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a b s t r a c t

A many-server heavy-traffic functional weak law of large numbers is established for the Gt/GI/st + GI
queueing model, which has customer abandonment (the +GI), time-varying arrival rate and staffing (the
subscript t) and non-exponential service and patience distributions (the two GI ’s). This limit provides
support for a previously proposeddeterministic fluid approximation, and extends a previously established
limit for the special case of exponential service times.
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1. Introduction

This paper is a sequel to our two previous papers [9,10]. In [9]
we introduced and analyzed a deterministic fluidmodel that serves
as an approximation for the many-server Gt/GI/st + GI queueing
model, which has customer abandonment (the +GI), time-varying
arrival rate and staffing (the subscript t), unlimited waiting space,
the first-come first-served service discipline and non-exponential
service and patience distributions (the two GI ’s).

The fluid model in [9] is a time-varying extension of the
G/GI/s + GI fluid model introduced in [19]. In [9], the system was
assumed to alternate between overloaded (OL) and underloaded
(UL) intervals. In order to achieve greater mathematical tractabil-
ity, the systemwas assumed to be critically loaded only at isolated
switching points between the OL and UL intervals. Time-varying
arrival rates commonly occur in service systems [4]. The alternat-
ing behavior commonly occurs when it is difficult to dynamically
adjust the staffing level in response to changes in demand. If the
staffing cannot be changed rapidly enough, then systemmanagers
must choose fixed or nearly fixed staffing levels that respond to
several levels of demand over a time interval. Then it may not be
cost-effective to staff at a consistently high level in order to avoid
overloading at any time. Then the fluid model may capture the es-
sential performance.
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Extensive simulation experiments with numerical examples,
such as the one reported in Section 2 of [9], confirm that the
performance functions of the deterministic Gt/GI/st + GI fluid
model in [9] can readily be computed and that they coincide
with the many-server heavy-traffic limit of the corresponding
sequence of scaled stochastic processes in the Gt/GI/st + GI
stochastic queueing model. Our more recent paper [10] provides
mathematical justification by establishing many-server heavy-
traffic limits. Those limits provide mathematical support for both
the previous fluid approximation and a refined Gaussian process
approximation. However, those results were restricted to the
special case of exponential (M) service times. The purpose of the
present paper is to complete the mathematical justification of the
fluidmodel by extending the fluid limit portion of those asymptotic
results to the case of GI service.

As in [10], for the results here we draw on associated limits
for two-parameter stochastic processes arising in infinite-server
models in [14], which in turn draws on [8]. Our limits for many-
server queues with time varying arrival rate and staffing extend
earlier limits for the Markovian Mt/M/st + M model in [12] and
a discrete-time limit for the Gt/GI/s + GI model in [19]. Related
limits for G/GI/s + GI models are contained in [5–7,15,16,21] and
references therein.

Here is how this paper is organized. In Section 2 we state
the main new result and in Section 3 we outline the proof. In
Section 4 we state and prove Theorem 2, establishing a FWLLN for
the two-parameter process representing the number of customers
that were initially in service at time 0 and remain in service at
time t , and have been so far a duration at most y (including a
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period prior to time 0), as a function of t and y. Theorem 2 is
an important complement to existing results for infinite-server
models, extending [8,14], where it is assumed that the remaining
service times of customers initially in service are i.i.d.. In Sections 5
and 6, respectively, we provide extra details about the proof for UL
and OL intervals. Finally, in Section 7 we provide a longer proof of
one lemma used in the proof of Theorem 2.

2. The new FWLLN

We consider a sequence of Gt/GI/st + GI queueing models
indexed by n. Model n has a general arrival process with time-
varying arrival rate λn(t) ≡ nλ(t) (with ≡ denoting equality
by definition), i.i.d. service times with cumulative distribution
function (cdf) G, a time-varying number of servers sn(t) ≡ ⌈ns(t)⌉
(the least integer above ns(t)) and customer abandonment from
queue, where the patience times of successive customers to enter
the queue are i.i.d. with general cdf F . The two cdf’s G and F are
fixed independent ofn, and differentiable,with positive probability
density functions (pdf’s) g and f . Our scaling of the fixed functions
λ and s induces the familiar many-server heavy-traffic scaling;
the functions λ and s are the arrival rate and staffing level in the
associated fluid model, assumed to be bounded away from zero.
The arrival process, service times and patience times are mutually
independent. New arrivals enter service immediately if there is a
free server; otherwise they join the queue, from which they enter
service in order of arrival, if they do not first abandon.

