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Under general conditions, the number of customers in aGI/D/s+
GI many-server queue at time t converges to a unique stationary
distribution as t → ∞. However, simulations show that the sample
paths routinely exhibit nearly periodic behavior over long time in-
tervals when the system is overloaded and s is large, provided that
the system does not start in steady state. Moreover, the precise pe-
riodic behavior observed depends critically on the initial conditions.
We provide insight into the transient behavior by studying the de-
terministic fluid model, which arises as the many-server heavy-traffic
limit. The limiting fluid model also has a unique stationary point, but
that stationary point is not approached from any other initial state
as t → ∞. Instead, the fluid model performance approaches one of
its uncountably many periodic steady states, depending on the initial
conditions. Simulation experiments confirm that the time-dependent
performance of the stochastic queueing model is well approximated
by the fluid model. Like the fluid model, the behavior of the queue-
ing system can be highly sensitive to the initial conditions over long
intervals of time.

1. Introduction.

Convergence to Steady State in Approximating Fluid Models. This paper
continues to investigate the performance of overloaded many-server queue-
ing systems with customer abandonment, extending earlier work in [19–
21, 35, 37]; we focus on the special case of deterministic service times. By
overloaded, we mean that ρ > 1, where ρ is the traffic intensity. With cus-
tomer abandonment, overloaded systems are practically meaningful because
the abandonment acts to keep the system stable. Fluid models can be re-
markably effective in determining approximately optimal staffing levels [2].

In [37] we showed that the steady-state performance of the overloaded
G/GI/s + GI queueing model when s is large is well approximated by the
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steady-state performance of an associated deterministic G/GI/s+GI fluid
model (when the two models are connected by many-server heavy-traffic
(MS-HT) scaling; see §2 of [37] and §3 here). Supporting MS-HT limits were
established in [15, 16]. In [19], as a special case of a more general fluid
model with time-varying parameters, we fully specified that G/GI/s + GI
fluid model and described its transient performance. In [21] we showed for
the special case of the G/M/s + GI fluid model that the time-dependent
performance functions converge to the steady state values as time evolves.
It remains to establish convergence to steady state for the G/GI/s + GI
fluid model with other service distributions, even though the steady-state
performance is available from Theorem 3.1 of [37] and Theorem 6 of [21]. In
this paper we show that convergence to steady state in the fluid model does
not occur for all service distributions; some conditions are needed.

A Fluid Model with Deterministic Service Times. We began investigating
convergence to steady state for overloaded fluid models with non-exponential
service distributions by considering the special case of deterministic ser-
vice times, even though the deterministic distribution does not satisfy the
smoothness conditions imposed on the model elements in [19–21, 37]. We
began considering the case of deterministic service times primarily because
it is relatively easy to analyze. However, deterministic service times are also
of applied interest, because computer-generated service times, such as auto-
mated messages, may well be deterministic, and computer-generated service
is becoming more prevalent. Many message systems can handle multiple
requests in parallel, justifying the many-server model.

We started by considering a specific example: a G/D/s +M fluid model
having arrival rate λ, deterministic service times equal to 1/µ, service capac-
ity s and an exponential abandonment cdf F with mean 1/θ. (The model
is specified in detail later in the paper, starting in §4.) We let the other
parameters be λ = 2 and µ = s = 1, making the system overloaded with
traffic intensity ρ ≡ λ/sµ = 2 > 1, so that the model is overloaded.

Figure 1 shows six performance functions evolving over time for the
G/D/s +M fluid model starting empty. The performance functions shown
are the total fluid content in service, B(t), the rate that fluid enters service,
b(t, 0), the departure rate, σ(t), the elapsed waiting time for the quantum
of fluid at the head of the queue, w(t), the total fluid content waiting in
queue, Q(t), and the abandonment rate α(t) over the initial time interval
[0, 3.5]. There are two plots for the final three performance functions, the
solid line for abandonment rate θ = 2 and the dashed line for abandonment
rate θ = 8.

We had initially expected to see convergence to the stationary point of this
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Fig 1. The G/D/s +M fluid model with s = µ = 1, λ = 2.

fluid model (which we later show is well defined), because the fluid model
is an approximation for the M/D/s +M stochastic model, but instead we
see that the performance becomes periodic with period equal to the service-
time distribution after time t = 1.0. At first, we thought that the periodic
performance was due to the special choice of the parameters, but that is not
the case. Theorem 8.1 shows that the overloaded G/D/s +GI fluid model
starting empty exhibits periodic performance after a finite time for all arrival
rates λ, service times 1/µ and staffing levels s with ρ ≡ λ/sµ > 1, for all
abandonment-time cdf’s F .

In fact, the functions displayed in Figure 1 are easy to understand. Since
the system starts empty and the service capacity is s = 1, the arriving fluid
flows directly into service at rate b(t, 0) = λ = 2 over the interval [0, 0.5].
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Hence, the total fluid content in service, B(t) grows linearly at rate 2 over
the interval [0, 0.5], reaching the capacity s = 1 at time t = 0.5, where it
stays thereafter. The fluid that entered service in [0, 0.5] completes service
exactly 1/µ = 1 time units later. Hence there is service completion at rate
σ(t) = 2 over the interval [1, 1.5]. Since new fluid cannot enter service until
there is free capacity, new fluid enters service only at time 1. Hence, we
have b(t, 0) = 0 during the interval [0.5, 1] and then b(t, 0) = 2 again in the
interval [1, 1.5], which leads to the periodic behavior. Since no arriving fluid
can enter service in the interval [0.5, 1], the queue content grows during the
interval [0.5, 1]. It does not grow linearly because some portion of the fluid
entering the queue is lost due to fluid abandonment. For this example, we
see that all functions exhibit periodic behavior beginning at time t = 1.
Explicit expressions for the performance functions for the G/D/s+M fluid
model starting empty are given in Corollary 8.3.

Simulations of the Associated M/D/s+M Queueing Model. Having seen
how pervasive is this periodic behavior in the fluid model, we were led to
seriously doubt the value of the fluid model as an approximation for the
stochastic queueing system. For the special case of the M/D/s+M stochas-
tic model, it is evident that the stochastic model has a unique stationary
performance and that the performance converges to that stationary perfor-
mance as time evolves. Indeed, in §2 here we prove that the stochastic process
X ≡ {X(t) : t ≥ 0} representing the number of customers in the more gen-
eral GI/D/s+GI queueing model is a regenerative stochastic process that
converges to a unique stationary distribution as time evolves, provided only
that the interarrival-time cdf G is nonlattice, has a finite mean 1/λ and is
unbounded above, while the abandonment-time cdf F has finite mean 1/θ.

However, when we conducted simulations of the stochastic GI/D/s +
GI model, we found that the sample paths actually agree closely with the
deterministic fluid model, exhibiting periodic performance over the horizon
of our simulation runs. For example, we simulated a many-server M/D/sn+
M stochastic queueing system with Poisson arrival process approximated by
the G/D/s +M fluid model, for which the periodic performance is shown
in Figure 1. We obtain the related stochastic model by exploiting MS-HT
scaling, i.e., by letting the arrival rate be λn ≡ nλ = 2n and the number
of servers be sn ≡ ⌈ns⌉ = n, where ⌈x⌉ is the least integer greater than or
equal to x, while leaving the service times and abandonment rate unchanged
as 1/µ = 1 and θ, respectively. We expect to have a good approximation
when n is large.

Figure 2 compares the fluid approximation (the dashed lines) with sim-
ulation estimates (the solid lines) for the large-scale M/D/s+M queueing
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Fig 2. A comparison of the G/D/s +M fluid model with a simulation (of single sample
paths) of the corresponding M/D/s +M stochastic model with n = 1000.

system with n = 1000. We plot (i) the elapsed waiting time of the customer
at the head of the line Wn(t), (ii) the scaled number of customers waiting in
queue Q̄n(t) ≡ Qn(t)/n and (iii) the scaled number of customers in service
B̄n(t) ≡ Bn(t)/n. We plot single sample paths of these processes. For this
large value of n, there is little variability in the simulation sample paths.
Each simulated sample path falls right on top of the the approximation.
(The two different plots are two different cases of the abandonment rate θ.)
Figure 2 shows that the fluid approximation is effective in describing the
performance of the stochastic system. The deterministic periodic character
is exhibited by the waiting times, which rise linearly at the end of each
interval [k, k + 1], reaching a peak at the integer endpoint.

However, Figure 2 only compares the performance over a relatively short
initial interval of length 3.5, corresponding to 3.5 service times. At first,
we thought that we only need look at a somewhat longer time interval.
However, repeated simulations show that the same periodic behavior is seen
in the stochastic system over time intervals of length 1000. That is illustrated
by Figure 3, which shows simulation estimates of the elapsed waiting Wn(t)
for large time T = 1000 (instead of small T = 3.5 in Figure 2) of the same
M/D/s+M model with the same parameters (λ = 2, s = µ = 1, θ = 2) and
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initial conditions (initially empty), but with a smaller fluid scaling n = 100.
The two plots in Figure 3 compare the behavior of a single sample path
of Wn(t) at the end ([989, 999], the blue solid curve) and at the beginning
([0, 10], the red dashed curve). Figure 3 shows that the periodic behavior of
Wn(t) remains at time 1000 for n = 100. (The process Q̄n behaves the same
as Wn.)
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Fig 3. Large-time periodic behavior of an overloaded G/D/s+M queueing model: simula-
tion estimates of the head-of-line waiting time Wn with λ = 2, s = µ = 1, θ = 2, n = 100,
T = 1000.

Of course, the regenerative theory is not wrong. The stochastic system will
eventually approach its stationary distribution if we consider a sufficiently
long time. In fact, we do see the periodic pattern broken by 1000 service
times in typical simulation sample paths if we decrease the system load ρ
and the scale n sufficiently. For example, Figure 8 in the appendix shows that
occurs if we replace ρ = 2 by ρ = 1.3 (by changing λ). By time T = 1000,
the periodic behavior of Wn is gone.

The Order of Two Limits. In §3 we will establish a MS-HT limit showing
that a sequence of scaled stochastic processes indexed by n converges to the
deterministic fluid model as n → ∞, under regularity conditions. Since we
are considering overloaded models with ρ > 1, this is a MS-HT limit for the
G/D/s +GI model in the efficiency driven (ED) regime [9], as in [35].

It is customary to apply HT approximations to approximate the steady-
state performance of queueing systems. HT approximations for the steady-
state performance of queueing processes are supported by results showing
that two iterated limits coincide. For MSHT fluid limits, we want

(1.1) lim
t→∞

lim
n→∞

n−1Xn(t) = lim
n→∞

lim
t→∞

n−1Xn(t),
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where Xn(t) is a stochastic process or vector of stochastic processes charac-
terizing performance in model n. On the left in (1.1), we have the steady-
state (obtained as t → ∞) of the HT limiting process (obtained as n → ∞);
on the right, we have the HT limit (obtained as n → ∞) of the steady state
(obtained as t → ∞) of the queueing process. Such limit-interchange results
have recently been obtained in [8, 12]. For MS-HT approximations, such
results were obtained for exponential service times in [9, 13].

Here we do not have that nice state of affairs. Indeed, after establishing
the MS-HT limit as n → ∞, we show that the subsequent limit as t → ∞
fails to hold because of the periodicity. Moreover, the form of that periodic
behavior depends on the initial conditions. Even the average over a periodic
cycle depends on the initial conditions; see Remark 8.3. We will show that
the fluid performance is stationary if and only if the fluid model starts in its
unique stationary point; see Theorem 9.3.

Here we directly consider only the iterated limit on the left in (1.1),
but we can deduce that the two iterated limits do not tell the same story.
In §2 we show that there exists regenerative structure implying that the
GI/D/sn + GI stochastic model converges to a steady state as t → ∞ for
each n and each finite initial condition. Moreover, we can do so for two-
parameter processes that yield a Markov process. For each n, we can then
initialize with the stationary distribution of the Markov process, so that we
obtain a stationary process (as a function of t) for each n. Now, if we consider
the limit of the sequence of scaled stationary distributions as n → ∞, if we
obtain convergence, then we necessarily obtain convergence to a stationary
process. If such a limit corresponds to the deterministic fluid function, then
it necessarily must be the unique stationary point of the fluid model. (We
conjecture that the sequence of scaled steady-state queueing processes does
indeed converge to the unique stationary point of the fluid model.)

However, a major conclusion from our analysis is that, for the many-
server G/D/s +GI stochastic queueing model, we should not focus on the
steady-state behavior of the queueing model at all. After much analysis of
this kind, we conclude that the periodic phenomenon associated with deter-
ministic service is genuine for the stochastic model as well as the fluid model.
Moreover, we conclude that, when there are many servers with deterministic
service times and ρ > 1, the approximating fluid model is likely to better de-
scribe the time-dependent performance of the stochastic system than is the
stationary distribution of the stochastic system. The present paper might
better deserve the title of [33].

A Simple Explanation. In retrospect, we should perhaps have anticipated
this nearly periodic behavior of the overloaded G/D/s+GI queueing model.
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First, when the G/GI/s +GI queueing model is overloaded and s is large,
all the servers remain busy for long intervals of time; that is evident from
the steady-state performance of the fluid model in [37]. With deterministic
service times, when the servers remain busy, the times at which customers
complete service and thus enter service in the intervals [t+(k−1)/µ, t+k/µ]
for integer k will be independent of k. That gives rise to the observed periodic
behavior.

A Simple Control. Once the periodic phenomenon is recognized, it can be
controlled if it is considered undesirable. For example, the periodic behav-
ior of an overloaded system starting empty leads to corresponding periodic
behavior in the output flow, as illustrated by the plot of σ(t) in Figure 1.
Such fluctuations in the output may be deemed undesirable. For example, if
that output became input at a following queue, then the fluctuations could
cause congestion at the subsequent queue.

A simple way to avoid periodic output is to restrict the flow rate into
service, allowing flow into service to be at most at rate sµ at all times.
That can be done while still respecting the first-come first-served service
discipline. Starting empty, this control imposes extra delay on some of the
initial input, but the output rate will soon become constant at sµ.

Other Models. There should be broader implications of this work, but
one has to be careful about generalizing, because closely related models
behave quite differently. In contrast to the overloaded M/D/s + M and
GI/D/s+GI models considered here, the associated infinite-serverM/D/∞
and GI/D/∞ models are remarkably well behaved, as shown by [11]. In-
deed, the number of customers in the M/D/∞ system reaches steady state
in finite time, after just one service time. Similarly, the MS-HT fluid and
diffusion approximations in the GI/D/∞ model reach steady state after one
service time. Having finitely many servers that are busy all the time is an
important part of the story in this paper.

Closer to the model we consider is the G/D/s model without customer
abandonment in the QED MS-HT regime. For this model, Reed [24] ob-
served that the limiting G/D/s fluid model can exhibit periodic behavior
with a special initial condition in his Example 1 at the end of §4, but the
implications of that example for the queueing model were not explored. The
G/D/s queueing model is considered further in [26, 27]. There the G/D/s
queueing model for large s is identified as an example of a nearly deter-
ministic queue. That work establishes MS-HT limits in which the traffic
intensity approaches its critical value from below, extending earlier work in
[14]. The papers [26, 27] also consider the limiting behavior as n → ∞ in
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the Gn/Gn/1 model in which the interarrival-time and service-time distri-
butions are n-fold convolutions of a given base distribution, generalizing the
construction of the Erlang Ek distribution from k-fold convolutions of the
exponential distribution. As n increases, the Gn/Gn/1 model approaches
the D/D/1 model. Interesting limiting behavior is obtained by letting the
traffic intensity increase as n increases.

Of course, in the stochastic GI/D/s and GI/D/s+GI queueing models,
only the service times are directly deterministic; the interarrival-time and
abandonment-time distributions may be far from deterministic. However,
when n is large and the arrival rate is large, the essential behavior of the ar-
rival process and the abandonment becomes deterministic, primarily because
of the law of large numbers (LLN). That can be explained by heavy-traffic
limits, such as for non-Markovian infinite-server queues [3, 11, 17, 23, 25].
(If the system is underloaded, then the limits in [11] apply directly.) We
elaborate throughout the paper.

Finally, we mention that oscillating behavior and bi-stability have been
found in other queueing systems [6, 10, 38]. Another recent example of the
invalidity of limit interchange is [28].

Organization of the Paper. In §2 we establish the regenerative structure
in the GI/D/s + GI stochastic model and show that the mean busy cycle
increases rapidly in s. In §3 we establish a MS-HT limit showing that a
sequence of the queueing models indexed by the number of servers converges
to the fluid model. In §4 we carefully specify the limiting G/D/s+GI fluid
model. In §5 we derive the performance formulas for the G/D/s +GI fluid
model, part of which are variants of those of the Gt/GI/st+GI fluid model
developed in [19]. In §6 we focus on the case in which there exists a finite
time T ∗ after which the system remains overloaded (has no idle capacity).
In §7 we present key structural properties of the G/D/s + GI fluid queue
assuming the queue is overloaded for all t ≥ 0. In §8 we analyze the periodic
steady state of the G/D/s+GI fluid model assuming the queue is overloaded
after finite time. In §9 we discuss the asymptotic behavior of the G/D/s+GI
fluid queue with general initial conditions. In §10 we present three postponed
longer proofs, namely, the proofs for Theorems 2.1, 3.1 and 5.5. Finally,
in §11 we draw conclusions. Additional supporting material appears in an
appendix available on the authors’ web pages.

2. Regenerative Structure in the Stochastic GI/D/s+GI Model.

It is well known that a regenerative process X ≡ {X(t) : t ≥ 0} with sam-
ple paths in the function space D of right-continuous functions with left
limits in which a generic cycle T has a distribution that is nonlattice with
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finite mean has a proper limiting steady-state distribution. In particular,
X(t) ⇒ X(∞) as t → ∞, where ⇒ denotes convergence in distribution, i.e.,
for any continuous and bounded real-valued function h,

(2.1) E[h(X(t)] → E[h(X(∞)] =
E0[
∫ T
0 h(X(s)) ds]

E[T ]
as t → ∞,

where E0 denotes the expectation conditional on a regeneration point at
time 0 and T denotes the end of the first cycle; see Theorem VI.1.2 of [1].
The importance of the sample path regularity was observed in [22]. That
regularity condition allows the process to take values in a general Polish
topological space [34], but the condition is needed even with the usual real-
valued processes. That sample-path regularity is easily seen to be satisfied
in our queueing model.

Consider the GI/D/s + GI model, having interarrival times distributed
as U with cdf G, deterministic service times of length 1/µ and abandonment
times distributed as A with cdf F . Let the interarrival times and abandon-
ment times be mutually independent. Let X(t) represent the number of
customers in the GI/D/s+GI system at time t. Let a busy cycle be the in-
terval between successive epochs at which an arrival comes to find an empty
system. If the system starts with an arrival to an empty system at time 0,
then the first busy cycle begins at time 0. Each busy cycle begins with a
busy period and then is followed by an idle period. We prove the following
in §10.

