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To describe the congestion in large-scale service systems, we introduce and analyze a non-Markovian open network of
many-server fluid queues with customer abandonment, proportional routing, and time-varying model elements. Proportions
of the fluid completing service from each queue are immediately routed to the other queues, with the fluid not routed to
one of the queues being immediately routed out of the network. The fluid queue network serves as an approximation for
the corresponding non-Markovian open network of many-server queues with Markovian routing, where all model elements
may be time varying. We establish the existence of a unique vector of (net) arrival rate functions at each queue and the
associated time-varying performance. In doing so, we provide the basis for an efficient algorithm, even for networks with
many queues.
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1. Introduction
We introduce a new mathematical model intended to help
analyze (and thus manage) the congestion in large-scale
service systems, such as in health-care, judicial, and penal
systems, and both front-office and back-office operations in
business systems; e.g., see Aksin et al. (2007), Yom-Tov
and Mandelbaum (2010), and references therein for discus-
sion of possible applications to customer contact centers
and health care. The model also should have other applica-
tions, because the model is both general and tractable.

The main feature of the model is time-varying arrival
rates that commonly occur in applications, but which make
performance analysis difficult; see Green et al. (2007) for
background. The specific model is an open network of
time-varying many-server fluid queues with proportional
routing. There are m queues, each with its own external
fluid input. In addition, a proportion Pi1 j4t5 of the fluid out-
put from queue i at time t is routed immediately to queue j ,
and a proportion Pi104t5≡ 1−

∑m
j=1 Pi1 j4t5¶ 1 is routed out

of the network (departs having successfully completed all
required service). This framework permits feedback, both
directly and indirectly after one or more transitions to other
queues, as shown in Figure 1 for the case m = 2. Fol-
lowing Massey and Whitt (1993), we denote the model
by 4Gt/Mt/st +GIt5

m/Mt , where the subscript t indicates
time varying. The fluid model is intended to serve as an
approximation for the corresponding many-server queueing
system having m queues, each with a general time-varying
arrival process (the Gt), time-varying Markovian service

(the first Mt), a time-varying (large) number of servers
(the st), and a general time-varying abandonment-time dis-
tribution (the +GIt).

Strong support for the fluid approximation for the
stochastic queueing system can be based on many-
server heavy-traffic limits, as in Garnett et al. (2002),
Mandelbaum et al. (1998), Pang et al. (2007), and Pang
and Whitt (2010), but we do not establish such limits here.
The fluid content is intended to approximate the mean
value of the corresponding stochastic process in the many-
server queueing system. For very large-scale service sys-
tems (with many servers at each queue and high arrival
rates), the stochastic fluctuations about the mean values
tend to be relatively small (essentially because of the law of
large numbers), so that the deterministic fluid values serve
as good direct approximations for the stochastic queue-
ing quantities. The quality of approximations can be veri-
fied by simulation, as we illustrate in §EC.6. An electronic
companion is part of the online version that can be found
at http://or.journal.informs.org/. We also propose a simple
heuristic stochastic refinement to estimate the full distribu-
tion at each time, beyond the mean values, in §8.

Because the model is tractable, we are providing the basis
for creating a performance-analysis tool for large-scale ser-
vice systems (allowing many queues and many servers at
each queue) like the Queueing Network Analyzer (QNA)
described in Whitt (1983); also see Buzacott and Shanthiku-
mar (1992). Algorithms based on performance formulas are
appealing to supplement and complement computer simu-
lation, because the models can be created and solved much
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Figure 1. The open 4Gt/Mt/st + GIt5
2/Mt fluid net-

work.
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more quickly. Thus, they can be applied quickly in “what
if” studies. They also can be efficiently embedded in opti-
mization algorithms to systematically determine design and
control parameters to meet performance objectives.

New methods are required because these large-scale
service systems tend to be characterized by many-server
queues, where a large number of homogeneous servers
work in parallel. For a many-server fluid queue with
time-varying Markovian service rate �4t5, when the system
content is X4t5 and the staffing is s4t5, the total service
completion rate at time t is min 8X4t51 s4t59�4t5. Unlike in
single-server systems, when the many-server system is not
overloaded, the service completion rate is not equal to the
input rate, but is instead proportional to the system content,
cf. Chen and Mandelbaum (1991).

When staffing is adequate in many-server systems, wait-
ing times tend to be much shorter than service times.
With few servers, congestion can be caused by only a few
customers occasionally having exceptionally long service
times. In contrast, congestion in many-server systems tends
to be caused more by the cumulative impact of many cus-
tomers and/or many servers. That cumulative impact often
tends to be realized through a time-varying arrival rate and
a time-varying staffing function.

When staffing is adequate and service times are short,
as in many customer contact centers, it is often possible to
apply stationary models to analyze many-server queueing
models with time-varying arrival rates, using some vari-
ant of the pointwise-stationary approximation, but when
staffing is occasionally inadequate or service times are
longer, then other methods may be needed; see Green et al.
(2007) for a review. To determine appropriate staffing lev-
els and analyze performance in a many-server system with
time-varying arrivals, we can often employ infinite-server
models, as in Massey and Whitt (1993), Nelson and Taaffe
(2004), Feldman et al. (2008), and references therein. How-
ever, the effectiveness of infinite-server models depends
largely on the assumption that ultimately the system will
be adequately staffed.

Many large-scale service systems inevitably experience
periods of significant overloading, in which queues build up
and customers experience significant delays. Indeed, with
significant time variation of arrivals, periods of overloading
often occur when it is difficult to dynamically adjust the
staffing, and it is not cost effective to staff at high levels
at all times. We directly address this feature by consider-
ing systems that experience alternating intervals of overload
and underload. The proposed fluid models are in the spirit
of early work by Newell (1982), but different in detail.

This paper extends our earlier work. First, in Whitt
(2006) we described the steady-state fluid content in a sta-
tionary G/GI/s + GI fluid model. Second, in Liu and
Whitt (2010) we developed an algorithm for describing the
time-dependent behavior of the time-varying Gt/GI/st +

GI model, including the first full description of the tran-
sient behavior of the stationary G/GI/s+GI fluid model.
We make several important contributions here: First, for
the case of exponential service times, we extend the model
from a single fluid queue to a network of fluid queues.
Second, we treat time-varying service and abandonment.
By focusing on Mt service instead of GI service, we are
able to establish the existence of a unique (computable)
performance description for both one fluid queue and the
network generalization without directly assuming that there
are only finitely many switches between overloaded and
underloaded intervals in any finite time interval. These
results are based on monotonicity and Lipschitz continu-
ity properties of the fluid queue model in §5, which are
important in their own right. Finally, we characterize the
steady-state performance of the stationary network of fluid
queues.

This paper is organized as follows: In §2 we intro-
duce the Gt/Mt/st + GIt model of a single fluid queue.
In §3 we show how the overloaded and underloaded times
occur in alternating intervals of positive length, under reg-
ularity conditions, and we introduce a specific piecewise-
polynomial framework for assuring that there are only
finitely many switches in each finite time interval. In §4
we present the performance formulas for one queue. In
§5 we extend the results to general piecewise-continuous
arrival rate functions, thus providing an essential step for
extending the analysis to networks. In §6 we define the
network generalization and establish the existence of a
unique vector of arrival rate functions at each queue and
thus the performance in the network. In §7 we characterize
the steady-state performance in the stationary 4G/GI/s +

GI5m/M fluid queue network. In §8 we propose a heuristic
stochastic refinement. Finally, in §9 we draw conclusions.
In the e-companion we provide (i) some proofs, (ii) some
remarks, and (iii) an illustrative comparison with simula-
tion of a large-scale queueing system.