Let Bn(t, y) (Qn(t, y)) denote the number of customers in service
(queue) at time t that have been so for time at most y. Let Bn(t) ≡

Bn(t, ∞) (Qn(t) ≡ Qn(t, ∞)), the total number of customers in
service (queue). Let Xn(t) ≡ Bn(t) + Qn(t), the total number of
customers in the system. Let Wn(t) be the head-of-line waiting
time (HWT), i.e., the elapsed waiting time for the customer at the
head of the line at time t (the customer who has been waiting the
longest). Let Vn(t) be the potential waiting time (PWT) at time t ,
i.e., the virtualwaiting time at time t (thewaiting time if therewere
a new arrival at time t) assuming that that customer never would
abandon (but without actually altering any arrival’s abandonment
behavior). Let An(t) be the number of abandonments and let Dn(t)
be the number of departures (service completions) in the interval
[0, t].

Let the associated FWLLN-scaled or fluid-scaled processes be

B̄n(t, y) ≡ n−1Bn(t, y), Q̄n(t, y) ≡ n−1Qn(t, y),

X̄n(t) ≡ n−1Xn(t), D̄n(t) ≡ n−1Dn(t),

Ān(t) ≡ n−1An(t).
(1)

The waiting timesWn(t) and Vn(t) are not scaled in the fluid limit.
The same notation without the subscript n and without the bar is
used to denote the deterministic limits.

The limits are established in the function space D ≡ D([0, T ],
R) with the usual Skorohod J1 topology and metric dJ1 [2,17,20]
and products of that space with the product topology. Since all
limits will be continuous functions, convergence is equivalent
to uniform convergence over the compact time interval. For the
two-parameter processes, the limits hold in the space DD ≡ D
([0, T ], D([0, T ], R)) of D-valued functions. Since the space (D, J1)
is a complete separable metric space, this space of D-valued
functions falls within Skorohod’s [17] original framework. See
[14,18] for additional details.

Wemake all assumptions in [9,10], allowing GI service with as-
sumptions in [9] instead of requiring the exponential (M) service
as in [10]; see [9,10] for full details. First, Assumption 7 of [9] stipu-
lates that the fluid model has only finitely many switches between
OL andUL intervals in any finite time interval. Sufficient conditions
are given in [11]. The system is assumed to start in a UL interval.

Moreover, the staffing function is assumed to be feasible for the
limiting fluid model. (No fluid in service is forced out by staffing
reductions. In Section 9 of [9] we give an algorithm to find themin-
imum feasible staffing function greater than or equal to any given
one.) FWLLN’s are assumed to hold for the arrival counting pro-
cess, with deterministic limit Λ(t) ≡

 t
0 λ(u) du, and for the initial

content in service: B̄n(0, ·) ⇒ B(0, ·) in D. Assumption 2 of [9] re-
quires that the functions s,Λ, G, F and B(0, ·) be differentiablewith
piecewise-continuous derivatives ṡ, λ, g , f and b(0, ·) in D.

Assumption 8 of [9] requires a bound on the tail of the initial
fluid density in service with respect to the service time pdf:
τ↑(b, g, T ) < ∞ for each T > 0, where

τ↑(b, g, T ) ≡ sup
0≤s≤T

τ(b, g, s),

τ (b, g, s) ≡


∞

0

b(0, x)g(s + x)
Gc(x)

dx (2)

with Gc(x) ≡ 1 − G(x) > 0 and b(t, x) the fluid content density in
service at time t that has been in service for a duration x.

