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Abstract We previously introduced and analyzed the G,/ M, /s; + GI;, many-server
fluid queue with time-varying parameters, intended as an approximation for the cor-
responding stochastic queueing model when there are many servers and the system
experiences periods of overload. In this paper, we establish an asymptotic loss of
memory (ALOM) property for that fluid model, i.e., we show that there is asymptotic
independence from the initial conditions as time ¢ evolves, under regularity condi-
tions. We show that the difference in the performance functions dissipates over time
exponentially fast, again under the regularity conditions. We apply ALOM to show
that the stationary G /M /s + GI fluid queue converges to steady state and the periodic
G:/M;/s; + GI; fluid queue converges to a periodic steady state as time evolves, for
all finite initial conditions.
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1 Introduction

We seek a better understanding of large-scale multi-server queueing systems that
evolve with time-varying arrival rate, numbers of servers and other model para-
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meters. We are especially interested in large scale queueing systems that experi-
ence periods of significant overloading, typically alternating with underloaded pe-
riods. Toward that end, in [8, 9] we introduced deterministic fluid models with time-
varying parameters to approximate the performance of these queueing systems. In
[8], we considered the G,;/GI/s; + GI multi-server fluid model having time-varying
arrival rate and staffing (number of servers), customer abandonment (the +GI) and
non-exponential service and patience distributions (the two GIs); in [9], we consid-
ered the (G;/M;/s; + GI;)"™ /M, open network of many-server fluid queues, having
time-varying Markovian routing (the /M;) among m queues with time-varying cus-
tomer abandonment from each queue (the +GI;) and time-varying Markovian ser-
vice. The results in [8, 9] extend previous results for the Markovian time-varying
M;/M;/s; + M; model in [11-13] and the non-Markovian stationary G/GI /s + GI
model in [16].

In this paper, we focus on the impact of the initial conditions on the system perfor-
mance as time evolves. To treat the general nonstationary setting, we show that, under
regularity conditions, an initial difference in the state variables dissipates over time,
i.e., the large-time behavior is asymptotically independent of the initial conditions;
we call this the asymptotic loss of memory (ALOM) property. For non-stationary
Markov processes, ALOM has been called weak ergodicity [6, Chap. V]. We also
quantify the rate of convergence, showing that it is exponentially fast, again under
regularity conditions.

This ALOM property can be quite useful. First, we apply ALOM to establish
the existence of a unique steady state in stationary fluid models (that have constant
model parameters), and convergence to that steady state as time evolves. Although
the existence and form of this steady state were established in [16], the convergence
from transient system dynamics to this steady state (and the rate of the convergence)
has never been shown before, to the best of our knowledge.

We also employ ALOM to establish the existence of a unique periodic steady
state (PSS) in periodic fluid models (that have periodic model parameters), and con-
vergence to this PSS as time evolves. This PSS can be very useful for determining
system congestion in service systems with daily or weekly cycles. We use the al-
gorithm developed in [8, 9] to compute performance functions over initial intervals.
Since convergence is exponentially fast, this directly yields the PSS performance,
but we also develop an alternative direct algorithm to compute the PSS performance.
The rapid (exponential rate of) convergence established for ALOM also supports the
approximation of the transient performance in stationary and periodic models with
associated steady-state performance.

The specific fluid model we consider here is G, /M, /s; + GI;. This model is placed
on a firm mathematical foundation in Sect. 2 of [9]; it is a relatively minor modifica-
tion of the corresponding G, /Gl /s; + GI fluid model introduced and analyzed in [8].
The performance of the G;/M;/s; + GI; model is characterized in Sects. 3-5 of [9],
building on Sects. 4-9 of [8]. Regularity conditions were developed under which all
the standard performance functions are characterized. Moreover, an algorithm was
developed to compute these performance functions. We will draw heavily upon this
previous material.

The special case of the G;/M/s; + GI fluid queue, where only the arrival rate
and staffing function (number of servers) are time-varying, should be adequate for
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most applications. The most useful generalization then would be to allow GI service
instead of M service. With GI service, the fluid content density in service, b(¢, x)
(see (7) and (8) below) during an overloaded interval depends on the prior values
of the rate fluid enters service, {b(s,0) : 0 < s <}, (see (15) of [8]), and Theorem
2 of [8] shows that b(z,0) is characterized as the solution of a fixed point equa-
tion ((18) in [8]). Here we exploit the fact that, with M; service, the density of fluid
in service b(t, x) can be exhibited explicitly. We conjecture that ALOM extends to
G:/GlI/s; + GI models with non-exponential service times, provided that all the reg-
ularity conditions in [8] are satisfied, including the service-time distribution having a
density.

In fact, in [10] we provide a counterexample showing that ALOM does not extend
beyond M; service to all GI service. Indeed, we show in [10] that ALOM does not
hold even in all stationary fluid models. That is done by considering the GI/D /s + GI
fluid model with deterministic service times. Of course, the deterministic service-
time distribution does not satisfy the density condition in [8, 16]. Nevertheless, the
G/D/s + GI fluid queue has the stationary performance given in [16] and Theorem 4
here. However, the performance does not converge to that stationary value when the
system starts empty. Instead, it approaches a PSS. The same phenomenon occurs for
two-point service-time distributions when one point is 0, but otherwise we conjecture
that ALOM extends to all many-server fluid queues in which service-time distribu-
tions are neither deterministic nor exponential.

As in [2, 11-13], the fluid models can be related to the queueing models they
approximate via many-server heavy-traffic limits, but as in [8, 9], we do not discuss
such limits here. As in [16], we obtain important Markovian structure by considering
two-parameter processes, such as Q(¢, y), recording the queue content at time ¢ that
has been there for a duration y; see (7) below. (For related many-server heavy-traffic
limits, see [7, 15].) Our use of deterministic fluid models to capture the first-order
behavior of queueing systems is part of an established tradition [4, 14].