Theorem 2.1. Consider the stochastic GI/D/s+GI model in which an
interarrival time U has a nonlattice cdf G with finite mean E[U ] ≡ 1/λ and
support unbounded above, i.e., G(x) < 1 for all x > 0, and an abandonment
A that has cdf F with finite mean E[A] ≡ 1/θ and has support unbounded
above and below, i.e., 0 < F (x) < 1 for all x > 0. Then the busy cycles
for the GI/D/s + GI system constitute an embedded renewal process for
the stochastic process X for which a generic busy cycle T has a nonlattice
distribution with E[T ] < ∞, so that the the stochastic process X representing
the number of customers in the system has a proper limiting steady-state
distribution, as in (2.1), for all proper initial conditions. In addition, the
mean E[T ] is bounded below by

(2.2) E[T ] ≥ G(1/µ)

Ḡ(1/µ)
E[U |U ≤ 1/µ] + 1/µ.

Theorem 2.1 provides both good news and bad news: The good news
is that there exists regenerative structure, so that a proper steady-state
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distribution for the stochastic process X exists under general conditions.
The bad news for large-scale systems (explained below) is that the mean
return time to 0 typically grows at least exponentially in s. Of course, that
does not directly prove that the process converges to steady state slowly,
but it lends support to that notion.

We can formalize this growth in n by considering a limit involving a se-
quence of models indexed by n. We scale time in the arrival process while
changing n to keep the traffic intensity ρ ≡ λ/nµ fixed. The following corol-
lary shows that E[T (n)] is at least O(ecn) as n → ∞, where c is some constant
with 0 < c < ∞ when the arrival process is Poisson or in a renewal process
when the interarrival-time cdf has an exponential tail.

Corollary 2.1. Consider a sequence of GI/D/sn+GI models indexed
by n satisfying the conditions of Theorem 2.1 with generic interarrival times
U (n) ≡ U (1)/n, while the service times and abandonment cdf’s are indepen-
dent of n. Then

(2.3) lim inf
n→∞

{λnḠ(1)(n/µ)E[T (n)]} ≥ 1,

so that E[T (n)] → ∞ as n → ∞. If, in addition, the arrival processes are
Poisson with E[U (1)] = 1/λ, then

(2.4) lim inf
n→∞

{λne−nλ/µE[T (n)]} ≥ 1.

Proof. First, as n → ∞, nE[U (n)|U (n) ≤ 1/µ] = E[U (1)|U (1) ≤ n/µ] →
1/λ, and G(n)(1/µ) ≡ P (U (n) ≤ 1/µ) = G(1)(n/µ) → 1. Also, the first
moment condition E[U (1)] < ∞ implies that yḠ(1)(y/µ) → 0 as y → ∞;
e.g., see the proof of Lemma 1 on p. 150 of [7]. Therefore, (2.2) in Theorem
2.1 implies (2.3), which in turn implies, first, that E[T (n)] → ∞ as n → ∞
and, second, (2.4).

The situation is quite intuitive. If indeed n is large and ρ > 1, then we
will necessarily have λ >> µ and, since it is natural in applications to have
θ be the same order as µ, it is natural to also have λ >> θ. In that case only
rarely will the queue be empty and even more rarely will the entire system
be empty, so that the regeneration we are relying on to have a nice steady
state is then a rare event.

As noted toward the end of §1, periodic behavior in the G/D/s + GI
stochastic model will occur over some time interval whenever all servers
remain busy over that time interval. In §6 we provide conditions under which
there exists a finite time T ∗ after which the fluid model remains overloaded
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(has no idle capacity). We can also conclude that there will be a strictly
positive queue. Combined with the MS-HT limit in the next section, we can
deduce that, under regularity conditions, there will be long finite intervals
over which no server is idle in the queueing model. There is no contradiction
with Theorem 2.1; here the limit interchange in (1.1) does not hold.

3. A Many-Server Heavy-Traffic Limit. In this section we establish
a many-server heavy-traffic limit, showing that a sequence of G/D/sn +GI
stochastic queueing models indexed by n converges to the G/D/s+GI fluid
model considered in §4 and §5 in the customary many-server heavy-traffic
regime, under regularity conditions.

The sequence of models is indexed by the number of servers n. We let the
arrival rate in model n be λn and the number of servers be sn, where

(3.1) λ̄n ≡ λn

n
→ λ and s̄n ≡ sn

n
→ s as n → ∞.

We let the deterministic service times take value 1/µ and the abandon-
ment times have cdf F , independent of n. We assume limits for the arrival
process and the initial conditions. In particular, we assume that the se-
quence of stochastic processes satisfies a functional weak law of large numbers
(FWLLN). For that purpose, let D be the usual function space of real-valued
functions with limits from the left, endowed with one of the Skorohod topolo-
gies, which reduces to uniform convergence on bounded intervals when the
limit is a continuous function [34]. Let ⇒ denote convergence in distribution.

Let Bn(t, x) (Q̂n(t, x)) be the number of customers in service (queue)
at time t in model n that have been so for a duration less than or equal
to x. Since model n has n servers, 0 ≤ Bn(t,∞) = Bn(t, 1/µ) ≤ n, n ≥
1. Let Qn(t) ≡ Q̂n(t,∞) be the total number of customers in queue. Let
An(t), Sn(t) and En(t) be the numbers of customers to abandon, depart
after completing service, and enter service, respectively, in [0, t] in model n.
In full generality, we will establish a limit for the time-scaled process

(3.2) (B̄n(t, x), S̄n(t), Ēn(t)) ≡ n−1(Bn(t, x), Sn(t), En(t)),

which characterizes the performance of the service facility. Under the addi-
tional assumption of exponential abandonment, we will also establish a limit
for the time scaled process

(3.3) (Q̄n(t), Ān(t)) ≡ n−1(Qn(t), An(t)).

Let Nn(t) be the number of arrivals in the interval [0, t] in model n.
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Assumption 1. (FWLLN for the arrival process) As n → ∞,

(3.4) n−1Nn ⇒ Λ in D as n → ∞, where Λ(t) ≡ λt, t ≥ 0,

for a positive constant λ.

The FWLLN in Assumption 1 is implied by either a functional central
limit theorem (FCLT) or a functional strong law of large numbers (FSLLN).
Most applications are covered by simple time scaling of a fixed stationary
counting process, i.e., when Nn(t) ≡ N(nt), t ≥ 0, n ≥ 1. An FSLLN holds
for the time-scaled renewal counting process (GI) considered in §2, provided
only that the interrenewal time has finite mean 1/λ.

We now make assumptions about the initial conditions. We restrict at-
tention to starting with the queue empty, but we allow customers to start
in service, imposing some additional restrictions in the theorem.

Assumption 2. (an initially empty queue) For each n ≥ 1, Qn(0) = 0.

We also assume a FWLLN for the initial fluid content in service.

Assumption 3. (FWLLN for the initial conditions) As n → ∞,

(3.5) B̄n(0, ·) ⇒ B(0, ·) in D,

where

(3.6) B(0, x) ≡
∫ x

0
b(0, u) du, x ≥ 0,

for a deterministic function b(0, ·) on [0,∞) in Cp with b(0, x) ≥ 0 for all x
and B(0, 1/µ) = B(0,∞) ≤ 1.

We are now ready to state the many-server heavy-traffic limit. For that
purpose, let DD be the space of D-valued functions in D, as in [23]. The limit
below will be continuous, so the topology on DD is equivalent to uniform
convergence over the compact sets [0, t]× [0, 1/µ] for t > 0. Let a superscript
k on a topological space, as with Dk, indicate the associated k-fold product
space, endowed with the product topology.

Let Tn be the first time that all servers are busy in the stochastic queueing
model, i.e.,

(3.7) Tn ≡ inf {t ≥ 0 : Bn(t, 1/µ) = n}, n ≥ 1.



14 Y. LIU AND W. WHITT

Let T ∗
n be the first time after which all servers remain busy forever, i.e.

(3.8) T ∗
n ≡ inf {t ≥ 0 : Bn(u, 1/µ) = n for all u ≥ t},

with T ∗
n ≡ ∞ if there exists no such time. Similarly, let t∗ be the time that

the limiting fluid model first has no idle service capacity, defined in (6.3),
and let T ∗ be the time after which the limiting fluid model never has any
idle capacity, defined in (6.1). The conditions in (3.9) and (3.11) below will
imply that the limiting fluid model never has any idle capacity after time
t∗, i.e., T ∗ = t∗ < ∞; see §6.

Theorem 3.1. (many-server heavy-traffic FWLLN) Suppose that As-
sumptions 1–3 hold with λ > µ,

(3.9) b(0, x) ≤ λ, 1/µ − t∗ ≤ x ≤ 1/µ,

and, if t∗ > 0,

(3.10) b(0, 1/µ − t∗) < λ and b(0, 1/µ − t) continuous at t = t∗.

Then

(3.11) (B̄n, Ēn, S̄n) ⇒ (B,E, S) ∈ DD × D2,

where

(3.12) B(t, y) ≡
∫ y

0
b(t, x) dx, 0 ≤ y ≤ 1/µ,

with b(t, x) given in (5.1) for 0 ≤ t ≤ t∗, b periodic as a function of its first
argument for t > t∗ with period 1/µ and, for t ≥ t∗, b(t − t∗, x) given in
(5.2). In addition,
(3.13)

S(t) ≡
∫ t

0
σ(y) dy where σ(k/µ + t) ≡ b(k/µ, 1/µ − t), 0 ≤ t ≤ 1/µ,

for integer k with k ≥ 0,

(3.14) E(t) ≡
∫ t

0
b(y, 0)dy where b(t, 0) = λ 1{0≤t≤t∗} + σ(t) 1{t>t∗}.

If B(0, 1/µ) < 1, then Tn ⇒ t∗ = T ∗ as n → ∞. If, in addition, the
abandonment distribution is exponential, i.e., if F̄ (x) = e−θ x, then

(3.15) (Q̄n, Ān) ⇒ (Q,A) ∈ D2,
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where Q(t) = A(t) = 0 for 0 ≤ t ≤ t∗ and

Q(t) =

∫ t−t∗

0
F̄ (t− t∗ − s)γ(s) ds,(3.16)

=

∫ w(t)

0
λ F̄ (x)dx, t ≥ t∗,(3.17)

A(t) = Λ(t)−
∫ t−t∗

0
b(s, 0) ds −Q(t), t ≥ t∗,(3.18)

where w satisfies ODE (5.7) with w(t∗) = 0, γ(t) ≡ λ− b(t, 0).

We now observe that in general we need not have either Tn ⇒ t∗ or
T ∗
n ⇒ T ∗.

Example 3.1. (counterexample on first passage times) Suppose that
λ > µ = 1. Let b(0, x) = λ, 1 − (1/λ) ≤ t ≤ 1, and b(0, x) = 0, 0 ≤
x < 1− (1/λ), so that b(t, 0) = λ, 0 ≤ t < 1/λ, and b(t, 0) = 0, 1/λ ≤ t < 1,
B(t, 1/µ) = 1 for all t ≥ 0 and T ∗ = t∗ = 0.

For n ≥ 1, let {Bn(0, y) : 0 ≤ y ≤ 1} be deterministic. To be a legitimate
sample path for a queueing system, Bn(0, y) must be nondecreasing and
integer-valued as well as satisfy 0 ≤ Bn(0, y) ≤ n. Thus, let Bn(0, y) ≡
⌊Bf

n(0, y)⌋, where ⌊x⌋ is the greatest integer less than or equal to x and

B̄f
n(0, y) ≡ n−1Bf

n(0, y) ≡
∫ y
0 bn(0, x) dx, where bn(0, x) = ((n + 1)/n)λ,

1− ((n− 1)/nλ) ≤ t ≤ 1, and bn(0, x) = 0, 0 ≤ x < 1− ((n− 1)/nλ). First,

observe that B̄f
n(0, 1/µ) = (n2−1)/n2 < 1 for all n ≥ 1. Second, observe that

we have 0 ≤ B̄f
n(0, y)− B̄n(0, y) ≤ 1/n for all y and n. Hence, B̄n(0, 1/µ) ≤

B̄f
n(0, 1/µ) < 1 for all n ≥ 1. Nevertheless, B̄n(0, ·) → B(0, ·) as n → ∞.

On the other hand, consider a deterministic arrival process with rate nλ,
i.e., with Nn(t) ≡ ⌊nλ t⌋, t ≥ 0, n ≥ 1. Then Sn(t) = ⌊(n + 1)λ t⌋ ≥ Nn(t)
for 0 ≤ t ≤ (n − 1)/nλ. Since Bn(0, 1/µ) < n, the system is underloaded
for 0 ≤ t < 1/λ. However, Nn(1/λ) = n. Hence, Tn = T ∗

n = 1/λ for all
n ≥ 1, in contrast to t∗ = T ∗ = 0. A similar example can be constructed if
B(0, 1/µ) < 1 and condition (3.10) is not imposed; see Appendix H.

4. The G/D/s + GI Fluid Queue. We now study the G/D/s +
GI fluid queue. The corresponding Gt/GI/st + GI and Gt/Mt/st + GIt
models, having time-varying arrival rate (Gt), time-varying staffing (st) and
a smooth general service-time distribution (GI) or time-varying Markov
service (Mt) were studied in [19–21]. Here we restrict attention to constant
arrival rate λ and constant staffing s, although the model can easily be



16 Y. LIU AND W. WHITT

extended to allow these functions to be time-varying, as in [19–21]. In the
Gt/GI/st + GI model, the service distribution was assumed to have a pdf
g; in the Gt/Mt/st +GIt model, the pdf was time-varying exponential, i.e.,

gt(x) = µ(t+ x) e
∫ t+x
t µ(y)dy . Hence, strictly speaking, the G/D/s+GI fluid

queue considered here was not considered before.
Fluid is a deterministic divisible quantity that arrives over time. Fluid

input flows directly into a service facility with fixed capacity s if there is
free capacity available; otherwise it flows into the queue. The total fluid
input over an interval [0, t] is Λ(t) = λt, where λ is a positive constant.

System performance will be described by a pair of two-parameter deter-
ministic functions (B̂, Q̂), where B̂(t, y) (Q̂(t, y)) is the total quantity of
fluid in service (in queue) at time t that has been so for a duration of at
most y, for t ≥ 0 and y ≥ 0. These functions will be absolutely continuous
in the second parameter, so that

(4.1) B̂(t, y) ≡
∫ y

0
b(t, x) dx and Q̂(t, y) ≡

∫ y

0
q(t, x) dx,

for t ≥ 0 and y ≥ 0. We will be characterizing performance primarily through
the pair of two-parameter fluid content densities (b, q). Let B(t) ≡ B̂(t,∞)
and Q(t) ≡ Q̂(t,∞) be the total fluid content in service and in queue,
respectively. Let X(t) ≡ B(t)+Q(t) be the total fluid content in the system
at time t.

The system has unlimited waiting room and the FCFS service discipline.
Whenever Q(t) > 0, we require that there be no free capacity in service;
whenever B(t) < s, we require that the queue be empty. These requirements
are both covered by the following.

Assumption 4. (fluid dynamics constraints, FDC’s) For all t ≥ 0,

(4.2) (B(t)− s)Q(t) = 0 and B(t) ≤ s.

Because the service time is deterministic, each quantum of fluid that en-
ters service stays in service for time 1/µ before leaving the system. The
total service completion rate at time t is the density of fluid that has been
in service for 1/µ. That is also the rate into service 1/µ time units before,
i.e.,

(4.3) σ(t) ≡ b(t, 1/µ) = b(t− 1/µ, 0), t ≥ 0.

The model allows for abandonment of fluid waiting in the queue. In par-
ticular, a proportion F (x) of any fluid to enter the queue will abandon before
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waiting x time units in queue it has not yet entered service, where F is an
absolutely continuous cumulative distribution function (cdf), with

(4.4) F (x) =

∫ x

0
f(y) dy, x ≥ 0, and F̄ (x) ≡ 1− F (x), x ≥ 0.

Let hF (y) ≡ f(y)/F̄ (y) be the hazard rate associated with the patience
(abandonment) cdf F .

Let A(t) be the total amount of fluid to abandon in the interval [0, t]; then

(4.5) A(t) ≡
∫ t

0
α(y) dy, t ≥ 0,

where α(t) is the abandonment rate at time t. Since q(t, x) is the density of
fluid in queue at time t that arrived at time t− x, the abandonment rate at
time t is

(4.6) α(t) ≡
∫ ∞

0
q(t, y)hF (y) dy, t ≥ 0,

where hF (y) is the hazard rate associated with the patience cdf F .
Let E(t) be the amount of fluid to enter service in [0, t]; then

(4.7) E(t) ≡
∫ t

0
b(u, 0) du, t ≥ 0,

where b(t, 0) is the rate fluid enters service at time t. The rate fluid enters
service depends on whether the system is underloaded or overloaded. If the
system is underloaded, then the external input directly enters service; if the
system is overloaded, then the fluid to enter service is determined by the rate
that service capacity becomes available at time t, which is the departure rate
σ(t), because the total fluid content in service B(t) = s does not change at
t.

We specify the initial conditions via the initial fluid densities b(0, x) and
q(0, x), x ≥ 0. Then B̂(0, y) and Q̂(0, y) are defined via (4.1), while B(0) ≡
B̂(0,∞) and Q(0) ≡ Q̂(0,∞), as before. Let w(0) be defined in terms of
q(0, ·) by

(4.8) w(0) ≡ inf {x > 0 : q(0, y) = 0 for all y > x}.

Assumption 5. (finite initial values) B(0) < ∞, Q(0) < ∞, w(0) < ∞,
b(0, x) < ∞ and q(0, x) < ∞ for all x ≥ 0.
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In summary, the six-tuple (λ, s, µ, F·, b(0, ·), q(0, ·)) specifies the model
data.

To describe waiting times, let the boundary waiting time (BWT) w(t) be
the delay experienced by the quantum of fluid at the head of the queue at
time t and let the potential waiting time (PWT) v(t) be the virtual delay of a
quantum of fluid arriving at time t under the assumption that the quantum
has infinite patience. Informally, as in (4.8),

(4.9) w(t) ≡ inf {x > 0 : q(t, y) = 0 for all y > x}.
A proper definition of q, w and v is somewhat complicated, but that has
already been done in §7 of [19]; we review in the next subsection.

Since the service discipline is FCFS, fluid leaves the queue to enter service
from the right boundary of q(t, x). The fluid content densities q and b satisfy
the following two fundamental evolution equations. (Recall that the service-
time ccdf is Ḡ(x) = 1{0≤x≤1/µ}.)

Assumption 6. (fundamental evolution equations) For t ≥ 0, x ≥ 0 and
u ≥ 0,

q(t+ u, x+ u) = q(t, x)
F̄ (x+ u)

F̄ (x)
, 0 ≤ x < w(t),(4.10)

b(t+ u, x+ u) = b(t, x)
Ḡ(x+ u)

Ḡ(x)
= b(t, x) 1{x+u≤1/µ}.(4.11)

In addition, we impose regularity conditions on the model data. Some we
impose now, to be in force throughout the paper, but others we impose as
needed. As in [19, 20], we develop a “smooth” model. Let Cp be the space
of piecewise continuous real-valued functions of a real variable, by which we
mean that there are only finitely many discontinuities in each finite interval,
and that left and right limits exist at each discontinuity point, where the
whole function is right continuous. Hence, Cp ⊂ D, where D is the usual
function space of right continuous functions with left limits; see [34].

