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E-Companion

This e-companion has six sections, presenting supporting material primarily in the order that it

relates to the main paper. In §EC.1 we present the proofs for §3. In §EC.2 we present proofs for

§4. In §EC.3 we present proofs for §5. In §EC.4 we present one proof for §6. In §EC.5, we make

remarks about: (i) characterizing the isolated underloaded points in §3, (ii) representation of the

fluid content B in an underloaded interval via an ODE, and (iii) the applied significance of the

space of piecewise polynomials Pm,n. In §EC.6 we compare the fluid model performance predictions

to simulation results for a large-scale queueing system.

EC.1. Proofs for Section 3.

We need some basic regularity properties of Q and B, which will be valid with the assumptions

in §2. For that purpose, we exploit two basic flow-conservation equations: (i) the queue content at

time t equals the initial queue content plus input minus output to either abandonment or entering

service, and (ii) the service content at time t equals the initial service content plus input minus

output. However, the input enters the queue only when the system is overloaded; otherwise it

directly enters service. Thus we have the following elementary bounds and the subsequent Lipschitz

continuity.

Proposition EC.1. (elementary bounds) Q(t) +A(t) +E(t)≤Q(0) +Λ(t) <∞ and

B(t) +S(t) = B(0) +E(t)≤B(0) +Q(0) +Λ(t) <∞,

so that Q, E, A, B and S are all bounded for 0≤ t≤ T .

Proof. The relations follow from flow conservation. The first relation is an inequality instead of

an equality because input enters the queue instead of the service facility only when the system is

overloaded.

Proposition EC.2. (Lipschitz continuity) The functions S, E, B, A and Q are Lipschitz con-

tinuous.
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Proof. For a nonnegative real-valued function f on [0,∞), let f ↑
t ≡ sup0≤y≤t f(y). To treat S,

recall that S is the integral of σ, where

σ(t) = B(t)µ(t)≤ s(t)µ(t), so that σ(t)≤ s↑t µ
↑
t , t≥ 0, (EC.1)

and

|S(t+u)−S(t)|=
∫ t+u

t

σ(y)dy ≤ s↑T µ↑
T u, 0≤ t≤ t+u≤ T. (EC.2)

To treat E, recall that it is the integral of the rate fluid enters service, where the rate fluid enters

service is either γ(t) = λ(t) if the system is underloaded or γ(t) = s′(t) + σ(t) = s′(t) + s(t)µ(t) if

the system is overloaded. Hence,

|E(t+u)−E(t)| ≤ γ↑
T u, 0≤ t≤ t+u≤ T, (EC.3)

where γ↑
T ≡ λ↑

T ∨ (|s′|↑T + s↑T µ↑
T ) <∞. By the second equation in Proposition EC.1,

B(t+u)−B(t) = (E(t+u)−E(t))− (S(t+u)−S(t)), (EC.4)

so that

|B(t+u)−B(t)| ≤ |E(t+u)−E(t)|+ |S(t+u)−S(t)| ≤ (e↑T + s↑T µ↑
T )u (EC.5)

for 0≤ t≤ t+u≤ T .

Next we combine (4) with (9) to get

α(t) =

∫ t∧w(t)

0

λ(t−x)ft−x(x)dx+

∫ t

w(t)∧t

q(0, x− t)ft−x(x)

F̄t−x(x− t)
dx, (EC.6)

so that, by applying Assumption 9, we get

α(t)≤ α↑
t ≡ f ↑Λ(t) +

f ↑

F̄ ↓(w(0))
Q(0) <∞ (EC.7)

and

|A(t+u)−A(t)| ≤
∫ t+u

t

α(y)dy ≤ α↑
T u, 0≤ t≤ t+u≤ T. (EC.8)

Finally, by the first relation in Proposition EC.1,

|Q(t+u)−Q(t)| ≤ |Λ(t+u)−λ(t)|+ |E(t+u)−E(t)|+ |A(t+u)−A(t)|
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≤ (λ↑
T + γ↑

T +α↑
T )u, 0≤ t≤ t+u≤ T. (EC.9)

We now apply Proposition EC.2 to relate S to the zeros of X − s, where X(t)≡Q(t) +B(t).

Lemma EC.1. (zeros of X − s) S ⊆ZX−s.

Proof. Since Q and B are continuous by Proposition EC.2 and s is continuous by assumption,

X − s is continuous. Since X − s is continuous, if X(t)− s(t) 6= 0, then t cannot be an element of

S.

We now characterize the overloaded times.

Lemma EC.2. (overloaded intervals) With the possible exception of 0 and T , all overloaded times

appear in intervals of positive length. Hence, underloaded sets consist of either single isolated points

or intervals.

