proof of Theorem 4.2: the FCLT. We now turn to the proof of the
FCLT, still under our special initial conditions imposed in §6.1. From §6.4,
we know that, for the queue length Qn(t) and the number in system Xn(t),
it suffices to prove convergence of the scaled waiting times Ŵn. Just as for
the FWLLN, we do this in two steps. We first prove tightness and then we
characterize the limit of all convergent subsequences.

6.7.1. Tightness of the Sequence {Ŵn}. We start by proving C-tightness
of the sequence {Ŵn} ≡ {√n(Wn(t)−w(t))}. We do a proof by contradiction.
First, suppose that {Ŵn} is not stochastically bounded; i.e., for all real
numbers M > 0 no matter how large and for all ǫ > 0 no matter how small,
there exists n such that P (‖Ŵn‖τ > M) > ǫ. However, from §§6.5 and 6.6.2,
including (6.43), we know that ‖Ên − În‖τ ⇒ 0, where

(6.46) În(t) ≡
√

n

∫ t−Wn(t)

t−w(t)
F c(t − s)λ(s)(1 − ẇ(s)) ds.

Hence, there exists n for all M > 0, no matter how large and for all ǫ > 0
no matter how small, such that

(6.47) P (‖Ên‖τ ≥ c‖Ŵn‖τ ≥ cM) > ǫ,

where c is the strictly positive infimum of the integrand in (6.46) (because
λ(t) > λinf > 0, w(t) < 1 and w is uniformly continuous on the interval

[0, τ ]). However, this would contradict the established convergence Ên ⇒ Ê
in (6.25) and (6.26). Hence the sequence {Ŵn} must actually be stochasti-
cally bounded.

Second, even though the sequence {Ŵn} is stochastically bounded, it is
possible that the modulus of {Ŵn} is not asymptotically negligible, as in
(11.6.4) of [24]. Thus, suppose that there exists ǫ > 0 and δ > 0 such that

(6.48) P (ωŴn
(δ) > ǫ) > δ

for all δ > 0, no matter how small, and some n, no matter how large, where

(6.49) ωx(δ) ≡ sup
0≤t<t1<t2≤t+δ≤τ

{|x(t2) − x(t1)|}.

Consider a subsequence of n for which this is true. Then there must exist
a sequence {(δn, tn)} where 0 ≤ tn < τ and δn ↓ 0 as n → ∞ such that
P (|Ŵn(tn + δn) − Ŵn(tn)| > γ) > ǫ for all n. Since, 0 ≤ tn ≤ τ for all n,
there exists a convergent subsequence of {tn}. So it suffices to assume that
tn → t as n → ∞.
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We now work with In,3 in (6.34), using the fluid limits I and AI deter-
mined in §6.6.2, i.e.,

(6.50) I(t, δ) =

∫ t+δ−w(t+δ)

t−w(t)
F c(t − s)λ(s) ds and AI(t) = E(t) − I(t).

Thus, by the continuity of q̃, the
√

n-scaled process satisfies

În,3(tn, δn)

=
√

n

(

∫ tn+δn−Wn(tn+δn)

tn−Wn(tn)
q̃(t, t − s) ds −

∫ tn+δn−w(tn+δn)

tn−w(tn)
q̃(t, t − s) ds

)

=
√

n

(

∫ tn+δn−Wn(tn+δn)

tn+δn−w(tn+δn)
q̃(t, t − s) ds −

∫ tn−w(tn)

tn−W (tn)
q̃(t, t − s) ds

)

= q̃(tn + δn, w(tn + δn)Ŵn(tn + δn) − q̃(tn, w(tn))Ŵn(tn) + o(1)

= q̃(t, w(t))(Ŵn(tn + δn) − Ŵn(tn)) + o(1) as n → ∞,(6.51)

so that

(6.52) lim sup
n→∞

|În,3(tn, δn)| ≥ q̃(t, w(t)) lim sup
n→∞

|Ŵn(tn + δn) − Ŵn(tn)|.

Since limits have been established for the sequences În,1 and În,2, (6.57)
implies that, for some γ′ > 0,

lim sup
n→∞

P (|În(tn, δn)| > γ′)

≥ lim sup
n→∞

P (|Ŵn(tn + δn) − Ŵn(tn)| > γ) > 0.(6.53)

However, together with (6.31), which implies that |ÂI
n(t, ǫ)| ≤ Kǫ|În(t, ǫ)|

for some constant K for all ǫ suitably small, uniformly in n and t, the limit
in (6.60) implies that we cannot have Ên ⇒ Ê as indicated in (6.25), which
is a contradiction. Hence, the modulus property for the sequence {Ŵn} in
(6.48) must actually not hold. Thus, we have shown that the sequence {Ŵn}
must in fact be tight.