Assumption 7. (smoothness) f, b(0, ·), q(0, ·) in Cp for each x ≥ 0 and
t.

As in §7.2 of [19], we need to impose a regularity condition on the arrival
rate function and the initial queue density in order to treat the BWT w. Here
and later we use the notation ↑ and ↓ to denote supremum and infimum,
respectively, e.g.,

(4.12) q↑(0, x) ≡ sup
0≤u≤x

{q(0, u)} and q↓(0, x) ≡ inf
0≤u≤x

{q(0, u)}.
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Assumption 8. (positive arrival rate and initial queue density) For all
x ≥ 0, λ > 0 and q↓(0, x) > 0.

As in [19], we introduce bounds for the pdf f . Let

(4.13) f↑ ≡ sup {f(x) : x ≥ 0}.

Assumption 9. (controlling the abandonment) f↑ < ∞, where f↑ is
defined in (4.13), and F̄ (x) > 0 for all x > 0.

We assume that all assumptions in this section are in force throughout
the paper.

5. Performance of the G/D/s + GI Fluid Queue. In [19, 20]
we showed how the system performance expressed via the basic functions
(b, q, w, v) depends on the model data (λ, s, µ, F, b(0, ·), q(0, ·)), for the time-
varying fluid models, i.e., for Gt/GI/st+GI and Gt/Mt/st+GIt. From the
basic performance four-tuple (b, q, w, v), we easily compute the associated
vector of performance functions (B̂, Q̂, B,Q,X, σ, S, α,A,E) via the defini-
tions in §4. We now establish similar results for the basic functions (b, q, w, v)
of the G/D/s +GI model.

The service content density b is elementary within each interval that the
system is either entirely underloaded or entirely overloaded. The complica-
tions occur when there are changes from one regime to the other. We state
basic results in this section and others in the next section. The results here
provide the basis for an effective algorithm, assuming that there are only
finitely many changes between underloaded and overloaded regimes in each
interval [0, T ], for which we give a sufficient condition at the end of this
section.

Theorem 5.1. (service content in the underloaded case) For the G/D/s+
GI fluid model with unlimited service capacity (s ≡ ∞), starting at time 0,

b(t, x) = b(0, x− t) · 1{0≤t<x≤1/µ} + λ · 1{0≤x≤1/µ, x≤t},(5.1)

B(t) =

(

λ t+

∫ 1/µ

t
b(0, x − t) dx

)

1{0≤t≤ 1
µ
} +

λ

µ
1{t> 1

µ
}.

If, instead, a finite-capacity system starts underloaded, then the same for-
mulas apply over the interval [0, T ), where T ≡ inf {t ≥ 0 : B(t) > s}, with
T = ∞ if the infimum is never obtained. Hence, b(t, ·), b(·, x), B ∈ Cp for all
t ≥ 0 and x ≥ 0, for t in the underloaded interval.
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Proof. To show the first relation, note that b(t, x) = 0 for all x > 1/µ
because the service time is exactly 1/µ. If 0 ≤ t ≤ 1/µ, b(t, x) = b(0, x − t)
for t < x ≤ 1/µ and b(t, x) = λ for 0 ≤ x ≤ t. If t > 1/µ, then all fluid that
was in service at time 0 is gone, hence b(t, x) = λ if 0 ≤ x ≤ 1/µ. Simply
integrating the first relation gives the second.

Corollary 5.1. (reaches steady state at time 1/µ) If the system is
entirely underloaded, then the performance reaches steady state by time 1/µ
with σ(t) = b(t, x) = λ, 0 ≤ x ≤ 1/µ and t ≥ 1/µ.

The periodic behavior observed in the overloaded numerical examples is
mostly explained by the following theorem and the subsequent Corollary
5.2.

Theorem 5.2. (service content in the overloaded case) For the G/D/s+
GI fluid model in an overloaded interval, B(t) = s and

b(t, x) = b(0, x − t) · 1{0≤t<x≤1/µ}

+b

(

0,
1

µ
− (t− x) +

⌊(t− x)µ⌋
µ

)

· 1{0≤x≤1/µ, x≤t},(5.2)

where ⌊x⌋ is the integer part of a real number x. Hence, b(t, ·), b(·, x), B ∈ Cp

for all t ≥ 0 and x ≥ 0 in an overloaded interval.

Proof. Note b(t, x) = 0 for all x > 1/µ. If 0 ≤ t ≤ 1/µ, b(t, x) =
b(0, x−t) for t < x ≤ 1/µ; b(t, x) = b(t−x, 0) = σ(t−x) = b(0, 1/µ−(t−x))
for 0 ≤ x ≤ t. If t > 1/µ, then t − x > 0. Let N ≡ ⌊(t − x)µ⌋, we have
0 ≤ t − x −N/µ ≤ 1/µ. Hence b(t, x) = b(t − x, 0) = σ(t − x) = σ(t − x−
N/µ) = b(0, 1/µ−(t−x−N/µ)). Moreover, simple calculation by integrating

(5.2) over x verifies that indeed B(t) =
∫ 1/µ
0 b(t, x)dx = s.

Corollary 5.2. (periodic performance in service starts at time 0) If
B(t) = s for all t ≥ 0, then the density b is either stationary or in a PSS
starting at time 0. It is stationary if b(0, x) = sµ, 0 ≤ x ≤ 1/µ. Otherwise
it is in a PSS with

b

(

k

µ
+ t, x

)

= b(t, x), σ

(

k

µ
+ t

)

= σ(t),

for 0 ≤ x ≤ 1/µ, 0 ≤ t ≤ 1/µ and k ≥ 0.

Corollary 5.3. (overall smoothness for the service content) If the sys-
tem changes regimes only finitely often in the interval [0, T ], then b(t, ·),
b(·, x), B ∈ Cp for all t, 0 ≤ t ≤ T , and x ≥ 0.
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The G/D/s+GI model differs from the Gt/GI/st +GI model in [19] in
the service facility, but not in the queue. Therefore, the dynamics of q, w
and v are the same. We next review these results from [19]. Let q̃(t, x) be
q(t, x) during the overload interval [0, T ] under the assumption that no fluid
enters service from queue.

Proposition 5.1. (queue content without transfer into service in the
overloaded case [19]) During an overloaded interval,

(5.3) q̃(t, x) = λF̄ (x)1{x≤t} + q(0, x− t)
F̄ (x)

F̄ (x− t)
1{t<x}.

so that q̃(t, ·) and q̃(·, x) belong to Cp for each t and x.

Corollary 5.4. (from q̃ to q [19]) Given the BWT w in an overloaded
interval,

q(t, x) = q̃(t− x, 0)F̄ (x)1{x≤w(t)∧t} + q̃(0, x− t)
F̄ (x)

F̄ (x− t)
1{t<x≤w(t)}

= λF̄ (x)1{x≤w(t)∧t} + q(0, x − t)
F̄ (x)

F̄ (x− t)
1{t<x≤w(t)}.(5.4)

Moreover, q(t, ·) ∈ Cp for all t ≥ 0.

We define the BWT w by stipulating that two expressions for the amount
of fluid to enter service over any interval [t, t+ δ], namely,

(5.5) E(t+ δ) − E(t) ≡
∫ t+δ

t
b(u, 0) du = I(t, δ) −A(t, t+ δ),

where I ≡ I(t, δ) is the amount of fluid removed from the right boundary of
q̃ during the time interval [t, t+ δ] and A(t, t+ δ) is the amount of the fluid
content in I that abandons in the interval [t, t + δ]. We then show that, if
(5.5) holds, then w satisfies an ODE.

Theorem 5.3. (the BWT ODE [19]) Consider an overloaded interval
[0, T ). The BWT w is well defined by the relation (5.5), being Lipschitz
continuous on [0, T ] with w(t + u) ≤ w(t) + u for all t ≥ 0 and u ≥ 0
with t + u ≤ T . Moreover, w is right differentiable everywhere with right
derivative

(5.6) w′(t+) = Ψ(t, w(t)) ≡ 1− γ(t+)

q̃(t, w(t)−)
,
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where γ(t) ≡ b(t, 0), t ≥ 0, and left differentiable everywhere (but not neces-
sarily differentiable) with value

w′(t−) = Ψ̃(t, w(t)) ≡ 1− γ(t−)

q̃(t, w(t)+)
.(5.7)

Overall, w is continuously differentiable everywhere except for finitely many
t. The BWT w is characterized as the unique solution of the initial value
problem (IVP) on [0, T ) based on the ODE (5.6) and any initial value w(0).

Corollary 5.5. (end of the overloaded interval [19]) We can compute
the end of an overloaded interval as T ≡ inf {t ≥ 0 : w(t) = 0 and λ(t) ≤ γ(t)}.

Corollary 5.6. (smoothness of q(t, ·) [19]) Under the assumptions of
Theorem 5.3, q is given by (5.4) with q(·, x) ∈ Cp for all x. (We have already
deduced that q(t, ·) ∈ Cp for all t in Corollary 5.4.)

Theorem 5.4. (v and w [19]) Consider an overloaded interval. Then v
is finite and v is the unique function in D satisfying the equation

(5.8) v(t− w(t)) = w(t) or, equivalently, v(t) = w(t+ v(t))

for all t ≥ 0. Moreover, v is discontinuous at t if and only if there exists
ǫ > 0 such that w(t+ v(t) + ǫ) = w(t+ v(t)) + ǫ, which in turn holds if and
only if b(u, 0) = 0 for t + v(t) ≤ u ≤ t + v(t) + ǫ. If b(·, 0) > 0 a.e. with
respect to Lebesgue measure, then v is continuous.

We now provide a sufficient condition for there to be only finitely many
switches between overloaded and underloaded intervals in any bounded in-
terval [0, T ]. To do so, we use a function involving the model elements λ and
b(0, x), 0 ≤ x ≤ 1/µ. In particular, let

ζ(x) ≡ σ(x)− λ = b(0, 1/µ − x)− λ.

Let Dζ be the set of discontinuities of ζ in [0, 1/µ], let Z̄ζ ≡ {x ∈ [0, 1/µ] :
ζ(x) = 0} be the zero set of ζ, and let Zζ , be a subset of Z̄ζ , defined by

Zζ ≡ {x ∈ Z̄ζ : ∄ ǫ > 0 such that ζ(y) = 0 for all y ∈ (x− ǫ, x+ ǫ)}

The subset Zζ excludes those points x ∈ [0, 1/µ] such that ζ(x) = 0 for
x ∈ (a, b).

Let ST be the total number of regime-switching (between overloaded and
underloaded) points in [0, T ] as in [19, 20]. For any set A, let |A| be the
cardinality of A.
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Theorem 5.5. (relating switches to zeros and discontinuities of ζ) For
any interval [0, T ] with T ≥ 1/µ,

|ST | ≤ ⌈Tµ⌉(|Zζ |+ |Dζ |+ 1),(5.9)

where ⌈x⌉ is least integer greater than or equal to x.

Remark 5.1. (tightness of the bound in Theorem 5.5) To show that
the bound in Theorem 5.5 is tight, consider a G/D/s + GI fluid queue
in [0, T ] = [0, 2/3µ] that is initially critically loaded, i.e., B(0) = s and
Q(0) = 0, with b(0, x) = 2µ s · 1{1/2µ≤x≤2/3µ} and λ = 1.5µ s. We know
σ(t) = b(0, 1/µ− t) = 2µ s · 1{0≤t≤1/2µ}. Hence, B

′(t) = λ− σ(t) = −0.5µ s ·
1{0≤t≤1/2µ}+1.5µ s ·1{1/2µ≤t≤2/3µ} , which implies that B(t) = (s−0.5µ s t) ·
1{0≤t≤1/2µ} + 1.5µ s t · 1{1/2µ≤t≤2/3µ} . Therefore the system is underloaded
in [0, 2/3µ] and becomes critically loaded again at t = 2/3µ. In this case
the bound in Theorem 5.5 is tight because N = ⌊2/3⌋ + 1 = 1, |Dζ | = 1,
|Zζ | = 0 and |ST | = 2, where the two switching points are 0 and 2/3µ.

Assumption 10. (controlling the number of switches) For µ > 0, |Zζ | <
∞, so that there are only finitely many switches between overloaded and
overloaded intervals in any bounded subinterval.

We assume that Assumption 10 is in force throughout the paper.

Remark 5.2. (an algorithm) These results yield an efficient algorithm
to compute the basic performance four tuple (b, q, w, v). First, we can com-
pute b(t, x) directly via Theorems 5.1 and 5.2. We compute q̃ directly from
Proposition 5.1. We then compute the BWT w by solving the ODE in Theo-
rem 5.3. The proof of Theorem 5.4 in [19] provides an elementary algorithm
to compute v once w has been computed. Theorem 6 of [19] shows that
v satisfies its own ODE under additional regularity conditions. Theorem
5.1 and Corollary 5.5 specify how to switch between alternating overloaded
and underloaded intervals. Assumption 10 ensures that the total number of
switches between underloaded and overloaded intervals is finite.

6. The Fluid Model Eventually Always Overloaded. For the rest
of this paper, we assume that the fluid arrival rate λ exceeds the maximum
possible long-run average service rate sµ, so that ρ ≡ λ/sµ > 1.

Assumption 11. (ρ > 1) λ > sµ.
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We say that the service capacity (and thus the system) is overloaded at
time t if B(t) = s. In this section we describe the fluid density in service,
b, in the G/D/n + GI fluid model assuming that there exists a finite time
after which the system stays overloaded; let T ∗ be the first such time, i.e.,

(6.1) T ∗ ≡ inf {t ≥ 0 : B(u) = s for all u ≥ t},

with T ∗ ≡ ∞ if there exists no such time.
We also provide a sufficient condition for T ∗ to be finite. We show that

the service density b reaches a PSS at time T ∗. In the next two sections we
use this assumption to show that the queue performance (e.g. Q(t) and α(t))
converges to a PSS after time T ∗. (These auxiliary performance functions
typically do not reach PSS in finite time.)

Assumption 12. (a time after which the system remains overloaded)
For T ∗ defined in (6.1), T ∗ < ∞.

Assumption 12 is very useful because it identifies the time at which the
service fluid density b reaches a PSS. The following is a consequence of
Theorem 5.2 and Corollary 5.2.

Corollary 6.1. (a PSS for b starting at T ∗) Under Assumption 12,
the service fluid density b either reaches steady state or a PSS at time T ∗;
i.e.,

b((n/µ) + t, x) = b(t, x), n ≥ 1, t ≥ T ∗, 0 ≤ x ≤ 1/µ.

A steady state is achieved if and only if b(T ∗, x) = sµ, 0 ≤ x ≤ 1/µ.

In applications it is not necessary to identify T ∗; it suffices to identify any
time t with t ≥ T ∗. Corollary 6.1 implies that b is in a PSS starting at any
time t ≥ T ∗. We now provide a sufficient condition for Assumption 12. To
do so, let t∗ be the time that the service facility first becomes full; i.e.,

t∗ ≡ inf

{

t ≥ 0 : λt+B(0)−
∫ t

0
σ(x)dx = s

}

.(6.2)

If the system is initially overloaded, then t∗ = 0. Necessarily t∗ < 1/µ,
because no new input during the interval [0, 1/µ] can depart in that interval
and λ/µ > s, since ρ ≡ λ/sµ > 1. Define a class of initial service densities

B∗
s,λ ≡

{

b(0, ·) : B(0) =

∫ 1/µ

0
b(0, x) = s, b(0, x− t∗) ≤ λ, t∗ ≤ x ≤ 1/µ

}

.
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Theorem 6.1. (a sufficient condition for Assumption 12) If b(0, ·) ∈
B∗
s,λ, then Assumption 12 is satisfied with T ∗ = t∗ for T ∗ in (6.1) and t∗ in

(6.2).

Proof. If t∗ = 0, i.e., B(0) = s and b(0, x) ≤ λ, 0 ≤ x ≤ 1/µ, then
new fluid will arrive in the system at least as fast as the fluid is departing,
throughout the interval [0, 1/µ]. Hence, a full service facility is maintained
throughout the interval [0, 1/µ]. Hence fluid enters service immediately re-
placing all departing fluid. (This fluid will enter from the head of the queue
if the queue is not empty, but that is not important for b.) Thus, the service
facility remains full forever.

If t∗ > 0, then B(0) < s, so that new fluid will enter service from outside
at rate λ until the service facility becomes full at t∗. We have

(6.3) t∗ = inf {t ≥ 0 : λt+B(0, 1/µ − t) = s},

following from (6.2) and Theorem 5.1. Since b(0, x) ≤ λ for t∗ ≤ x ≤ 1/µ,
the system then reaches the first case starting at t∗, so we can apply the
previous analysis to this case.

Note that the condition of Theorem 6.1 is satisfied in the common case
in which the system starts out empty. In §8 we will describe the system
performance in detail in that special case. Also note that we can apply
Theorem 6.1 to the state of the system at any finite time t, not just at time
0. In particular, we can apply the algorithm in Remark 5.2 over some finite
interval [0, t] and then check to see if the conditions of Theorem 6.1 are
satisfied at time t.

7. Structural Results for the Queue Performance. In this section
we focus on the performance related to the queue in an overloaded G/D/s+
GI fluid model with ρ > 1, thus showing how we can exploit Assumptions 11
and 12 in the previous section. In this section we assume that the fluid queue
is overloaded for all t ≥ 0. We present four structural results: (i) comparison,
(ii) Lipschitz continuity, (iii) asymptotic loss of memory (ALOM) and (iv)
uniform boundedness. We omit the proofs of Theorem 7.1-7.4 below because
these results follow directly from the proofs of Theorems 3-5 and Lemma
1 of [21]. (The statements of Theorems 3-5 and Lemma 1 of [21] do not
directly imply the statements of Theorem 7.1-7.4 here, because the service-
time distribution was assumed to have a finite density in [21], but the proofs
apply without change once we have determined the density b. Detailed proofs
of Theorems 7.1-7.4 are also given in Appendix C.)
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Our comparison result establishes an ordering of the performance func-
tions given an assumed ordering for the model data functions.

Theorem 7.1. (comparison of fluid content in queue for the overloaded
G/D/s +GI model) Consider two G/D/s +GI fluid models with common
staffing function s, service time 1/µ, abandonment cdf F and initial fluid
density in service b(0, ·). Assume both queues are overloaded for all t ≥ 0
(B1(t) = B2(t) = s). If q1(0, ·) ≤ q2(0, ·) and λ1 ≤ λ2, then

(Q1, q1, α1, w1, v1) ≤ (Q2, q2, α2, w2, v2).

For an integrable real-valued function x on [0,∞), let ‖x‖1 ≡
∫∞
0 |x(t)|dt.

Also, let

b↓ ≡ inf
0≤x≤1/µ

b(0, x), b↑ ≡ sup
0≤x≤1/µ

b(0, x),

h↓F ≡ inf
0≤x<∞

hF (x), h↑F ≡ sup
0≤x<∞

hF (x).