The rest of the paper is organized as follows: In Sect. 2 we review the defini-
tion and performance formulas of the G,;/M;/s; + GI; fluid queue. In Sect. 3 we
review comparison and Lipschitz continuity results from [9] that we will apply, and
we establish a new boundedness lemma, Lemma 1. In Sect. 4 we establish ALOM. In
Sect. 5 we show that the transient performance of the stationary G/M /s + GI fluid
queue converges to its steady state performance. In Sect. 6 we establish the existence
of a unique PSS and convergence to it in the periodic G;/M;/s; + GI; queue. We
draw conclusions in Sect. 7. Additional supporting material appears in the Appendix,
including comparisons with simulations of corresponding stochastic queueing sys-
tems.

2 The G;/M;/[s; + GI; fluid queue

In this section we review the established results for the G,/ M, /s; + GI; fluid queue
from [8, 9]; see those sources for more detail.
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2.1 Model definition

There is a service facility with finite capacity and an associated waiting room or
queue with unlimited capacity. Fluid is a deterministic, divisible and incompressible
quantity that arrives over time. Fluid input flows directly into the service facility
if there is free capacity available; otherwise it flows into the queue. Fluid leaves the
queue and enters service in a first-come first-served (FCFS) manner whenever service
capacity becomes available. There cannot be simultaneously free service capacity and
positive queue content.

The staffing function (service capacity) s is an absolutely continuous positive func-
tion with

t
s(t) E/ sSydy, t>0. )
0

We assume that the service capacity is exogenously specified and that it provides
a hard constraint: the amount of fluid in service at time ¢ cannot exceed s(¢). In
general, there is no guarantee that some fluid that has entered service will not be
later forced to leave without completing service, because we allow s to decrease.
We directly assume that phenomenon does not occur, i.e., we directly assume that the
given staffing function is feasible. However, Theorem 6 of [9] shows how to construct
a minimum feasible staffing function greater than or equal to an initial infeasible
staffing function.

The total fluid input over an interval [0, ¢] is A(z), where A is an absolutely con-
tinuous function with

t
A(I)Ef r(y)dy, t=0, @)
0

where A is the arrival-rate function. If the total fluid content in service at time ¢ is
B(t), then the total service completion rate at time ¢ is

o(t)=Bnu@), t=0. 3)

Let S(¢) be the total amount of fluid to complete service in the interval [0, ¢]; then

t t
S(t)E/O U(y)dy=/0 B(y)u(y)dy, t=0. @

Service and abandonment occur deterministically in proportions. Since the service
is M;, the proportion of fluid in service at time ¢ that will still be in service at time
t+xis

— t+x
Gi/(x)= e_M(t’H'x), where M(t,t +x) = / u(y)dy, (®)]
t

for t > 0 and x > 0. The time-varying service-time cdf of a quantum of fluid that
enters service at time 7 is G; =1 — G,(x). The cdf G, has density g (x) = n(t +
x)G;(x) and hazard rate hg, (x) = u(t +x), x > 0.
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The model allows for abandonment of fluid waiting in the queue. In particular,
a proportion F;(x) of any fluid to enter the queue at time ¢ will abandon by time 7 + x
if it has not yet entered service, where F; is an absolutely continuous cumulative
distribution function (cdf) for each ¢, —o0 < t < 400, with

F,<x)=[xft(y>dy, x>0, and F(x)=1-F(x), x>0. (6
0

Let hr, (y) = fi(y)/ F,(y) be the hazard rate associated with the patience (abandon-
ment) cdf F;. We assume that f;(y) is jointly measurable in ¢ and y, so the same will
be true for F;(y) and hf, (y).

System performance is described by a pair of two-parameter deterministic func-
tions (B Q) where B(t, y) (Q(t y)) is the total quantity of fluid in service (in queue)
at time ¢ that has been so for a duration at most y, for t > 0 and y > 0. These func-
tions will be absolutely continuous in the second parameter, so that

é(r,y)E/yb(t,x)dx and Q(t,y)z/yq(t,x)dx, @)
0 0

for > 0 and y > 0. Performance is primarily characterized through the pair of two-
parameter fluid content densities (b, g). Let B(¢) = l§’(t, oo) and Q1) = Q(t, o0) be
the total fluid content in service and in queue, respectively. Let X (t) = B(¢) + Q(¢)
be the total fluid content in the system at time 7. Since service is assumed to be M;,
the performance will primarily depend on b via B. (We will not directly discuss B.)

Since fluid in service (queue) that is not served (does not abandon or enter service)
remains in service (queue), we see that the fluid content densities b and g must satisfy
the equations

bt + u, x +u) =b(z,x)w =b(t, x)e MEIFW) )
Gi—x(x)

q(t—i—u,x—i—u):q(t,x)w, 0<x+4u<w(), &)
Fr_x(x)

for t >0, x >0 and u > 0, where M is defined in (5) and w(¢) is the boundary
waiting time (BWT) at time ¢,

w(t) =inf{x > 0:¢(r,y) =0forall y > x}. (10)

(By Assumptions 4 and 5 below, we are never dividing by 0 in (8) and (9).) Since
the service discipline is FCFS, fluid leaves the queue to enter service from the right
boundary of g (¢, x).