In [9] we gave several convenient sufficient conditions to have
τ(b, g, T ) < ∞ for each T > 0. One is B(0) − B(0, y↑) = 0 for
some y↑ > 0.

Assumption 1 (Bound On Time Initial Content Has Been in Ser-
vice). There exist y↑ > 0 such that Bn(0) − Bn(0, y↑) = 0 for all
n ≥ 1. Moreover, there exists x↑ such that b(0, x) > 0, 0 < x < x↑

and b(0, x) = 0, x > x↑.

The first part of Assumption 1 holds if the systems start empty
some time in the finite past.

Theorem 1 (FWLLN). If, in addition to the assumptions of [9,10],
Assumption 1 holds, then the FWLLN established in [10] for the
Gt/M/st +GI model holds for the corresponding Gt/GI/st +GI model,
i.e.,

(X̄n, D̄n, Q̄n, B̄n, Ān,Wn, Vn) ⇒ (X,D,Q , B, A,W , V )

as n → ∞ (3)

in D2
× D2

D × D3, where the converging processes are defined
in (1) and the limit (X,D,Q , B, A,W , V ) is the vector of continuous
deterministic functions defined and characterized in [9], having
Q (t) ≥ 0, X(t) = Q (t) + s(t) and B(t) = s(t) for all t during
each OL interval and Q (t) = 0, X(t) = B(t) and B(t) ≤ s(t) for all t
during each UL interval.

3. Outline of the proof

We follow [10] quite closely. As before, we establish the limit
recursively, considering each successive UL and OL interval in turn,
with these intervals being determined by the fluid model. The
values of Bn(t, y) and B(t, y) at the final time t of each interval
serve as the initial values at the beginning of the next interval.
We assume that we start in a UL interval. All intervals after the
first necessarily begin critically loaded. In the neighborhood of
each switching point, the number of customers in the system can
oscillate above and below the staffing level. It is necessary to show
that the impact of the critical loading at the switching points is
asymptotically negligible, but that is already done in Sections 6.1
and 8 of [10]; the same reasoning applies here. In [10], it was
shown that the limit in the FCLT is affected by the switching (the
difference being expressed via the two processes X̂ and X̂∗), but not
the FWLLN. The FWLLN is unaffected here as well.

The result for UL intervals is relatively elementary, because
we can apply the two-parameter heavy-traffic limits for infinite-
server models in [14] together with a new two-parameter limit for
the remaining fluid thatwas in the system initially at the beginning
of the interval; see Section 4.
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As in the previous twopapers [9,10], the analysis during eachOL
interval depends on a careful analysis of the flow of customers or
fluid into service. For GI service, the fluid model involves a fixed
point equation for, b(t, 0), the rate fluid enters service, (18) in
Section 6.2 of [9], namely,

b(t, 0) = a(t) +

 t

0
b(t − x, 0)g(x) dx,

a(t) ≡ ṡ(t) + τ(b, g, t), (4)

for τ(b, g, t) in (2), with ṡ(t) being the derivative of s.
Just as in [10], for each OL interval, we use the compactness

approach to establish our FWLLN; see Section 11.6 of [20]. We
prove that the sequence of FWLLN-scaled stochastic processes
{B̄n(t, 0)} is C-tight in D; see Theorem 11.6.3 of [20]. That implies
that every subsequence has a further converging subsequencewith
a continuous limit. We then prove convergence by showing that
all convergent subsequences have the same limit. The critical step
is to show that, asymptotically, the flow into service satisfies the
fixed point equation (4), which is shown to have a unique solution
in Theorem 2 of [9] by virtue of the Banach contraction fixed
point theorem. That theorem implies that all limits of convergent
subsequences must be the same, and thus coincide with the fluid
model in [9].

Since the system is overloaded, the flow into service is
determined by the creation of newly available capacity through
departures and changes in the staffing level. It is easy to see that
the sequence of scaled departure processes {D̄n} is C-tight in D.
From the C-tightness of the sequence of departure processes we
easily obtain C-tightness for the associated sequence {B̄n(t, 0)}.
We next apply the limit for the sequence of processes specifying
the fluid content in service at time 0 that remains in service later
from Section 4. We then apply [14] to obtain a limit along the
convergent subsequence of the scaled process recording the new
customers to enter service.With all those results, we can show that
the limits of these convergent subsequences must satisfy the fixed
point equation (4).