2. The Gt/Mt/st +GIt Fluid Queue
Fluid is a deterministic divisible quantity that enters the
system from outside. The total fluid input over an interval
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601 t7 is å4t5, where å is an absolutely continuous function
with å4t5 ≡

∫ t

0 �4y5dy, t ¾ 0. Fluid input flows directly
into the service facility if the system is underloaded; oth-
erwise it flows into the queue.

By Mt service, we mean that service is provided at the
service facility at time-varying rate �4t5 per quantum of
fluid in the service facility; i.e., if the total fluid content in
service at time t is B4t5, then the total service completion
rate at time t is

�4t5≡ B4t5�4t51 t ¾ 00 (1)

Let S4t5 be the total amount of fluid to complete service in
the interval 601 t7; then S4t5≡

∫ t

0 �4y5dy0
Fluid waiting in queue may abandon. Specifically, we

assume that a proportion Ft4x5 of any fluid to enter the
queue at time t will abandon by time t + x if it has not
yet entered service, where Ft is an absolutely continuous
cumulative distribution function (cdf) for each t, −�< t <
+�, with

Ft4x5=

∫ x

0
ft4y5dy1 x¾ 01 and

F̄t4x5≡ 1 − Ft4x51 x¾ 00 (2)

Let hFt
4y5≡ ft4y5/F̄t4y5 be the hazard rate associated with

the patience (abandonment) cdf Ft .
Let the staffing function (service capacity) s be an abso-

lutely continuous function with s4t5 ≡
∫ t

0 s
′4y5dy, t ¾ 0.

Because s is allowed to decrease, there is no guarantee that
a staffing function s is feasible; i.e., having the property
that no fluid that has entered service must leave without
completing service. We directly assume that the staffing
function we consider is feasible, but we also indicate how
to detect the first violation and then construct the minimum
feasible staffing function greater than or equal to the given
staffing function; see Theorem 6.

Assumption 1 (Feasible Staffing). The staffing func-
tion s is feasible, allowing all fluid that enters service
to stay in service until service is completed; i.e., when s
decreases, it never forces content out of service.

System performance will be described by a pair of two-
parameter deterministic functions 4B̂1 Q̂5, where B̂4t1 y5 is
the total quantity of fluid in service at time t that has been
so for time at most y, whereas Q̂4t1 y5 is the total quan-
tity of fluid in service at time t that has been so for time
at most y, for t ¾ 0 and y ¾ 0. These functions will be
absolutely continuous in the second parameter, so that

B̂4t1y5≡
∫ y

0
b4t1x5dx and Q̂4t1y5≡

∫ y

0
q4t1x5dx1 (3)

for t ¾ 0 and y ¾ 0. We will be characterizing performance
primarily through the pair of two-parameter fluid content
densities 4b1 q5. Let B4t5≡ B̂4t1�5 and Q4t5≡ Q̂4t1�5 be
the total fluid content in service and in queue, respectively.

Because service is assumed to be Mt , the performance will
primarily depend on b via B. (We will not directly dis-
cuss B̂.)

The system has unlimited waiting room and the FCFS
service discipline. Whenever Q4t5 > 0, we require that
there be no free capacity in service, i.e., B4t5= s4t5. Also,
whenever B4t5 < s4t5, then the queue must be empty. These
constraints are summarized in the following assumption.

Assumption 2 (Fluid Dynamics Constraints, FDCs).
For all t ¾ 0, 4B4t5− s4t55Q4t5= 0 and B4t5¶ s4t5.

Let A4t5 be the total amount of fluid to abandon in the
interval 601 t7; then A4t5 ≡

∫ t

0 �4y5dy, t ¾ 0, where �4t5
is the abandonment rate at time t. Because q4t1 x5 is the
density of fluid in queue at time t that arrived at time t−x,
the abandonment rate at time t is

�4t5≡

∫ �

0
q4t1 y5hFt−y

4y5dy1 t ¾ 01 (4)

where hFt
4y5 is the hazard rate associated with the patience

cdf Ft . (Recall that Ft is defined for t extending into the
past.) Hence,

A4t5=

∫ t

0

(

∫ �

0
q4u1 y5hFu−y

4y5dy1

)

du1 t ¾ 00 (5)

Let E4t5 be the amount of fluid to enter service in 601 t7.
We have E4t5≡

∫ t

0 �4u5du, t ¾ 0, where �4t5≡ b4t105 is
the rate fluid enters service at time t. The rate that fluid
enters service depends on whether the system is under-
loaded or overloaded. If the system is underloaded, then
the external input directly enters service; if the system is
overloaded, then the fluid to enter service is determined by
the rate, �4t5, that service capacity becomes available at
time t. Service capacity becomes available due to service
completion and any change in the staffing function. Hence,
the rate that service becomes available is

�4t5≡ s′4t5+�4t5= s′4t5+B4t5�4t51 t ¾ 01 (6)

so that �4t5 = s′4t5+ s4t5�4t5 if the system is overloaded
at time t.

We will also be interested in waiting-time functions. Let
the boundary waiting time (BWT) w4t5 be the delay expe-
rienced by the quantum of fluid at the head of the queue
at time t, and let the potential waiting time (PWT) v4t5 be
the virtual delay of a quantum of fluid arriving at time t
under the assumption that the quantum has infinite patience.
Informally,

w4t5≡ inf 8x > 02 q4t1 y5= 0 for all y > x90 (7)

A proper definition of q, w, and v is somewhat complicated,
but that has already been done in §5.2 and §5.3 in Liu and
Whitt (2010), to which we refer.

We need to specify the initial conditions. That is done via
the initial fluid densities b401 x5 and q401 x5, x ¾ 0; then
B̂401 y5 and Q̂401 y5 are defined via (??), whereas B405 ≡

B̂401�5 and Q405≡ Q̂401�5, as defined before. Let w405
be defined in terms of q401 ·5 as in (7).
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Assumption 3 (Finite Initial Values). B405 < �,
Q405 <� and w405 <�.

In summary, the basic model data are in the six-tuple
4�1 s1�1F·1 b401 ·51 q401 ·55.

Because the service discipline is FCFS, fluid leaves the
queue to enter service from the right boundary of q4t1 x5.
Because the service is Mt , the proportion of fluid in service
at time t that will still be in service at time t + x is

Ḡt4x5= e−M4t1 t+x5 where M4t1 t + x5≡

∫ t+x

t
�4y5dy1

t ¾ 0 and x¾ 00 (8)

Note that Gt coincides with the time-varying service-time
cdf of a quantum of fluid that enters service at time t. The
cdf Gt has density gt4x5 = �4t + x5Ḡt4x5 and hazard rate
hGt

4x5=�4t + x5, x¾ 0.
Based on the way the queueing system operates, we

assume that q and b satisfy the following two fundamental
evolution equations.