Proof. If t ∈ O([0, T ]), then either (i) X(t) − s(t) > 0 or (ii) X(t) − s(t) = 0 and ζ(t) > 0. In

case (i), since X − s is continuous by Proposition EC.2, there exists a neighborhood of t that is

overloaded. In case (ii), since ζ(t) > 0, we will have X(t)− s(t) > 0 in an interval (t, t+ ǫ) for some

positive ǫ. Since overloaded sets are necessarily intervals by Lemma EC.2, each underloaded set

must fall between two overloaded intervals.

Proof of Theorem 1. We apply the results above. Since there can be at most countably many

overloaded intervals of positive length in [0, T ], the isolated points are well defined and countably

infinite. Since the isolated points are at most countably infinite, we can order them and reclassify

them one by one. With that construction, we reduce the number of disjoint overloaded intervals

by one at each step. Finally, all underloaded times appear in intervals too.

We now relate the zeros of ζ in (13) to the overloaded and underloaded intervals.

Lemma EC.3. (zeros and intervals) For each interval in the partition of [0, T ] into underloaded

and overloaded intervals, there exists at least one zero or discontinuity point of ζ.
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Proof. First, consider the closure of an overloaded interval [a, b]. If ζ has one of its finitely many

discontinuity points in [a, b], then we are done. Suppose that ζ is continuous on the closed interval

[a, b]. Necessarily, we have X(a)− s(a) = X(b)− s(b) = 0, ζ(a + ǫ) > 0 for all suitably small ǫ > 0

and ζ(b)≤ 0. First, we could have ζ(b) = 0 and we are done. If instead ζ(U(t)) < 0, then there must

exist t∗ with a < t∗ < b such that ζ(t∗) = 0 by the intermediate value theorem. The reasoning is

essentially the same in the closure of an underloaded interval, say [a, b]. If ζ has one of its finitely

many discontinuity points in [a, b], then we are again done. Suppose that ζ is continuous on the

closed interval [a, b]. If either ζ(a) = 0 or ζ(b) = 0, then we are done. Hence we must have ζ(a) < 0.

Since b is a switch point and ζ is continuous at b, we must have ζ(b) > 0. As before, there must

exist t∗ with a < t∗ < b such that ζ(t∗) = 0 by the intermediate value theorem.

Proof of Theorem 2 Since the interval [0, T ] can be partitioned into at most countably many

intervals that alternate between overloaded and underloaded after reclassifying isolated under-

loaded points as overloaded, the switch points can be placed in one-to-one correspondence with the

internal boundary points (excluding 0 and T ). Hence the number of switch points is equal to n−1,

if the number of intervals in the paritition is n for some n <∞. Otherwise both sets are countably

infinite. Next, Lemma EC.3 implies that there is either a discontinuity point or a zero in every

overloaded and underloaded interval. Since the number of intervals is 1 greater than the number

of switches, we obtain the conclusion. To see that the bound is tight, consider the common case

in which ζ is differentiable on [0, T ] and ζ(t) 6= 0 at all switch times. Then ζ has a zero where it

attains its maximum in each overloaded interval, while ζ has a zero where it attains its minimum

in each overloaded interval. To have the bound an equality, let ζ have no other zeros.

Proof of Theorem 3. First, any discontinuity points of ζ must be contained in the set of n interval

boundary points. Hence, Dζ ≤ n. On each of the n subintervals, ζ is a polynomial of order at most

m. By the fundamental theorem of algebra, on each of these intervals the zero set is either a finite

set of cardinality at most m or it is the entire subinterval. If ζ = 0 throughout the interval, then

there can be at most a single switch in the interval, where (Q(t),B(t)) becomes (0, s(t)), after which

it will remain there throughout the subinterval. In other words, the first subinterval is overloaded
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and the second is underloaded, so this interval produces at most a single switch. We can thus treat

this interval just like any of the others; we can act as if it produces at most m zeros. Hence, Dζ ≤ n

and Zζ ≤mn. Finally, Theorem 2 implies that |S| ≤mn+n− 1, as claimed.

Proof of Lemma 1. The Weierstrass approximation theorem implies that continuous functions

can be approximated uniformly over bounded intervals by polynomials. That uniform approxima-

tion extends to Cp provided that the boundary points of the polynomial pieces of the function in

Pm,n includes the finitely many discontinuity points of the function in Cp.

EC.2. Proofs for §4.

EC.2.1. Proof of Uniqueness in Theorem 4.