Once a limit has been obtained for the process describing the
flow of customers into service, we obtain associated limits for
the queue-length and waiting-time processes exactly as in our
previous paper [10]; nothing new is required for those limits.

4. A fluid limit for the customers initially in service

We consider a single UL or OL interval, which we take to begin
at time 0, with the initial number of customers that have been in
service for a duration at most y being Bn(0, y), y ≥ 0. Let Bo

n(t, y)
be the number of customers in service at time t that have been in
service for a duration of at most y, from among those in service
at time 0. Hence, Bo

n(0, y) = Bn(0, y). Let the customers initially in
service be ordered according to their ages in service. Let τn,i denote
the length of time customer i has been in service at time 0 inmodel
n, so that 0 ≤ τn,1 ≤ τn,2 ≤ · · ·.With that convention,we canwrite

Bo
n(t, y) =

Bn(0,y−t)
i=1

1{ηi(τn,i) ≥ t}, (5)

where, conditional on the sequence {τn,i: i ≥ 1}, the sequence
{ηi(τn,i): i ≥ 1} is a sequence of independent random variables,
with

P(ηi(x) > t) ≡ Hc
x (t) ≡

Gc(t + x)
Gc(x)

, x ≥ 0, t ≥ 0, (6)

where G is the service-time cdf with Gc(x) ≡ 1−G(x) > 0 for all x.

Theorem 2 (FWLLN for Old Service Content). During the OL or UL
interval starting at time 0, if

B̄n(0, y) ⇒ B(0, y)

=

 y

0
b(0, x) dx in D as n → ∞, (7)

and Hc
x is defined in (6), then

B̄o
n(t, y) ⇒ Bo(t, y)

≡

 (y−t)+

0
b(0, x)Hc

x (t) dx in DD as n → ∞. (8)

Proof. Add and subtract Hc
τn,i

(t) ≡ Gc(t + τn,i)/Gc(τn,i) inside the
sum (5):

B̄o
n(t, y) = n−1

Bn(0,y−t)
i=1


1{ηi(τn,i) ≥ t} − Hc

τn,i
(t)


+ n−1

Bn(0,y−t)
i=1

Hc
τn,i

(t)

= n−1
Bn(0,y−t)

i=1


1{ηi(τn,i) ≥ t} − Hc

τn,i
(t)


+

 y−t

0
Hc

x (t) dB̄n(0, x). (9)

The first term in (9). We consider the two terms on the right
in (9) in turn, starting with the first, denoted by B̄o

n,1. Conditional
on any possible realization of the sequence {τn,i: i ≥ 1}, for each
fixed t and y, B̄o

n,1(t, y) is a scaled random sum of independent
mean-zero two-point random variables, each taking values within
the interval [−1, 1]. Together with condition (7), that implies the
convergence B̄o

n,1(t, y) ⇒ 0 for each fixed t and y, by virtue of
the law of large numbers for non-identically distributed triangular
arrays, e.g., Theorem 1 on p. 316 of [3]. We show that convergence
is uniform in the following lemma, proved in Section 7. Let ∥ · ∥ be
the uniform norm.

Lemma 1. The convergence of the first term in (9) is uniform in t and
y; i.e., ∥B̄o

n,1(·, ·)∥ ⇒ 0.
The second term. Now consider the second term on the right

in (9), denoted by B̄o
n,2. Observe that Hc

x (t) ≡ Gc(t + x)/Gc(x) is
uniformly continuous in t and x over the relevant finite intervals
0 ≤ t ≤ T and 0 ≤ x ≤ y↑, because we have assumed that
Gc is continuous and Gc(x) > 0 for all x. Hence, for any ϵ > 0,
there exists k and 0 ≡ t0 < t1 < · · · < tk ≡ T , such that
|Hc

x (t) − Hc
x (tk)| < ϵ for tk−1 ≤ t ≤ tk and all x, 0 ≤ x ≤ T + y↑.