Assumption 4 (Fundamental Evolution Equations).
For t ¾ 0, x¾ 0, and u¾ 0,

q4t + u1x+ u5= q4t1 x5
F̄t−x4x+ u5

F̄t−x4x5
1 0 ¶ x <w4t51 (9)

b4t + u1x+ u5= b4t1 x5
Ḡt−x4x+ u5

Ḡt−x4x5

= b4t1 x5e−M4t1 t+u51 (10)

where M is defined in (8).

We now turn to the regularity conditions we impose on
the model data. We develop a “smooth” model. For that
purpose, let �p be the space of piecewise-continuous real-
valued functions of a real variable, by which we mean that
there are only finitely many discontinuities in each finite
interval, and that left and right limits exist at each discon-
tinuity point, where the whole function is right continu-
ous. Hence, �p ⊂ �, where � is the usual function space
of right-continuous functions with left limits; see Whitt
(2002).

Assumption 5 (Smoothness). s′, �, ft , f·4x5, �, b401 ·5,
q401 ·5 in �p for each x and t.

As a consequence, s1å1Ft1B401 ·51Q401 ·5 are differen-
tiable functions with derivatives in �p for each t; we say
that they are elements of �1

p.
In order to treat the BWT w, we need to impose a reg-

ularity condition on the arrival rate function and the initial
queue density (when the initial queue content is positive,
which never occurs after an underloaded interval). We make
the following assumption.

Assumption 6 (Positive Arrival Rate and Initial
Queue Density). For all t ¾ 0,

�inf4t5≡ inf
0¶u¶t

8�4u59 > 0 and

qinf405≡ inf
0¶u¶w405

8q401 u59 > 0 if w405 > 00

In order to be sure that the PWT function v is finite, we
make two more assumptions.

Assumption 7 (Minimum Staffing Level). There exists
sL such that s4t5¾ sL > 0 for all t ¾ 0.

Assumption 8 (Minimum Service Rate). There exists �L

such that �4t5¾�L > 0 for all t ¾ 0.

Finally, to treat A with the time-varying abandonment
cdf Ft , we first introduce bounds for the time-varying pdf
ft and complementary cdf F̄t . Let

f ↑
≡ sup 8ft4x52 x¾ 01 −�< t ¶ T 9 and

F̄ ↓4x5≡ inf 8F̄t4x52 − �¶ t ¶ T 90 (11)

Assumption 9 (Controlling the Time-Varying Aban-
donment Distribution). f ↑ < � and F̄ ↓4x5 > 0 for all
x > 0, where f ↑ and F̄ ↓4x5 is defined in (11).

In summary, here we have made Assumptions 3.1–3.6 and
5.4–5.7 of Liu and Whitt (2010) (with minor modifications
because of Mt service and GIt abandonment instead of both
being GI). Assumption 3 above combines Assumptions 3.4
and 5.4 there. We show how to relax Assumption 3.7 there
in the next section. We no longer need Assumptions 5.1–5.3
because we do not need to solve the fixed-point equation for
b in Theorem 5.1 of Liu and Whitt (2010). Assumption 9
here is new because of the time-varying abandonment.

3. Underloaded and Overloaded Intervals
In Assumption 3.7 of Liu and Whitt (2010), we directly
assumed that the system alternates between underloaded
intervals and overloaded intervals, with there being only
finitely many switches in any finite interval. In this paper,
we provide conditions under which that assumption can be
guaranteed to hold, and then show how to treat the more
general case as a limit of such systems. This extension
is important to rigorously treat fluid queue networks. This
extension is facilitated by having Mt service.

We initially classify the system state as overloaded or
underloaded at time t as follows. Recall that the rate service
capacity becomes available at time t is �4t5≡ s′4t5+�4t5,
as in (6) above.

Definition 1. The system is overloaded if either
(i) Q4t5 > 0 or (ii) Q4t5 = 0, B4t5 = s4t5, and �4t5 >
�4t5= s′4t5+ s4t5�4t5; the system is underloaded if either
(i) B4t5 < s4t5 or (ii) B4t5 = s4t51Q4t5 = 0, and �4t5 ¶
�4t5= s′4t5+ s4t5�4t5.
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At every time t, the system is thus either overloaded or
underloaded.

We now define the set of switch times. For that purpose,
let O4A5 (U4A5) be the set of overloaded (underloaded)
times t in the subset A of a designated interval 601 T 7. From
Definition 1, U4A5=A−O4A5 for each subset A (the com-
plement relative to A).

Definition 2. The subset S of switch times in 601 T 7 is
the subset of t for which

U444t − �5∨ 01 4t + �5∧ T 55 6= � and

O444t − �5∨ 01 4t + �5∧ T 55 6= � for all � > 00 (12)

To neatly classify the switching times, we further classify
some of the underloaded times.

Definition 3. An underloaded time t is isolated if
(i) either 601 t5 or 4a1 t5 is an overloaded interval and
(ii) either 4t1 T 7 or 4t1 b5 is an overloaded interval.

We now reclassify all isolated underloaded points as
overloaded points. When we reclassify each isolated under-
loaded point, we replace the two connecting overloaded
intervals by the common overloaded interval; e.g., when t
is an isolated underloaded time between overloaded inter-
vals 4a1 t5 and 4t1 b5, we replace the two intervals by the
single interval 4a1 b5. In §EC.1 we show that this procedure
is well defined. In the remainder of this section we present
the key results allowing us to ensure that S is finite. We
present the proofs in §EC.1. Our first structural result is the
following:

Theorem 1 (Partition Into Intervals). After all iso-
lated underloaded times have been reclassified as over-
loaded and all overloaded intervals have been increased as
specified above, the interval 601 T 7 can be partitioned into
at most countably many alternating overloaded and under-
loaded intervals 4of positive length5. The resulting switch
points are the boundary points between overloaded inter-
vals and underloaded intervals.

Our analysis above has shown how to partition the
interval 601 T 7 into alternating overloaded and underloaded
intervals of positive length. Then the switch points are
clearly identified as the boundary points. It is then con-
venient to adopt the convention that all intervals be left
closed and right open (e.g., of the form 6a1 b5), except at
the interval endpoints 0 and T , so that the regime identifi-
cation function r4t5≡ 18O4601 T 7594t5, where 18A9 is the usual
indicator function, is right continuous with left limits. This
convention does not alter the switch points.

We now relate the subset S to the set of discontinuity
points and the zero set of the function

�4t5≡ �4t5− s′4t5− s4t5�4t51 t ¾ 00 (13)

Note that � depends only on the basic model functions �,
s, and �. Also note that � = �−� in the overloaded case
of Definition 1. Let D� be the set of discontinuities of � in
(13) and let Z� ≡ 8t ∈ 601 T 72 �4t5= 09 be the zero set.

Theorem 2 (Relating Switches to Zeros and Discon-
tinuities of �). For any interval 601 T 7, the subsets S,
Z� , and D� are closed subsets with �S�¶ �Z� �+ �D� �− 1.
Moreover, the bound is tight; i.e., there are examples for
which the bound holds as an equality.

We now introduce a convenient subset of functions in
�p to represent our model data �, �, and s′. The class is
sufficiently general that it can represent any function in �p

and, at the same time, it allows us to control the zeros of � ,
so that we know in advance that there are only finitely many
switches between overloaded and underloaded intervals in
any finite interval.