When the abandonment cdf’s Ft are independent of t, the proof of uniqueness of the solution to the

ODE (18) in Theorem 4 is the same as the proof of the corresponding part of Theorem 5.3 in Liu

and Whitt (2010). However, that argument does not extend directly to time-varying abandonment

cdf’s. Hence we give a different proof under different conditions. In particular, in Theorem 4 for

time-varying abandonment cdf’s we imposed additional regularity conditions. With those extra

regularity conditions, we can apply the classical Picard-Lindelöf theorem for the uniqueuenss of

a solution to the ODE w′(t) = Ψ(t,w(t)), which requires that Ψ(t, x) be locally Lipschitz in the

argument x uniformly in the argument t; e.g., Theorem 2.2 of Teschl (2000).

One regularity condition added in Theorem 4 was for the rate fluid enters service to be bounded

below. We will show how to guarantee that condition in the next section. Given that the rate fluid

enters service is indeed bounded below, i.e., given that γ(t) ≥ eL > 0 for all t ∈ [0, T ], from (18),

there exists a constant wL > 0 such that w′(t) ≤ 1−wL < 1 for all t ∈ [0, T ]. Since w(0) < ∞, by

assumption, and w(t)≤w(0)+ t for all t, we have w(t)≤w(0)+T for 0≤ t≤ T . Together with the

fact that λ, q(0, ·)∈Cp, that implies that the denominator in (18) is bounded above.

Since w′(t) ≤ 1−wL < 1 for all t, for each x we will have t−w(t) = x for at most one value of

t. Since λ, q(0, ·) have been assumed to have bounded derivatives where they are continuous, and

since the partial derivative ∂Ft(x)/∂t of the time-varying abandonment cdf Ft as been assumed
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to be bounded, the mapping Ψ in (18) is Lipschitz continuous in the argument x except at only

finitely many x, uniformly in t. Hence, we can deduce uniqueness of the solution of the ODE in

(18) under these extra regularity conditions by applying the Picard-Lindelöf theorem.

We now elaborate on the details. Here we have

Ψ(t, x)≡ 1− γ(t)

q̃(t, x)
= 1− µ(t)s(t) + s′(t)

q̃(t, x)
, (EC.10)

where q̃(t, x) is given in (15). Consider the region 0≤ x1 ≤ t, 0≤ x2 ≤ t. In this region we have

|Ψ(t, x1)−Ψ(t, x2)| =
µ(t)s(t) + s′(t)

λ(t−x1)λ(t−x2)F̄t−x1
(x1)F̄t−x2

(x2)
|λ(t−x1)F̄t−x1

(x1)−λ(t−x2)F̄t−x2
(x2)|

≤ µ↑s↑ + s′↑

(λ↓)2(F̄ ↓)2
|λ(t−x1)F̄t−x1

(x1)−λ(t−x2)F̄t−x1
(x1)

+ λ(t−x2)F̄t−x1
(x1)−λ(t−x2)F̄t−x2

(x2)|

≤ µ↑s↑ + s′↑

(λ↓)2(F̄ ↓)2
(|λ(t−x1)−λ(t−x2)|+λ(t−x2)|F̄t−x1

(x1)− F̄t−x2
(x2)|)

≤ µ↑s↑ + s′↑

(λ↓)2(F̄ ↓)2
(λ′↑|x1 −x2|+λ↑|F̄t−x1

(x1)− F̄t−x1
(x2) + F̄t−x1

(x2)− F̄t−x2
(x2)|)

≤ µ↑s↑ + s′↑

(λ↓)2(F̄ ↓)2
(λ′↑|x1 −x2|+λ↑ ∂F̄

∂t

↑

|x1 −x2|+λ↑g↑|x1 −x2|)

≡ C |x1 −x2|,

where C ≡ µ↑s↑+s′↑

(λ↓)2(F̄↓)2
(λ′↑ +λ↑ ∂F̄

∂t

↑
+λ↑g↑). The case x1, x2 > t is similar. Hence the regularity condi-

tions given in Theorem 4 are sufficient for Ψ to be locally Lipschitz in x uniformly in t.

EC.2.2. eL-Feasibility of the Staffing Function s.

We have two goals in this section: first, to prove Theorem 6, showing how to construct the minimum

feasible staffing function greater than or equal to any proposed staffing function s and, second, to

determine the minimum feasible staffing function such that the rate fluid enters service at time

t, γ(t), is bounded below. We use this stronger notion of feasibility to provided conditions for

the ODE in (18) in Theorem 4 to have a unique solution. We treat both problems at once by

introducing the notion of eL-feasibility: A staffing function s is said to be eL-feasible if γ(t)≥ eL ≥ 0

for all t∈ [0, T ].
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So far, we have assumed that the staffing function s is eL-feasible (as one condition in Theorem

4) or simply feasible (eL-feasible for eL ≡ 0), yielding

γ(t)≥ s′(t) +σ(t) = s′(t) +

∫ ∞

0

b(t, x)hG(x)dx≥ eL ≥ 0 when B(t) = s(t). (EC.11)

This requirement is automatically satisfied in underloaded intervals when B(t) = s(t), provided

that λinf (T )≥ eL for λinf in Assumption 6, because in that case we require that s′(t)+σ(t)≥ λ(t)

where necessarily λ(t) ≥ eL; see Definition 1; eL-Feasibility is only a concern during overloaded

intervals, and then only when the staffing function is decreasing, i.e., when s′(t) < 0.