Hence it suffices to focus on only finitely many ti.
Notice that B̄n(0, y) is nondecreasing in y, and so can be

regarded as a random cdf associated with a randommeasure. Thus
the integral B̄o

n,2(t, y) for each fixed t and y is a continuous map, as
in (2.1) on p. 77 of [20].We thus can apply the continuousmapping
theorem to establish the convergence B̄o

n,2(t, y) ⇒ B(t, y) for
each fixed t and y. However, since the integrand is nonnegative,
B̄o
n,2(t, ·) is also a finite random measure. Since the limit B(t, ·)

is continuous, the convergence of cdf’s is uniform in y. Moreover,
continuity extends directly to the k time points ti above. Hence, we
can apply the continuous mapping theorem to get {B̄o

n,2(ti, ·): 1 ≤

i ≤ k} ⇒ {Bo(ti, ·): 1 ≤ i ≤ k} in Dk as n → ∞, for Bo(ti, y) in
(8). Hence, with the approximation in the first paragraph, we have
deduced that ∥B̄o

n,2 − Bo
∥ ⇒ 0, so that we can ignore the second

term, and that completes the proof. �

5. The UL intervals

As indicated in Section 3, we treat the successive UL and
OL intervals recursively, starting with an initial UL interval. The
switching times are defined by the limiting fluid model. The limit
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for the scaled content in service at the final time of each interval
provides the limit for the initial scaled content in service at the
beginning of the next interval. As in [10], without loss of generality,
it suffices to focus on each interval with the initial time set at 0.

With Theorem 2, the limiting behavior during each UL interval
is elementary. We can treat the new input separately from the old
content. The new content during a UL interval can be treated as in
the associated Gt/GI/∞ infinite-server model, applying the two-
parameter limit in [14]. The new content is then independent of
the old content. The fluid limit is then the sum of the two. We
thus obtain a FWLLN for the sequence of processes {B̄n: n ≥ 1} ≡

{{n−1Bn(t, y): t ≥ 0, y ≥ 0}: n ≥ 1} in the function space DD. The
limit is the fluid model during a UL interval, exactly as described
in [9]. Since, there are no customers waiting during a UL interval,
there are no other processes to consider.

A complication is that the limiting fluid model starts critically
loaded at time 0 for all intervals considered except perhaps the
initial interval, and ends critically loaded at the interval endpoint
when the system shifts to OL. As explained in Section 3 of [10],
for each UL interval [τ1, τ2], we require that the total fluid content
in the system, X(t), satisfy X(t) < s(t) for all t such that τ1 <
t < τ2. That implies, for each ϵ > 0 with 2ϵ < τ2 − τ1, that the
queueing system must eventually be underloaded in the interval
[τ1+ϵ, τ2−ϵ]. However, the queueing systems can be temporarily
overloaded in the neighborhoods of the endpoints. Nevertheless,
that does not alter the FWLLN. The supporting argument given in
Sections 6.1 and 8 of [10] applies here as well.

6. The OL intervals

The OL intervals are more complicated for two reasons. First,
there is a queue, so that there iswaiting and abandonment. Second,
even to only describe the content in service, the fluid model
requires solving the fixed point equation (4) to determine the rate
fluid enters service. As indicated in Section 3, the queue, waiting
and abandonment can be treated just as in [10], once we have
established the convergence of the LLN-scaled processes that count
the number of customers entering service. (The only difference is
that b(t, 0) = ṡ(t) + µ s(t) for M service, whereas b(t, 0) solves
the fixed point Eq. (4) for GI service.) Thus, for the FWLLN with
GI service, we only need to establish a limit for the scaled two-
parameter process describing the number of customers in service
with specified durations. We outlined the proof in Section 3; we
now provide the details.