Our Lipschitz continuity result also applies to functions. For it, we use
the uniform norm on real-valued functions on the interval [0, T ]: ‖x‖T ≡
sup {|x(t)| : 0 ≤ t ≤ T}.

Theorem 7.2. (Lipschitz continuity of fluid content in queue for the
overloaded G/D/s + GI model) Consider a G/D/s + GI fluid model with
arrival rate λ, staffing function s, service time 1/µ, abandonment cdf F .
Assume the queue is overloaded for all t ≥ 0. Then the function mapping
(λ,Q(0)) in R2 into (Q,α) in C2

p all over [0, T ] is Lipschitz continuous. In
particular,

‖Q1 −Q2‖T ≤ T |λ1 − λ2|+ |Q1(0)−Q2(0)|
≤ (1 ∨ T )(|λ1 − λ2| ∨ |Q1(0) −Q2(0)|),(7.1)

‖α1 − α2‖T ≤ h↑F ‖Q1 −Q2‖T ,(7.2)

‖q1 − q2‖T,1 ≡
∥

∥

∥

∥

∫ ∞

0
q1(·, x)dx −

∫ ∞

0
q2(·, x)dx

∥

∥

∥

∥

T

≤ T |λ1 − λ2|+ ‖q1(0, ·) − q2(0, ·)‖1.(7.3)

Theorem 7.3. (ALOM of fluid content in queue for the overloaded
G/D/s + GI model) Consider two initially overloaded G/D/s + GI fluid
models (B1(0) = B2(0) = s). Suppose these two models have common ar-
rival rate λ, staffing function s, service time 1/µ, abandonment cdf F , initial
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fluid densities in service b(0, x), but different initial fluid densities in queue
qi(0, ·).

(a) If both queues are overloaded for all t ≥ 0, then

∆Q(T ) = ‖q1(T, ·)− q2(T, ·)‖1 ≤ C1e
−h↓

F T ,(7.4)

∆α(T ) ≤ h↑F C1 e
−h↓

F T ,

where C1 ≡ C1(q1(0, ·), q2(0, ·)) is the constant

C1 ≡
∫ ∞

0
([q1(0, x) ∨ q2(0, x)] − [q1(0, x) ∧ q2(0, x)])dx(7.5)

≤ Q1(0) +Q2(0).

In addition, if b↓ > 0, then for T > T ∗,

∆w(T ) ≤ ∆Q(T )

λ F̄ (w2(T ) ∨w1(T ))

≤ C2∆Q(t) ≤ (C2 C1)e
−h↓

F T ,(7.6)

where

T ∗ ≡ Q1(0) +Q2(0)

b↓
,

C2 ≡ F̄

[

b↓

λ
∨
(

w1(0) ∨ w2(0) +
Q1(0) +Q2(0)

b↓

)]−1

.(7.7)

(b) If, in addition, the initial densities in queue are ordered by

q1(0, x) ≤ q2(0, x) for all x ≥ 0,(7.8)

then Q1(t) ≤ Q2(t) for all t ≥ 0,

∆Q′(T ) ≤ 0 and ∆Q(T ) ≤ ∆Q(0)

1 + h↓F T
, T > 0,(7.9)

so that

∆Q(T ) ≤ e−h↓
F T ∆Q(0), ∆α(T ) ≤ h↓F∆Q(T ).(7.10)

For the following boundedness result, we make a stronger assumption on
the initial fluid density and the abandonment hazard rate in the model data,
requiring that they be uniformly bounded above and below.
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Assumption 13. (uniformly bounded initial fluid density and hazard
rate) The staffing and the rates in the model data are uniformly bounded
above and below, i.e.,

0 < b↓ ≤ b↑ < ∞, 0 < h↓F ≤ h↑F < ∞.

Assumption 13 strengthens Assumptions 5 and 9. We assume that this
additional assumption is in force for the remainder of the paper.

Theorem 7.4. (boundedness) Consider the G/D/s+GI fluid queue that
is overloaded for all t ≥ 0. Under Assumption 13 and the previous the as-
sumptions, all performance functions are uniformly bounded. In particular,

B(t) = s, b(t, x) ≤ b(0, x) ∨ b↑,

Q(t) ≤
(

λ

h↓F

)

∨Q(0), q(t, x) ≤ q(0, x) ∨ λ,

w(t) ≤ F̄−1

(

b↓

λ

)

∨
(

Q(0)

γ↓
+ w(0)

)

,

α(t) ≤ h↑F λ

h↓F
, and σ(t) = b(t, 0) ≤ b↑.

8. The Full Performance Under Assumption 12. In §6 we saw
that the fluid density in service, b, reaches steady state or a PSS at time T ∗

if the system remains overloaded after time T ∗, as stipulated in Assumption
12. We now exploit the structural results in the previous section to describe
the full queue performance, given Assumption 12. In the next section we
show that Assumption 12 is not always satisfied.

As in §7 of [21], let the performance vector at time t be

P(t) ≡ ({b(t, x) : x ≥ 0}, {q(t, x) : x ≥ 0}, B(t), Q(t), w(t), v(t), σ(t), α(t)).

If the initial condition P(0) can be chosen so that {P(t) : t ≥ 0} is a periodic
function of t with period τ , then this initial condition produces a PSS. If
not, we want to show that the performance converges to a PSS P∗ as time
evolves. We say a function g is asymptotically periodic with period τ > 0 if
there exists a (finite) function g∞ such that g(nτ + t) → g∞(t) as n → ∞
for all t ∈ [0, τ ]. The limit can be viewed as an application of the time-shift
operator Ψτ on the function g, i.e., Ψτ (g)(t) ≡ g(τ + t). The function g is
asymptotically periodic if and only if successive iterates of the shift operator
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converge, i.e., if Ψ
(n)
τ (g) ≡ Ψτ (Ψ

(n−1)
τ (g)) converges as n → ∞. To discuss

continuity and convergence in the domain of P, we use norm

‖P(t)‖ ≡ sup
t≥0

{|P(t)|}, where

|P(t)| ≡ |B(t)|+ |Q(t)|+ |α(t)| + |σ(t)|+ |w(t)| + |v(t)|

+

∣

∣

∣

∣

∣

∫ 1/µ

0
b(t, x)dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

0
q(t, x)dx

∣

∣

∣

∣

.(8.1)

We primarily want to establish convergence to a PSS, but we also treat
the case of stationary performance, which arises when b(T ∗, x) = sµ, 0 ≤
x ≤ 1/µ. Given that stationary b, the remaining stationary performance can
be obtained by the reasoning in Theorem 6 of [21]. The remaining stationary
performance measures are

B = s, α = λ− sµ, w = F̄−1(sµ/λ),

Q = λ

∫ w

0
F̄ (x) dx, and q(x) = λ F̄ (x), 0 ≤ x ≤ w.(8.2)

Theorem 8.1. (PSS for the overloaded G/D/s +GI fluid model) Sup-
pose that Assumption 12 is satisfied in the G/D/s + GI fluid model with
ρ > 1. If b(T ∗, x) = sµ, 0 ≤ x ≤ 1/µ, then there exists a constant function
P∗ as in (8.2) such that

(8.3) ‖Ψ(n)
τ (P) − P∗‖ → 0 as n → ∞.

for all τ > 0. Otherwise, the fluid performance P is asymptotically periodic
with period 1/µ, i.e., there exists a periodic function P∗ with period 1/µ
such that (8.3) holds for τ ≡ 1/µ.

Proof. We can treat the two cases together by the same argument; we
only discuss the second case. We must show that ‖P((n/µ)+ ·)−P∗(·)‖ → 0

as n → ∞. However, since P∗ is periodic and Ψ
(n)
1/µ(P) involves the shift

operator, it suffices to prove that ‖P((n/µ) + ·)−P∗(·)‖1/µ → 0 as n → ∞,
where the supremum in the norm is over the finite interval [0, 1/µ], i.e., for
‖P‖1/µ ≡ sup {|P(t)| : 0 ≤ t ≤ 1/µ}. That in turn is a form of the norm in
Theorem 7.2.

If T ∗ > 0, we can simply move the origin to T ∗. Therefore, it remains to
consider the case where the system is initially overloaded, and remains so
thereafter. In that case, b(t, x) and σ(t) = b(t, 0) are periodic with period
1/µ starting from t = 0, by Theorem 5.2 and Corollary 5.2.
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Next, suppose that q(0, x) = 0 for x ≥ 0, i.e., the system is initially
critically loaded. By Theorem 7.1, the shift operator Ψ1/µ is a monotone op-
erator on P((n/µ) + ·) for any n, because we can think of the performance
q(1/µ, ·) as alternative initial conditions for the model at time 0, since the
model is periodic with period 1/µ (λ and s are constant, b(t, 0) is periodic
with period 1/µ by Theorem 5.2 and Corollary 5.2. Therefore, the sequence
of system performance functions P(0 + ·),P((1/µ) + ·),P((2/µ) + ·), . . . (at
discrete time 0, 1/µ, 2/µ, . . .) is monotonically non-decreasing. Since the per-
formance is also bounded, by Theorem 7.4, there is a finite limit for the
sequence {P((n/µ) + ·)} as n → ∞. By Theorem 7.2, the operator is con-

tinuous as well, which implies that Ψ
(n)
1/µ(P) is convergent in the specified

norm as n → ∞. Hence the limit is a PSS. By the ALOM property in The-
orem 7.3, we get the same limit for all other initial fluid densities in queue
q(0, ·).

Remark 8.1. (computation) Given the rapid convergence, it usually is
not difficult to compute the PSS associated with any given initial condi-
tion by simply applying the algorithm with that initial condition. We can
then verify that the condition in Theorem 6.1 is satisfied after some finite
time, so that we know T ∗ and we know the PSS for the fluid density in
service b. We then can observe the convergence of the other performance
measures. However, the PSS for the remaining performance functions can
also be determined in another way, given T ∗ and b. First, if the abandon-
ment distribution is exponential, then analytic expressions are available, see
Corollary 8.3. Second, for the case of non-exponential abandonment, con-
sider a cycle [0, 1/µ] of the PSS. For each candidate w̃ ≥ 0, we numerically
solve the ODE (5.6) in [0, 1/µ] with w(0) = w̃ and b(t, 0) = b(T ∗, 1/µ − t)
and check if w(1/µ) = w̃. Since w̃ ≥ 0 is our only unknown variable, we shall
do a search for w̃ ≥ 0. Theorem 8.1 guarantees the existence and uniqueness
of such a w̃ ≥ 0.

Remark 8.2. (different initial conditions) Theorems 6.1 and 8.1 provide
sufficient conditions for Assumption 12 to hold, and for the performance
function to converge to a PSS. That PSS depends strongly on the fluid den-
sity in service, b at the time T ∗ after which the system remains overloaded.
In Appendix D we show that very different PSS’s can result by considering
two different initial conditions for the example in §1.

We now describe the time-average performance over a periodic cycle. Some
average performance measures are independent of the initial conditions, and
thus agree with the stationary performance, whereas others are not.
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Corollary 8.1. (average performance over a cycle) Suppose that As-
sumption 12 holds for a G/D/s + GI fluid queue and consider the PSS
beginning at T ∗. The average abandonment rate ᾱ and departure rate σ̄ over
a cycle [0, τ ] ≡ [0, 1/µ] of the PSS are

ᾱ ≡ 1

τ

∫ τ

0
α(t)dt = α∗ ≡ λ− µ s(8.4)

σ̄ ≡ 1

τ

∫ τ

0
σ(t)dt = σ∗ ≡ µ s,(8.5)

If, in addition, the abandonment distribution is exponential, then

Q̄ ≡ 1

τ

∫ τ

0
Q(t)dt = Q∗ ≡

∫ w∗

0
λ e−θ x dx.(8.6)

where α∗, σ∗, Q∗ and w∗ ≡ F̄−1(1/ρ) are the stationary abandonment and
departure rates, queue length and BWT given in (8.2).

Proof. First, (8.6) follows from (8.4) when F̄ (x) = e−θ x, because α(t) =
θ Q(t), which implies

Q̄ =
1

θ
ᾱ =

1

θ
(λ− µ s),

which is equal to the right hand side of (8.6), as can be verified by simple
calculation. Since the system is overloaded for all t ≥ T ∗, then b(t, x) and
σ(t) are periodic for all t ≥ T ∗, by Theorem 5.2 and Corollary 5.2. Therefore,
consider a cycle [0, 1/µ] of the PSS, we must have b(t, 0) = σ(t) = b(T ′, 1/µ−
t) for some T ′ ≥ T ∗. Hence, (8.5) follows because

∫ 1/µ
0 b(T ′, 1/µ − t)dt =

B(T ′) = s.
To show (8.4), flow conservation of the queue implies that

Q′(t) = λ− α(t) − b(t, 0) = λ− α(t)− σ(t), for 0 ≤ t ≤ 1/µ.

Integrating both sides from 0 to 1/µ yields that

0 = Q(1/µ)−Q(0) = λ τ −
∫ τ

0
α(t)dt−

∫ τ

0
σ(t)dt = λ τ −

∫ τ

0
α(t)dt − µ s τ,

which implies (8.4).

Remark 8.3. (average of other performance functions) Except for ᾱ and
σ̄, the average of other performance functions in PSS typically does not agree
with the corresponding stationary values. We illustrate with an example in
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Appendix E, considering Erlang and hyperexponential abandonment cdf’s.
In our numerical examples we found that the average BWT w̄ is consistently
greater than the stationary value w∗. In contrast the average Q̄ is greater
(less) than or equal to the stationary value Q∗ when the abandonment-
time cdf F is more (less) variable than exponential. It remains to establish
supporting theorems.

A common case occurs when the system is initially empty. Obviously
this initial condition belongs to class B∗

s,λ. We next establish results for this
special case.

Corollary 8.2. (PSS for the initially empty G/D/s+GI fluid model)
Consider the G/D/s +GI fluid model with ρ > 1. If the system is initially
empty, then the performance P is asymptotically periodic and converges to
a unique PSS P∗ with period τ = 1/µ. In particular, B(t) = s, b(t, x) and
σ(t) are periodic after s/λ,

b(t+ k/µ, x) =

{

λ · 1{0≤x≤t−1/µ+s/λ}∪{t≤x≤1/µ} , if s
λ < t ≤ 1

µ ,

λ · 1{t≤x≤t+s/λ}, if 1
µ < t ≤ 1

µ + s
λ .

σ(t+ k/µ) = b(t+ k/µ, 0) = λ 1{1/µ<t≤1/µ+s/λ} , for k ≥ 0.

Performance functions in queue converge to a PSS with the following struc-
ture:

q(t+ k/µ, x) → λ F̄ (x) · 1{0≤x≤w∗(t)},

Q(t+ k/µ) →
∫ w∗(t)

0
λ F̄ (x)dx,

α(t+ k/µ) →
∫ w∗(t)

0
λ f(x)dx,

w(t+ k/µ) → w∗(t), as k → ∞,(8.7)

where w∗(t) = w̃+ t (linear) for s/λ ≤ t ≤ 1/µ for some w̃ ≥ 0; w∗(t) solves
ODE w′(t) = 1−1/F̄ (w(t)) for 1/µ ≤ t ≤ 1/µ+s/λ with w(s/λ+1/µ) = w̃.

Proof. Since the system is initially empty, it becomes overloaded at
time t∗ = s/λ < 1/µ and stays overloaded for all t ≥ t∗ by Theorem 6.1.
Hence, the formulas for b follow from Theorem 5.2 and Corollary 5.2. The
convergence of other performance functions follows from (8.7). Therefore, it
remains to show (8.7). Since σ(t) = b(t, 0) = 0 for (k−1)/µ+s/λ < t ≤ k/µ,
the BWT ODE (5.6) in Theorem 5.3 implies that w′(t) = 1 so that w(t) is
linear with slope 1 for (k − 1)/µ + s/λ < t ≤ k/µ.
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We now give explicit expressions for the PSS of the G/D/s + M fluid
queue that has exponential abandonment and is initially empty. We give the
proof in Appendix F.

Corollary 8.3. (explicit expression for the PSS of the G/D/s + M
fluid queue starting empty) Consider the G/D/s + M fluid queue starting
out empty, with arrival rate λ, service time 1/µ, staffing s, exponential aban-
donment with rate θ and ρ ≡ λ/sµ > 1. The system becomes overloaded and
remains so at time t∗ = T ∗ = s/λ. In the PSS (starting at time 0) the system
is overloaded with performance functions given in two parts ([0, 1/µ − s/λ]
and (1/µ − s/λ, 1/µ]) of a cycle 0 ≤ t ≤ 1/µ:

(a) In the first part of the PSS cycle, for 0 ≤ t ≤ 1/µ − s/λ,

w(t) = t+ w̃,(8.8)

Q(t) =
λ

θ

[

1−
(

1− e−θ s/λ

1− e−θ/µ

)

e−θ t

]

,(8.9)

b(t, x) = λ · 1{t≤x≤t+s/λ},

σ(t) = b(t, 0) = 0,

where

w̃ ≡ w(0) = w(1/µ) =
1

θ
log

(

1− e−θ/µ

1− e−θ s/λ

)

≥ 0.(8.10)

(b) In the second part of the PSS cycle, for 1/µ − s/λ < t ≤ 1/µ,

w(t) = −1

θ
log

(

1 +

(

1− eθ(1/µ−s/λ)

1− e−θ/µ

)

· e−θ t

)

,(8.11)

Q(t) =
λ

θ

(

eθ(1/µ−s/λ) − 1

1− e−θ/µ

)

e−θ t,(8.12)

b(t, x) = λ · 1{0≤x≤t−1/µ+s/λ}∪{t≤x≤1/µ},

σ(t) = b(t, 0) = λ.

In addition, for 0 ≤ t ≤ 1/µ,

B(t) = s, q(t, x) = λ F̄ (x) · 1{0≤x≤w(t)}, α(t) = θ Q(t),

(c) If we consider a cycle [1/µ − w̃, 2/µ − w̃], then the PWT

v(t) =
1

θ
log

(

1 +

(

eθ/µ
eθ(1/µ−s/λ) − 1

1− e−θ/µ

)

· e−θ t

)

,(8.13)
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for 1/µ − w̃ ≤ t < 2/µ − w̃ and v jumps at 2/µ − w̃ to

v(2/µ − w̃) = v(1/µ − w̃) = w̃ + 1/µ − s/λ.

Remark 8.4. Since we have an explicit expression for Q(t), in which it
is an exponential function in both (a) and (b), simple calculation directly
verifies (8.6) in Corollary 8.1.

9. General Initial Conditions. In §7 and §8, we provided a quite
complete description of system performance if there exists a finite time T ∗

such that the system is overloaded for all t ≥ T ∗. Moreover, Theorem 6.1
provides widely applicable conditions for the time T ∗ to coincide with t∗,
the first time t that B(t) = s, which necessarily is less than or equal to
1/µ. More generally, Theorem 6.1 can be applied to show that the time
T ∗ exists subsequently after applying the numerical algorithm to compute
the performance over an initial interval, because we can check to see if the
conditions in Theorem 6.1 hold after some finite time.