A violation is easy to detect; it necessarily occurs in an overloaded interval in O([0, T ]) at time

t∗ ≡ inf {t∈O([0, T ]) : γ(t) < eL}. Paralleling Liu and Whitt (2010), let Sf,s,eL
be the set of eL-

feasible staffing functions over the interval [0, t] for t > t∗. Then

t∗ ≡ t∗(eL)≡ inf {t∈ I : γ(t) < eL}. (EC.12)

Even though we require (EC.11), so far we have done nothing to prevent having t∗ <∞ (violation).

Thus, we compute γ and detect the first violation.

Correcting the staffing function is not difficult either (by which we mean replacing it with a

higher feasible staffing function): We simply construct a new staffing function s∗ consistent with

reducing the input into the queue to its minimum allowed level (setting γ(t) = eL ≥ 0) starting at

time t∗ and lasting until the first time t after t∗ at which s∗(t) = s(t). (By the adjustment, we will

have made s∗(t∗+) > s(t∗+).) Since the system has operated differently during the time interval

[t∗, t], we must recalculate all the performance measures after time t, but we have now determined

a feasible staffing function up to time t > t∗. By successive applications of this correction method

(adjusting the staffing function s and recalculating b), we can construct the minimum feasible

staffing function overall.

To make this precise, let Sf,s,eL
(t) be the set of all eL-feasible staffing functions for the system

over the time interval [0, t], t > t∗, that coincide with s over [0, t∗]; i.e., let

Sf,s,eL
(t)≡ {s̃∈C1

p(t) : γs̃(u)1{Bs̃(u)=s̃(u)} ≥ eL, 0≤ u≤ t, s̃(u) = s(u), 0≤ u≤ t∗}, (EC.13)
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for t∗ in (EC.12), where γs̃ and Bs̃ are the functions γ and B associated with the model with

staffing function s̃.

Theorem EC.1. (minimum eL-feasible staffing function) For each eL such that 0≤ eL ≤ λinf (T )

for λinf (T ) in Assumption 6, there exist δ ≡ δ(eL) and s∗ ∈ Sf,s,eL
(t∗ + δ) in (EC.13) for t∗ in

(EC.12) such that

s∗ ≡ s∗(eL) = inf {s̃∈ Sf,s,eL
(t∗ + δ)}; (EC.14)

i.e., s∗ ∈ Sf,s,eL
(t∗ + δ) and s∗(u)≤ s̃(u), 0≤ u≤ t∗ + δ, for all s̃∈ Sf,s,eL

(t∗ + δ). In particular,

s∗(t∗ +u) = eL

∫ u

0

e−M(t∗+u−x,t∗+u) dx+B(t∗) e−M(t∗,t∗+u). (EC.15)

Moreover, δ can be chosen so that

δ = inf {u≥ 0 : s∗(t∗ +u) = s(t∗ +u)}, (EC.16)

with δ ≡∞ if the infimum in (EC.16) is not attained.

Proof. First, since γs is continuous for our original s, the violation in (EC.12) must persist for a

positive interval after t∗; that ensures that a strictly positive δ can be found. We shall prove that

s̃≥ s∗ over [t∗, t∗ + δ] for s∗ in (EC.15) and any feasible function s̃, and we will show that s∗ itself

is feasible. For 0≤ t≤ t∗ + δ, suppose s̃ is feasible. Since the system is overloaded, system being in

the overloaded regime implies that

s̃(t∗ +u) = Bs̃(t
∗ +u) =

∫ ∞

0

bs̃(t
∗ +u,x)dx

=

∫ u

0

γs̃(t
∗ +u−x) Ḡt∗+u−x(x)dx+

∫ ∞

u

bs̃(t
∗, x−u)

Ḡt∗+u−x(x)

Ḡt∗+u−x(x−u)
dx

=

∫ u

0

γs̃(t
∗ +u−x) e−M(t∗+u−x,t∗+u) dx+

∫ ∞

u

bs(t
∗, x−u) e−M(t∗,t∗+u)dx

≥ eL

∫ u

0

e−M(t∗+u−x,t∗+u) dx+ e−M(t∗,t∗+u)

∫ ∞

0

bs(t
∗, y)dy = s∗(t∗ +u).