Let A(t) be the total amount of fluid to abandon in the interval [0, ¢] and let E(¢)
be the amount of fluid to enter service in [0, 7]. Clearly, we have the flow conservation
equations: For each t > 0,

00)=Q00)+ A1) —A@) —E(@) and B@)=B0)+E@)—S@. (1D
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The abandonment satisfies
t o0
A(I)E/O a(y)dy, Ot(t)E/O q(t, y)hr_,(y)dy (12)

for t > 0, where «(¢) is the abandonment rate at time ¢ and & f, (y) is the hazard rate
associated with the patience cdf F;. (Recall that F; is defined for ¢ extending into the
past.) The flow into service satisfies

t
E(t)E/ b(u,0)du, t>0, (13)
0

where b(t, 0) is the rate fluid enters service at time 7. If the system is OL, then the fluid
to enter service is determined by the rate that service capacity becomes available at
time ¢,

n)=s'@)+o@)=s"@)+BOu), =0, (14)

in which case 7(¢) coincides with the maximum possible rate that fluid can enter
service at time t,

y(O) =s"(t) +s(Op@). 15)

To describe waiting times, let the BWT w(z) be the delay experienced by the
quantum of fluid at the head of the queue at time ¢, already given in (10), and let the
potential waiting time (PWT) v(¢) be the virtual delay of a quantum of fluid arriving
at time ¢ under the assumption that the quantum has infinite patience. A proper de-
finition of ¢, w and v is somewhat complicated, because w depends on ¢, while ¢
depends on w, but that has been done in Sect. 7 in [8].

We specify the initial conditions via the initial fluid densities 5(0, x) and ¢ (0, x),
x> 0. Then B(O y) and Q(O y) are defined via (7), while B(0) = B(O 00) and
000 = Q(O, 00), as before. Let w(0) be defined in terms of ¢ (0, -) as in (10). In
summary, the sextuple (A(r), s(r), u(t), F;(x), b(0, x), g(0, x)) of functions of the
variables ¢ and x specifies the model data. The system performance is characterized
by the sextuple (b(t, x), q(t, x), w(t), v(t), a(t), o (1)).

2.2 Assumptions on the model data
We directly assume that the initial values are finite:
Assumption 1 (finite initial content) B(0) < oo, Q(0) < oo and w(0) < oo.

As in [8, 9], we consider a smooth model. Let C, be the space of piecewise con-
tinuous real-valued functions of a real variable, by which we mean that there are only
finitely many discontinuities in each finite interval, and that left and right limits exist
at each discontinuity point, where the whole function is right continuous. Thus, C,

is a subset of D, the right-continuous functions with left limits.

Assumption 2 (smoothness) s’, A, f;, f.(x), i, b(0,-),q(0,-) are in C, for each
x>0andt, —oco <t < o00.
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To treat the BWT w, we need to impose a regularity condition on the arrival rate
function and the initial queue density, as in Assumption 10 of [8]. Here and later we
use the notation 1 and | to denote supremum and infimum, respectively, e.g.,

A = sup {r@)] and xizoinf {r)}. (16)
<u<t

O<u<t

These apply in the obvious way, e.g., ¢+ (0, x) below denotes the infimum over the
second variable over [0, x] and Xgo denotes the supremum over the positive halfline.

Assumption 3 (positive arrival rate and initial queue density) For all ¢ > 0, )Ltl >0
and ¢ (0, w(0)) > 0 if w(0) > 0.

Appendix E of [8] illustrates the more complicated behavior that can occur for the
BWT w when A} =0.

To ensure that the PWT v is finite, we assume bounds on the minimum staffing
level and the minimum service rate, as in Assumptions 7 and 8 of [9].

Assumption 4 (minimum staffing and service rate) sio > 0 and ,uio > 0.

To treat the time-varying abandonment cdf F;, we introduce bounds for the time-
varying pdf f; and complementary cdf F;, as in [9]. Let

fTEsup{ft(x):xZO, —oo<t<oo} (17

and

FY(x) =inf{F,(x) : —00 <t < 00}. (18)

Assumption 5 (controlling the time-varying abandonment) f T < oo, where f1 is
defined in (17), and Fi(x) > 0 for all x > 0, where F¥(x) is defined in (18).

We analyze the fluid queue under the assumptions above by considering alternat-
ing intervals over which the system is either underloaded (UL) or overloaded (OL),
where these intervals include what is usually regarded as critically loaded. In particu-
lar, an interval starting at time 0 with (i) Q(0) > 0 or (ii)) Q(0) =0, B(0) = s(0) and
A(0) > 5’0) + o (0) is OL. The OL interval ends at the OL termination time

Tzinf{uzo: Q(u):OandA(u)fs’(u)—i—a(u)}. (19)

Case (ii) in which Q(0) =0 and B(0) = s(0) is often regarded as critically loaded,
but because the arrival rate A(0) exceeds the rate that new service capacity becomes
available, s'(0) 4+ o (0), we must have the right limit Q(0+) > 0, so that there exists
€ > 0 such that Q(u) > 0 for all u € (0, 0 + €). Hence, we necessarily have T > 0.

An interval starting at time 0 with (i) Q(0) < 0 or (i) Q(0) =0, B(0) = s(0) and
A(0) < 5'(0) + 0 (0) is UL. The UL interval ends at UL termination time

T=inf{u>0:Bu)=s)and A(u) > s"(u) + o (w)}. (20)
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As before, case (ii) in which Q(0) =0 and B(0) = s(0) is often regarded as crit-
ically loaded, but because the arrival rate A(0) does not exceed the rate that new
service capacity becomes available, 7(0) = s'(0) + o (0), we must have the right
limit Q(0+4) = 0. The UL interval may contain subintervals that are convention-
ally regarded as critically loaded, i.e., we may have Q(t) =0, B(t) = s(¢) and
A(t) = s'(t) + o (t). For the fluid models, such critically loaded subintervals can be
treated the same as UL subintervals. However, unlike an overloaded interval, we can-
not conclude that we necessarily have T > 0 for a UL interval. Moreover, even if
T > 0 for each UL interval, we could have infinitely many switches between OL in-
tervals and UL intervals in a finite interval. Thus we make assumptions to ensure that
those pathological situations do not occur.