Let Pm1n ≡ PT 1m1n be the space of piecewise-
polynomials on the interval 601 T 7, where 601 T 7 is parti-
tioned into n subintervals, on each of which there is a
polynomial of order at most m. We start with three ele-
mentary lemmas about Pm1n. (We do not require that the
overall function be continuous, but each function necessar-
ily is in �p.) The first lemma states that any function in Cp

can be approximated uniformly by a function from Pm1n,
so that there is no practical loss of generality to restricting
the model data to be in Pm1n instead of �p.

Lemma 1 (Uniform Approximation). For any function
h ∈ �p over a finite interval 601 T 7 and any � > 0, there
exists a function h̃ ∈Pm1n for some positive integers m and
n such that �h− h̃�T < �.

The second lemma states that we can go back and forth
between the functions �1 s′1� and their integrals å1s1M
in Pm1n conveniently; i.e., the integral or derivative of a
polynomial is again a polynomial. In particular, we can
analytically calculate the integral for M in definition (8), as
needed for the fundamental evolution equation for b in (10).

Lemma 2 (Representation of Integrals). �1 s′1� ∈

Pm1n ⊂ �p if and only if å, M4t1 t + ·5, M4u − ·1 u5, s
∈Pm+11 n ∩C0

The third lemma states that the function � inher-
its piecewise-polynomial structure assumed for the basic
model functions �1 s′1�.

Lemma 3 (Preservation of Piecewise-Polynomial
Structure). If � ∈ Pm11 n1

, s′ ∈ Pm21 n2
, and � ∈ Pm31 n3

,
then � ∈Pm1n, where n¶ n1 +n2 +n3 and m¶m1 ∨m2 ∨

m34m2 + 15.

The following theorem serves as the basis for our
analysis.

Theorem 3 (Finitely Many Switches). If � ∈ Pm1n for
� in (13), then �S�¶ n4m+ 15− 1.

Hence, we can carry out the construction of the desired
performance vector 4b1 q1w1 v1�1�5 under the assump-
tions that the basic model functions 4�1 s1�5 are such that
there are only finitely many switches between overloaded
intervals and underloaded intervals in any given interval
601 T 7. It suffices to have �1 s′1� ∈Pm1n for some m and n.
The space Pm1n is useful for the theory, but it should not
be needed in applications; see Remark EC.3.
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4. The Performance at One Queue
In this section we determine the performance functions
under the assumption that there are only finitely many
switches between overloaded and underloaded intervals.
We have just seen that a sufficient condition for that is to
have � ∈ Pm1n for some m and n, for which a sufficient
condition is to have �1 s′1� ∈Pm1n for some m and n. Here
we can apply the previous results in Liu and Whitt (2010),
making proper adjustments to account for the change from
GI service and abandonment to Mt service and GIt aban-
donment.

An underloaded interval requires modification to account
for Mt service. Because the rate that fluid enters service
is �4t5 = b4t105 = �4t5 when the system is underloaded,
we immediately obtain an expression for b4t1 x5 from (10).
Recall that we have assumed that b401 ·5 ∈�p.

Proposition 1 (Service Content in the Underloaded
Case). For the fluid model with unlimited service capacity
4s4t5≡ � for all t ¾ 05, starting at time 0,

b4t1x5=e−M4t−x1t5�4t−x518x¶t9+e−M401 t5b401x−t518x>t91

B4t5=
∫ t

0
e−M4t−x1t5�4t−x5dx+B405e−M401 t51

0¶ t<T 1 (14)

where M is defined in (8). If, instead, a finite-capacity
system starts underloaded, then the same formulas apply
over the interval 601 T 5, where T ≡ inf 8t ¾ 02 B4t5 > s4t59,
with T = � if the infimum is never obtained. Hence,
b4t1 ·51 b4·1 x51B ∈ �p for all t ¾ 0 and x ¾ 0, for t in the
underloaded interval.

There is dramatic simplification in going from GI ser-
vice to Mt service in an overloaded interval. Then we sim-
ply have B4t5 = s4t5. The rate that fluid enters service is
equal to the rate that service capacity becomes available:
�4t5 = �4t5 = s′4t5+ s4t5�4t5. For an overloaded interval
starting at time 0, we have

Proposition 2 (Service Content in the Overloaded
Case). For the fluid model in an overloaded interval,
B4t5= s4t5 and

b4t1 x5= 4s′4t − x5+ s4t − x5�4t − x55e−M4t−x1 t518x¶t9

+ b401 x− t5e−M401 t518x>t91

where M is defined in (8). Hence, b4t1 ·51 b4·1 x51B ∈ �p

for all t ¾ 0 and x¾ 0 in an overloaded interval.

Corollary 1 (Overall Smoothness for the Ser-
vice Content). If there are only finitely many switches
between overloaded and underloaded intervals in 601 T 7,
then b4t1 ·51 b4·1 x51B ∈�p for all t, 0 ¶ t ¶ T , and x¾ 0.

We treat q, w, and v just as in §5.2 and §5.3 in Liu
and Whitt (2010), making adjustments for the time-varying
abandonment cdf Ft . Let q̃4t1 x5 be q4t1 x5 during the over-
load interval 601 T 7 under the assumption that no fluid
enters service from queue.

Proposition 3 (Queue Content Without Transfer
Into Service in the Overloaded Case). During an over-
loaded interval,

q̃4t1x5=�4t−x5F̄t−x4x518x¶t9+q401x−t5
F̄t−x4x5

F̄t−x4x−t5
18t<x91

(15)

so that q̃4t1 ·5 and q̃4·1 x5 belong to �p for each t and x.

We get an expression for q provided that we can find w.

Corollary 2 (From q̃ to q). Given the BWT w in an
overloaded interval,

q4t1 x5= q̃4t − x105F̄t−x4x518x¶w4t5∧t9

+ q̃401 x− t5
F̄t−x4x5

F̄t−x4x− t5
18t<x¶w4t59

= �4t − x5F̄t−x4x518x¶w4t5∧t9

+ q401 x− t5
F̄t−x4x5

F̄t−x4x− t5
18t<x¶w4t590 (16)

Moreover, q4t1 ·5 ∈�p for all t ¾ 0.

It now remains to define and characterize the BWT w.
We can define the BWT w by postulating that two expres-
sions for the amount of fluid to enter service over any
interval 6t1 t + �7, namely,

E4t + �5−E4t5≡

∫ t+�

t
b4u105du

= I4t1w4t51 q̃5−A4t1 t + �51 (17)

where I ≡ I4t1w4t51 q̃5 is the amount of fluid removed
from the right boundary of q̃ during the time interval
6t1 t + �7, and A4t1 t + �5 is the amount of the fluid con-
tent in I that abandons in the interval 6t1 t + �7. We then
show that, if (17) holds, then w satisfies an ordinary dif-
ferential equation (ODE). However, our previous proof
of uniqueuenss for the solution of that ODE does not
extend directly to time-varying abandonment cdfs. Hence,
we assume that either (i) the abandonment cdf Ft is inde-
pendent of t or (ii) extra conditions hold, allowing us to
apply the classical Picard-Lindelöf theorem, Theorem 2.2
of Teschl (2000); see §EC.2. One extra requirement is that
the rate that fluid enters service is bounded below; we also
show how to obtain that in EC.2. The proofs of Theorems
4 and 6 are in §EC.2.