Nevertheless, we now show that in general there need not exist a finite
time such that the system remains overloaded thereafter, i.e., T ∗ can be ∞.
We have seen that the system necessarily becomes overloaded for a first time
t∗ with t∗ < 1/µ. However, with ρ > 1, it is possible for the the system to
switch between overloaded and underloaded regimes infinitely often.

Theorem 9.1. There need not exist a finite time T ∗ such that B(t) = s
for all t ≥ T ∗.

Proof. We provide an explicit counterexample. We consider a G/D/s+
M fluid queue with λ = 1.2, µ = s = 1, θ = 2. Let the queue be initially
overloaded with

b(0, x) = 2 · 1{1/2≤x≤1} so that B(0) = s = 1,

w(0) = 2 and q(0, x) = λ e−θ x · 1{0≤x≤w(0)} = 2 e−2 x · 1{0≤x≤2}.

We can apply mathematical induction to show that B(n) = s and B(n +
1/2) < B(n+ 3/2) < s for all n ≥ 1. We elaborate in Appendix G.

Remark 9.1. (The influence of q(0, x)) It is important to note that
the initial queue fluid density q(0, ·) plays an important role, both in the
counterexample above and in the system performance more generally. For
t ≥ T ∗, q(t, ·) plays only a minor role, because then we have ALOM for the
queue performance, by virtue of Theorem 7.3. However, the initial queue
fluid density q(0, ·) plays an important role in determining if T ∗ < ∞ and the
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form of the PSS. In §G we consider the above example with the same initial
fluid density in service but different initial fluid in queue (w(0) = 0.2 instead
of w(0) = 2). There we show that this different value for w(0) (initial fluid
in queue) completely changes both the transient evolution of performance
functions and the structure of the PSS.

We now obtain additional results for general initial conditions. To do so,
let Λ(n) be the set of time points at which the rate of fluid entering service
is equal to the arrival rate in the nth cycle [(n − 1)/µ, n/µ], i.e.,

Λ(n) ≡ {t ∈ [0, 1/µ] : b(t+ (n − 1)/µ, 0) = λ}.(9.1)

For the example in the proof of Theorem 9.1, Λ(n) = [t
(n)
1 , t

(n)
2 ] (see Appendix

G). Since t
(n)
1 is strictly decreasing and t

(n)
2 is strictly increasing, we have

Λ(n) ⊆ Λ(n+1). In general Λ(n) may not be a single closed interval as in this
case, nevertheless the monotonicity still holds in general.

Theorem 9.2. (monotone convergence of the sets Λ(n))

(a) The sequence {Λ(n) : n ≥ 1} is monotonically increasing, i.e.,

Λ(n) ⊆ Λ(n+1) for all n ≥ 1.

(b) The sequence {Λ(n) : n ≥ 1} converges to a bounded set, i.e.,

∪∞
n=1Λ

(n) ≡ Λ∞ ⊆ [0, 1/µ].

Proof. The convergence in (b) directly follows from (a) because Λ(n) ⊆
[0, 1/µ] and is thus bounded for all n ≥ 1. To show (a), consider any t ∈
Λ(n), we have b(t + (n − 1)/µ, 0) = λ, which implies that σ(t + n/µ) =
b(t + (n − 1)/µ, 0) = λ. If the system is overloaded at time t + n/µ, then
b(t+n/µ, 0) = σ(t+n/µ) = λ by flow conservation of fluid in service; if the
system is underloaded at time t+n/µ, then we again have b(t+n/µ, 0) = λ
because external arrival flows into service directly. Therefore, b(t+n/µ, 0) =
λ implies that t ∈ Λ(n+1).

We now show that convergence to the stationary point of the fluid density
in service occurs only if the initial fluid density is that stationary point.

Theorem 9.3. (convergence to the unique stationary point) The only
initial fluid density in service b(0, ·) for which b(t, x) → b∗(x) ≡ sµ, 0 ≤ x ≤
1/µ, as t → ∞ is the stationary point b∗ itself.
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Proof. First the conclusion is clearly true whenever B(t) = s for all
t ≥ 0, because the density b((n/µ), x) = b(0, x), 0 ≤ x ≤ 1/µ for all n ≥ 1.
We shall show that for any b(0, x) that is different from the steady state,
i.e., max0≤x≤1/µ |b(0, x)−µ s| > 0, there exists a 0 ≤ t ≤ 1/µ such that b(t+
n/µ, 0) 6= µ s for all n ≥ 0 so that b(t+n/µ, 0) 9 µ s. In this case there must
exist a 0 ≤ t ≤ 1/µ such that µ s 6= b(0, t) = b(1/µ − t, 0). If the system is
overloaded at time n/µ−t for all n ≥ 1, then b(n/µ−t, 0) = b(1/µ−t, 0) 6= µ s
for all n ≥ 1, by Theorem 5.2 and Corollary 5.2. If the system is underloaded
at time n′/µ−t for some n′ ≥ 1, then we must have b(n′/µ−t, 0) = λ, which
implies that b(n/µ − t, 0) = λ for all n ≥ n′, following from Theorem 9.2
(because set Λ(n) is increasing). Therefore, we conclude b(n/µ − t, 0) 9 µ s
as n → ∞. In particular, |b(n/µ− t, 0)−µ s| ≥ |b(0, t)−µ s| ∧ (λ−µ s).

We now establish convergence of b(t, ·) to a PSS for general initial condi-
tions.

Theorem 9.4. (PSS in service) Consider the G/D/s +GI fluid queue
with arbitrary initial condition b(0, ·). For 0 ≤ t ≤ 1/µ, as n → ∞,

b(t+ n/µ, 0) → b∞(t, 0) ≡ λ · 1{t∈Λ∞} + b(0, 1 − t) · 1{t/∈Λ∞},

b(t+ n/µ, x) → b∞(t− x, 0) · 1{0≤x≤t} + b∞(t− x+ 1/µ, 0) · 1{t<x≤1/µ},

σ(t+ n/µ) → b∞(t, 0).

Proof. First, it is easy to see that the third relation follows from the
second(letting x = 1/µ) and the second follows from the first. To establish
the first relation, consider 0 ≤ t ≤ 1/µ. If the system is overloaded at
t + n/µ, 0 for all n ≥ 0, then b(t + n/µ, 0) = b(0, 1 − t) for all n ≥ 0 and
thus converges to b(0, 1 − t) as n → ∞, following from Theorem 5.2 and
Corollary 5.2. If the system is underloaded at t + n′/µ, 0 for some n′ ≥ 0,
then b(t + n′/µ, 0) = λ, which implies b(t + n/µ, 0) = λ for all n ≥ n′, by
Theorem 9.2.

We now show that the system is fully overloaded in each PSS, even if the
PSS is only approached in the limit. For the proof, define the sets in which
the system is overloaded (including critically loaded) and underloaded in a
cycle of the PSS as

O∞ ≡ {0 ≤ t ≤ 1/µ : B(t) = s} and U∞ ≡ {0 ≤ t ≤ 1/µ : B(t) < s}.

Theorem 9.5. (overloaded in each PSS) Each PSS for the G/D/s+GI
fluid model is overloaded everywhere, i.e., in a cycle [0, 1/µ], O = [0, 1/µ]
and U = φ.
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Proof. First, it is easy to see that O cannot be ∅, because ρ > 1. Suppose
there exists a 0 ≤ t ≤ 1/µ such that the system is underloaded at t, then
there must exists a switching time 0 ≤ t′ ≤ 1/µ at which the system switches
from overloaded to underloaded regime, which implies that b(t, 0) = λ <
σ(t). This will make σ(t+1/µ) = b(t, 0) = λ 6= σ(t). Hence, this contradicts
with our assumption that the system is initially in PSS.

10. Proofs. In this section we present three postponed longer proofs.

Proof of Theorem 2.1. The busy cycle is a random sum of i.i.d. interarrival
times, and so necessarily has a nonlattice distribution because the interar-
rival time cdf is nonlattice; see Proposition X.3.2 of [1]. Hence it suffices
to focus on the mean busy cycle. We stochastically bound a busy cycle of
the GI/D/n +GI system above and below by quantities that are easier to
analyze.

We start with the upper bound. For the upper bound, we use a coupling
construction to produce sample-path stochastic order, as in [1, 18, 32]. We
construct both systems on a common probability space so that the sample
paths are ordered w.p.1 while each process separately has its own proper
distribution. We give both systems the same arrival process (the same sam-
ple paths). For the upper bound, let Y (t) be the number of customers in the
queue of the associated system in which no servers are working. The stochas-
tic process Y behaves as the number in system in a GI/GI/∞ model with
interarrival-time cdf G and service-time cdf F (our abandonment cdf). Then
n + Y is our candidate sample path upper bound for X. Start both X and
Y with an arrival to an empty system at time 0. Continue the sample path
construction by assigning all customers that enter the queue in the original
“X model” abandonment times equal to the service times assigned to the
corresponding arrival in the bounding “Y model,” both according to cdf F .
As a consequence, whenever a customer completes service in the bounding
Y model, the matching customer in the original X model customer will ei-
ther have entered service or abandoned in the original X model. Hence the
sample-path order is maintained. Since the abandonment times are i.i.d.,
this assignment rule does not alter the distribution of the processes.

The key now is to observe that the busy cycles in both the X model and
the Y model (not counting the n) will end after one more interarrival time
beyond the beginning of a busy cycle of the Y process if the interarrival-time
and service-time pair (U,A) at the beginning of the Y busy cycle satisfies
U > 2/µ > A, which is an event, say C, with positive probability

(10.1) p ≡ P (C) ≡ P (U > 2/µ > A) = P (U > 2/µ)P (A < 2/µ) > 0,
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by the assumptions G(x) < 1 and F (x) > 0 for all x. In addition, p < 1 since
P (A < 2/µ) < 1 because we have assumed that F (x) < 1 for all x. For the
Y model, given the event C, the one customer in the system at the start of
the busy cycle will depart at time A, which is less than the time of the next
arrival, U . Hence, given event C, the Y busy cycle is U . On the other hand,
for the X model, at this same epoch, there are at most n + 1 customers
in the system, with at most one in queue. Given event C, by time 1/µ,
all customers initially in service will have completed service and departed.
Again given event C, by time 2/µ, any initially waiting customer will have
entered service and completed service if the customer did not abandon first.
However, given event C, we also have A ≤ 2/µ, so that the customer also
would have abandoned. (We only need the A part of the event C for the Y
model.) Thus if event C occurs at the beginning of a busy cycle in the Y
model, then the current busy cycle ends in both models after the time U
(which has been conditioned to be greater than 2/µ).

Thus the busy cycle TX for the X model is bounded above by the random
sum of N model-Y busy cycles, TY,i, until the event C first occurs at the
beginning of a busy cycle, plus the single special U . For the Y models, these
successive trials are i.i.d. because of the regenerative structure. The key fact
we now exploit is the fact that a busy cycle TY of the Y process always has
finite mean. For that, we can apply Corollary XII.2.5 of [1] or Theorem 2.2
of [31]. We can express the finite mean E[TY ] as

E[TY ] = pE[TY |C] + (1− p)E[TY |Cc]

= pE[U |U > 2/µ] + (1− p)E[TY |Cc].(10.2)

Since, E[U ] < ∞, necessarily E[U |U > 2/µ] < ∞, so that

(10.3) E[TY |Cc] ≤ E[TY ]− pE[U |U > 2/µ]

1− p
≤ E[TY ]

1− p
< ∞.

(Here we use the fact that p < 1.)
Finally, we can combine the results above to conclude that an X busy

cycle TX is stochastically bounded by a geometric random sum of i.i.d ran-
dom variables, each distributed as [TY |Cc], plus one more random variable
distributed as [U |U > 2/µ]. Hence, we have the bound

(10.4) E[TX ] ≤ E[TY |Cc]

p
+E[U |U > 2/µ] ≤ E[TY ]

p(1− p)
+

E[U ]

P (U > 2/µ)
< ∞.

(Here we use the fact that 0 < p < 1.)
We now consider the lower bound. We obtain a simple lower bound by

observing that the original (X) system cannot empty until at least one
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interarrival time exceeds the service time 1/µ of that arrival. Let N ′ ≡ {n ≥
1 : Un > 1/µ}, a geometric random variable with parameter p′ ≡ P (U >
1/µ) ≡ Ḡ(1/µ). Thus the cycle time TX is stochastically bounded below by
a sum of N − 1 i.i.d. interarrival times that are less than 1/µ plus the last
interarrival time that is greater than 1/µ. Hence the expected cycle time
must be bounded below by

E[TX ] ≥
N ′−1
∑

i=1

E[U |U ≤ 1/µ] + E[U |U > 1/µ]

=
1− p′

p′
E[U |U ≤ 1/µ] + 1/µ.

Proof of Theorem 3.1. We first establish the limit for (B̄n, Ēn, S̄n) in (3.11).
Since the service times are deterministic with constant value 1/µ, the depar-
tures (service completions) in the interval [0, 1/µ] are completely determined
by the initial age distribution in service, i.e., S(t) = B(0, 1/µ)−B(0, 1/µ−t)
and Sn(t) = Bn(0, 1/µ)−Bn(0, 1/µ−t), n ≥ 1. By Assumption 3, B̄n(0, ·) ⇒
B̄(0, ·) Hence we necessarily have S̄n ⇒ S̄ in D([0, 1/µ]), where S̄ is nonde-
creasing and continuous.

For the next step, we first do the proof in the case B(0, 1/µ) = 1, i.e.,
t∗ = T ∗ = 0; afterwards we reduce the other case to this one. By Assumption
1, we have N̄n ⇒ Λ. By condition (3.9), asymptotically, the instantaneous
arrival rate is greater than or equal to the instantaneous service comple-
tion rate. Hence, the fluid entering service during [0, 1/µ] is asymptotically
equivalent to the fluid completing service; i.e., we have ‖Ēn − S̄n‖1/µ ⇒ 0
as n → ∞, where ‖x‖c denotes the uniform norm over the interval [0, c].
By the convergence-together theorem, Theorem 11.4.7 of [34], Ēn ⇒ Ē in
D([0, 1/µ]).

However, we can write b(1/µ, x) = b(1/µ − x, 0), 0 ≤ x ≤ 1/µ, so that
B(1/µ, x) = E(1/µ)−E(1/µ−x), 0 ≤ x ≤ 1/µ, and, similarly, Bn(1/µ, x) =
En(1/µ)−En(1/µ− x), 0 ≤ x ≤ 1/µ. Thus, by above, we get Bn(1/µ, ·) ⇒
B(1/µ, ·) in D([0, 1/µ]). We then see that the properties in Assumption 3
hold again at time t = 1/µ. Hence we can apply mathematical indiction to
conclude that (S̄n, Ēn) ⇒ (S̄, Ē) in D2 as n → ∞. Since we can represent
the two parameter process B̄n in terms of Ēn, we get B̄n ⇒ B̄ in DD as well.
Since all limits are deterministic, all the limits are joint by Theorem 11.4.5
of [34]. That establishes (3.11) when B(0, 1/µ) = 1.

We now consider the case in which B(0, 1/µ) < 1. For the rest of the
proof, let V (t) ≡ B(t, 1/µ) and Vn(t) ≡ Bn(t, 1/µ) with V̄n(t) ≡ n−1Vn(t).
In this case, the limiting fluid model is underloaded until time t∗ = T ∗
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in (6.3). Moreover, in this case (unlike Example 3.1) we can establish that
Tn ⇒ t∗ as n → ∞, exploiting condition (3.10).

We first show that, for any δ > 0, P (Tn > t∗ − δ) → 1 as n → ∞.
Since V is continuous, the definition of t∗ implies that, for any δ > 0,
there exists ǫ > 0 such that ‖V ‖t∗−δ < 1 − ǫ. Now observe that, for all t,
V̄n(t) ≤ V̄ u

n (t) ≡ V̄n(0) + N̄n(t) − S̄n(t). However, ‖V̄ u
n − V ‖t ⇒ 0 for all

t > 0, where V (t) = V (0)+λt−S(t) with V (t) < 1 for all t < t∗. Hence, for
any δ > 0 and ǫ > 0, P (‖V̄ u

n −V ‖t∗−δ > ǫ) → 0 as n → ∞. If ‖V ‖t∗−δ < 1−ǫ
and ‖V̄ u

n − V ‖t∗−δ ≤ ǫ, then V̄n(t) ≤ V̄ u
n (t) < 1 for all t, 0 ≤ t ≤ t∗ − δ,

which implies that Tn ≥ t∗ − δ. Hence, we have shown that, for any δ > 0,
P (Tn > t∗ − δ) → 1 as n → ∞.

We now show that, for any δ > 0, P (Tn > t∗ + δ) → 0 as n → ∞. Given
that we have just shown that P (Tn > t∗ − δ) → 1 as n → ∞, we necessarily
also have ‖Ēn − N̄n‖t∗−δ ⇒ 0, so that ‖V̄n − V̄ u

n ‖t∗−δ ⇒ 0 for V̄ u
n defined

above, so that ‖V̄n − V ‖t∗−δ ⇒ 0 as well for any δ > 0. Moreover, since
both V̄n and V are bounded below by 0 and above by 1, we can obtain
‖V̄n − V ‖t∗ ⇒ 0, which implies that V̄n(t

∗) ⇒ V̄ (t∗) = 1. as n → ∞.
Since the limiting fluid model becomes overloaded at time t∗, we can apply

condition (3.10) to conclude that there must exist δ > 0 and η > 0 such that
λδ > S(t∗ + δ)− S(t∗) + η. Given that δ and η, define the following events:

C0,n ≡ {Tn > t∗ + δ}
C1,n ≡ {V̄n(t

∗) < 1− η/4}
C2,n ≡ {Sn(t

∗ + δ)− Sn(t
∗) > λδ − η/2}

C3,n ≡ {Nn(t
∗ + δ) −Nn(t

∗) < λδ − η/4}.(10.5)

Then observe that C0,n ⊆ C1,n ∪ C2,n ∪ C3,n, so that P (C0,n) ≤ P (C1,n) +
P (C2,n) + P (C3,n). However, P (Ci,n) → 0 as n → ∞ for each i, 1 ≤ i ≤ 3.
Hence, P (Tn > t∗+δ) → 0 as n → ∞. Combining the two results, we obtain
Tn ⇒ t∗ as n → ∞.

We now continue to establish (3.11) in the case V (0) ≡ B(0, 1/µ) < 1.
The asymptotic behavior prior to time t∗ is easy, because En(t) = Nn(t) for
0 ≤ t ≤ Tn, where Tn ⇒ t∗ as n → ∞. Hence, we have En ⇒ E in D([0, t∗])
as n → ∞. For the rest of the proof, we shift t∗ to the origin and apply the
first part of the proof for the case t∗ = 0.