As discussed in [8], for engineering applications it is reasonable to directly assume
that there are only finitely many switches between OL and UL intervals in each finite
time interval, but it is unappealing mathematically. In Sect. 3 of [9], we provided suf-
ficient conditions based directly on the model parameters for there to be only finitely
many switches between OL intervals and UL intervals in each finite time interval. In
particular, we showed that it suffices to impose regularity conditions on the function
c@)y=a(t) —s'(t) —s@u(), t >0. Let Z,, T be the subset of zeros of the function
¢ in [0, T] and let |A| be the cardinality of a set A. Theorem 2 of [9] shows that the
number of switches between overloaded and underloaded intervals is finite in each
finite interval if |Z; 7| < oo for each T > 0.

Assumption 6 (controlling the number of switches) For all T > 0, |Z; 7| < c0.

In Sect. 3 of [9], we also showed that a sufficient condition for |Z; 7| < oo for
each T > 0 is for the functions A, s and p to be piecewise polynomials (with finitely
many discontinuities in each finite interval). Assumption 6 is also easy to verify in
other settings, as we illustrate here with sinusoidal functions. We assume that all
assumptions in this section are in force throughout the paper.

2.3 The performance formulas

In [8, 9], we showed how the system performance expressed via the basic functions
(b, q,w,v) depends on the model data (A, s, u, F, b(0, -),q(0, -)). From the basic
performance four-tuple (b, ¢, w, v), we easily compute the associated vector of per-
formance functions (é, Q B,0,X,0,S,a, A, E) via the definitions in Sect. 2.1. We
quickly review the main results for the basic functions (b, g, w, v); see [8, 9] for more
details.

For the fluid model with unlimited service capacity (s () = oo for all r > 0), start-
ing at time 0,

b(t,x) = e M0t — )1 ey + e MODpO0, x — )1 (=p, 1)
t
B(t) = / e ME=xD5(t — x)dx + B(0)e MO0 >0,
0

where M is defined in (5). If, instead, a finite-capacity system starts UL, then the
same formulas apply over the interval [0, T), where T = inf{tr > 0: B(t) > s(¢)},
with T = oo if the infimum is never obtained.
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For the fluid model in an OL interval, B(¢t) = s(¢) and

b(t,x) = (s'(t —x) +s(t —x)pu(t —x))e M0 )

+5(0,x —1)e MO . (22)

Let g(¢, x) be g(t, x) during an OL interval [0, T'] under the assumption that no
fluid enters service from queue. During an OL interval,

- ~ thx(x)
g, x) =1t —x)F—x ()1 jx<ty + g0, x = 1) =———— lr<x)s (23)
F x(x—1)

- ~ ~ Fl—x(x)

qt,x) =q(t —x,0F ()1 x<wiyary + 40, x — 1) =————— 1 <x<w(n)
Fix(x—1)
_ Fi (%)
= At _X)Ft—x(x)l{xgw(t)At} +q(0,x — t)—t; {t<x<w(t)}-
Fix(x—1)

We characterize the BWT w appearing in the formula for g above by equating the
quantity of new fluid admitted into service in the interval [¢, t + §) to the amount of
fluid removed from the right boundary of ¢ (z, x) that does not abandon in the same
interval [z, ¢ + §). By careful analysis (Theorem 3 of [8]), that leads to the nonlinear
first-order ODE

140

(24)
for y in (15), where w’(¢) denotes the derivative. (By Assumptions 3, 4 and 5, we are
not dividing by 0 in (23) and (24). More detail on the structure of w is given in [8].
Overall, w is continuously differentiable everywhere except for finitely many 7.) We
compute the end of an OL interval by letting it be the first time ¢ that w(#) =0 and
A(t) < s'(t) + s()u(t). During an OL interval, the PWT v is finite and is the unique
function in D satisfying the equation

v(t — w(t)) =w(t) forallr>O0. (25)

These results yield an efficient algorithm to compute the basic performance four
tuple (b, g, w, v). First, for each UL interval, we compute b directly via (21), termi-
nating the first time we obtain B(¢) > s(¢). Second, for each OL interval, we compute
b via (22), g via (23) and then the BWT w by solving the ODE (24). We consider
terminating the OL interval when w(¢) = 0. We actually do terminate the OL interval
if also A(z) < s'(¢) + s(¢t)u(t). The proof of Theorem 5 in [8] provides an elementary
algorithm to compute v during an OL interval from (25) once w has been computed.
Theorem 6 of [8] shows that v satisfies its own ODE under additional regularity con-
ditions.
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3 Structural results

In this section, we present three structural results that we will apply here, two from
[9] and one new. We first review the important comparison and Lipschitz continuity
results established in Theorems 7 and 8 of [9].

Our comparison result establishes an ordering of the performance functions given
an assumed ordering for the model data functions.

Theorem 1 (fundamental comparison theorem) Consider two fluid models with com-
mon staffing function s and service rate function u. If Ay < X2, B1(0) < B(0),
q1(0,-) =q2(0,-) and hf,, = hF, ,, then

(Bi1(). 41,41, Q1(), X1, wi, v1,01) < (B2(), G2, q2. Q2(), X2, w2, v2, 02).

Our Lipschitz continuity result also applies to functions. For it, we use the uniform
norm on real-valued functions on the interval [0, T]: ||x||7 =sup{|x(¢)|: 0 <t <T}.