where the second equality holds because of the fundamental evolution equations in Assumption 4,

the third equality holds because bs̃(t
∗, x) = bs(t

∗, x) for all x, and the inequality holds because γs̃ ≥

eL. On the other hand, the equality holds when γs̃(t
∗ + u) = eL for all u, which yields B(t∗ +u) =

s∗(t+u). Therefore, the proof is complete.
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Corollary EC.1. (minimum eL-feasible staffing with exponential service times) For the special

case of exponential service times, i.e., with Ḡ(x)≡ e−µx, independent of t, (EC.15) becomes simply

s∗(t∗ +u) = eL(1− e−µu)/µ+B(t∗)e−µu, 0≤ u≤ δ.

EC.3. Proofs for §5.

EC.3.1. Proof of Theorem 7.

First, the assumption that ζ1, ζ2 ∈Pm,n assures that there are only finitely many switches between

overloaded intervals and underloaded intervals in both systems. That leads to three cases: (i) when

both systems are underloaded, (ii) when the upper system is overloaded and the lower system is

underloaded, and (iii) when both systems are overloaded. We apply mathematical induction over

the successive alternating intervals of these three kinds. (The switch points are the union of the two

separate sets of switch points.) We ensure that the initial conditions for each succeeding interval

satisfy the initial ordering assumed in the theorem. If we start in an interval where both systems are

underloaded, then the ordering holds while both systems are underloaded by virtue of the explicit

representation in Proposition 1. Consequently, the underload termination times are ordered as well,

by Proposition 1. The ordering B1(t) ≤ B2(t) necessarily remains valid when the upper system is

overloaded and the lower system is underloaded, because then we have B1(t) ≤ s(t) = B2(t). For

an interval where both systems are overloaded, it suffices to consider the two systems starting

the first time both systems are overloaded. At that time, the initial conditions necessarily will be

ordered properly, because the system to become overloaded later has Q1(t) = 0. At this initial time,

B1(t) = B2(t) = s(t).

The Mt service assumption comes to the fore in an interval where both systems are overloaded.

Here we use the fact that σ and γ(t) = b(t,0) depend only upon s and µ during the overloaded

interval, and so are the same for the two systems, because the functions s and µ have been assumed

to be fixed. The rate of service completion is σ(t) = s′(t) + s(t)µ(t). When the two systems are

both overloaded over a common interval [t, t + u], the total fluid to enter service from queue,

E(t+u)−E(t) is therefore the same in the two systems.



e-companion to Liu and Whitt: Time-Varying Many-Server Fluid Queues ec11

When both systems are overloaded, we have the ordering q̃1 ≤ q̃2 directly from Proposition 3,

just as in Proposition 5.3 of Liu and Whitt (2010), exploiting the representation

F̄t−x(x)

F̄t−x(x− t)
= e

−
R x
x−t hFt−x

(y)dy
.

Hence, to show that q1 ≤ q2, it suffices to show that w1 ≤ w2, which would imply that that the

overload termination times are ordered as well.

Suppose we start at t1 with w1(t1) ≤ w2(t1). Suppose that w1(t) > w2(t) at some t > t1. The

continuity of w1 and w2 implies that there exists some t1 < t2 < t such that w1(t2) = w2(t2) ≡ w̃.

However, the ordering of q̃1 and q̃2 implies that q̃1(t2, w̃)≤ q̃2(t2, w̃). Therefore, ODE (18) implies

that w′
1(t2)≤w′

2(t2). This contradicts with our assumption that there exists a t such that w1(t) >

w2(t).

Now we turn to v. The equation (20) in Theorem 5 implies that the ordering of w is inherited

by v. That is made clear by applying the proof of Theorem 5, which shows that v(t) is determined

by the intersection of the function w with the linear function Lt(u)≡ t+u. Clearly, if we increase

the w function, then that intersection point increases as well.

EC.3.2. Proof of Theorem 8.

We directly prove (23); the corresponding results in (24) will be obtained along the way. To show

(i), consider two models with common model data except for λ,B(0), where λ1, λ2, s
′, µ∈Pm,n for

some m,n. Without loss of generality, by Theorem 7, it suffices to assume that λ1 ≤ λ2 and B1(0)≤

B2(0). If that is not initially the case, consider λ̃1 ≡ λ1 ∧ λ2, λ̃2 ≡ λ1 ∨ λ2, B̃1(0) ≡ B1(0)∧B2(0)

and B̃2(0) ≡ B1(0) ∨ B2(0) to get λ̃1 ≤ λ̃2 and B̃1(0) ≤ B̃2(0) with ‖λ̃1 − λ̃2‖T = ‖λ1 − λ2‖T and

|B̃1(0)− B̃2(0)|= |B1(0)−B2(0)|.