It now remains to establish the limit (3.15) for (Q̄n, Ān), for which it
suffices to consider the system after time t∗, when the system is full, but
the queue is empty. Henceforth we assume that the system is full initially
with an empty queue. For this remaining step, we can proceed under the
assumption that, asymptotically, the service facility is always full with an
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asymptotic rate of fluid entering service and departing of

b((k−1)/µ+t, 0) = σ(k/µ+t) = b(k/µ, 1/µ−t) = b(0, 1/µ−t), 0 ≤ t ≤ 1/µ.

Now we will focus only on the queue and regard the queue as a G/GI/∞
model with service times equal to the original abandonment times and a
new arrival process. Service completions in the G/GI/∞ model are to be
interpreted as abandonments, while the total number of customers in the
G/GI/∞ system is to be interpreted as the number in queue. The arrival
process for the G/GI/∞ system in model n is Nn(t) − En(t), where En(t)
is the number of customers to enter service in [0, t].

Note that this representation fails to faithfully capture the original FCFS
service discipline, because new arrivals go to the end of the queue, whereas
customers enter service from the front of the queue. Instead, this repre-
sentation applies directly to the last-come first-served (LCFS) discipline.
However, that is where the exponential abandonment assumption comes in.
With exponential abandonment, the number in queue Qn(t) is independent
of the service discipline.

Given theG/GI/∞ representation, we are able to directly apply FWLLN’s
established in [23]. Alternatively, we could apply [25]. Since En is asymp-
totically equivalent to the service completion process Sn, this new arrival
process satisfies a FWLLN, having limit Λ − S, which in general is not a
linear function. However, since b(0, x) ≤ λ for all x, 0 ≤ x ≤ 1/µ, we also
have σ(t) ≤ λ for all t ≥ 0, so it has a nonnegative rate. Hence we can prove
(3.15) with (3.16) and (3.18) by applying Theorems 3.1 and 7.1 of [23]. To
do so, we exploit the fact that the limit of the arrival process there is allowed
to be nonlinear.

Finally, we complete the proof by showing (3.17) holds. We first exploit
(3.16), which implies that

Q(t) =

∫ t

0
e−θ (t−s)(λ− b(s, 0))ds

=
λ

θ
(1− e−θ t)− e−θ t

∫ t

0
b(s, 0) eθ sds.(10.6)

On the other hand, the ODE (5.7) implies that

w′(t) = 1− b(t, 0)

λ e−θ w(t)
, w(0) = 0,

which has a unique solution

w(t) = t− 1

θ
log

(

θ

λ

∫ t

0
b(s, 0)eθ sds+ 1

)

.(10.7)
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Combining (3.17)and (10.7), we obtain (10.6).

Proof of Theorem 5.5. First consider the interval [0, 1/µ]. The departure
rate is σ(t) = b(t, 1/µ) = b(0, 1/µ − t) for 0 ≤ t ≤ 1/µ. Since the staffing
function is constant s, it is necessary to have λ > σ(t) (λ < σ(t)) if the
system switches from underloaded (overloaded) to overloaded (underloaded)
at t. Consider an underloaded interval [a, b] ⊂ [0, 1/µ] where a and b are
switching points, we must have ζ(a) > 0 > ζ(b), which implies that ζ changes
its sign in (a, b) at least once from positive to negative. The sign changing
can be achieved in two cases: (i) crossing level 0 continuously from above to
below, or (ii) jumping from above 0 to below. Therefore, ζ has at least a zero
in case (i) and a discontinuity in case (ii) in interval (a, b). Similar reasoning
works for an overloaded interval. This reasoning applies to all overloaded and
underloaded subintervals that begin and end in the interior (0, 1/µ) of the
interval [0, 1/µ]. In addition, there are the two intervals with the interval
endpoints. Thus the number of switches exceeds the number of internal
intervals by at most 1. Let S[0,1/µ] be the total number of switching points
in [0, 1/µ]. We have just shown that we must have |S[0,1/µ]| ≤ |Dζ |+ |Zζ |+1.

We are done if T = 1/µ; hence assume that T > 1/µ. We continue for
⌈Tµ⌉ cycles of length 1/µ. Next we consider the next interval [1/µ, 2/µ]. We
will show that the number of switching points can be no greater than in the
first interval of length 1/µ just considered. Recall that the departure rate
is σ(t) = b(t, 1/µ) = b(t − 1/µ, 0). Let ζ2(t) ≡ σ(t + 1/µ) − λ = b(t, 0) − λ
for 0 ≤ t ≤ 1/µ. Therefore, |S[1/µ,2/µ]|, the number of switching points in
[1/µ, 2/µ], is totally determined by the number of zeros and discontinuities
of ζ2, by the same argument as above.

We now show that |Zζ2 | ≤ |Zζ |. To do so, we first observe that we have
b(t, 0) = σ(t) when the system is overloaded. Hence the functions ζ(t) and
ζ2(t) differ only when the system is underloaded during [0, 1/µ]. Consider
an underloaded interval [a, b] ⊂ [0, 1/µ] where a and b are switching points,
which implies that σ(a) > λ > σ(b) (ζ(a) > 0 > ζ(b)). Since the system is
underloaded in [a, b], we must have b(t, 0) = λ. In case (i), ζ changes its sign
in (a, b) with (at least) an zero at some y ∈ Zζ ∩ (a, b). However, ζ2 has no
such zeros in Zζ2 ∩ (a, b) because ζ2(y) = 0 for a < y < b (which yields that
Zζ2 ∩ (a, b) = φ), we have |Zζ2 ∩ (a, b)| = 0 ≤ |Zζ ∩ (a, b)|, which implies
that |Zζ2 | ≤ |Zζ | counting all underloaded intervals in [0, 1/µ] that are in
case (i).

In case (ii), ζ changes its sign in (a, b) with (at least) a jump from positive
to negative. However ζ2 has at most two discontinuity points (at a and
b) in (a, b) (because ζ2(y) = 0 for a < y < b). Although the number of
discontinuities of ζ2 in [a, b] may outnumber the discontinuities of ζ by at
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most 1, these two jumps (ζ2(a−) > λ to ζ2(a) = λ and ζ2(b−) = λ to
ζ2(b) < λ) can at most contribute to one sign change in (a, b). In other
words, ζ2 may have more discontinuities than ζ, but those extra ones are
redundant. Hence, |S[1/µ,2/µ]| ≤ |Dζ |+|Zζ2 | ≤ |Dζ |+|Zζ |. The desired bound
in (5.9) is obtained by induction on interval [n/µ, (n+1)/µ], continuing until
N ≡ ⌈Tµ⌉.

11. Conclusions. We considered the heavily loaded many-server queue
with customer abandonment and deterministic service times, i.e., the stochas-
tic GI/D/n+GI model. Even though the arrival rate exceeds the maximum
possible service rate, the customer abandonment keeps the system stable. In
§2 we showed that the busy cycles in the stochastic GI/D/n+GI queueing
model constitute regeneration times, so that stochastic processes describing
the performance, such as the number of customers in the system, converge
to proper steady state distributions as time evolves for any proper initial
condition.

In §3 we showed that a sequence of G/D/n +GI queueing systems with
ρ ≡ λ/µ > 1 indexed by n satisfies a many-server heavy-traffic limit in
the efficiency-driven (ED) regime, converging to a deterministic fluid model,
provided that the arrival processes and initial conditions obey functional
weak laws of large numbers. In general, Theorem 3.1 only establishes a limit
for the performance measures describing the service facility, e.g., Bn(t, y),
but those fluid limits capture the essential periodic character. A many-server
heavy-traffic limit for the queue-length and abandonment processes was also
obtained under the assumption of exponential abandonment.

Like the stochastic system, we found that the limiting fluid model has a
unique stationary point. However, unlike the stochastic model, Theorem 9.3
shows that the fluid model never converges to that stationary point unless
it starts in that stationary point. Instead, the fluid model tends to exhibit
periodic behavior. Moreover, the specific form of the periodic behavior de-
pends critically on the initial conditions. As a consequence, the asymptotic
loss of memory (ALOM) property established for the Gt/Mt/st+GIt model
in [21] does not nearly hold with deterministic service times.

Moreover, as illustrated in §1, simulations of the stochastic system show
that the time-dependent behavior of the stochastic system is well described
by the fluid model for large n. Indeed, the fluid model tends to provide
a better description of the performance in the queueing model than the
steady-state distribution of the queueing model, amplifying [33].

The rest of the paper was devoted to a careful study of the limiting fluid
model. We obtained quite complete results for the case in which there exists
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a finite time T ∗ after which the system remains overloaded. Theorem 6.1
provides general conditions for this to be true. That condition is in terms
of the initial density of fluid in service b(0, ·), but can also be applied at
later times after applying the algorithm in Remark 5.2 over some initial
interval. However, §9 shows that, in general, such a finite time need not
exist. Nevertheless, Theorem 9.4 shows that the fluid density in service b
converges to a PSS,

In summary, the fluid content in service evolves in three different ways,
depending on the initial conditions:

1. The fluid in service is in steady state for all t ≥ 0 if it is initialized
with b(0, x) = µ s for 0 ≤ x ≤ 1/µ.

2. The system first becomes overloaded at t∗ < 1/µ and remains over-
loaded after time T ∗, t∗ ≤ T ∗ < ∞, in which case b(t, ·) is in a PSS
determined by b(T ∗, ·).

3. The system first becomes overloaded at t∗ < 1/µ, but switches between
overloaded and underloaded infinitely often. Then the fluid density b
converges to an overloaded PSS.

In cases (ii) and (iii), if instead we initialize by redefining b(0, ·), letting it
have the PSS version, then the system is initially overloaded and the fluid
density in service is periodic with period 1/µ for all t ≥ 0. The remaining
queue performance then converges to a PSS as well. In case (i), the associated
queue performance converges to the unique stationary point as well. In cases
(ii) and (iii), if we start with the PSS for b, then the queue performance
converges to a PSS as well. In case (iii) it remains to determine if the queue
performance converges to the PSS associated with the limiting PSS for b
when we use the given initial conditions; we conjecture that it does.

It is natural to wonder what happens with other service-time distribu-
tions. In Appendix I we show that the same periodic behavior is exhib-
ited by the corresponding model with a two-point service-time distribution,
provided that one of the points is at the origin (in the same spirit as the
corresponding special hyperexponential distribution in in [36]). However, in
Appendix J we present results from simulation experiments showing that
the periodic phenomenon ceases to hold for other two-point distributions
and, more generally, if the service-time is only nearly deterministic. When
the service-time distribution is nearly deterministic, the performance is sim-
ilar to the performance with D service and the same initial conditions over
suitably short time intervals, but convergence to stationary performance is
evident as t increases.

We concentrated on the stationary G/D/n+GI fluid model, but some of
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the results can be extended. First, as in [19–21], we can analyze, and obtain
an algorithm for, the Gt/D/st + GI fluid model in which the arrival rate
and the number of servers are allowed to be time varying. In particular, §4,
§5 and §7 extend to this case. In general, we lose the periodic structure, on
which most of this paper focuses, but that periodic structure is retained as
well if the arrival rate function λ and the staffing function s are also periodic
with the same period 1/µ. (However, the periodic structure is less surprising
in that case.) Moreover, the structural properties of the queue established
in §7 also extend to GI service, provided that the fluid density in service b
is given. Of course, determining b is more complicated for GI service that
is neither D nor M . Theorem 5.1 of [19] shows that it is necessary to solve
a complicated fixed point equation in order to determine b in those cases.

As stated in §1, we began this study in an effort to understand if ALOM
holds for the G/GI/s + GI and Gt/GIt/st + GIt fluid models when the
service-time distribution is neither Mt nor M . That question remains after
we stipulate that the service distribution also is neither D nor the two-point
distribution with one mass at 0. We conjecture that ALOM does hold for
the fluid model under that extra condition and the regularity conditions
imposed in [21].
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Appendix

APPENDIX A: OVERVIEW.

This appendix contains additional supplementary material, which is pre-
sented in order of the material to which it relates. First, in §B we present
additional simulation results for the example in §1. Specifically, we report re-
sults of simulations with smaller scaling n but averaged over multiple sample
paths, to show the quality of the fluid model as an approximation for mean
values in the queueing system. We also consider an example with smaller
traffic intensity ρ for the example in §1 to show that the periodic behavior
is eventually broken.

In §C we give proofs of Theorems 7.1-7.4 in §7. In §D we return to the ex-
ample in §1 and show that different initial conditions can yield very different
PSS’s. In §E we apply the algorithm in Remark 5.2 to numerically evaluate
the average performance over a cycle with non-exponential abandonment
distributions. These examples show that the average boundary waiting time
over a cycle tends to be strictly greater than the stationary value, whereas
the average queue length over a cycle can be either strictly greater or strictly
less than the stationary queue content in the fluid model. In §F we provide
a proof of Corollary 8.2, giving explicit expressions for the performance in
the G/D/s + M fluid model with an exponential abandonment cdf. In §G
we provide a proof of Theorem 9.1 showing that there need not exist a fi-
nite time T ∗ after which the system remains overloaded. To do so, we show
that the given example switches back and forth between overloaded and
overloaded infinitely often, with two switches in each cycle. In §H, we give
another counterexample with B(0) < 1 that is an analog of Example 3.1 in
§3.

We then start to consider other service distributions. In §I we provide the
same PSS results for fluid models that have two-point service distributions
with one of the points at 0. Simulation verification is also given there. In
§J we provide results of simulation experiments for queues that have nearly
deterministic service times. The simulation results shows that the behavior
forD service is not exhibited for other two-point distributions. This supports
(but of course does not prove) our conjecture that ALOM holds in all other
GI/GI/s+GI models and even in the more general Gt/GI/st+GI models.

APPENDIX B: MORE ON THE EXAMPLE IN SECTION 1

B.1. Smaller Scaling n. We used a very large scaling, in particular
n = 1000, for the queueing model in the example in §1. We used a very
large n for two reasons: first, to demonstrate that the fluid model becomes
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accurate in the limit as n → ∞ and, second, to provide a good test of the
numerical algorithm for the fluid model. However, in order to be useful as
approximations for realistic large-scale queueing systems, the approximation
also should be reasonable for smaller scaling factors. We demonstrate that
now.
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Fig 4. Performance of the G/D/s+M fluid model compared with simulation results: one
sample path of the scaled queueing model for n = 100.

We consider the same base M/D/n + M fluid model here as in §1, but
we only consider the case θ = 2. The other parameters remain unchanged:
λ = 2, µ = s = 1. However, we consider different values of the scaling factor
n for the associated stochastic queueing model, which coincides with the
number of servers (since we set s = 1).

Figure 4 below provides the analog of Figure 2 for the case of one sample
path of the simulation with n = 100, for the same fluid model. Figure 5
below gives the average of 10 sample paths for the same model. We see
that the fluid approximation provides only a rough approximation for a
single sample path when n = 100 instead of n = 1000, but it is remarkably
accurate for the average over 10 sample paths. The accuracy is especially
high in this example, because the extent of the overloads and underloads
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Fig 5. Performance of the G/D/s +M fluid model compared with simulation results: an
average of 10 sample paths of the scaled queueing model based on n = 100.

are quite large.
The quality of the approximation does degrade as n decreases, for the

given fluid model. To illustrate, we plot a single sample path for n = 30 in
Figure 6 and the average over 100 sample paths in Figure 7. The stochastic
fluctuations are so much greater for a single sample path that we need to
average over more sample paths to get a good estimate of the mean values.
For n = 30, the fluid model clearly yields a good approximation only for the
mean values, but the mean is remarkably well approximated for n = 30. The
approximation for the mean values in Figure 7 are so good that it is evident
that the fluid model approximations can provide useful approximations for
the mean values for much smaller n (and thus s).

B.2. Smaller Traffic Intensity ρ. For the initial heavily loaded ex-
ample with ρ ≡ λ/sµ = 2 and scaling n = 1000 discussed in §1 we were not
able to detect a break in the periodic behavior in simulations. For example,
Figure 3 shows that the periodic behavior of Wn(t), the head-of-line waiting
time at t, remains even for large T (T = 1000). However, we found that a
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Fig 6. Performance of the G/D/s+M fluid model compared with simulation results: one
sample path of the scaled queueing model for n = 30.

break in the periodic behavior can be observed if we considered less heavily
loaded examples.

To illustrate, we now consider the same M/D/n + M queue in §1 with
the same parameters (µ = 1, θ = 2, n = 100) except for a smaller λ,
now letting λ = 1.3n, so that the system has a lower traffic intensity, ρ =
λ/nµ = 1.3 instead of ρ = 2 as in §1. We repeat the same simulation
experiment with ρ = 1.3 and plot Wn in Figure 8. Figure 8 shows essentially
the same periodic behavior over the initial interval [0, 10], but it shows that
the periodic behavior is gone by T = 1000.

APPENDIX C: PROOFS FOR §7
We omitted the proofs for the four theorems in §7 because they follow

from the proofs of corresponding results in [21]. Nevertheless, we provide
the details here.

C.1. Proof of Theorem 7.1.

Proof. Since both queues are overloaded for all t ≥ 0 and they have the
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Fig 7. Performance of the G/D/s +M fluid model compared with simulation results: an
average of 100 sample paths of the scaled queueing model based on n = 30.

same initial fluid densities in service, we have b1(t, 0) = b2(t, 0) = σ1(t) =
σ2(t) by Theorem 5.2. For the fluid content in queue, we have q̃1(t, x) ≤
q̃2(t, x) for all x by Proposition 5.1 because the two queues share the same
F .

It remains to show w1(t) ≤ w2(t) for all t ≥ 0. We will do a proof by
contradiction. Hence suppose this inequality does not hold for some t > 0.
Then continuity of w1 and w2 implies that there exists some 0 < t1 < t such
that w1(t1) = w2(t1) ≡ w̃. However, the ordering of q̃1 and q̃2 implies that
q̃1(t1, w̃) ≤ q̃1(t1, w̃). Hence the BWT ODE in Theorem 5.3 of [19] implies
that w′

1(t1) = w′
2(t1) because b1(t, 0) = b2(t, 0). Therefore, this contradicts

our assumption that there exists a t such that w1(t) > w2(t). Hence that
establishes the desired ordering.

The ordering of Q and α follow directly from the ordering of q and w
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Fig 8. Large-time periodic behavior of an overloaded G/D/s + M queueing model: sim-
ulation estimates of the head-of-line waiting time Wn with λ = 1.3, s = µ = 1, θ = 2,
ρ = 1.3, n = 100, T = 1000.

since

Q1(t) =

∫ w1(t)

0
q1(t, x)dx ≤

∫ w2(t)

0
q2(t, x)dx = Q2(t),

α1(t) =

∫ w1(t)

0
q1(t, x)hF (x)dx ≤

∫ w2(t)

0
q2(t, x)hF dx = α2(t).

Now we turn to v. The equation (27) in Theorem 5 implies that the ordering
of w is inherited by v. That is made clear by applying the proof of Theorem
5, which shows that v(t) is determined by the intersection of the function w
with the linear function Lt(u) = t+u. Clearly, if we increase the w function,
then that intersection point increases as well.

C.2. Proof of Theorem 7.2.