Theorem 4 (The BWT ODE). Consider an overloaded
interval 601 T 5. The BWT w is well defined by relation (17),
being Lipschitz continuous on 601 T 7 with w4t + u5 ¶
w4t5+u for all t ¾ 0 and u¾ 0 with t+u¶ T . Moreover,
w is right differentiable everywhere with right derivative

w′4t+5=é4t1w4t55≡ 1 −
�4t+5

q̃4t1w4t5−5
1 (18)
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where �4t5= s′4t5+ s4t5�4t5, t ¾ 0, and left differentiable
everywhere 4but not necessarily differentiable5 with value

w′4t−5= é̃ 4t1w4t55≡ 1 −
�4t−5

q̃4t1w4t5+5
0 (19)

Overall, w is continuously differentiable everywhere except
for finitely many t. If either (i) the abandonment cdfs Ft
are independent of t or (ii) the partial derivative ¡Ft4x5/¡t
is bounded over 601 T 7× 601 c7 for all c, and �1q401 ·5 have
bounded derivatives in the intervals where they are contin-
uous, and there exists a constant eL > 0 such that �4t5¾ eL
for 0 ¶ t ¶ T , then w is characterized as the unique solu-
tion of the initial value problem 4IVP5 on 601 T 5 based on
the ODE (18) and any initial value w405.

Corollary 3 (End of the Overloaded Interval). We
can compute the end of an overloaded interval as T ≡

inf 8t ¾ 02 w4t5= 0 and �4t5¶ s′4t5+ s4t5�4t59.

Corollary 4 (Smoothness of q4t1 ·5). Under the assump-
tions of Theorem 4, q is given by (16) with q4·1 x5 ∈ �p

for all x. 4We have already deduced that q4t1 ·5 ∈ �p for
all t in Corollary 2.5

Theorem 5 (The PWT v and the BWT w). In an over-
loaded interval, the PWT v is finite and is the unique func-
tion in � satisfying the equation

v4t −w4t55=w4t5 or, equivalently,

v4t5=w4t + v4t55 for all t ¾ 01 (20)

where w is the BWT. Moreover, v is discontinuous at t
if and only if there exists � > 0 such that w4t + v4t5+ �5=

w4t + v4t55 + �, which in turn holds if and only if
b4u105= 0 for t+v4t5¶ u¶ t+v4t5+�. If b4·105 > 0 a.e.
with respect to Lebesgue measure, then v is continuous.

As shown in Liu and Whitt (2010), the proof of The-
orem 5 provides an elementary algorithm to compute v
once w has been computed. Theorem 5.6 of Liu and Whitt
(2010) shows that v satisfies its own ODE under additional
regularity conditions.

The Algorithm for One Queue. We now summa-
rize the algorithm to compute the performance function
4b1 q1w1 v1�1�5 in the Gt/Mt/st + GIt model, assuming
that there are only finitely many switches in each finite
interval. During each underloaded interval, we compute b
and B, and determine the end of the interval, by applying
Proposition 1. During each overloaded interval, we com-
pute these by applying Proposition 2. During each over-
loaded interval, we successively compute q̃, the BWT w,
q and the PWT v, respectively, from Proposition 3, Theo-
rem 4, Corollary 2, and Theorem 5. While computing w,
we determine the end of the overloaded interval by apply-
ing Corollary 3. We compute the service completion rate �
from (1) and the abandonment rate � from (4).

Feasibility of the Staffing Function. The construction
above has been done under the assumption that the staffing
function is feasible. As in §6.2 of Liu and Whitt (2010),
the algorithm can detect violations of feasibility whenever
they occur and can then produce the minimum feasible
staffing function greater than or equal to the initial pro-
posed staffing function. A violation is easy to detect; it
necessarily occurs in an overloaded interval in O4601 T 75 at
time t∗ ≡ inf 8t ∈ O4601 T 752 �4t5 < 09. As in Liu and Whitt
(2010), let Sf 1 s be the set of feasible staffing functions
over the interval 601 t7 for t > t∗.

Theorem 6 (Minimum Feasible Staffing Function).
There exist � > 0 and s∗ ∈ Sf 1s4t

∗ + �5 such that s∗ =

inf 8s̃ ∈Sf 1s4t
∗ + �59; i.e., s∗ ∈ Sf 1s4t

∗ + �5 and s∗4u5 ¶
s̃4u5, 0 ¶ u¶ t∗ + �, for all s̃ ∈Sf 1s4t

∗ + �5. In particular,

s∗4t∗ + u5≡ B4t∗5 · e−M4t∗1 t∗+u51 0 ¶ u¶ �0 (21)

Moreover, � can be chosen so that � = inf8u ¾ 02
s∗4t∗ + u5 = s4t∗ + u59, with � ≡ � if the infimum is not
attained.

Corollary 5 (Minimum Feasible Staffing with M
Service). For M service, i.e., with exponential service
times, so that Ḡ4x5 ≡ e−�x, (21) becomes simply s∗4t∗ +

u5= B4t∗5e−�u, 0 ¶ u¶ �.

Theorem 6 shows how to construct a new staffing func-
tion that (i) agrees with the proposed staffing function s
over its interval of feasibility 601 t∗5 and (ii) itself is fea-
sible over the longer interval 601 t∗ + �5 for some � > 0.
To construct the minimum feasible staffing function over
601 T 7, this algorithm may need to be applied several times.

5. General Arrival Rate Functions
In the previous two sections we have seen that we can get a
nice clean theory if we assume that �1 s′1� ∈Pm1n. In order
to treat open networks of fluid queues, we would want the
service completion rate � , which becomes the part of the
input rate at other queues, to be in Pm1n for some m and n
as well, but � does not inherit this property, because �4t5=

B4t5�4t5 and B4t5 has a complicated nonpolynomial form
in underloaded intervals, as shown in (14). We do have
� ∈ �p by virtue of Corollary 1, but we need not have
� ∈Pm1n. Hence, we show how to treat the general case in
which initially we only assume that � ∈�p.

We will treat the case of general � ∈�p as the limit of a
sequence of systems with � ∈Pm1n. In particular, for arbi-
trary � ∈�p, we can represent it as the limit of a sequence
of functions 8�k2 k¾ 19, where �k ∈Pmk1 nk

and �k ¾ 0 for
each k, and ��k − ��T → 0 as k → �, with � · �T denot-
ing the uniform norm over 601 T 7. (Positivity is no problem
because of Assumption 6 and the uniform convergence.) If
we also assume that s′1� ∈ Pm1n for some m1n, then we
will necessarily have �k ∈Pmk1 nk

for all k, with mk <� and
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nk <� for all k. We will also have mk → � and nk → �

as k → � unless � ∈Pm1n for some m1n.
In this section we establish results that allow us to treat

the case of general arrival rate functions � ∈ �p, without
requiring that � ∈Pm1n and without directly requiring that
there be only finitely many switches between overloaded
and underloaded intervals in the interval 601 T 7. To do so,
we establish monotonicity and Lipschitz continuity proper-
ties, which are of independent interest. We first establish
these results assuming that � ∈ Pm1n, and then we show
that they extend when we allow arbitrary � ∈�p. We thus
start by assuming that � ∈ Pm1n. The proofs of the three
theorems in this section are relatively straightforward, but
long; they appear in §EC.3.

The Mt service allows us to extend the elementary com-
parison results in Propositions 4.2 and 5.3 of Liu and Whitt
(2010). Recall that order of functions (vectors) is defined as
pointwise order for all arguments (coordinates). Let X4t5≡

B4t5+Q4t5 be the total system fluid content. Let subscripts
designate the model.