Theorem 2 (Lipschitz continuity) The functions mapping (i) (A, B(0)) in C, x R
into (B,o) in (C%,, (ii) (A, B(0), Q(0)) in C,, x R? into Q in Cp, and (iii) (1, X(0))
in C, x Rinto X in Cp, all over [0, T'], are Lipschitz continuous. In particular,

),

IBi — Ballr < (1 v T)(IlA1 — A2ll7 v | Bi(0) — B2(0)

loy — o2l < uf | B1 — Bzl
101 = Qallr < (1 vV T)(IA1 = X2ll7 v |B1(0) — B2(0)] v | Q1(0) — Q2(0)
X1 = Xallr <200V T) (|41 — A2ll7 v | X1(0) — X1(0)]).

),

If B1(0) = B3(0) and Q1(0) = 02(0) (for Q and X), then

|B1 — Baolit < TllA1 — A2llT, 101 — O2llr = TlA — AzllT,
X1 — Xallr <2T||A1 — Az|lT.

We now add a new structural result: boundedness. For this elementary bounded-
ness result and other results to follow, we make a stronger assumption on the staffing
and the rates in the model data, requiring that they be uniformly bounded above and
below. Our conditions will involve the maximum rate fluid can enter service: y in
(15) as well as the two-parameter abandonment hazard rate hfr, (y) = fi(y)/ F; ),
defined after (6). Let

hy = sup  hp(),  hh = inf RIACOE

—c0<t<T,x>0 —oo<t<T,x>

Ftx)y= sup F ), Fl(x)= inf F,(x).
—00<t<0

—00<I<00
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Assumption 7 (uniformly bounded staffing and rates) The staffing and the rates in
the model data are uniformly bounded above and below, i.e.,

Ao <00, pulo<oo, sl<oo, ¥ < oo, h;oo<oo,

Me=0, ph>0, sk>0, yh>0, rl_ >0

Assumption 7 repeats Assumption 4 and strengthens Assumptions 3 and 5.
We also assume a further regularity condition on the abandonment cdf’s.

Assumption 8 (abandonment cdf tail) F1(x) — 0 as x — oo.
We assume that these two additional assumptions are in force for the remainder of
the paper. Our boundedness result also exploits the finite initial conditions, provided

by Assumption 1.

Lemma 1 (boundedness) Under the assumptions above, all performance functions
are uniformly bounded. In particular,

B(t) <s(t) <sk.  b(t,x) <b0,x) Vil Vvyd,

.
Q(t)<<2 >VQ(0) g1, 1) < (0, x) v AL
Feo
w() < (FH)~! ( ¢> (@+ <0>)
Ao Voo
oAl
at) < =20 and o (1) < plosk,
Fo

Proof Most are elementary; only Q(¢) and w(¢) require detailed argument. Flow
conservation in (11) implies that Q'(t) = A(t) — a(t) — y () < Ago — a(t). Since
a(t) > hﬁm Q(1), we have Q'(t) < 0 whenever Q(¢) > ,\io/hﬁm. The bound for w(¢)
follows directly from (30) and the final part of the proof of Theorem 3 below, which
does not use the present lemma. g

4 Asymptotic loss of memory (ALOM)

In this section, we establish ALOM for the G;/M,/s; + GI, fluid model. We start
with an illustrative example.

Example 1 (a sinusoidal G;/M /s + M example) Consider a G;/M /s + M fluid
queue that has the sinusoidal arrival rate function

A(t) =a+ b -sin(ct), (26)
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Fig.1 The performance measures for the G; /M /s + M model in Example 1 with four different (ordered)
initial conditions

with a = ¢ =1 and b = 0.6, exponential service distribution with rate u = 1, con-
stant staffing function s = 1, and exponential abandonment time distribution with rate
6 = 0.5. Applying the algorithm in Sect. 8 of [8], we compute and compare the per-
formance measures w(t), Q(t), B(t), X (t) and b(t, 0) with four different (ordered)
initial conditions: the system is initially (i) empty with Q(0) = B(0) = 0 (the yellow
solid lines), (ii) UL with Q(0) =0, B(0) = 0.5 < 1 = s (the dark dashed lines), (iii)
OL with Q(0) = 0.4, B(0) = 1 = s (the light-blue dashed lines) and (iv) OL with
0(0)=0.8, B(0) =1 = s (the red dotted lines), as shown in Fig. 1.

Figure 1 shows that the differences in these four cases converge to zero so fast that
it looks as if the distance becomes 0 after finite time (but that actually never occurs),
even though the initial conditions are dramatically different. Figure 1 also illustrates
the comparison result in Theorem 1.

To state our ALOM result, we use A to denote absolute difference. Specifically,
for real-valued functions X; on [0,00), i =1,2,and 0 < T < o0, let AX>(¢) =

AX(t) =|X1(1) — X2(0)], 1 = 0.
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Theorem 3 (asymptotic loss of memory) Consider two G;/M;/s; + GI; fluid models
with common arrival rate function X\, service rate function |, staffing function s,
and time-varying abandon-time cdf’s Fy, but different initial conditions (satisfying
Assumption 1). Then (a)

AX(T) < C1e™ D) for C(T) =T (uy Ah,). Q7

where C1 = C1(B1(0), B2(0), q1(0, -), ¢2(0, -)) is the constant

Cy = AB(0) + [0 w([m(o, )V q20,x)] — [q1(0,x) A g2(0, x)]) dx
< AB(0)+ Q1(0) + 02(0). (28)
Moreover,
Aa(T) <hl, Ce D and Ao (T) < p}Cre M (29)
forall T > 0. Hence, for Cy = ,uio A hioo >0andall T >0,
AX(T) < Cre €T, Aa(T) < h;&cle*CZT and Ao (T) < pl,Cre= €T,