6.7.2. Characterizing the Limit Ŵ . We now characterize the limit of
any convergent subsequence of the sequence {Ŵn}. Without changing the
notation, suppose that Ŵn ⇒ Ŵ through some subsequence. Of course, we
also have Wn ⇒ w along this subsequence and all the other fluid limits. We
thus want to characterize the distribution of Ŵ . To do so, we again exploit
the representation of the flow into service, writing

(6.54) En(t) =

⌊t/ǫ⌋
∑

i=1

En((i − 1)ǫ, ǫ) + En,r(t, ǫ),
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where En,r(t, ǫ) is the final remainder term associated with a final par-
tial interval and En(t, ǫ) = In(t, ǫ) − AI

n(t, ǫ) as in (6.27) with In(t, ǫ) =
In,1(t, ǫ) + In,2(t, ǫ) + In,3(t, ǫ) as in (6.33) and (6.34). Since we have estab-
lished that Ên(t) ⇒ Ê(t) in D([0, τ ]), as stated in (6.25) and (6.26), we can
ignore the final remainder term in (6.54). The C-tightness following from
the convergence implies that the scaled remainder term is asymptotically
negligible.

For any t > 0 (which applies to i ≥ 1, let the
√

n-scaled processes over
the intervals [t, t + ǫ] be

(6.55) În,j(t, ǫ) ≡ n−1/2(In,j(t, ǫ) − nIj(t, ǫ)),

where Ij(t, ǫ) has been determined, and similarly for the other processes. In
§6.6.1 we observed that I1 = I2 = 0e.

By (6.34), the FWLLN for Wn and the FCLT for Ẑn,1 in (6.11),

În,1(t, ǫ) ≡ 1√
n

In,1(t, ǫ) ⇒ Î1(t, ǫ)

≡ cλ

∫ t+ǫ−w(t+ǫ)

t−w(t)
F c(t − s)dB̃λ(Λ(s))),(6.56)

where Bλ is the BM associated with the arrival process and c2
λ is its vari-

ability parameter, as in (2.1).
Similarly, by (6.34), the FWLLN for Wn and the FCLT for Ẑn,2 in (6.11),

În,2(t, ǫ) ≡ 1√
n

In,2(t, ǫ) ⇒ Î2(t, ǫ)

≡
∫ t+ǫ−w(t+ǫ)

t−w(t)

∫ ∞

0
1(s + x > t)dR(s, x)

d
= −

∫ t+ǫ−w(t+ǫ)

t−w(t)

√

F (t − s)F c(t − s)dB̃a(Λ(s)),(6.57)

where Ba(·) is a BM associated with the patience times.
For In,3 in (6.34), we first write

(6.58) În,3(t, ǫ) ≡ n−1/2 (In,3(t, ǫ) − nI3(t, ǫ)) .

for I3 previously determined, i.e.,

(6.59) I3(t, ǫ) ≡
∫ t+ǫ−w(t+ǫ)

t−w(t)
F̄ (t − s)λ(s)ds.
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Then, exploiting the assumed convergence Ŵn ⇒ Ŵ along the subsequence,
we obtain

În,3(t, ǫ) =
1√
n

(

n

∫ t+ǫ−Wn(t+ǫ)

t−Wn(t)
q̃(t, t − s)ds − n

∫ t+ǫ−w(t+ǫ)

t−w(t)
q̃(t, t − s)ds

)

=
√

n

(

∫ t−w(t)

t−Wn(t)
q̃(t, t − s)ds +

∫ t+ǫ−Wn(t+ǫ)

t+ǫ−w(t+ǫ)
q̃(t, t − s)ds

)

= q̃(t, w(t))
√

n(Wn(t) − w(t))

−q(t, w(t + ǫ) − ǫ)
√

n(Wn(t + ǫ) − w(t + ǫ)) + o(1)

⇒ Î3(t, ǫ) ≡ q̃(t, w(t)) Ŵ (t) − q̃(t, w(t + ǫ) − ǫ) Ŵ (t + ǫ)(6.60)

as n → ∞. Exploiting (6.31), we see that ÂI
n is asymptotically negligible

compared to În,s. Hence, we have established the convergence

(6.61) (Ŵn, Ên(t, ǫ), În(t, ǫ)) ⇒ (Ŵ , Ê(t, ǫ), Î(t, ǫ))

in D([0, τ ]) × D
3([t, t + ǫ]), where

(6.62) Ê(t, ǫ) = Î1(t, ǫ) + Î2(t, ǫ) + Î3(t, ǫ)(1 + o(ǫ))

with all the limits having been identified explicitly. Substituting the estab-
lished limits into (6.62), we obtain

Bs(D(t + ǫ)) − Bs(D(t)) =

∫ t+ǫ−w(t+ǫ)

t−w(t)
F c(t − s)d(cλB̃λ(Λ(s)))

−
∫ t+ǫ−w(t+ǫ)

t−w(t)

√

F (t − s)F c(t − s)dB̃a(Λ(s))

+q̃(t, w(t)) Ŵ (t) − q̃(t, w(t + ǫ) − ǫ) Ŵ (t + ǫ) + o(ǫ) as ǫ ↓ 0.(6.63)

Moreover, for each ǫ > 0, we have the corresponding limit for the sum Ên(t)
in (6.54). As ǫ ↓ 0, this sum converges in mean square to the stochastic
integral associated with a stochastic differential equation (SDE) determined
by (6.63). Thus, the distribution of Ŵ is determined by this SDE. The

SDE is well defined because all but the term Ŵ (t + ǫ) − ˆW (t) involve BM
terms, which produce known differential terms. In particular, using informal
differential notation, we see that, as ǫ ↓ 0,