When both systems are overloaded, we have B1(t) = B2(t) = s(t). Hence, the overall story

depends on what happens when (a) both systems are underloaded, and (b) system 1 is underloaded

and system 2 is overloaded.
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For simplicity, suppose that the two systems both start underloaded at time 0 with B1(0)≤B2(0),

λ1 ≤ λ2. If both systems remain underloaded over the interval [0, t1], then by Proposition 1 we have

|B1(t)−B2(t)| ≤ ‖λ1 −λ2‖T

∫ t

0

e−M(x) dx+ |B1(0)−B2(0)|

≤ t · ‖λ1 −λ2‖T + |B1(0)−B2(0)|, 0≤ t≤ t1. (EC.17)

Suppose system 2 becomes overloaded at t1 > 0 while system 1 remains underloaded. For t > t1,

we have B1(t) ≤ B2(t) = s(t) ≤ X2(t) ≡ B2(t) + s(t). Hence we have 0 ≤ |B2(t)−B1(t)| = B2(t)−

B1(t) ≤ X2(t)−B1(t). Flow conservations of both systems implies that B′
1(t) = λ1(t)− µ(t)B1(t)

and X ′
2(t) = λ2(t)−α2(t)−µ(t) s(t). Therefore,

X ′
2(t)−B′

1(t) = λ2(t)−λ1(t)−α2(t)−µ(t) (s(t)−B1(t))≤ λ2(t)−λ1(t),

which implies that

|B1(t)−B2(t)| ≤ |B1(t1)−B2(t1)|+(t− t1) · ‖λ1 −λ2‖T

≤ t1 · ‖λ1 −λ2‖T + |B1(0)−B2(0)|+(t− t1) · ‖λ1 −λ2‖T

≤ t · ‖λ1 −λ2‖T + |B1(0)−B2(0)|, (EC.18)

where the second inequality follows from (EC.17) with t = t1.

If we then later start a second underloaded interval for both systems at time t2, where 0 < t1 <

t2 < T , then we will have inequality (EC.17) holding at time t2. Thus proceeding forward, applying

(EC.17) with initial values Bi(t2), during the following underloaded interval we have for t > t2

|B1(t)−B2(t)| ≤ ‖λ1 −λ2‖T

∫ t

t2

e−M(x) dx+ |B1(t2)−B2(t2)|

≤ (t− t2) · ‖λ1 −λ2‖T + t2 · ‖λ1 −λ2‖T + |B1(0)−B2(0)|

≤ t · ‖λ1 −λ2‖T + |B1(0)−B2(0)|

≤ (1∨ t)(‖λ1 −λ2‖T ∨ |B1(0)−B2(0)|). (EC.19)

where the second inequality follows from (EC.18) with t = t2. Applying mathematical induction

over successive underloaded subintervals of [0, T ], using the second to last inequality, we obtain the

first relation in (23), from which the desired conclusion follows.
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To show (ii), when both systems are underloaded, we have Q1(t) = Q2(t) = 0. Hence, the over-

all story depends on what happens when (a) both systems are overloaded, and (b) system 1 is

underloaded and system 2 is overloaded.

When both systems are overloaded, flow conservation implies that

Q′
i(t) = λi(t)−αi(t)− γi(t) = λi(t)−αi(t)−µ(t) s(t)− s′(t).

Hence, we have

Q′
2(t)−Q′

1(t) = λ2(t)−λ1(t)− (α2(t)−α1(t))≤ λ2(t)−λ1(t),

where the inequality simply follows from Theorem 7 when the two systems have common abandon-

time distribution. This yields

|Q1(t)−Q2(t)|= Q2(t)−Q1(t)≤ |Q1(0)−Q2(0)|+ t‖λ1 −λ2‖T . (EC.20)

When system 2 is overloaded and system 1 is underloaded. For simplicity, assume at time 0 the two

system have initial conditions B2(0) = s(0) > B1(0), Q2(0) ≥ 0 = Q1(0). Let T ∗ ≡ T1 ∧ T2, where

T1 denotes the underload termination time of system 1 and T2 denotes the overload termination

time of system 2. Hence we know that both systems will not change regimes for 0 ≤ t ≤ T ∗. For

0≤ t≤ T ∗, we have

Q′
2(t) = λ2(t)−α2(t)− γ2(t)≤ λ2(t)− γ2(t)

≤ (λ2(t)−λ1(t)) + (λ1(t)− γ2(t))

≤ (λ2(t)−λ1(t)) + (λ1(t)−µ(t) s(t)− s′(t)),

which implies that

|Q2(t)−Q1(t)|= Q2(t)