In addition, for each T > 0,

AX(T)
Aw(T) < ——
ApFY (wi(T) v wa(T))

< C3AX(T) < (C3C1)e T, (30)

where
L 0 0
C3= (F) ' (skopdo/pl) v <(w1(0) v wz(0)) + M) (31)
Soo Moo

(b) I, in addition, the initial content is ordered by
X100) < X2(0) and q1(0,x) <q2(0,x) forallx >0, (32)

then X1(t) < X»(¢t) forallt >0,

: AX(0)
AX'(T)<0 and AX(T)< ———, >0, (33)
1+ C(T)
for C(T) in (27), so that
AX(T) <e T AX(0),
(34)

Aa(T) <hl, AX(T) and Ac(T) < puh AX(T).
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Proof We first show that (a) follows from (b). Without loss of generality, we have
X1(0) < X5(0). Then X1(0) < X»(0) is equivalent to B1(0) < B»(0) and Q1(0) <
02(0). In order to derive (a) from (b), construct another two systems, 3 and 4, with
q3(0, x) =q1(0,x) v g2(0, x), B3(0) = B1(0) v B2(0), q4(0, x) = g1 (0, x) A g2(0, x)
and B4(0) = B2(0) A B2(0). With this construction, systems 3 and 4 are bona fide
fluid models, with X4 () < X1 (t) < X3(t) and X4(¢) < X»(¢) < X3(¢) for all ¢, which
implies that AX; 2(¢) < AX34(¢) forall £. Since AX3 4(0) < C; for Cy in (28), (27)
in (a) follows from (34) for AX3 4(¢). (The final bound on C; in (28) arises when
the supports of g1 (0, -) and ¢g»(0, -) are disjoint sets, which actually is not allowed by
Assumption 3, but can be approached.)

Now we prove (b). Observe that (34) follows (33) because dividing the interval
[0, T'] into N subintervals yields

1
L+ L (g Ak

N
AX(T) < ( ) AX(0).

Letting N — oo, we get (34).

We now prove (33). With the ordering assumed in (32), all functions in the two
systems can be ordered according to Theorem 1. Hence, there are only three cases:
(i) both systems are UL; (ii) both systems are OL; (iii) system 1 is UL and system 2 is
OL. We treat the three cases separately and use mathematical induction to show (33).

In case (i), we have B;(0) < B>(0) < s(0) and Q1(0) = Q2(0) =0. Let T* be
the underload termination time of system 2. For 0 < ¢ < T*, neither system changes
regime. Observe that AX () = AB(¢t). Flow conservation implies that

B/(t) = A(t) — u(t)Bi(t) fori=1,2,
which yields
AX'(s) = AB'(s) = —u(s)AB(s) < —uf AB(t) = —pf AX(1), 0<s<t,

where the inequality follows from u(s) > ,u,ti and AB(s) > AB(t) since AB(s) has
negative derivative. Therefore, we have

AX(t) — AX(0) < —p} tAX (1)

and

AX(z)g( ! ; )AX(O). (35)

I+ pt

In case (ii), we have Bj(0) = B(0) = s(0) and (0, -) < ¢2(0,-). Let T* be
the overload termination time of system 1. For 0 < ¢ < T*, neither system changes
regime. Observe that AX () = AQ(t). Theorem 1 implies that g (¢, -) < g2(t, -) and
wi(f) < wy(t) for <t < T*. Therefore, we have

wi (1)

wy (1)
ax(t) — oy (1) =/O q(t, x)hE,_ (x)dx —/0 q1(t, x)hE,_, (x)dx
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wi(t)
:/0 (QZ(tvx)—Cll(lax))hp,,x(x)dx

w2 (1)
+ / a2t X)hp,_ (x)dx
wi (1)

w (1)

wi (1)
ihﬁ,/o (612(1,X)—611(t,X))dx+hﬁt/ @ (t, x)dx

wy ()
= h}, (Q2(1) — Q1(1) = h}, AQ(1). (36)
Flow conservation implies that
Qj(1) = 1(t) —ei(t) —y(t) fori=1,2,
which yields
AX'(s) = AQ'(s) = —(2(s) — a1 (s))
< —hp AQ(s) < —hj AQ() = —h}AX(1), 0<s<t,

where the inequality follows from (36). Hence, reasoning as for (35) in case (i), we
have

AX() < ( ! T )AX(O). (37
I+ hpt

In case (iii), we have B1(0) < s(0) = B(0) and Q1(0) =0 < 07(0). Let T* =
T1 A T, where T is the underload termination time of system 1 and 75 is the over-
load termination time of system 2. For 0 <t < T*, neither system changes regime.
Observe that AX (1) = AB(t) + AQ(t) = s(t) — B1(t) + Q2(t). Flow conservation
in (11) implies that the derivatives satisfy

05(t) = A1) —aa(t) — y (1),
s'(t) =y (1) — p(@0)s (@),
Bi(t) = AM1t) — n(t) B (1),

which implies that

AX'(1) =s'(t) = B{(t) + Q5(1)
= —ap(t) — p(0)(s(1) — Bi(1)). (38)

Reasoning as in case (ii), we have

ax(t) = hy, Oa(t) = hy, AQ (). (39)

Therefore, (38) and (39) imply that

AX'(s) = —h}, AQ(s) — i AB(s)
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< —(hy, A1))(AQ() + AB(s))
< —(hy, AS)AX () < —(h}, Aui)AX (D), O0<s<t.
Hence, reasoning as for (35) in case (i), we have

1

AX(t)f(ﬁ
l+(th/\;,L,)t

) AX(0). (40)

Finally, combining (35), (37) and (40), the desired (33) follows by mathematical in-
duction.