Ê(t, ǫ) → dB̃s(D(t)),

Î1(t, ǫ) → dÎ1(t) ≡ cλF c(w(t))dB̃λ(Λ(t − w(t)),

Î2(t, ǫ) → dÎ2(t) ≡ −
√

F (w(t))F c(w(t))dB̃a(Λ(t − w(t)),

Î3(t, ǫ) → dÎ3(t) ≡ −q̃(t, w(t)) dŴ (t) + (1 − w′(t))q̃x(t, w(t))dt Ŵ (t),
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where we exploit the assumed differentiability of the arrival rate function λ
and

q̃(t, w(t)) − q̃(t, w(t + ǫ) − ǫ)

ǫ

=

(

q̃(t, w(t)) − q̃(t, ǫ + w(t + ǫ))

w(t) + ǫ − w(t + ǫ)

)(

w(t) + ǫ − w(t + ǫ)

ǫ

)

→ q̃x(t, w(t))[1 − w′(t)] as ǫ → 0

in the treatment of Î3(t, ǫ).
Putting the dŴ (t) term on the left, and thus expressing it in terms of all

others, we get the SDE

dŴ (t) = h(t) Ŵ (t) dt −
(

1

q(t, w(t))

)

dB̃s(D(t))

−
(

√

F (w(t))F c(w(t))

q(t, w(t))

)

dB̃a(Λ(t − w(t)))

+
F c(w(t))cλ

q(t, w(t))
dB̃λ(Λ(t − w(t)))

= h(t) Ŵ (t) dt + Is(t) dBs(t) + Ia(t) dBa(t) + Iλ(t) dBλ(t)

= h(t) Ŵ (t) dt + I(t) dB(t),(6.64)

as in (4.9), where h(t), I1 ≡ Iλ, I2 ≡ Is and Is ≡ Ia are given in (4.7) and I
is given in (4.10). while B1 ≡ Bλ, B2 ≡ Bs and B3 ≡ Ba are all independent
standard BM’s.

We claim that the SDE in (6.64) and (4.9) has the analytic solution

Ŵ (t) = Ŵ (0)H(t, 0) +

∫ t

0

(

− 1

q(u,w(u))

)

H(t, u) dB̃s(D(u))

+

∫ t

0

(

−
√

F (w(u))F c(w(u))

q(u,w(u))

)

H(t, u) dB̃a(Λ(u − w(u)))

+

∫ t

0

F c(w(u))cλ

q(u,w(u))
H(t, u)dB̃λ(Λ(u − w(u)))(6.65)

d
= Ŵ (0)H(t, 0) +

∫ t

0
H(t, u)I(u)dB(u)(6.66)

d
= Ŵ0(t) + Ŵλ(t) + Ŵs(t) + Ŵa(t),

where Ŵ0 = 0e, Ŵ1 ≡ Ŵλ, Ŵ2 ≡ Ŵs and Ŵ3 ≡ Ŵa are independent
processes, as given in Theorem 4.2.
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We verify (6.66) from (4.9) using Ito’s formula. Let f(x, t) ≡ x e−
∫

t

0
h(v)dv ,

we have by Ito’s formula that

df(Ŵ (t), t) = e−
∫

t

0
h(v)dv dŴ (t) − h(t) e−

∫

t

0
h(v)dv Ŵ (t)dt,

= e−
∫

t

0
h(v)dv I(t) dB(t).

Integrating both sides yields

e−
∫

t

0
h(v)dv Ŵ (t) = Ŵ (0) +

∫ t

0
e−
∫

u

0
h(v)dv I(u)dB(u),

from which (6.66) follows by multiplying through by H(t, 0) ≡ e
∫

t

0
h(v)dv .

6.7.3. FCLT for Other Processes. So far, we have established the FCLT
for the HWT process Wn(t), still under the special initial condition starting
with all servers busy and an empty queue. We now use this result to establish
limits for the other processes, under this same initial condition.

The Queue Length and the Number in System. We now obtain the limit
for Q̂n and X̂n from (6.20) and (6.4), incorporating the limit for Ŵn into
Q̂n,3, using the limit Ŵn ⇒ Ŵ just established. We obtain the expression in
Theorem 4.2 by putting the contributions from the arrival process, service
times and patience times into their respective terms. We have thus estab-
lished the FWLLN in Theorem 4.1 and the FCLT in Theorem 4.2 under
the special initial condition, in which all servers are busy and the queue is
empty at time 0, the beginning of the OL interval.

The Potential Waiting Time. We start with the fluid equation v(t) = w(t+
v(t)) in (3.10) and the corresponding equation for the queueing models,
Vn(t) = Wn(t+Vn(t)), as in (6.44). Let ∆Vn(t) ≡ Vn(t)−v(t) and ∆Wn(t) ≡
Wn(t) − w(t). We exploit the differentiability of w(t) with ẇ(t) < 1 − ǫ
for some ǫ > 0, the differentiability of ẇ (because we assumed that λ is
differentiable in order to have q̃x(t, x) well defined) and Taylor’s theorem to
write

∆Vn(t) = ∆Wn(t + Vn(t)) + w(t + Vn(t)) − w(t + v(t))

= ∆Wn(t + Vn(t)) + ẇ(t + v(t))∆Vn(t)

+ẅ(t + v(t))
(∆Vn(t))2

2
+ o((∆Vn(t))2).(6.67)

We exploit the FCLT for Wn(t), the FWLLN for Vn(t) and the continuous
mapping theorem to get

√
n∆Wn(t + Vn(t)) = Ŵn(t + Vn(t)) ⇒ Ŵ (t + v(t))
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in D([0, τ ]). From (6.45), we see that there exists γ > 0 such that

(6.68) ‖∆Vn‖τ ≤ ‖∆Wn‖τ

γ
= O(1/

√
n) as n → ∞.