Theorem 7 (Fundamental Comparison Theorem). Con-
sider two Gt/Mt/st + GIt fluid models with common
staffing function s and service rate function �. If �11 �2 ∈

Pm1n with �1 ¶ �2, B1405 ¶ B2405, q1401 ·5 ¶ q2401 ·5 and
hFt11

¾ hFt12
, then

4B14 · 51 q̃11 q11Q14 · 51X11w11 v11�15

¶ 4B24 · 51 q̃21 q21Q24 · 51X21w21 v21�250 (22)

In addition to monotonicity, the model has addi-
tional basic Lipschitz continuity properties (beyond
Proposition EC.2).

Theorem 8 (More Lipschitz Continuity). Consider a
Gt/Mt/st +GIt fluid model with �1 s′1� ∈ Pm1n for some
m1n. Then the functions mapping (i) 4�1B4055 in Pm1n×�
into 4B1�5 in �2

p, (ii) 4�1B4051Q4055 in Pm1n ×�2 into
Q in �p, and (iii) 4�1X4055 in Pm1n ×� into X in �p, all
over 601 T 7, are Lipschitz continuous. In particular,

�B1 −B2�T ¶41∨T 54��1 −�2�T ∨�B1405−B2405�51

��1 −�2�T ¶�
↑

T �B1 −B2�T 1

�Q1 −Q2�T ¶41∨T 54��1 −�2�T

∨�B1405−B2405�∨�Q1405−Q2405�51

�X1 −X2�T ¶241∨T 54��1 −�2�T ∨�X1405−X1405�50 (23)

If B1405= B2405 and Q1405=Q2405 ( for Q and X), then

�B1 −B2�T ¶T ��1 −�2�T 1 �Q1 −Q2�T ¶T ��1 −�2�T 1

�X1 −X2�T ¶2T ��1 −�2�T 0 (24)

As a consequence of Theorems 3–8, we can regard the
case of a general function � as the limit of a sequence
8�k2 k¾ 19, where �k ∈Pmk1 nk

with mk → � and nk → �

as k → �. Hence, results for the kth system can be “lifted”
to the general case; i.e., Theorems 7–8 combine to imply
the following general result.

Theorem 9 (Lifting). For a Gt/Mt/st +GIt fluid model
with s′1� ∈ Pm1n and � ∈ �p, the system performance via
4B1 q̃1w5, for B ≡ 8B4t52 0 ¶ t ¶ T 9, is well defined, and
the conclusions of §3 and Theorems 7 and 8 remain valid.

6. The 4Gt/Mt/st +GI5m/Mt Fluid
Queue Network

We now introduce the open network of Gt/Mt/st +GI fluid
queues, with time-dependent proportional routing. There
are m queues, where each queue has model parameters as
already defined in §2, with its own external fluid input, but
in addition a proportion Pi1 j4t5 of the fluid output from
queue i at time t is routed immediately to queue j , and a
proportion Pi104t5 ≡ 1 −

∑m
j=1 Pi1 j4t5 ¶ 1 is routed out of

the network, as shown in Figure 1 for the case m= 2.

Assumption 10 (Proportional Routing). The routing
matrix function for proportional routing, P2 601�5 →

60117m
2
, is in �p and

∑m
j=1 Pi1 j4t5¶ 1 for each t ¾ 0 and i,

1 ¶ i¶m.

It is elementary to treat the basic network operations of
superposition and splitting: If two input streams are com-
bined to form a single input (superposition), then the arrival
rate functions are simply added. If one stream with arrival
rate function � is split, such that a proportion p4t5 of that
stream goes into a new split stream at time t, then the
arrival-rate function of the split stream is �p, where �p4t5≡

�4t5p4t5, t ¾ 0; just like �, the splitting proportion can be
time dependent. Similarly, if the departure flow from one
queue becomes input to another, then the resulting arrival
rate function is � . (We do not let the abandonment flow
from one queue become input to another, but if we did, then
the resulting arrival-rate function would be �.) However,
converting departure rate or abandonment rate into new
input rate is more complicated when feedback is allowed.
We discuss that case now, for departures only.

As is usual with open queueing networks, there is an exter-
nal exogenous arrival rate function to each queue (from out-
side the network) and there is a total arrival rate function
to each queue (which we simply call the arrival rate func-
tion), taking into account the flow from other queues. Let the
external arrival rate function into queue j be denoted by �

405
j ;

let the arrival rate function into queue j be denoted by �j .
The model data for the Gt/Mt/st +GIt fluid queues directly
provides the external arrival rate functions �

405
j (with the

superscript 0 now added), whereas the arrival rate function
itself satisfies a system of traffic rate equations. In particular,

�j4t5= �
405
j 4t5+

m
∑

i=1

�i4t5Pi1 j4t51 where (25)

�i4t5= Bi4t5�i4t51 t ¾ 00 (26)

Equations (25) and (26) produce a system of equations,
with �j depending upon �i for 1 ¶ i ¶ m, whereas �i in
turn depends on �i for each i, because Bi depends on �i.
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The formulas for Bi as a function of �i have been given
in Propositions 1 and 2, provided that we know whether
the queue is overloaded or underloaded. That requirement
is the major source of complexity.

Because (25) is a linear equation, it can be written in
matrix notation as � = �405 + �P by omitting the argu-
ment t as below, provided that the product �P is inter-
preted as in (25). Moreover, we can combine (25) and
(26) to express � as the solution of a fixed-point equa-
tion mapping �m

p over 601 T 7 into itself. To see this, note
that Bi4t5 in (26) is a function of �i4u5, 0 ¶ u < t, and
the model data (only needed for queue i). Hence, the vec-
tor B4t5≡ 4B14t51 0 0 0 1Bm4t55 is a function of � over 601 t5
and the model data. Hence, we can express (25) and (26)
abstractly as

�=ë4�51 (27)

where ë4x54t5 depends on its argument x only over 601 t7
for each t ¾ 0. Here the function ë depends on all the
model data 4�

405
i 1 si1�i1 Fi1·1 bi401 ·51 qi401 ·51P5, 1 ¶ i¶m.

Theorem 10 (Contraction Operator). If s′
i1�i ∈ Pm1n

for 1 ¶ i¶m, then the operator ë in (27) is a monotone
contraction operator on the m-dimensional product space
�m

p over 601 T 7 for all sufficiently small T > 0. Hence, there
exists a unique solution � to the traffic rate Equations (25)
and (26) over 601 T 7 for any fixed T > 0. For sufficiently
short intervals, successive iterates ë 4n54�̃5 converge uni-
formly, geometrically fast, to the fixed point for any initial
point �̃ ∈�m

p .