We directly have the second and third inequalities in (34), which implies (29)
because AQ(T) < AX(T) and AB(T) < AX(T).

Finally, we treat w(¢). As above, it suffices to assume that we have the ordering in
(32) of (b). Then (30) follows from

wa(T)
AX(T) > AQ(T) =/ ’ MT — x)Fr_y(x)dx
wi(T)
> A4 FV (wa(T)) Aw(T). (41)

We now construct w* such that wy(7") < w* for all T'; in general, w* will depend

on w3 (0). First, note that at time T, = 02(0)/ /Liosio, all fluid that was in queue 2 at
time 0 is gone (entered service or abandoned). Choose w > 0 big enough such that

FT () < skops/1L. ODE (24) implies that for 7 > T,

i) = 1 SOR)
z At — w2 () Fr—wy ) (w2 (1))
b
<1-— w <0,
AL F Y ()

if wy(f) > w for some ¢. Hence w is an upper bound for w;(¢) if wa(Ty) < w. If
wa(Ty) > w, it is easy to see that wy () decreases until it is below w because we can
bound w’z(t). This argument implies that w2 (#) < w; = (w V (w2(0) + Ty,)) for all
t > 0. The constant C3 in (30) is obtained by inserting established bounds. g

For a real-valued function x on [0, 00), let ||x||; = fooo |x(2)|dt.
Corollary 1 Under the conditions of Theorem 3(b),
|b1(T. ) = bo(T. )|, = AB(T) < AX(T) < AX(0)e =D, w
|g1(T.) = 2T, )|, = AQ(T) < AX(T) < AX(0)e €D,

Hence, there is exponential rate of convergence under the conditions in (a).

Remark I (monotonicity of the difference of two queues) Theorem 3 shows that ex-
cept for the densities g and b, the differences of all performance measures (AX, Ac,
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Ao, and Aw) of the two queues go to 0 as t — oo. However, even in case (b), only
AX(t) goes to 0 monotonically. Note that Ax(t) =0, Aw(¢) =0 and Ao (¢) >0
when both queues are UL; Ax(t) >0, Aw(z) > 0 and Ao (¢) = 0 when both queues
are OL.

Remark 2 (Example 1 revisited) In Example 1, we have C(T) = u A0 = 0.5 in (27)
of Theorem 3, A%, = 0.4 > 0, A}, = 1.6 < 0o, F¥(x) = ¢~ > 0 and F1(x) — 0
as x — 00. Moreover, ¢(t) = A(t) — us(t) — s'(t) =a — us + b - sin(ct) is sinu-
soidal so that it has finitely many zeros in any bounded interval. Therefore, all con-
ditions in Theorem 3 are satisfied, establishing the exponential rate of convergence
seen in Fig. 1.

5 The stationary G/M /s + GI fluid queue

In this section, we focus on the stationary G/M /s + GI fluid queue. The steady-state
performance of the more general GI/GI/s + GI fluid queue with GI service was
characterized in [16], but the transient dynamics was only characterized completely
in [8]. We first review the steady-state performance with GI service.

Theorem 4 (steady state of the G/GI /s + GI fluid queue, from [16]) The G/GI/s +
Gl fluid model specified with model parameter (A, s, i, G, F) has a steady-state per-
Sformance described by the vector (b, q, B, O, w, o, ), whose character depends on
whether p=A/spu <1orp>1.

(a) UL and balanced cases: p <1.1If p <1, then for x >0
B =sp, b(x) =1G(x), oc=Bu=y=2»x,
O=a=w=gqx)=0.
(b) OL case: p > 1. If p > 1, then for x > 0,
B=s, bx)=suGx), o=y=su,
a=h—sp=(p—spu=2rF(w),

1 W _
w = F—1<1 - ;>, Q:A/ F(x)dx and q(x)=AF(x)lj0<x<u)-
0

Complementing the proof of Theorem 4 in [16], we can apply [8] to give an alter-
native proof to show that the steady state given in Theorem 4 is indeed an invariant
state, i.e., if the system is initially in this state, then it stays there forever.

Proof First consider (a) Wiﬂ} p < 1.By (9) of [8], the initial rate that service is being
completed with (0, x) = AG(x) is

o (0) =/oob(0,x)hg(x)dx =/Ooxé(x)ﬂdx =A. (43)
0 0 G(x)

@ Springer



162 Queueing Syst (2011) 67: 145-182

If p <1, then B(0) =sp < s and there initially is spare capacity. If p = 1, then
A(0) = X = 0. In both cases, the system remains UL. Hence we can apply (13) in
Proposition 2 of [8] to characterize the evolution of b. For suitably small ¢ > 0, we
get
. G(x)
b(t,x) =b(t —x,00G(x)ljo<x<s} + b0, x —t) =——1
Gx—1)

{x>t}

_ _ G(x) _
= )»G(x)l{Ongz} +)\.G()C — t)ml{x>t} = )\.G(X) = b(O,x),

which implies that the system stays UL with b(t, x) = b(0, x), B(t) = B(0) and
o(t) = o0(0) for t > 0. For an alternative proof under the extra condition of dif-
ferentiability, we can exploit the transport partial differential equation (PDE) from
Appendix B of [8]. That tells us that b(¢, x) satisfies the PDE

b b
—(t,x)+ —(t,x)=—hg(x)b(t, x),
Jt 0x

which implies that

_daéu»

- — hg(x)AG(x)

ab ab
5ﬂ&x%=—5;Qn—%c@waﬂ=
=xg(x) —hg(x)G(x)A=0.