We can then apply (6.68) with the two-term expansion in (6.67) to get

(6.69) sup
0≤t≤τ

{|V̂n(t) − Ŵn(t + v(t))

1 − ẇ(t + v(t))
|} =

√
nO((‖∆Vn‖τ )

2) = O(1/
√

n),

proving that

(6.70) V̂n(t) ⇒ V̂ (t) ≡ Ŵ (t + v(t))

1 − ẇ(t + v(t))
in D([0, τ ]),

as claimed.

The Abandonment Process An(t). We obtain the limits for Ān and Ân in
(4.2) and (4.4) directly from the flow conservation representation in (2.3)
and the established limits above. We see that Ān ⇒ A in D and Ân ⇒ Â in
D, jointly with the other processes, for Â in (4.5).

6.8. Treating the Initial Conditions in (4.1). It now remains to extend
the FWLLN and the FCLT for the number in system in an OL interval to
the general initial condition given in (4.1). As in the statement of Theorem
4.2, let Xn(t) be the number in system during the OL interval with the
initial condition (4.1), and let X∗

n(t) be the number in system during the
OL interval starting with all servers busy and an empty queue, for which we
have proved the FWLLN and FCLT in the preceding subsections.

We assume that the two processes Xn(t) and X∗
n(t) are defined on the

same probability space, having the same arrival process, service times and
abandonment times, with the service times and abandonment times assigned
in order of customers entering service and the queue, respectively. These
processes differ by the initial conditions Xn(0)− sn(0), for which the scaled
versions have been assumed to converge in (4.1). However, we need to care-
fully consider the consequence of this difference at time 0 as time evolves
within the interval [0, τ ].

We establish the desired limits for Xn(t) by showing that

(6.71) ‖X̄n − X̄∗
n‖τ ⇒ 0 and ‖X̂n − (X̂∗

n + X̂n(0)F c
w(t))‖τ ⇒ 0

in D([0, τ ]) as n → ∞, where X̂n(0) is independent of X̂∗
n and F c

w(t) is
given in (4.5) with w(t) being the HWT in the fluid model and hF (x) ≡
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f(x)/F c(x) being the hazard rate function of the patience cdf F , which is
positive and bounded by previous assumptions on F . As a consequence of
the first limit in (6.71), the fluid limit appearing in the centering terms of
the scaled processes X̂∗

n and X̂n are identical.
We now proceed to justify (6.71). Since the customers enter service in a

FCFS order, the excess customers at time 0 soon enter service. However, the
excess still remains, because new customers arrive and join the queue to re-
place those that entered service. An important insight is the observation that
the remaining excess can always be considered among those customers that
have been in the system for the longest time among all waiting customers.

Since the abandonment hazard rate is bounded above, the abandonment
rate is controlled. Since the fluid model is in an OL interval with Λ(t) >
D(t) for all t > 0, with the initial net input rate to service λ(0) − s(0)µ −
ṡ(0) > 0, the servers become all busy and remain so afterwards in an interval
[t1,n, t2] for 0 < t1,n = O(1/

√
n) < t2 < τ . Thus there are at most O(

√
n)

empty servers for a period of only O(1/
√

n). Hence, the difference between
X∗

n(t) and Xn(t) is asymptotically only the initial difference adjusted by
abandonments over the interval [0, t]. In particular, we have

(6.72) ‖Xn − (X∗
n + U+

n − U−
n )‖τ = O(1) as n → ∞,

where

U+
n (t) ≡ (Xn(0) − sn(0))+ − Ai,n,+(t),

U−
n (t) ≡ −(Xn(0) − sn(0))− − Ai,n,−(t)(6.73)

with (x)− ≡ min {x, 0}, Ai,n,+(t) being the number of abandonments from
the initial positive excess number of customers, (Xn(0)− sn(0))+ > 0, given
that it is positive, while Ai,n,−(t) is the number of abandonments from the
positive difference −(Xn(0)−sn(0))−, resulting from a initial negative excess
number of customers, (Xn(0)−sn(0))− < 0, given that it is indeed negative.
Fortunately, the limiting behavior of Ai,n,+(t) and Ai,n,−(t) are essentially
the same, so that we need not treat the positive part and the negative part
differently.

We are now ready to prove the FWLLN. Since 0 ≤ (Xn(0) − sn(0))+ −
Ai,n,+(t) ≤ (Xn(0) − sn(0))+ = O(

√
n) and 0 ≤ −(Xn(0) − sn(0))− −

Ai,n,−(t) ≤ −(Xn(0) − sn(0))− = O(
√

n), we deduce that ‖X̄n − X̄∗
n‖τ ⇒ 0

as n → ∞. Hence, we have completed proof of the FWLLN X̄n ⇒ X in
D([0, τ ]). The rest of Theorem 4.1 follows for the general initial conditions
X̄n(0) ⇒ X(0) as well.