Proof. We first show that ë actually maps �p into itself.
First, if � ∈ �m

p , then B ∈ �m
p by Corollary 1 and The-

orem 9. By assumption � ∈ �m
p , so that � ∈ �m

p , so the
conclusion follows from (25) and (26). To show that ë is
a contraction operator for sufficiently small T > 0, we use
the norm ���T ≡

∑m
i=1 ��i�T for �≡ 4�11 0 0 0 1 �m5 ∈ 4�p5

m.
For any �11�2 ∈ 4�p5

m, the traffic rate equations in (25)
and (26) imply that

�ë4�15−ë4�25�T

¶
m
∑

j=1

sup
1¶t¶T

m
∑

i=1

�i4t5�B
1
i 4t5−B2

i 4t5�Pi1 j4t5

¶m�
↑

T

m
∑

i=1

sup
0¶t¶T

�B1
i 4t5−B2

i 4t5�

¶m�
↑

T T
m
∑

i=1

sup
0¶t¶T

��1
i 4t5−�2

i 4t5�¶m�
↑

T T ��1 −�2�T 1

where m�
↑

T T < 1 for all sufficiently small T > 0. The sec-
ond inequality holds because Pi1 j4t5¶ 1. The crucial third
inequality follows from (24) in Theorem 8. To establish
uniqueness over 601 T 7 for any fixed T > 0, we consider a
succession of shorter intervals over which the contraction
property holds, and apply mathematical induction. Exis-
tence, uniqueness, and geometric convergence are standard

consequences of the Banach contraction fixed-point theo-
rem. Finally, monotonicity follows from Theorems 7 and 9
plus the traffic rate equations (25) and (26). �

Remark 1 (Starting at the External Arrival Rates).
Theorem 10 implies that we can approach this system
recursively. If we do so with initial vector �̃= �405, the vec-
tor of external arrival rate functions, then the recursion has
an important practical interpretation. Then the kth iterate
�
4k5
j is the arrival rate of fluid that has previously experi-

enced k transitions in the fluid network. With this notation,
we can write the recursive formulas

�
4n5
j 4t5=ë 4n54�4055j4t5

= �
405
j 4t5+

m
∑

i=1

�
4n−15
i 4t5Pi1 j4t51 n¾ 11 (28)

where

�
4n5
i 4t5= B

4n5
i 4t5�i4t5 n¾ 00 (29)

Because we necessarily have �
415
i ¾ �

405
i for each i, this

recursion converges monotonically to the fixed point �. By
Theorems 7 and 9, all the performance measures increase
toward their limiting values as well.

The Algorithm for the Network of Fluid Queues. The
algorithm consists of two successive steps: (i) solving the
traffic-rate Equations (25) and (26) (or (27)) and (ii) solv-
ing for the performance vector 4b1 q1w1 v1�1�5 at each
queue using the algorithm in §4. For step (i), we start with
an initial vector of arrival rate functions, which can be a
rough estimate of the final arrival rate functions or the given
external arrival rate functions as suggested in Remark 1.
We then apply Propositions 1 and 2, Corollary 2, and (1)
to determine the performance functions Bi and �i at each
queue to determine a new vector of arrival rate functions.
We then iteratively calculate successive vectors of arrival
rate functions until the difference (measured in the supre-
mum norm over a bounded interval) is suitably small. Then
we apply step (ii).

Remark 2 (An m-Dimensional ODE). Algorithmically,
there is an alternative approach to 4Gt/Mt/st5

m/Mt fluid
queue networks. Instead of applying nm iterations of the
single-queue algorithm to achieve n iterations of the oper-
ator ë , we can characterize the vector of arrival rates �
as the solution of one m-dimensional ODE. We obtain
this ODE by differentiating with respect to t in the traffic
rate equations in (25) and (26). We intend to discuss this
approach in a subsequent paper. It yields useful explicit
expressions for the special cases of one fluid queue with
immediate proportional feedback and a network of two
fluid queues, as depicted in Figure 1, plus an algorithm for
the general case.
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Remark 3 (The 4Gt/GI/st + GI5m/Mt Fluid Queue
Network). Analogs of what we have done in this section
apply to the 4Gt/GI/st + GI5m/Mt generalization of the
Gt/GI/st + GI fluid queue considered in Liu and Whitt
(2010); we only need to replace Equations (26) and (29)
with the more complicated expressions given for the ser-
vice completion rate � given in Theorem 6.1 of Liu and
Whitt (2010). In particular, (26) should be replaced by

�i4t5=

∫ �

0
bi4t1 x5hGi

4x5dx

=

∫ t

0
bi4t − x105gi4x5dx+

∫ �

0

bi401 y5gi4t + y5

Ḡi4y5
dy1

whereas (29) should be replaced by

�
4n5
i 4t5=

∫ �

0
b
4n5
i 4t1 x5hGi

4x5dx

=

∫ t

0
b
4n5
i 4t − x105gi4x5dx

+

∫ �

0

b
4n5
i 401 y5gi4t + y5

Ḡi4y5
dy1 n¾ 00

However, the service content densities at each queue, bi,
in general are characterized only as the solution of a fixed
point equation. Moreover, it remains to establish an analog
of Theorem 10. The space Pmn no longer helps immedi-
ately. So far, we must assume that there are finitely many
switches between overloaded and underloaded intervals in
any finite interval, and assume that there exists a unique
solution to the new equations. However, from a practical
perspective, the 4Gt/GI/st +GI5m/Mt and even the more
general 4Gt/GIt/st +GIt5

m/Mt model can be analyzed in
the same way.

We conclude this section by establishing a network gen-
eralization of the single queue comparison in Theorem 7.
The proof appears in §EC.4.

Theorem 11 (Network Comparison Theorem). Consider
two 4Gt/Mt/st + GIt5

m + Mt fluid queue networks with
common staffing functions si, service rate functions �i,
abandonment cdfs F·1i, and routing matrix function P for
1 ¶ i ¶ m. If �

405
11 i ¶ �

405
21 i, B11 i405 ¶ B21 i405, q11 i401 ·5 ¶

q21 i401 ·5, and 1 ¶ i ¶ m, then the performance functions
are ordered at each queue:

4�11 i1B11 i1�11 i1 q̃11 i1 q11 i1Q11 i1�11 i1X11 i1w11 i1 v11 i5

¶ 4�21 i1B21 i1�21 i1 q̃21 i1 q21 i1Q21 i1�21 i1X21 i1w21 i1 v21 i5

for 1 ¶ i¶m0 (30)

7. The Stationary 4G/GI/s+GI5m/M
Fluid Queue Network

This paper is primarily devoted to the time-varying fluid
queue network, but the corresponding stationary fluid queue

network also is of interest. The stationary performance of
a single GI/GI/s + GI fluid queue was characterized in
Whitt (2006). (The proof is completed by Liu and Whitt
2010 because the transient dynamics are characterized
there.) The corresponding stationary 4G/GI/s +GI5m/M
fluid queue network is actually quite elementary, given
Whitt (2006). In particular, the stationary performance of
this model is determined by a fixed-point equation for the
(now constant) arrival rates. We start by reviewing that sta-
tionary distribution of the GI/GI/s +GI fluid queue.

Theorem 12 (Steady State of the G/GI/s+GI Fluid
Queue). The G/GI/s + GI fluid model specified with
model parameter vector 4�1 s1�1G1F 5 has a unique steady
state described by the vector 4b1 q1B1Q1w1�1�5, whose
character depends on whether �≡ �/s�¶ 1 or �> 1.