The entering-service and departure processes. The sequence
of scaled departure processes {D̄n} is C-tight in D, using the
characterization in Theorem 11.6.3 of [20], because it has a
time-dependent and state-dependent rate at any time that is
bounded above by a constant, the product of the suprema of the
staffing level and the service hazard rates over finite intervals,
allowing stochastic bounds using a constant rate Poisson process.
The associated LLN-scaled number of customers to have entered
service in the interval [0, t], Ēn(t) ≡ B̄n(t, t), satisfies

Ēn(t) = n−1(sn(t) − sn(0)) + D̄n(t) + o(1) as n → ∞,

= s(t) − s(0) + D̄n(t) + o(1) as n → ∞,

where the o(1) term on the first line accounts for the asymptoti-
cally negligible contribution contributed by the consequence of the
systembeing only critically loaded at time 0; see Section 6.1 of [10].
As an immediate consequence of the C-tightness of {D̄n} and the
smoothness assumption about the deterministic staffing function,
we see that the sequence of processes {Ēn} is C-tight in D as well.

Now we express Ēn(t) in terms of the scaled departure process
of old customers, D̄o

n(t), and the scaled departure process of new
customers to arrive in the interval [0, t], D̄ν

n(t). In particular, we
write

Ēn(t) = n−1(sn(t) − sn(0)) + D̄o
n(t) + D̄ν

n(t) + o(1)
as n → ∞. (10)

First, the departures of old customers can be represented as
D̄o
n(t) = B̄o

n(0) − B̄o
n(t). Thus, from Section 4, we can deduce that

D̄o
n(t) ⇒ Bo(0) − Bo(t) in D.
Second, we see that the departure process of new customers

has the same mathematical form as the departure process from an
infinite-server queue with arrival process En(t) and service times
distributed as G; i.e.,

D̄ν
n(t) ≡ n−1

En(t)
i=1

1(A(n)
i + Si ≤ t),

where A(n)
1 , A(n)

2 , . . . are arrival times associated with counting
process En, S1, S2, . . . are i.i.d. service times, each having cdf G.

Since the sequence of processes {Ēn} is C-tight in D, every
subsequence has a convergent subsequence. So consider some
convergent subsequence. Without introducing special notation for
subsequences, suppose that Ēn ⇒ E in D. By Theorem 3.1 of [14],
D̄ν
n(t) ⇒ Dν(t) in D, where

Dν(t) =

 t

0
G(t − s)dE(s), t ≥ 0. (11)

From the C-tightness of the sequence {Ēn}, we deduce that
each limit function of the convergent subsequence, E, must be
Lipschitz continuous as well as nondecreasing, which implies that
E is differentiable almost everywhere with respect to Lebesgue
measure. Hence, the limit E of the converging subsequence can be
represented as E(t) =

 t
0 e(s) ds for e(s) = b(s, 0).

Combining the results above, we obtain convergence to an
integral equation, i.e.,

Ēn(t) ⇒ E(t) = Bo(0) − Bo(t) +

 t

0
G(t − s)e(s)ds

as n → ∞, (12)
where the convergence holds by the continuous mapping theorem
using the function of summation. As a consequence, by differen-
tiating (12), we see that the derivative of the limit of every con-
vergent subsequence of {Ēn} must satisfy the fixed point equation
(4). By Theorem 2 of [9], this equation has a unique solution. Hence
all convergent subsequences must have the same limit. Hence we
must have full convergence to the fluid function in [9].

The two-parameter service content process. We next establish
the convergence of the two-parameter function B̄n(t, y). We divide
into two terms: (i) old customers B̄o

n(t, y) and (ii) new customers
B̄ν
n(t, y). Since the convergence of B̄o

n(t, y) is already obtained
in Theorem 2, it only remains to treat B̄ν

n(t, y). By (12) and
Theorem 3.1 of [14],

B̄ν
n(t, y) =

1
n

En(t)
i=En(t−y)+1

1(A(n)
i + Si > t)

⇒

 t

t−y
Gc(t − s)dE(s) ≡ Bν(t, y)

in DD. Therefore,
B̄n(t, y) = B̄o

n(t, y) + B̄ν
n(t, y) ⇒ Bo(t, y) + Bν(t, y) ≡ B(t, y)

=

 (y−t)+

0
b(0, x)Hc

x (t) dx

+

 t

t−y
Gc(t − s)dE(s) · 1(t > y).