We now turn to the FCLT. We will show that ‖X̂n−(X̂∗
n+X̂n(0)F c

w(·))‖τ ⇒
0 in D([0, τ ]), as in (6.71). For that, we need to carefully examine the pro-
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cesses Ai,n,+(t) and Ai,n,−(t), recording the number of abandonments from
the deviation Xn(0) − sn(0). Suppose that Xn(0) − sn(0) > 0, so that we
focus on Ai,n,+(t). Since the abandonments Ai,n,+(t) always come from the
waiting customers that have been in the system the longest, which means at
the right boundary of the queue length process, which asymptotically is at
w(t), the abandonment making up Ai,n,+(t) occurs asymptotically at rate
hF (w(u)) at time u through all time.

Of course, specific abandonments are random. Nevertheless, because the
size of the deficiency is order O(

√
n) and we scale by dividing by

√
n when

we scale for the FCLT, the impact actually becomes deterministic, by the
FWLLN (or Glivenko-Cantelli theorem). In particular, the FCLT-scaled ver-
sion of the process U+

n (t) in (6.73) is asymptotically equivalent to the process

(6.74) Û+
n (t) ≡ n−1/2

(Xn(0)−sn(0))+
∑

i=1

1{ξi>t}, t ≥ 0,

where {ξi} is a sequence of i.i.d. random variables, each having a distribution
with hazard rate hF (w(u)) at time u. We only have asymptotic equivalence,
because the abandonment rate at time u is actually hF (Wn(u)) in system
n. However, we have ‖Wn − w‖τ ⇒ 0. Hence, for any ǫ > 0, we can bound

the abandonment rate above by hu,ǫ
F (w(u)) and below by hl,ǫ

F (w(u)), where

hu,ǫ
F (w(u)) ≡ sup

−ǫ≤s≤ǫ
{hF (w(u) + s)},

and hl,ǫ
F (w(u)) ≡ inf

−ǫ≤s≤ǫ
{hF (w(u) + s)}.(6.75)

By exploiting these bounds and the continuity of f , we see that we do indeed
asymptotically have the representation in (6.74).

Combining (4.1), (6.74) and the Glivenko-Cantelli theorem, we can con-
clude that,

(6.76) Û+
n (t) ⇒ X̂(0)+F c

w(t) in D([0, τ ])

as n → ∞. Essentially the same reasoning applies to Ai,n,−(t). Combining
these two limits, we obtain

‖X̂n − (X̂∗
n + X̂n(0)F c

w(·))‖τ ⇒ 0.

Hence we have justified (6.71).

7. Proofs of the Two Corollaries.
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7.1. Proof of Corollary 4.1. We have just proved that X̂n ⇒ X̂ for the
general initial condition in (4.1). We now establish the remaining limits in
(4.11) for the other related processes with initial condition (4.1).

7.1.1. The Processes Q̂n and B̂n. Since P (Xn(t) > sn(t), t1 ≤ t ≤
t2) → 1 as n → ∞ for all t1 and t2 with 0 < t1 < t2 < τ , we necessarily
have ‖B̂n‖t1,t2 = ‖X̂n − Q̂n‖t1,t2 ⇒ 0 as n → ∞, so that (X̂n, Q̂n, B̂n) ⇒
(X̂, X̂, 0e) as claimed in D([t1, t2]) for each t1 and t2 with 0 < t1 < t2 < τ ,
which is equivalent to convergence in D((0, τ)).

However, the situation is different at the interval endpoints. In particular,
there is truncation at time 0 for the processes Q̂n and B̂n. We cannot extend
the limit to the interval [0, τ ], or even [0, τ), closed on the left, because the
limit process could have a discontinuity at 0, which would be ruled out
in the definition of the space D. Indeed, because of the definition of the
queue length as Qn(t) ≡ (Xn(t) − sn(0))+ and the number in service as
Bn(t) ≡ Xn(t) ∧ sn(0), it is immediate that

(7.1) (Q̂n(0), B̂n(0)) ⇒ (X̂(0)+, X̂(0)−) in R
2 as n → ∞.

These limits are of course not mean-zero random variables.
As a consequence, of (7.1), if P (X̂(0) < 0) > 0, then there can be no

FCLT for Q̂n in D([0, τ)) because Q̂ would require a discontinuity at time 0 to
reflect the initial truncation of Xn(0) to get Qn(0); If P (X̂(0) > 0) > 0, then
there is no FCLT for B̂n in D([0, τ)) because B̂ would require a discontinuity
at time 0 to reflect the initial truncation of Xn(0) to get Bn(0).

7.1.2. The abandonment process An(t). We obtain the limits for Ān and
Ân in (4.2) and (4.11) directly from representation (2.3) and the established
limits above. We see that Ān ⇒ A in D as n → ∞ and

(7.2) sup
0≤t≤T

{|Ân(t) − (N̂∗
n(t) − D̂∗

n(t) − (X̂n(t)) − X̂n(0))|} ⇒ 0,

so that Ân ⇒ Â in D, jointly with the other processes, for Â in (4.12).