(a) Underloaded and balanced cases: � ¶ 1. If � ¶ 1,
then for x¾ 0

B = s�1 b4x5= �Ḡ4x51 � = B�= �1

Q = �=w = q4x5= 01

(b) Overloaded case: �> 1. If �> 1, then for x¾ 0

B = s1 b4x5= s�Ḡ4x51 � = s�1

�= �− s�= 4�− 15s�= �F̄ 4w51 w = F −1

(

1 −
1
�

)

1

Q = �
∫ w

0
F̄ 4x5dx and q4x5= � F̄ 4x5180¶x¶w90

We now turn to the arrival rates. As can be seen from
Theorem 12 above, unlike for the time-varying model, for
the stationary model we can easily handle GI service,
because the total service content B is independent of the
service-time distribution beyond its mean. The vector of
constant arrival rates � is determined by the system of
fixed-point equations

�j = �
405
j +

m
∑

i=1

4�i ∧ si�i5Pi1 j1 1 ¶ j ¶m1 (31)

where �1�4051 s1� ∈ �m, and P is an m × m stochastic
matrix. We can write (31) more compactly as

�=ê4�5≡ �405
+ 4�∧ s�5P0 (32)

Equation (32) has already been analyzed by Goodman and
Massey (1984) in the study of nonergodic Jackson net-
works; also see Chen and Mandelbaum (1991) and p. 168
of Chen and Yao (2001). However, the model here is
different.

Theorem 13 (Fixed-Point Equation for Stationary
Arrival Rates, from Goodman and Massey 1984). The
arrival rates in the stationary 4G/GI/s + GI5m/M fluid
queue network satisfy Equation (31). Hence, if the stochas-
tic matrix has spectral radius less than 1 (which holds if
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and only if P n → 0 as n→ �), then ê in (32) is a mono-
tone n-stage contraction operator on �m with an appro-
priate norm, so that there exists a unique solution to the
fixed-point equation in (31) and (32). The fixed point can
be calculated by solving at most m different systems of m
linear equations.

Proof. Even for GI service, if fluid queue i is under-
loaded, then the stationary service content is Bi = �i/�i and
the service completion rate is �i = Bi�i = �i. On the other
hand, if queue i is overloaded, then Bi = si and the service
completion rate is si�i. In all cases, the service completion
rate at queue i is �i ∧ si�i. Because there is a unique solu-
tion to Equation (31) or (32), that equation determines the
stationary arrival rates at all queues and which queues are
in fact overloaded. �

8. Heuristic Stochastic Refinement for
Many-Server Queues

As illustrated by Figure EC.2, the fluid model perfor-
mance functions are remarkably effective in approximat-
ing the performance of large-scale many-server queueing
systems. That is to be expected because of many-server
heavy-traffic limits, as we mentioned in §1. In §9 of Liu
and Whitt (2010) we show that the fluid performance func-
tions are useful more generally to describe the mean values
of smaller-scale many-server queueing systems, e.g., with
only 20 servers or even fewer, provided that they experi-
ence significant overloading at some times. That should be
very helpful, but it is also of interest to better understand
the stochastic fluctuations about those mean values in the
queueing system.

For some of the stochastic processes in the
Gt/M/st +GI queueing model, where the service and
abandonment are not time varying, we can invoke existing
heavy-traffic limits for infinite-server queues. In particular,
in the Gt/M/st + GI queueing system, the stochastic
process B̂4t1 y5 recording the number of customers in
service at time t that have been so for time at most
y is the same as in the Gt/M/� model during each
underloaded interval. Similarly, during each overloaded
interval, the stochastic process Q̃4t1 y5 recording the
number of customers in queue at time t that have been so
for time at most y, not allowing customers to enter service
(parallelling Proposition 3), is the same as in the Gt/GI/�
model, with the abandonment cdf F playing the role of the
service-time cdf. Thus, many-server heavy-traffic limits in
Pang and Whitt (2010) apply to them, yielding Gaussian
approximations.

More generally, we suggest a practical heuristic approx-
imation that is in the spirit of those infinite-server results.
The idea is very simple: We simply approximate the dis-
tribution of the total number of customers in the system,
X4t5, by a Poisson distribution, taking the computed value
from the fluid queue model as its mean. This simple Pois-
son approximation approach is in fact exact in the special

case of the Mt/GI/st +GIt and Mt/Mt/st +GIt models if
they are always underloaded, starting out empty at time 0 or
in the distant past. As discussed in Liu and Whitt (2010), in
that case the model reduces to the Mt/GI/� or Mt/Mt/�
fluid model, for which the fluid values of B4t5 = X4t5
coincide with the mean values in the stochastic model. In
addition, X4t5 has a Poisson distribution for the stochas-
tic infinite-server model. Finally, unless the mean is very
small, we approximate the Poisson distribution by a nor-
mal distribution. For the underloaded system, this proposal
coincides with §9 of Massey and Whitt (1993).

Given the approximation for X4t5 in the queueing sys-
tem, we approximate the random variables Q4t5 and B4t5
using Q4t5 = 4X4t5 − s4t55+ and B4t5 = X4t5 ∧ s4t5,
which leads to “one-sided” normal approximations, which
in regions of significant overload or underload will tend to
themselves be approximately normal. This heuristic refine-
ment should give a rough idea about the stochastic fluc-
tuations, adequate for many engineering applications; e.g.,
it shows that the stochastic fluctuations in X4t5 should be
roughly of order

√

X4t5. However, we caution that this is
very rough; the standard deviation might well be off by a
factor of 2 or more. Refined stochastic approximations are
still needed.

9. Conclusions
In §2 we specified the single Gt/Mt/st +GIt fluid queue;
it differs from Liu and Whitt (2010) by having Mt ser-
vice and GIt abandonment instead of both being GI . The
Mt service eliminates the need to solve a fixed-point equa-
tion to find the service content density b. In §§3 and 4
we showed that a single fluid queue can be analyzed by
assuming that the arrival rate function �, the staffing func-
tion s, and the service rate function � are all piecewise
polynomials. However, that did not permit an extension
to networks because the departure rate function does not
inherit that property. In §5 we used asymptotic methods to
show how to analyze the single fluid queue without having
to assume either (i) that the arrival rate function is piece-
wise polynomial or (ii) that there are only finitely many
switches between overloaded and underloaded intervals in
each finite interval. In §6 and §7 we showed how to treat
the 4Gt/Mt/st + GIt5

m/Mt and 4G/GI/s + GI5m/M net-
works with proportional routing. Theorem 10 established
the existence of unique vector of arrival rate functions,
allowing for feedback, and thus a corresponding unique
performance description for the entire network. The perfor-
mance functions at each queue are given in §4.

As discussed in §9 of Liu and Whitt (2010), we have
conducted simulation experiments showing that the fluid
model provides very accurate approximations for very
large-scale many-server queueing systems; we show the
results of one such experiment in §EC.6. The approxima-
tions are also excellent for the mean values of the cor-
responding queueing random variables when the scale is
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quite small, e.g., when there are 20 servers or fewer; e.g.,
see Figure 7 of Liu and Whitt (2010). We have provided
a heuristic stochastic refinement in §8; it approximates the
number of customers in the queueing system, first by a
Poisson distribution having the fluid value as its mean, and
then by a normal distribution.

There are many directions for future research. It remains
to establish supporting many-server heavy-traffic limits,
including stochastic refinements. It remains to examine
the algorithms provided by Theorem 10 and Remark 2;
it remains to extend Theorem 10 to GI and GIt service.
It remains to develop alternative approximations for time-
varying many-server queueing systems, where the staffing
adjusts dynamically (appropriately) to the time-varying
demand, so that the system tends to be critically loaded
at all times, as opposed to switching between overloaded
intervals and underloaded intervals.

10. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.
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