The two-parameter queue content process. As stated before, the
FWLLN limit for the scaled queue-length process Q̄n(t, y) follows
by the argument given in [10]. However, that proof was stated
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only for the one-parameter process Q̄n(t) ≡ Q̄n(t, ∞). Since
the reasoning is the same for the two-parameter FWLLN, and
straightforward given the two-parameter FWLLN in [14], we omit
the lengthy details.

7. Proof of Lemma 1

As a first step, we will apply the martingale FCLT in Section 7.1
of [2] to establish the convergence

X̂o
n (t, x) ≡

1
√
n

⌊nx⌋
i=1


1{ηi(τn,i) ≥ t} − Hc

τn,i
(t)


⇒ B(σ 2

t (x)) (13)

in D([0, y↑
], R) for each fixed t , where B is a standard Brownian

motion and {σ 2
t (x): x ≥ 0} is a deterministic variance function, to

be specified below.
To justify (13), it is convenient to work with the point process

Zn(k) ≡ τn,k instead of the counting process Bn(0, y) ≡ min{k ≥

0: τn,k ≤ y}. The scaled versions of these processes are related
asymptotically by the inverse map in Sections 13.6–13.8 of [20].
The inverse process associated with the scaled counting process
{B̄n(0, y): y ≥ 0} is {Z̄n(y): y ≥ 0}, where Z̄n(y) ≡ n−1Zn(⌊ny⌋);
see Lemma 13.6.6 of [20]. To put this properly in the setting of [20],
we can modify all these processes and functions to make them
unbounded above. That can be done by setting B(0, x↑

+ x) ≡

B(0, x↑)+x for x > 0 and similarly for the processes Bn(0, y). Then
convergence of the original processes will follow by restricting to
a finite interval.

Applying the continuous mapping theorem with the inverse
function with (7), we obtain Z̄n(y) ⇒ Z(y) in D, where Z(y) is the
inverse of B(0, y), i.e., B(0, Z(y)) = y for all y. Specifically, we apply
Theorem 13.6.2 of [20], recalling that B(0, ·) is strictly increasing
and continuous over the interval [0, x↑

] by Assumption 1, so
that all the Skorohod topologies reduce to uniform convergence.
Moreover, Z(y) =

 y
0 z(x) dx where z(x) = 1/b(0, Z(x)) by the

inverse function theorem from calculus.
To determine the variance function σ 2

t (x) in (13), we observe
that, conditional on any possible value for the sequence {τn,i:
i ≥ 1},

Var(X̂o
n (t, y)) =

1
n

⌊nx⌋
i=1

Var(ηi(τn,i)) =
1
n

⌊nx⌋
i=1

Hτn,i(t)H
c
τn,i

(t)

=

 x

0
Hu(t)Hc

u(t) dZ̄n(u). (14)

Hence, unconditioning, we obtain

Var(X̂o
n (t, x)) = E

 x

0
Hu(t)Hc

u(t) dZ̄n(u)


⇒

 x

0
Hu(t)Hc

u(t) dZ(u)

=

 x

0
Hu(t)Hc

u(t)z(u) du ≡ σ 2
t (x), (15)

because the integrand is a bounded continuous function. In
particular, we can apply the Skorohod representation theorem
to replace convergence in distribution Z̄n(y) ⇒ Z(y) in D with
convergence w.p.1. Since Z̄n is nonnegative and nondecreasing, the
almost sure convergence Z̄n(y) → Z(y) in D corresponds to the
almost sure convergence of finite measures over each bounded
interval, which implies the limit in (15).