7.1.3. The Waiting Times with the General Initial Conditions. We will
start by considering the PWT Vn(t). We first consider time 0 for the FCLT-
scaled process. Note that the PWT Vn(0) and the FCLT-scaled version V̂n(0)
are 0 if Xn(0) ≤ 0, but not otherwise. Hence, the general initial condi-
tions in (4.1) alters the limit V̂ at time 0. Since service times are expo-
nential, service completion occurs initially at rate (sn(0) ∧ Xn(0))µ, where
(sn(0)∧Xn(0))/n ⇒ s(0). In addition, new service capacity initially becomes
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available asymptotically at rate nṡ(0). Hence, the scaled PWT at time 0 is
asymptotically equivalent to

(7.3)
√

nṼn(0) ≡ n−1/2
(Xn(0)−sn(0))+

∑

i=1

ζi,

where {ζi} is a sequence of i.i.d. exponential random variables, each with
rate s(0)µ + ṡ(0) > 0. Hence, by the LLN,

(7.4) V̂n(0) =
√

nVn(0) ⇒ X̂(0)+

s(0)µ + ṡ(0)
in R as n → ∞.

We have a different situation for t > 0, because the number in system
becomes positive, of order O(n) for t > 0. Since P (Xn(t) > sn(t), t1 ≤
t ≤ t2) ⇒ 1 for any t1 and t2 with 0 < t1 < t2 < τ , now the service
completion rate is asymptotically sn(t)µ at time n, for all t in [t1, t2] above.
As in (6.73), we consider the remaining number from the initial difference,
separating the positive and negative values. Now, paralleling (6.74), we have
V̂n(t) asymptotically equivalent to V̂ ∗

n (t)+
√

nṼn(t), where Ṽn(t) = Ṽ +
n (t)−

Ṽ −
n (t) with

(7.5)
√

nṼ +
n (t) ≡ n−1/2

U+
n (t+V ∗

n (t))
∑

i=1

ζi,

where U+
n (t) is defined in (6.73) and {ζi} is a sequence of i.i.d. exponential

random variables, each with rate s(t + v(t))µ + ṡ(t + v(t)), and similarly for√
nṼ −

n (t). As a consequence, by the FWLLN,

(7.6)
√

nṼ +
n (t) ⇒ X̂(0)+F c

w(t + v(t))

s(t + v(t))µ + ṡ(t + v(t))
in D((0, τ)).

Combining this result with the corresponding result for
√

nṼ −
n (t), we have

V̂n(t) ⇒ V̂ (t) ≡ V̂ ∗(t) +
X̂(0)F c

w(t + v(t))

s(t + v(t))µ + ṡ(t + v(t))
in D((0, τ))

=
Ŵ ∗(t + v(t))

1 − ẇ(t + v(t))
+

X̂(0)F c
w(t + v(t))

s(t + v(t))µ + ṡ(t + v(t))

=
q̃(t + v(t), w(t + v(t)))Ŵ ∗(t + v(t)) + X̂(0)F c

w(t + v(t))

s(t + v(t))µ + ṡ(t + v(t))
,(7.7)

where V̂ ∗ has been determined already in §6.7.3, F c
w(t) is defined in (4.5)

and b(t, 0) = s(t)µ+ ṡ(t) > 0 by assumption in §3. The final formula in (7.7)
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is equivalent to the stated formula in (4.12) because w(t + v(t)) = v(t) by
(3.10).

We next use the equation Wn(t) = Vn(t − Wn(t) to develop a limit for
Wn(t). Reasoning as in (6.70), we get Ŵn ⇒ Ŵ in D((0, τ)) with

(7.8) Ŵ (t) = (1 − ẇ(t))V̂ (t − v(t)).

for V̂ in (7.7), from which the formulas given in (4.12) follow directly.

7.2. Proof of Corollary 4.2: The Variance Formulas. We obtain the com-
plicated variance formulas for σ2

Ŵ ∗
i

(t) and σ2
X̂∗

i

(t) by applying the usual Ito

isometry for Brownian stochastic integrals, using the representation in (4.5).
The remaining variance formulas are elementary.

8. Proof of Theorem 5.1 for Underloaded Intervals. In this sec-
tion we prove Theorem 5.1. As indicated, this mostly is a direct application
of the infinite-server FWLLN and FCLT in [19]. This is true for Xn because

(8.1) ‖X̄n − X̄∞
n ‖τ ⇒ 0 and ‖X̂n − X̂∞

n ‖τ ⇒ 0,

where X∞
n (t) is the associated Gt/M/∞ model with the identical arrival

process, the identical sequence of service times for successive customers en-
tering service and the identical initial conditions, i.e., X∞

n (0) ≡ Xn(0). Thus
we can apply many-server heavy-traffic (MSHT) limits established for that
model in [19]; also see [1, 10, 22]. (Previous references suffice here; the full
force of [19] is only needed to treat the more general Gt/GI/∞ model asso-
ciated with OL intervals; see §4.)