≤ Q2(0) + t‖λ2(t)−λ1(t)‖T +

∫ t

0

λ1(u)−µ(u) s(u)− s′(u)du

≤ Q2(0) + t‖λ2(t)−λ1(t)‖T +

∫ t

0

λ1(u)−µ(u)B1(u)du− (s(t)− s(0))
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≤ Q2(0) + t‖λ2(t)−λ1(t)‖T +

∫ t

0

B′
1(u)du− s(t) + s(0)

≤ Q2(0) + t‖λ2(t)−λ1(t)‖T +(s(0)−B1(0))− (s(t)−B1(t))

≤ |Q2(0)−Q1(0)|+ t‖λ2(t)−λ1(t)‖T + |B2(0)−B1(0)|, (EC.21)

where the second inequality holds because B1(t) ≤ s(t), the third inequality holds since B′
1(t) =

λ1(t) − µ(t)B1(t), and the last inequality holds since Q1(0) = 0, B2(0) = s(0) and B1(t) ≤ s(t).

Again, the desired conclusion follows by mathematical induction.

Finally, to show (iii), (EC.18), (EC.19), (EC.20), (EC.21) imply that

|X1(t)−X2(t)| ≤ |B1(t)−B2(t)|+ |Q1(t)−Q2(t)|

≤ 2t‖λ1 −λ2‖+2 |B1(0)−B2(0)|+ |Q1(0)−Q2(0)|

≤ 2(1∨ t)(‖λ1 −λ2‖T ∨ |X1(0)−X2(0)|),

where the third inequality holds because |X1(0)−X2(0)|= |B1(0)−B2(0)|+ |Q1(0)−Q2(0)| in all

regimes.

EC.3.3. Proof of Theorem 9.

Given λ ∈ Cp, we choose an increasing sequence {λk : k ≥ 1} with λk ∈Pmk ,nk
for each k ≥ 1 such

that ‖λk − λ‖T → 0 as k →∞. For each k ≥ 1, we can apply all the results above. By Theorem

8, we can define the pair (B,σ) in C2
p as the limit of the sequence {(Bk, σk) in C2

p with the

maximum/uniform norm. There is such a limit, because the sequence is necessarily Cauchy and the

space is a complete metric space. Given the limit, the convergence holds in the space by Theorem

8.

To show that the monotonicity extends, we start with λ1 ≤ λ2. We then construct sequences

{λi,k : k ≥ 1} for i = 1,2 with λ1,k ≤ λ2,k for each k and ‖λi,k − λi‖T → 0 as k → ∞. We apply

Theorem 7 for each k. Since the ordering is preserved in the limit, the conclusion of Theorem 7

holds for the limiting pair by Lebesgue monotone convergence. We use a similar argument to show

that the Lipschitz continuity properties in Theorem 8 extend as well: Starting with ‖λ1−λ2‖T = c,
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for any ǫ > 0, we construct sequences {λi,k : k ≥ 1} for i = 1,2 with ‖λ1,k − λ2,k‖ ≤ c + ǫ for each k

and ‖λi,k − λi‖T → 0 as k →∞ for i = 1,2. We then can apply Theorem 8 for each k ≥ 1, and get

the conclusion there with modification by ǫ. However, since ǫ is arbitrary, we get the preservation

of the Lipschitz property to the limit.

EC.4. one proof for §6.

Proof of Theorem 11. We recursively apply the monotone contraction operator Ψ in Theorem

10, starting with σ
(0)
j,i = 0, so that λ

(1)
1,i ≤ λ

(1)
2,i for all i, because λ

(1)
j,i = λ

(0)
j,i , j = 1,2 and the external

arrival rate functions have been assumed to be ordered: λ
(0)
1,i ≤ λ

(0)
2,i . By Theorem 7 applied to each

queue separately, using the assumed ordering B1,i(0) ≤ B2,i(0) for all i, we have first B(1)
1,i ≤ B(1)

2,i

and then σ
(1)
1,i ≤ σ

(1)
2,i . By (28), we then have λ

(2)
1,i ≤ λ

(2)
2,i . We then get the order holding for all n by

applying mathematical induction. However, λ
(n)
1,i → λ1,i as n →∞. Since the order is preserved in

the convergence, we deduce that λ1,i ≤ λ2,i for 1≤ i≤m. Finally, we can apply Theorem 7 to each

queue separately to get the remaining orderings.

EC.5. Remarks

Remark EC.1. (characterization of isolated points)

Definition 3 implies that t is an isolated point only if Q(t) = 0, B(t) = s(t). Moreover, if t is a

discontinuity point of ζ, then ζ(t− δ) < 0 and ζ(t) > 0 for some δ > 0; if t is a continuity point of

ζ, then ζ(t− δ) < 0, ζ(t) = 0 and ζ(t+ δ) < 0 for some δ > 0.