To justify the limit (13) for each fixed t , we first condition on
the sequence {τn,i: i ≥ 1} and then uncondition, as in Section 7.3
of [13]. Hence, we initially place the entire sequence {τn,i} in
the filtration together with the natural filtration of the stochastic

process {X̂o
n (t, x): x ≥ 0}, with t fixed. The martingale FCLT,

Theorem 1.4 (b) in Section 7.1 of [2], applies because, with that
conditioning, the summands are independent boundedmean-zero
random variables. Hence, the variance function {Var(X̂o

n (t, x)): x ≥

0} in (14) is the predictable quadratic variation process of the
martingalewith respect to the specified filtration,which converges
as n → ∞ to σ 2

t (x) in (15). Moreover, the regularity conditions
(1.16) and (1.17) on p. 340 of [2] hold.

However, we make no direct use of the FCLT or the variance in
(15) here. Instead, we apply the FCLT for each fixed t to obtain the
associated FWLLN after scaling further by dividing by

√
n. Since the

limit in the FWLLN is the deterministic function 0e, where e(t) ≡ t ,
t ≥ 0, the FWLLN extends immediately to the joint distributions
for each finite subset of t; see Theorem 11.4.5 of [20]; i.e.,
X̄o
n (t1, ·), . . . , X̄

o
n (tk, ·)


⇒ (0e, . . . , 0e) in Dk as n → ∞,

where X̄o
n (t, x) ≡ n−1/2X̂o

n (t, x) for X̂
o
n (t, x) in (13). It thus remains

to establish tightness of the sequence {X̄o
n (t, ·): t ≥ 0} in DD; see

Section 6.2 of [14].
First observe that X̄o

n (·, x) is the scaled sum of ⌊nx⌋ stochastic
processes, each of which takes values in the interval [−1, 1]. As a
consequence, |X̄o

n (t, x)| ≤ x for all n ≥ 1, t ≥ 0 and x ≥ 0. So the
processes X̄o

n (t, x) are uniformly bounded.
Given the uniform boundedness, we can apply the stopping-

time characterization of tightness in DD in Remark 6.1 of [14]; see
also Condition 1° on p. 176 of [1]. That is, wewill show that, for any
ϵ > 0 and η > 0 and any bounded stopping time τ with respect to
the filtration, that there exists δ > 0 and n0 such that

P

∥X̄o

n (τ + δ, ·) − X̄o
n (τ , ·)∥ > η


< ϵ (16)

for all n ≥ n0.
The desired property (16) follows from the structure of the

summands. Observe that X̄o
n (·, x) is the scaled sum of ⌊nx⌋

stochastic processes, each of which is a uniformly continuous
deterministic function except for a single discontinuity of size 1,
which occurs at a random time. Except for the discontinuities, for
any ϵ > 0, there exists δ > 0 such that the oscillation over
each interval [t, t + δ] is less than ϵ uniformly over t and all
the component sample paths, provided that no discontinuity is
encountered. For tightness, the discontinuities are the critical part.

Fortunately, we control the occurrence of these discontinuities
in the component processes being summed, because the probabili-
ties that discontinuities fall in any interval can be bounded. In par-
ticular, we have

P(t1 ≤ ηx ≤ t2) ≤ g↑
|t2 − t1|/Gc(T + y↑), (17)

uniformly in all x under consideration, where g↑
≡ sup0≤x≤T+y↑

g(x). Thus, for any stopping time, the number of service comple-
tions among these customers initially in the interval [τ , τ + δ] is
bounded above by the sum of y↑n i.i.d random variables with prob-
abilities governed by the bound in (17), which is cδ for a constant
c. The contribution from terms with no arrivals in this interval is
easily seen to be of order O(δ). Hence, δ > 0 can be chosen to
achieve (16). That proves the tightness, and thus the convergence
X̄o
n (·, ·) ⇒ Xo(·, ·) in DD, where Xo(t, y) = 0 for all t , y.
Given the FWLLN for the two-parameter process X̄o

n (t, y), we
treat the random sum itself by applying the continuous mapping
theorem with the composition map, using (7) together with the
FWLLN for X̄o

n (·, ·). In this two-parameter setting we can apply
Theorem 2.4 of [18].
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