However, to prove (8.1), we need to carefully consider what happens in
the neighborhood of each interval endpoint. There is no trouble in between
because there is no critical loading except at the interval endpoints. That
implies that the net flow out, Dn(t) − Nn(t) − n(s(t) − s(0)), is positive
of order O(n) over any interval [t1, t2] for 0 < t1 < t2 < τ , no matter
how small. Thus, P (supt1≤s≤t2 {Xn(s) − sn(s)} < 0) → 1 as n → ∞ for
0 < t1 < t2 < τ .

However, it is possible that Xn(0) > sn(0) and/or Xn(τ) > sn(τ). Con-
sider the left endpoint. If Xn(0) > sn(0), then the systems Xn and X∞

n are
not stochastically identical over [0, t] for t > 0. We do have X∞

n (0) = Xn(0)
by definition, but if Xn(0) > sn(0), then Xn(0) − sn(0) customers are wait-
ing in queue instead of being served. However, asymptotically, the difference
at time 0 is

√
nX̂(0)+ = O(

√
n). Only this portion of the initial number of

customers will receive different treatment.
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Since δ(t) ≡ s(t) − X(t) is differentiable with derivative δ̇(0) > 0, the
initial difference of order O(

√
n) will dissipated over a time interval of order

O(1/
√

n). The constant departure rates (by service versus abandonment)
of these O(

√
n) customers will differ during that short time interval. Thus,

‖Xn−X∞
n ‖t is of order O(

√
n)×O(1/

√
n) = O(1) as n → ∞. Hence, this dif-

ference is asymptotically negligible after scaling. To support this conclusion,
note that the hazard rate of the abandonment is bounded above, implying
that only a negligible number of customers in the queue will abandon in the
initial interval of length O(1/

√
n).

Essentially the same argument applies at the right endpoint τ . Thus, we
do indeed have ‖X̄n − X̄∞

n ‖τ ⇒ 0 and ‖X̂n − X̂∞
n ‖τ ⇒ 0, as claimed in

(8.1). Then the results for the Gt/M/∞ model follow from [19]. A key step
there is to treat the new arrivals differently from the customers initially in
the system. The customers initially in the system are treated in §5 of [19];
they lead to the limit processes Xz and X̂z.

However, truncation at the endpoints 0 and τ do alter the processes Bn

and Qn more significantly. Since we can have X̄n(0) 6= s(0), and/or X̄n(τ) 6=
s(τ) for all n, there can be truncation at the times 0 and τ . Thus we can
have B̄n(0) = s(0) 6= X̄n(0) and/or B̄n(τ) = s(τ) 6= X̄n(τ). However, there
is no problem for the fluid limits. Since X̄(0) ≤ s(0) and X̂n(0) ⇒ X̂(0),
necessarily |X̄n(0) − B̄n(0)‖ = O(1/

√
n) = o(1), so that (5.8) follows from

Theorem 11.4.7 of [24]. The same reasoning can be applied at the right
endpoint τ .

In contrast, the truncation affects the FCLT’s for Q̂n and B̂n when X(0) =
sn(0) Since P (Xn(t) < sn(t), 0 < t1 ≤ t ≤ t2 < τ) → 1 as n → ∞,
we necessarily have ‖Q̂n‖t1,t2 = ‖X̂n − B̂n‖t1,t2 ⇒ 0 as n → ∞, so that
(X̂n, B̂n, Q̂n) ⇒ (X̂, X̂, 0e) as claimed. We cannot extend the limit to the
closed interval [0, τ ] because the limit process could have a discontinuity
at 0, which would be ruled out. If P (X̂(0) < 0) > 0, then there can be no
FCLT for Q̂n in D([0, τ)) because Q̂ would require a discontinuity at time 0 to
reflect the initial truncation of Xn(0) to get Qn(0); If P (X̂(0) > 0) > 0, then
there is no FCLT for B̂n in D([0, τ)) because B̂ would require a discontinuity
at time 0 to reflect the initial truncation of Xn(0) to get Bn(0). There also
could be further truncation at the right endpoint τ , so we only state the
limit for (B̂n, Q̂n) in D([0, τ)).

Extending Theorem 5.1 to the more general Gt/GI/st +GI model is more
difficult, because the limit for X̄z,n involving the initial customers would be
more complicated, because it would depend on the ages of all the service
times in process. We have exploited the exponential assumption to avoid
that difficulty.
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Fig 1. Comparison of the limiting means (fluid limits) and variances of the Gaussian limits
to simulation estimates of the corresponding scaled queueing processes for the Mt/M/s+H2

model starting empty for the case n = 2000 based on 500 independent replications: (i) the
boundary and potential waiting times, w(t) and v(t), (ii) the variances of the two waiting
times, (iii) mean number in queue, Q(t), (iv) the variance of the number in queue, (v)
mean number in service, B(t), (vi) variance of number in service, and (vii) variance of
the total number in the system, X(t).