Proof. Without loss of generality, by Theorem 7.1, it suffices to assume
that λ1 ≤ λ2 and q1(0, ·) ≤ q2(0, ·). If that is not initially the case, consider
another two systems, system 3 and 4 with λ3 ≡ λ1∧λ2, q3(0, x) ≡ q1(0, x)∧
q2(0, x), λ4 ≡ λ1 ∨ λ2, q4(0, x) ≡ q1(0, x) ∨ q2(0, x). Therefore, it is easy to
see that |λ1 − λ2| = |λ3 − λ4| and |Q1(0) −Q2(0)| ≤ |Q3(0)−Q4(0)|.

Since both queues are overloaded and b1(t, 0) = b2(t, 0), flow conservation
of fluid in queue implies that for i = 1, 2,

Q′
i(t) = λi − αi(t)− bi(t, 0).

Hence, we have

Q′
2(t)−Q′

1(t) = λ2 − λ1 − (α2 − α1) ≤ λ2 − λ1,(C.1)
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where the inequality follows from Theorem 7.1. This yields

|Q1(t)−Q2(t)| = Q2(t)−Q1(t) ≤ |Q1(0)−Q2(0)| + t |λ1 − λ2|.

Obviously, (7.3) directly follows from (7.1). To show (7.2), we have

|α1(t)− α2(t)| = α2(t)− α1(t)

=

∫ w2(t)

0
q2(t, x)hF (x)dx−

∫ w1(t)

0
q1(t, x)hF (x)dx

=

∫ w1(t)

0
(q2(t, x)− q1(t, x))hF (x)dx+

∫ w2(t)

w1(t)
q2(t, x)hF (x)dx

≤ h↑F

(

∫ w1(t)

0
(q2(t, x)− q1(t, x))hF (x)dx +

∫ w2(t)

w1(t)
q2(t, x)hF (x)dx

)

= h↑F (Q2 −Q1) = h↑F |Q2 −Q1|,

where the first and last equality, and the inequality all follows from Theorem
7.1.

C.3. Proof of Theorem 7.3.

Proof. We first show that (a) follows from (b). Without loss of gen-
erality, we assume Q1(0) ≤ Q2(0). We construct another two systems, 3
and 4, with q3(0, x) ≡ q1(0, x) ∧ q2(0, x) and q4(0, x) ≡ q1(0, x) ∨ q2(0, x).
With this construction, systems 3 and 4 are bona fide fluid models, with
Q3(t) ≤ Q1(t) ≤ Q4(t) and Q3(t) ≤ Q2(t) ≤ Q4(t) for all t, by Theorem 7.1.
This implies that ∆Q1,2(t) ≤ ∆Q3,4(t) for all t. Since δQ3,4(t)(0) ≤ C1 for
C1 in (7.5), (7.4) in (a) follows from (7.10) for ∆Q3,4(t). (The final bound
on C1 in (7.5) arises when the supports of q1(0, ·) and q2(0, ·) are disjoint
sets.)

Now we prove (b). Observe that the first inequality in (7.10) follows (7.9)
because dividing the interval [0, T ] into N subintervals yields

∆Q(T ) ≤
(

1

1 + h↓F
T
N

)N

∆Q(0).

Letting N → ∞, we get (7.9).
We now prove (7.9). Since both queues are overloaded for all t ≥ 0 and

they have the same initial fluid densities in service, we have b1(t, 0) =
b2(t, 0) = σ1(t) = σ2(t), following from Theorem 5.2. Since q1(0, x) ≤
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q2(0, x), we have q1(t, x) ≤ q2(t, x), w1(t) ≤ w2(t) and α1(t) ≤ α2(t) for
all t ≥ 0. Hence, we have

α2(t)− α1(t) =

∫ w2(t)

0
q2(t, x)hF (x)dx−

∫ w1(t)

0
q1(t, x)hF (x)dx

=

∫ w1(t)

0
(q2(t, x)− q1(t, x))hF (x)dx +

∫ w2(t)

w1(t)
q2(t, x)hF (x)dx

≥ h↓F

(

∫ w1(t)

0
(q2(t, x) − q1(t, x))dx +

∫ w2(t)

w1(t)
q2(t, x)(x)dx

)

= h↓F (Q2(t)−Q1(t)) = h↓F ∆Q(t).(C.2)

Flow conservation implies that

Q′
i(t) = λ− αi(t)− bi(t, 0) for i = 1, 2,

which yields

∆Q′(s) = −(α2(s)− α1(s)) ≤ −h↓F ∆Q(s) ≤ −h↓F ∆Q(t), 0 ≤ s ≤ t,

where the first inequality follows from (C.2) and the second inequality holds
since ∆Q(t) has negative derivative. Therefore, integrating both sides with
respect to s from 0 to t, we have

∆Q(t)−∆Q(0) ≤ −h↓F t∆Q(t)

and

∆Q(t) ≤
(

1

1 + h↓F t

)

∆Q(0).

To show the second inequality in (7.10), repeat the reasoning in (C.2) and

use the face hF (x) ≤ h↑F instead of hF (x) ≥ h↓F .
Finally, we treat w(t). As above, it suffices to assume that we have the

ordering in (7.8). We have b(t, 0) ≥ b↓ following from Proposition 5.2 and
Corollary 5.2. First note that at time T ∗ = (Q1(0)+Q2(0))/b

↓, all fluid that
was in queue 1 and 2 at time 0 is gone (entered service or abandoned). Then
(7.6) follows from

∆Q(T ) =

∫ w2(T )

w1(T )
λ F̄ (x)dx ≤ λ F̄ (w2(T ))∆w(T ), T ≥ T ∗.
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Choose w̄ > 0 big enough such that F̄ (w̄) < b↓/λ. The BWT ODE implies
that for t > T ∗,

w′
2(t) = 1− b(t, 0)

λ F̄ (w2(t))
≤ 1− b↓

λ F̄ (w̄)
< 0,

if w2(t) > w̄ for some t. Hence w̄ is an upper bound for w2(t) if w2(T
∗) < w̄. If

w2(T
∗) ≥ w̄, it is easy to see that w2(t) decreases until it is below w̄ because

we can bound w′
2(t). This argument implies that w2(t) ≤ w̄ ∨ (w2(0) + T ∗)

for all t ≥ 0. The constant C2 in (7.7) is obtained by inserting established
bounds.

C.4. Proof of Theorem 7.4.

Proof. Most are elementary; only Q(t) and w(t) require detailed argu-
ment. Flow conservation implies that Q′(t) = λ− α(t) − b(t, 0) ≤ λ− α(t).

Since α(t) ≥ h↓F Q(t), we have Q′(t) < 0 whenever Q(t) > λ/h↓F . The bound
for w(t) follows directly from (7.6) and the proof of Theorem 7.3.

APPENDIX D: DIFFERENT INITIAL CONDITIONS

Theorems 6.1 and 8.1 provide sufficient conditions for Assumption 12 to
hold, and for the performance function to converge to a PSS. That PSS
depends strongly on the fluid density in service, b at the time T ∗ after
which the system remains overloaded. We now illustrate that different initial
conditions can yield very different PSS’s.

We again consider the G/D/s+M example in §1 with λ = 2, µ = s = 1,
θ = 2. In Figure 9, we apply the algorithm in Remark 5.2 and plot the
performance functions B(t), b(t, 0), w(t) and Q(t) in interval [0, 3.5] for two
different initial conditions: (i) The system is initially critically loaded (CL)
with b(0, x) = 1.5 · 1{0≤x≤1/2} + 0.5 · 1{1/2≤x≤1}, Q(0) = 0 (the blue solid
lines); (ii) The system is initially empty (the red dashed lines). Both cases
yield a PSS with period 1/µ = 1, but the performance in these two cases
differs greatly.

APPENDIX E: THE AVERAGE PERFORMANCE OVER A CYCLE

In Remark 8.3 we noted that, unlike ᾱ and σ̄, the averages of other per-
formance functions in a PSS typically do not agree with the steady-state
values. We investigate Q̄ and w̄ ≡ τ−1

∫ τ
0 w(t) dt now.

We consider an initially empty G/D/s+GI fluid model with three types
of abandonment distributions: (i) Erlang-2 (E2), (ii) exponential (M) and
(iii) Hyperexponential-2 (H2). We first review these distributions.
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{0 ≤ t ≤ 1/2}
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, Q(0) = 0.

Initially empty: b(0,x) = Q(0) = 0.

Fig 9. A comparison of the PSS performance of the G/D/s+M fluid queue with different
initial conditions: (i) critically loaded with b(0, x) = 1.5 · 1{0≤x≤1/2} + 0.5 · 1{1/2≤x≤1},
Q(0) = 0 (the blue solid lines); (ii) starting empty (the red dashed lines).

Let A be the generic abandonment time. A follows E2 implies that A =
X1 +X2 in distribution, where X1 and X2 are two iid exponential random
variables. Moreover, f(x) = γ2 x e−γ x, where γ is rate of X1. If A follows
H2, then A is a mixture of two exponential random variables, i.e., f(x) =
p · θ1 e−θ1 x + (1 − p) · θ2 e−θ2 x, where θ1 and θ2 are the rates of these two
exponential random variables, and 0 < p < 1 is the sampling probability.

We fix the mean of A, letting E[A] = 1/θ. An E2 distribution has squared
coefficient of variation (SCV) C2 ≡ V ar(A)/E[A]2 = 1/2, which is less than
1. On the other hand, all H2 distributions have C2 greater than 1. For E2,
we let γ = 2 θ. For H2, we let p = 0.5(1 −

√
0.6), θ1 = 2p θ, θ2 = 2(1 − p) θ,

so that C2 = 4.
We let λ = 2, θ = 2, µ = s = 1. In Figure 10, we plot w, Q and α

in one cycle [0, 1/µ] of PSS for these three abandonment distributions, by
applying the algorithm described in Remark 5.2. (Here we start the system
empty and compute these performance functions in N cycles for N large.)
In Table 1, we compute and compare w̄, Q̄ and ᾱ, the average of w, Q and
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Fig 10. A comparison of the PSS of the G/D/s+GI fluid queues with different abandon-
ment distributions: (i)E2 (red dashed), (ii) M (blue solid) and (iii) H2 (black dashed).

α in one cycle to w∗, Q∗ and α∗, their steady-state values. We have three
observations: (i) As proved in Corollary 8.1, ᾱ indeed agrees with α∗ (except
for a small computation error from numerical integration); (ii) Q̄ 6= Q∗ in
general, in particular, Q̄ < Q∗ for E2 abandonment and Q̄ > Q∗ for H2

abandonment; (iii) w̄ ≥ w∗, i.e., customers’ average waiting is longer in PSS
than in the steady state.

APPENDIX F: THE CASE OF EXPONENTIAL ABANDONMENT

In this section we prove Corollary 8.2, giving explicit formulas in the case
of exponential abandonment. We give two different proofs.

F.1. First Proof of Corollary 8.2. First, since b(t, x) and σ(t) are
periodic functions and Q(t) and α(t) can be written as expressions in terms
of w(t), it remains to derive the dynamics of w(t).

In a cycle [0, 1/µ], w(t) = w̃+t for 0 ≤ t ≤ 1/µ−s/λ and w(t) solves ODE
w′(t) = 1−1/F̄ (w(t)) = 1−1/e−θw(t) with w(1/µ−s/λ) = w̃+1/µ−s/λ for
1/µ− s/λ ≤ t ≤ 1/µ, where w̃ ≥ 0 is both the starting and the ending value
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abandonment dist. E2 (C2 = 0.5) M (C2 = 1) H2 (C2 = 4)

ᾱ (PSS average) 1.001 1 1.001
α∗ (steady state) 1 1 1

w̄ (PSS average) 0.437 0.367 0.260
w∗ (steady state) 0.420 0.347 0.226

Q̄ (PSS average) 0.649 0.5 0.330
Q∗ (steady state) 0.657 0.5 0.324

Table 1

A comparison of the average performance of PSS of the G/D/s+GI fluid queue with (i)
E2, (ii) M and (iii) H2 abandonment distribution to the steady-state values.

of w(t) in each cycle. Letting v(t) ≡ t−w(t), we have for 1/µ−s/λ ≤ t ≤ 1/µ,

eθt = (1− w′(t))eθ(t−w(t)) = v′(t)eθv(t).

For 1/µ − s/λ ≤ t ≤ 1/µ, integrating both sides from 1/µ − s/λ to t yields

eθt − eθ(1/µ−s/λ) = θ

∫ t

1/µ−s/λ
eθudu = θ

∫ v(t)

v(1/µ−s/λ)
eθudu

= eθ(t−w(t)) − eθ(1/µ−s/λ−w(1/µ−s/λ)) .(F.1)

Because w(1/µ− s/λ) = w̃+1/µ− s/λ and w(1/µ) = w̃, letting t = 1/µ in
(F.1) yields (8.10), from which (8.8) follows. Solving the ODE yields (8.11).

t
21

w
~1

)(tw

w
~2

w
~

45
O

line

0

)(tv

s1 s2

Fig 11. PWT v(t) and BWT w(t) of the PSS of the G/D/s +GI fluid queue.

Finally, to show (c), we consider a cycle [1/µ − w̃, 2/µ − w̃] instead of
[0, 1/µ]. First, the PWT v(t) is periodic with the same period 1/µ. Moreover,
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it is continuous over [1/µ−w̃, 2/µ−w̃) and it has a discontinuity at t = 2/µ−
w̃, as shown in Figure 11, following from Theorem 5.4. Also see Theorem 5
and 6 in [19] for details. Following Theorem 6 in [19], v(t) satisfies the ODE

v′(t) =
λ F̄ (v(t))

b(t+ v(t), 0)
− 1 =

λ e−θ v(t)

λ
− 1

= e−θ v(t) − 1,
1

µ
− w̃ ≤ t <

2

µ
− w̃,(F.2)

where the second equality holds because b(t, 0) = λ for 2/µ− s/λ ≤ t ≤ 2/µ
and t + v(t) ≥ 2/µ − s/λ (obviously from Figure 11). Since v(1/µ − w̃) =
w̃ + 1/µ − s/λ ≡ v0, solving ODE (F.2) with (1/µ − w̃) = v0 yields (8.13).

F.2. Second Proof of Corollary 8.3. We can provide an alternative
proof of Corollary 8.3 by focusing on Q(t). Since σ(t) = b(t, 0) = 0, Q(t)
satisfies an ODE for 0 ≤ t ≤ 1/µ− s/λ with

Q′(t) = λ− θ Q(t),

which has a unique solution

Q(t) =
λ

θ

(

1− e−θ t
)

+Q(0) e−θ t.(F.3)

Since σ(t) = b(t, 0) = λ for 1/µ − s/λ < t ≤ 1/µ, Q(t) satisfies another
ODE

Q′(t) = λ− θ Q(t)− b(t, 0) = −θ Q(t),

which has a unique solution

Q(t) = Q∗ e−θ t,(F.4)

where

Q∗ ≡ Q

(

1

µ
− s

λ

)

=
λ

θ

(

1− e
−θ

(

1
µ
− s

λ

))

+Q(0) e
−θ

(

1
µ
− s

λ

)

is the ending value of Q(t) in [0, 1/µ − s/λ]; i.e., let t = 1/µ − s/λ in
(F.3). Since Q(t) is periodic in the PSS with period 1/µ, we must have
Q̃ ≡ Q(0) = Q(1/µ). Equating Q(0) to Q(t) in (F.4) with t = 1/µ yields

Q̃ =
λ

θ

(

e−θ s/λ − e−θ/µ

1− e−θ/µ

)

.(F.5)
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Plugging Q(0) = Q̃ in (F.5) into (F.3) and (F.4) yields (8.9) and (8.12). To
show (8.10), we let

Q̃ =

∫ w̃

0
λ e−θ xdx =

λ

θ

(

1− e−θ w̃
)

,(F.6)

which yields (8.10).

APPENDIX G: ON THEOREM 9.1

Recall that Theorem 9.1 concludes that there need not exist a finite time
T ∗ after which the system remains overloaded; i.e., there need not exist
T ∗ < ∞ such that B(t) = s for all t ≥ T ∗. The proof involves a con-
crete counterexample. We now show that the counterexample indeed has
the claimed property.

G.1. Proof of Theorem 9.1. We start by giving a feel for the per-
formance by applying the numerical algorithm in Remark 5.2. We plot the
performance functions w(t), Q(t), B(t), b(t, 0) and σ(t) for 0 ≤ t ≤ 5 in Fig-
ure 12. Figure 12 clearly shows that B(n) = s for all n and that B(n+(1/2))
increases towards s.

However, from the picture alone, we cannot be sure that B(n+(1/2)) < s
for all n. To justify that, we need to consider the behavior more carefully.
To show that the system alternates between overloaded and underloaded
infinitely often, we consider successive intervals [n, n+1] for n ≥ 0. First, in
the first unit [0, 1], we have b(t, 0) = σ(t) = b(0, 1−x) = 2 ·1{0≤x≤1/2}. Since
b(t, 0) = σ(t) whenever the system is overloaded and the system is initially
overloaded, the BWT w(t) satisfies the ODE

w′(t) = 1− b(t, 0)

λ F̄ (w(t))
= 1− 2

1.2 e−2w(t)
1{0≤t≤1/2},(G.1)

with w(0) = 2, which has a unique solution

w(t) = t− 1

2
log

(

e2 t − 1

0.6
+ e−2w(0)

)

for 0 ≤ t ≤ 1/2.

Letting w(t) = 0 yields that

t
(1)
1 =

1

2
log

(

1− 0.6 e−2w(0)

0.4

)

= 0.453 < 1/2,(G.2)

that is the time at which the system becomes underloaded. Note that for

t
(1)
1 < t ≤ 1/2, σ(t) = 2 > 1.2 = b(t, 0) = λ, therefore, the fluid content
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in service decreases (linearly) with B(t) = s − (σ(t) − b(t, 0)) (t − t
(1)
1 ) =

1 − 0.8(t − t
(1)
1 ). For t > 1/2, b(t, 0) = λ = 1.2 > 0 = σ(t), B(t) increases

(liearly) with B(t) = B(1/2)+(b(t, 0)−σ(t)) (t−1/2) = 0.96+1.2(t−1/2).

So the system again becomes overloaded at t
(1)
2 = 0.53 since B(t

(1)
2 ) = 1 = s.