Remark EC.2. (an ODE for B in an underloaded interval)

In an underloaded interval, the total fluid content in service B(t) can also be characterized via

the ODE

B′(t) = λ(t)−µ(t)B(t), t≥ 0. (EC.22)

The formula in Proposition 1 provides the solution to the initial value problem determined by this

ODE with initial condition B(0).
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Remark EC.3. (applied significance of Pmn) We have provided a full algorithm when λ, s′, µ ∈

Pm,n. An algorithm for λ ∈ Cp can be developed by considering a sequence of successive approx-

imations in Pmn,n, but we see no motivation for doing so. We have introduced the space Pm,n of

piecewise polynomials as a device to establish mathematical results. In applications, it should suf-

fice to use any convenient representations of the functions λ and s, and assume that there are only

finitely many switches in any finite interval. While running the algorithm, that assumption can be

verified, and the model can be modified if too many switches occur. However, if we start from data,

then we could choose to let the functions be in Pm,n without loss of generality. Lemma 2 shows

that it is convenient to work in the space Pm,n, because we can obtain closed form expressions for

integrals. Moreover, if we want to bound the number of switches in advance, then we can bound

the parameters m and n, with the understanding that there is a tradeoff between the quality of fit

and the maximum number of switches.

EC.6. Simulation Verification for the Mt/M/s+GI Model

In this section we illustrate the single-queue algorithm for a relatively simple case, the Mt/M/s+GI

fluid queue model, in which only the arrival rate is time varying and only the abandonment cdf F

is non-exponential. We let the arrival rate function λ be sinusoidal, i.e.,

λ(t)≡ a+ b · sin(c · t), t≥ 0, (EC.23)

where we let b≡ 0.6a, c≡ 1 and a≡ s. By making the average input rate a coincide with the fixed

staffing level s, we ensure that the system will alternate between overloaded and underloaded. We

let the service rate be µ ≡ 1 and the abandonment rate θ ≡ 0.5; i.e., G(x) ≡ 1 − e−x for x ≥ 0.

Without loss of generality, for the fluid model we let s≡ 1.

For the general abandon-time cdf F , we considered two cases: Erlang-2 (E2) and

hyperexponential-2 (H2). We fix the mean at 1/θ. An E2 random variable is the sum of two i.i.d.

exponential random variables, so that there are no additional parameters. An H2 cdf is the mixture
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of two exponential cdf’s, and so has two additional parameters beyond its mean. An H2 pdf is of

the form

f(x) = p · θ1e
−θ1x +(1− p) · θ2e

−θ2x, x≥ 0,

We let p = 0.5(1−
√

0.6), θ1 = 2pθ, θ2 = 2(1− p)θ, which produces “balanced means” and squared

coefficient of variation (SCV, variance divided by the square of the mean) SCV ≡ c2 = 4.
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Figure EC.1 Performance for the Mt/M/s +E2 fluid model with sinusoidal arrival-rate function.

We only show the results for E2 abandonment; the results for H2 are similar. The fluid perfor-
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mance functions for E2 abandonment are shown in Figure EC.1 for t ∈ [0, T ] with T = 16. The

performance functions shown in Figure EC.1 are the boundary waiting time w(t), the fluid in

queue Q(t), the fluid in service B(t), the total fluid in the system X(t), the abandonment rate

α(t), and the rate fluid enters service (transportation rate) γ(t) ≡ b(t,0). We omit the departure

rate σ(t) = µB(t) because of the exponential service times.

In Figure EC.2 we compare the fluid approximations with results from a simulation experiment

for a very large-scale queueing system. The queueing model has a nonhomogeneous Poisson arrival

process with sinusoidal rate function as in (EC.23), with a = s = 2000, b = 0.6a = 1200. We compare

the fluid model predictions to a single sample path of the queueing system (one simulation run). In

Figure EC.2 the blue solid lines of the simulation estimations of single sample paths applied with

fluid scaling, and the red dashed lines are the fluid approximations. We conclude that the fluid

approximation is remarkably accurate as an approximation when the scale of the queueing model

is extremely large.

As discussed in Liu and Whitt (2010), the accuracy of the fluid approximations for large-scale

queueing systems can be explained by a many-server heavy-traffic limit. As discussed in §9 of Liu

and Whitt (2010), for smaller systems the queueing system has much greater stochastic fluctuations.

In those cases, the fluid model performance functions quite accurately describe the mean values of

the time-varying queue performance when the system experiences significant periods of overload;

e.g., see Figure 7 there.
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Figure EC.2 A comparison of the Mt/M/s+E2 fluid model with a simulation of the large-scale queueing system.