9. Comparison with Simulation: An Mt/M/st + H2 Example.
To provide practical confirmation of the theorems proved in earlier sec-
tions, we now report the results of a simulation experiment. We consider
an Mt/M/s + H2 queueing model with a sinusoidal arrival rate function
that makes the system alternate between OL and UL intervals. Specifi-
cally, the model parameters are: arrival rate function λn(t) = nλ(t), λ(t) =
1 + 0.6 sin(t), mean service time 1/µ = 1, mean patience 1/θ = 2, and a
fixed number of servers sn(t) = n s, s = 1. We let the service distribution be
exponential and the patience distribution be a two-phase hyperexponential
(H2) with probability density function (pdf)

f(x) = p · θ1e
−θ1x + (1 − p) · θ2e

−θ2x, x ≥ 0,
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with parameters p = 0.5(1 −
√

0.6), θ1 = 2pθ and θ2 = 2(1 − p)θ, which
produces squared coefficient of variation (variance divided by the square of
the mean) c2 = 4.

To verify accuracy of the formulas, we estimate the mean and variance of
the scaled queueing processes for very large n, in particular, for n = 2000.
We obtain these estimates from 500 independent replications of a simulation
of the queueing system. Figure 1 shows plots of several key performance
functions for the limiting fluid and diffusion processes for 0 ≤ t ≤ T ≡ 16,
starting out empty (see dashed lines): (i) fluid head-of-line and the potential
waiting times w(t) and v(t), (ii) variance of the diffusion waiting times σ2

Ŵ
(t)

and σ2
V̂

(t), (iii) fluid number of customers in queue, in service Q(t) and B(t),
(iv) variance of the diffusion number of customers in queue, in service, and
in the system σ2

Q̂
(t), σ2

B̂
(t), and σ2

X̂
(t).

We compare these performance functions for the limit processes to esti-
mates of them for the corresponding scaled queueing processes. In Figure 1
we also plot the corresponding performance functions under the LLN and
CLT scaling (see solid lines): (i) mean of the LLN-scaled head-of-line and
the potential waiting times E[W̄n(t)] and E[V̄n(t)], (ii) variance of the CLT-
scaled waiting times V ar(Ŵn(t)) and V ar(V̂n(t)), (iii) mean of the LLN-
scaled number of customers in queue and in service E[Q̄n(t)] and E[B̄n(t)],
(iv) variance of the CLT-scaled number of customers in queue, in service,
and in the system V ar(Q̂n(t)), V ar(B̂n(t)), and V ar(X̂n(t)). Figure 1 shows
that the simulation estimates for the Mt/M/s + H2 queueing model agree
closely with the fluid and diffusion performance.

This experiment provides an engineering verification for the limit the-
orems (as n → ∞). The approximation is not nearly as good when n is
small, e.g., when n = 20. Thus, we develop and study refined engineering
approximations, drawing on (1.2), in [13].

10. Refined Scaling with Additional O(
√

n) Terms. For refined
approximations and controls, we may want to generalize the sequence of
Gt/M/st + GI queueing models specified in §2 by considering arrival rates
λn(t) ≡ nλ(t) +

√
nλg(t) and staffing functions sn(t) ≡ ⌈ns(t) +

√
nsg(t)⌉,

having extra
√

n terms, where λg(t) and sg(t) are additional smooth de-
terministic functions (with subscript g for Gaussian scale). We now briefly
indicate how the results above extend to this case.

First, the limit processes in the FCLT for the arrival process and the
departure process in (2.1) and (6.2) should have the respective extra terms

(10.1) Λg(t) ≡
∫ t

0
λg(s) ds and Dg(t) ≡ µ

∫ t

0
sg(s) ds.
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These changes lead to deterministic modifications of other expressions.
For each OL interval, we add the term Z1,g(t, y) ≡

∫ t
t−y F c(t − s)λg(s) ds

to Ẑ1(t, y) in (6.12); we add the term Q1,g(t) ≡
∫ t
t−w(t) F c(t − s)λg(s) ds to

Q̂1(t) in §6.4; we add the tem Dg(t) to D̂(t) in (6.26); and we add the term

I1,g(t, ǫ) ≡
∫ t+ǫ−w(t+ǫ)
t−w(t) F c(t − s)λg(s) ds to Î1(t, ǫ) in (6.56).

Those changes lead to changes in the critical SDE for the limit process
Ŵ (t) developed in §6.7.2. Extra terms Dg(t + ǫ) − Dg(t) appear on the

left and
∫ t+ǫ−w(t+ǫ)
t−w(t) F c(t − s)λg(s) ds on the right in (6.63), which in turn

contribute a term −z(t)dt to the right side of the SDE in (6.64) and (4.9),
where

(10.2) z(t) ≡ sg(t)µ + λg(t − w(t))

q(t, w(t))
,

That leads to an extra deterministic term Wg(t) ≡ −
∫ t
0 H(t, u)z(u)du on the

right hand side of the expression for Ŵ (t) given in (6.66), which is Ŵ ∗(t) in
Theorem 4.2.

From (6.18) and (6.20), we see that those changes above lead to the addi-
tion of Q1,g(t) above to X̂∗

1 (t) and the addition of q(t, w(t))Wg(t) to X̂∗
3 (t)

in Theorem 4.2.
There are corresponding changes for each UL interval. Due to the revised

arrival and departure FCLT’s, the term u(t) dt is added to the right side of
the SDE in (5.3), where u(t) ≡ λg(t) − sg(t)µ.

The changes above lead to modifications of the limits in the FCLT’s, but
not the FWLLN’s. The limit processes are still Gaussian processes. These
deterministic changes alter the mean values of the Gaussian limits, but do
not affect the variances.
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