Moreover, t
(1)
1 and t

(1)
2 satisfy 1.2(t

(1)
2 −1/2) = 0.8(1/2−t

(1)
1 ). For t2 ≤ t ≤ 1,

by ODE (G.1), w(t) = t− t
(1)
2 , which implies that w(1) = 1− t

(1)
2 = 0.47 <

2 = w(0). In summary, the system is overloaded in [0, t
(1)
1 ] ∪ [t

(1)
2 , 1] and

(strictly) underloaded in (t
(1)
1 , t

(1)
2 ), b(1)(t, 0) ≡ b(t, 0) = 2 · 1

{0≤t<t
(1)
1 }

+ 1.2 ·
1
{t

(1)
1 ≤t≤1/2}

and w(1)(0) ≡ w(0) > w(1) ≡ w(1)(1), with 0 < t
(1)
1 < 1/2 <

t
(1)
2 < 1. See Figure 12.
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Fig 12. The counterexample providing a fluid model that does not become (and stay)
overloaded in finite time; it switches between overloaded and underloaded regimes infinitely
often.
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Now consider the next unit interval [1, 2]. We can simply shift the origin to
time 1 and again consider the interval [0, 1]. Therefore the system is initially
overloaded with w(2)(0) ≡ w(0) = w(1)(1) < w(0)(0), σ(t) = b(1)(t, 0) =
2 · 1

{0≤t<t
(1)
1 }

+ 1.2 · 1
{t

(1)
1 ≤t≤t

(1)
2 }

(which is the rate into service in the previ-

ous interval). We want to show that the same structure of all performance
functions are preserved in the second unit interval. The switching time (from
overloaded to underloaded) is a strict monotone function of w(0), by (G.2),

therefore the system becomes underloaded at t
(2)
1 such that t

(2)
1 < t

(1)
1 since

w(0) = w(1)(1) < w(1)(0). Because σ(t) = 2 · 1
{0≤t<t

(1)
1 }

+ 1.2 · 1
{t

(1)
1 ≤t≤t

(1)
2 }

,

we have

B(t) = 1
{t∈[0,t

(2)
1 )∪(t

(2)
2 ,1]}

+ [1− 0.8(t− t
(2)
1 )]1

{t
(2)
1 ≤t<t

(1)
1 }

+[1− 0.8(t
(1)
1 − t

(2)
1 )]1

{t
(1)
1 ≤t≤1/2}

+[1− 0.8(t
(1)
1 − t

(2)
1 ) + 1.2(t − t

(1)
2 )]1

{t
(1)
2 ≤t≤t

(2)
2 }

,

where t
(2)
2 satisfies 1.2(t

(2)
2 − t

(1)
2 ) = 0.8(t

(1)
1 − t

(2)
1 ) so that t

(2)
2 > t

(1)
2 , which

implies that the system is overloaded for t
(2)
2 ≤ t ≤ 1 and w(2)(1) ≡ w(1) =

1 − t
(2)
2 < w(0) = w(1)(1) = w(2)(0). In summary, in the second interval,

the system is overloaded in [0, t
(2)
1 ] ∪ [t

(2)
2 , 1] and (strictly) underloaded in

(t
(2)
1 , t

(2)
2 ), b(2)(t, 0) ≡ b(t, 0) = 2 · 1

{0≤t<t
(2)
1 }

+ 1.2 · 1
{t

(2)
1 ≤t≤t

(2)
2 }

, σ(2)(t) ≡
σ(t) = b(1)(t, 0) = 2 · 1

{0≤t<t
(1)
1 }

+ 1.2 · 1
{t

(1)
1 ≤t≤t

(1)
2 }

and w(2)(0) ≡ w(0) >

w(1) ≡ w(2)(1), with 0 < t
(2)
1 < t

(1)
1 ≤ t

(1)
2 < t

(2)
2 < 1. See Figure 12.

Using an inductive argument, we can show that in the nth unit interval
[n−1, n], the same structure is preserved. In particular, if we move the origin
to time n− 1 (i.e., consider [0, 1] instead of [n− 1, n]), then

the system is

{

overloaded, for t ∈ [0, t
(n)
1 ] ∪ [t

(n)
2 , 1],

(strictly) underloaded, for t ∈ (t
(n)
1 , t

(n)
2 ).

b(n)(t, 0) ≡ b(t, 0) = 2 · 1
{0≤t<t

(n)
1 }

+ 1.2 · 1
{t

(n)
1 ≤t≤t

(n)
2 }

,

σ(n)(t) ≡ σ(t) = b(n−1)(t, 0) = 2 · 1
{0≤t<t

(n−1)
1 }

+ 1.2 · 1
{t

(n−1)
1 ≤t≤t

(n−1)
2 }

,

w(n)(0) ≡ w(0) > w(1) ≡ w(n)(1),

with 0 ≤ t
(n)
1 < t

(n−1)
1 ≤ t

(n−1)
2 < t

(n)
2 ≤ 1. Therefore, the bounded sequence

t
(1)
1 , t

(2)
1 , . . . is strictly decreasing and the bounded sequence t

(1)
2 , t

(2)
2 , . . . is

strictly increasing so that we must have t
(n)
1 ↓ t∞1 ≥ 0 and t

(n)
2 ↑ t∞2 ≤ 1. We
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next show that t∞1 > 0 and t∞2 < 1. Suppose t∞1 = 0, then w∞(0) = w∞(1) =
0, which implies that t∞2 = 1 (the monotonicity structure is preserved in the
limit). Therefore, the system is underloaded or critically loaded in [0, 1].
However, since we have ρ = λ/sµ = 1.2 > 1, this cannot happen. Hence a
contradiction.

G.2. More On Theorem 9.1. The example in the proof of Theorem
9.1 discussed above in §G.1 also can illustrate the important role played by
the initial queue density q(0, ·) on the asymptotic performance. Indeed, we
can ensure that a time T ∗ < ∞ exists such that B(t) = s for all t ≥ T ∗

by changing the initial queue density. Moreover, we achieve this finite T ∗ in
this example by reducing the initial fluid content in queue, not by increasing
it.

We consider the same example as before, as discussed in §G.1, with the
same initial fluid density in service but w(0) = 0.2 (instead of w(0) = 2).
Figure 13 is the analog of Figure 12. As shown in Figure 13, the system
becomes overloaded in the second cycle and stays overloaded thereafter.
Moreover, the structure of the PSS is entirely different (in this case there is
no critically loaded interval as in Figure 12).

As concluded in §6 - 8, the initial fluid density in queue q(0, x) does not
play a role in determining the system’s asymptotic behavior if the system
is overloaded for all t ≥ 0, by the ALOM property in Theorem 7.3. In this
example, however, q(0, x) is also critical, because it determines the behavior
of b as well.

By a minor modification of the reasoning used in §G.1, we can show
that the system is overloaded for all t ≥ 1/µ. Let 0 ≤ t1 ≤ 1/µ be the
time at which the system switches from overloaded to underloaded intervals
in [0, 1/µ]. First, we can establish a similar (strict) monotonicity result.
With w(0) = 0.2, we can show that w(1) ≈ 0.3 > w(0), which implies
that Q(1/µ + t1) > 0. Since σ(t + 1/µ) = b(t, 0) for 0 ≤ t ≤ 1/µ, we have
b(t+1/µ, 0) = b(t, 0). Therefore, the system is overloaded in [1/µ, 2/µ]. Using
an inductive argument, we can show that w(n+1) > w(n) and σ(t+n/µ) =
b(t + n/µ, 0) = b(t, 0) so that the system is overloaded in [n, n + 1] for all
n ≥ 1.

APPENDIX H: MORE ON FIRST PASSAGE TIMES

As an analog of Example 3.1 in §3, below we give another counterexample
for first passage times with B(0) < 1.

Example H.1. (counterexample on first passage times with B(0) < 1 )
Suppose that λ > µ = 1. Let b(0, x) = λ for 1 − (1/λ) ≤ x ≤ 1− 1/2λ and
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Fig 13. The dynamics of the system performance of the example in Theorem 9.1 that has
the same initial fluid density in service but w(0) = 0.2 instead of w(0) = 2.

b(0, x) = 0 otherwise, so that B(0) = 1/2, b(t, 0) = λ, 0 ≤ t < 1/λ, and
b(t, 0) = 0, 1/λ ≤ t < 1, B(t) = 1/2 + λ t for 0 ≤ t ≤ 1/2λ and B(t) = 1 for
t > 1/2λ. Therefore, T ∗ = t∗ = 1/2λ.

For n ≥ 1, let {Bn(0, y) : 0 ≤ y ≤ 1} be deterministic. To be a legitimate
sample path for a queueing system, Bn(0, y) must be nondecreasing and
integer-valued as well as satisfy 0 ≤ Bn(0, y) ≤ n. Thus, let Bn(0, y) ≡
⌊Bf

n(0, y)⌋, where ⌊x⌋ is the greatest integer less than or equal to x and

B̄f
n(0, y) ≡ n−1Bf

n(0, y) ≡
∫ y
0 bn(0, x) dx, where bn(0, x) = ((n + 1)/n)λ,

1 − ((n − 1)/nλ) ≤ x ≤ 1 − ((n − 1)/2nλ), and bn(0, x) = 0 otherwise.

First, observe that B̄f
n(0, 1/µ) = (n2 − 1)/2n2 < 1/2 for all n ≥ 1. Second,

observe that we have 0 ≤ B̄f
n(0, y) − B̄n(0, y) ≤ 1/n for all y and n. Hence,

B̄n(0, 1/µ) ≤ B̄f
n(0, 1/µ) < 1/2 for all n ≥ 1. Nevertheless, B̄n(0, ·) → B(0, ·)

as n → ∞. On the other hand, consider a deterministic arrival process with
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rate nλ. Then Bn(1/2λ) = Bn(0) + Nn(1/2λ) = ⌊(n2 − 1)/2n2⌋ + ⌊(n −
1)/2⌋ = n − 1 < n (note there is no departure in [1, 1/2λ]). Also, Sn(t) −
Sn(1/2λ) = ⌊(n + 1)λ (t − 1/2λ)⌋ ≥ ⌊nλ (t − 1/2λ)⌋ = Nn(t) − Nn(1/2λ)
for (n − 1)/2nλ ≤ t ≤ (n − 1)/nλ. Therefore, the system is underloaded
for 0 ≤ t ≤ 1/λ. Hence, Tn = T ∗

n = 1/λ for all n ≥ 1, in contrast to
t∗ = T ∗ = 1/2λ.

APPENDIX I: A TWO-POINT SERVICE DISTRIBUTION

We next generalize the PSS result of the G/D/s + GI fluid queue dis-
cussed in §8 to the G/GI/s+GI model with a special two-point service-time
distribution, in particular, to a two-point distribution where one of the two
points is 0. We also give an analog of Corollary 8.3 where analytic expres-
sions for the PSS functions are available when the system is initially empty
and the abandonment distribution is exponential. The proofs are similar to
the proofs of Theorem 8.1 and Corollary 8.3.

Corollary I.1. (PSS for the overloaded G/D/s+GI fluid model) Con-
sider the stationary G/GI/s +GI fluid model with parameter (λ, µ, p, s, F )
where ρ ≡ λ/sµ > 1 and the service distribution G is a two-point distribu-
tion with P (X = 1/pµ) = p and P (X = 0) = 1 − p for 0 < p ≤ 1 such
that the mean service time is 1/µ. Suppose that Assumption 12 is satisfied.
If b(T ∗, x) = sµ, 0 ≤ x ≤ 1/µ, then there exists a constant function P∗ such
that

(I.1) ‖Ψ(n)
τ (P) − P∗‖ → 0 as n → ∞.

for all τ > 0. Otherwise, the fluid performance P is asymptotically periodic
with period 1/µ, i.e., there exists a periodic function P∗ with period 1/µ
such that (I.1) holds for τ ≡ 1/µ.

Corollary I.2. (explicit expressions for the PSS with the special two-
point service times) Consider the G/D/s + M fluid queue with two-point
service distribution given in Corollary I.1. If ρ ≡ λ/sµ > 1 and the system
is initially empty, then the system is overloaded in the PSS with performance
functions given in two parts ([0, 1/pµ− s/pλ] and (1/pµ− s/pλ, 1/pµ]) of a
cycle 0 ≤ t ≤ 1/pµ:
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(a) In the first part of the PSS cycle, (i.e., for 0 ≤ t ≤ 1/pµ − s/pλ),

w(t) = t+ w̃,

Q(t) =
λ

θ

[

1−
(

1− e−θ s/pλ

1− e−θ/pµ

)

e−θ t

]

,

b(t, x) = λ · 1{t≤x≤t+s/pλ},

σ(t) = b(t, 0) = 0,

where

w̃ =
1

θ
log

(

1− e−θ/pµ

1− e−θ s/pλ

)

≥ 0,(I.2)

(b) In the second part of the PSS cycle, (i.e., for 1/pµ−s/pλ < t ≤ 1/pµ),

w(t) = −1

θ
log

(

1 +

(

1− eθ(1/µ−s/λ)/p

1− e−θ/pµ

)

· e−θ t

)

,

Q(t) =
λ

θ

(

eθ(1/µ−s/λ)/p − 1

1− e−θ/pµ

)

e−θ t

b(t, x) = λ · 1{0≤x≤t−1/pµ+s/pλ}∪{t≤x≤1/pµ},

σ(t) = b(t, 0) = λ.

Moreover, for 0 ≤ t ≤ 1/pµ,

B(t) = s, q(t, x) = λ · 1{0≤x≤w(t)}, α(t) = θ Q(t).

Proof. In a cycle [0, 1/pλ], w(t) = w̃+t for 0 ≤ t ≤ 1/pµ−s/pλ and w(t)
solves ODE w′(t) = 1− 1/e−θw(t) with w(1/pµ − s/pλ) = w̃ + 1/pµ − s/pλ
for 1/pµ−s/pλ ≤ t ≤ 1/pλ, where w̃ ≥ 0 is both the starting and the ending
value of w(t) in each cycle. Similar to the proof of Corollary 8.3, solving this
ODE in [1/pµ − s/pλ, 1/pµ] and set w(1/pµ) = w̃ yields (I.2).

Remark I.1. Theorem 8.1 and Corollary 8.3 in the main paper arise as
special cases of Corollary I.1 and I.2 when p = 1.

We next compare the fluid performance with simulation estimations of
large-scale queueing systems. We consider the overloaded (ρ > 1) G/GI/s+
M example with two-point service distribution such that P (X = 1/pµ) = p
and P (X = 0) = 1 − p. Let the system be initially empty. We plot the
system performance (Q(t), B(t), w(t), b(t, 0), α(t), σ(t)) in Figure 14. We
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Fig 14. Performance of the fluid model with the special two-point service distribution and
s = µ = 1, p = 1/2, λ = θ = 2.

let λ = θ = 2, p = 1/2 and s = µ = 1. We have w̃ ≈ 0.0635 when θ = 2 from
(I.2), which can be verified by Figure 14.

In Figure 15 we compare our fluid approximation (the dashed red lines)
with simulation estimates (the solid blue lines) of a large-scale G/GI/s+M
queueing system that has arrival rate nλ and n s servers. We plot (i) the
elapsed waiting time of the customer at the head of the line Wn(t), (ii) the
scaled number of customers waiting in queue Q̄n(t) ≡ Qn(t)/n and (iii)
the scaled number of customers in service B̄n(t) ≡ Bn(t)/n. We plot single
sample paths of these processes with n = 1000. Figure 15 shows that the
fluid approximation is effective.

However, from simulation experiments of corresponding queueing mod-
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Fig 15. A comparison of the fluid model with the special two-point service times with a
simulation of a corresponding large-scale queue system.

els, we conclude that the fluid model with other kinds of two-point service
distributions must not converge to a PSS.

To illustrate, in Figure 16, we plot single sample paths of processesWn and
Qn of four two-point distributions: (a) P (S = 1) = 1 (red dashed curves), (b)
P (S = 0) = P (S = 2) = 1/2 (blue dashed curves), (c) P (S = 0.2) = P (S =
1.8) = 1/2 (yellow solid curves) and (d) P (S = 0.8) = P (S = 1.2) = 1/2
(black solid curves), with n = 1000 in interval [0, 16]. The traffic intensity is
ρ = λ/nµ = 2 here. Figure 16 shows that the periodic structure is preserved
only for case (a) and (b), where he have established periodic behavior of the
associated fluid model. Cases (c) and (d) involve two-point distributions, but
the periodic structure fades away very quickly and the fluctuations decrease
substantially. Thus we conclude that the corresponding fluid models must
not have asymptotically periodic structure.
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Fig 16. A comparison of simulations of large-scale queue systems with two-point service-
times distributions, all having mean 1.

APPENDIX J: NEARLY DETERMINISTIC SERVICE TIMES

It is natural to wonder to what extent our results for deterministic service
times apply to other service-time distributions that are nearly determinis-
tic, but not fully deterministic. We investigated this question by conducting
simulation experiments of corresponding queueing systems with nearly de-
terministic service times.

For the experiments reported here, as before, we consider the M/GI/n+
M queueing model with λ = 2, µ = 1 and θ = 2, but now we let the service-
time distribution be nearly deterministic. For all examples, E[S] = 1/µ = 1
and we make V ar[S] small, where S is a generic service time.

In our examples now we consider two kinds of service-time distributions,
both of which have small variance: (i) Erlang-N and (ii) a two-point distri-
bution, taking the values 1/µ ± δ with probability 1/2. For the Erlang-N
service times, the variance (and C2) is V ar(S) = 1/N . We plot single sample
paths of process Wn with N = 100 and N = 5000 in Figure 17, with smaller
n (n = 100) and larger T (T = 100). The periodic behavior is preserved for
the case N = 5000 but not for N = 100.

For the two-point distribution at 1/µ±δ with 1/2 probability, the variance
V ar(S) = δ2. We plot single sample path of process Wn with δ = 0.1 and
δ = 0.01 in Figure 18, with n = 100, T = 100. Again, the periodic behavior
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Fig 17. Simulation estimates of the head-of-line waiting times Wn in an G/EN/s + M
many-server queue with Erlang-N service, with λ = 2, s = µ = 1, θ = 2, ρ = 2, n = 100,
T = 100 in two cases: (i) N = 100; (ii) N = 5000.

is preserved for the case δ = 0.01 but not for δ = 0.1.
From these experiments, we conclude, first, that over suitably short fi-

nite intervals, both the large-scale many-server queueing systems and the
approximating fluid models with nearly deterministic service-time distribu-
tions should behave much like the fluid model with deterministic service
times and, second, that the asymptotic behavior of the approximating fluid
model will not be periodic. We conclude that a small amount of variability
in the service time distribution will eventually break up the periodic behav-
ior (provided of course we do not have the special two-point distribution
considered in the previous section).

More generally, we conclude that the quality of the approximation pro-
vided by the fluid model withD service over finite time intervals [0, T ] should
improve as the service-time distribution becomes more nearly deterministic,
e.g., as the variance V ar(S) decreases. We conjecture that again the order of
the limits cannot be interchanged: If we first let V ar(S) ↓ 0, e.g., by letting
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Fig 18. Simulation estimates of the head-of-line waiting times Wn in a G/TP/s + M
many-server queue with a two-point (TP) service-time distribution taking values 1/µ ± δ
with 0.5 probability, with λ = 2, s = µ = 1, θ = 2, ρ = 2, n = 100, T = 100 in two cases:
(i) δ = 0.1; (ii) δ = 0.01.

N ↑ ∞ in the EN distribution, and then afterwards let t → ∞, then we
have the asymptotic PSS established in this paper. On the other hand, if
we first let T → ∞ for any fixed N in the Erlang EN distribution, and then
let N ↑ ∞, then our simulation experiments lead us to conjecture that the
performance converges to the unique steady state of the fluid model.

Even more generally, we conclude that when s system tends to behave
in a deterministic or nearly deterministic way, that the transient behavior
over suitably short time intervals may not be well captured by long-run
stationary or steady-state descriptions.
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