Next consider case (b) with p > 1. We can apply (43) to see that the initial rate
of service completion, starting with b(0, x) = spuG(x), is 0(0) = su. Since p > 1,
we necessarily have A(0) = A > su = 0(0). Hence, the system necessarily remains
OL over a positive interval. Next we apply the fixed point equation for b during an
overloaded interval. Assumption 8 in [8] is satisfied with this initial density b(0, x)
because

t(b,g, T)= sup dy=su < oo. (44)

0<s<T

/“bmwmw+y)
0 G(y)
Next we observe that b(0, x) satisfies the fixed point equation (18) of [8], i.e.,

t t
b(t,0)=a(r) +/ b(t —x,0)g(x)dx = S/,LG(I) +/ b(t —x,0)g(x)dx, (45)
0 0

yielding su = suG (1) + spuG(t) = su. Theorem 2 of [8] implies that b(z, 0) = spu,
t > 0, is the unique fixed point. Next Proposition 6 of [8] implies that the service
density in queue satisfies

- F(x)
q(t,x) =AF ()1 <y +q0,x — 1) =Ly cx<w@))
Fx—1)

= AF(x)1{05x§w(t)}~ (40

@ Springer



Queueing Syst (2011) 67: 145-182 163

It remains to show that w’(0) = 0, so that w(¢) = w(0) = F~}(1 — (1/p)). However,
ODE (24) implies that

__r© T R
q(0, w(0)) AF (w(0)) r(1/p)

w'(0) = 1

’

where the third equality holds since w(0) = w = F~'(1 — 1/p). The last equality
holds since p = A/su. Hence, w(t) = w in (46), so that ¢ (¢, x) = g(x) and all per-
formance functions are constants for 0 < ¢ < § for some small § and thus for all
t>0. O

Now we apply Theorem 3 to show that the transient performance in the G/M /s +
GI fluid queue with exponential service converges to the steady state described in
Theorem 4 for any given initial conditions. As a byproduct, this establishes unique-
ness for the steady-state performance in Theorem 4 in the special case of M service.
We give two convergence results, the first obtained by directly combining Theorems 3
and 4.

Theorem 5 (direct implication of ALOM) For the stationary G/M /s + GI fluid
model, as t — 00,

(a(t), w(t), Q(1), (1), B(t)) = (e, w, Q,0, B), 47)
lg@.y—qC)|, =0 and |b@t ) —b()|,— 0, (48)

where the vector (q(-), o, w, Q, b(-), o, B) is the steady-state performance in Theo-
rem 4. Hence, the steady-state performance specified by Theorem 4 is unique.

Proof Consider two G/M /s 4+ GI fluid queues that have identical model parameters
but different initial conditions. Let system 1 be initially in the steady state given
in Theorem 4, let system 2 have arbitrary initial condition. Theorem 4 implies that
system 1 stays in steady state for all # > 0. Therefore, the convergence in (47) and
(48) follows from ALOM in Theorem 3. O

We next establish a stronger convergence result, whose proof does not rely on
the ALOM property in Theorem 3. We establish pointwise convergence of the fluid
content densities b and g as t — oo in addition to (47) and (48).

Theorem 6 (more on convergence to steady state) Consider the stationary G/M /s +
GI fluid model. In addition to Assumption 1, assume that the initial service density
satisfies

limsup b(0, x) < oo. 49)
X—>00
Then, in addition to the conclusions of Theorem 5,

(q(t9x)vb(t’x)) — (C](X), b(x)) ast — oo,
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Table 1 How the number of

switches between OL and UL Traffic intensity Initial condition Number of switchings
intervals depends on the model
parameter p and the initial OL 0
" . . p>1
conditions, in the setting of UL (CL) 1
Theorem 6 oL |
p<l
UL (CL) 0
OL 0
p=1
UL (CL) 0

for each x > 0, where the limit (q(x), b(x)) is the pair of steady-state fluid densi-
ties in Theorem 4. Moreover, there is at most one switch between the OL and UL
(including critically loaded) regimes during the convergence. More precisely, the
number of switches depends on the model parameter p = A/su and the initial con-
ditions as shown in Table 6. If p > 1, there exists a T > 0 such that for t > T,
w(t) — w monotonically, as t — oo. If, in addition, C = f(b(())/su)vw > 0 where

ti = info<x<; f(x), then

Aw(t) = ‘w(t) — Aw(T), fort>T (50)

1
ws——
14+ —T)C

so that

Aw@) <e "DCAWT), t>T. (51)

Proof We only give the proof for the case in which the system is initially UL, i.e.,
q(0,x) = w(0) =0 for any x and B(0) = fooo b(0, x) dx < s. The other case in which
the system is initially OL or critically loaded is treated in essentially the same way;
the details are given in the Appendix. For simplicity, we assume u = s = 1, and
therefore p = A /s = A.

(i) p < 1. Since the service is exponential at the fixed rate i = 1 and the staffing is
fixed at s = 1, the maximum output rate of the service facility is 1. Hence, the system
always stay in the UL regime. Thus we can apply (21) to characterize the density in
service. By Assumption (49),

b(t,x) = pe “jo<x<i) + b0, x —1)e " 1jx=y)

— pe ¥

ast — 00, x >0,

t o0
B@t) = / pe " dx+/ b0, x —t)e 'dx
0 t

= p(l—e™")+e"B0),

=p—(p—B0O0)e ' = p ast— co.
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Moreover, o (t) = B(t) — p ast — oo. If p =1, then we obtain the monotone con-
vergence

B)=1—(1—-B@0)e " 11 ast— oo.

(i1) p > 1. As in case (i), the maximum output rate of the service facility is 1.
Since p > 1, A > 1, so that the system necessarily will switch to the OL regime in
finite time. From (21), we see the b(#, x) and B(¢) initially evolve as

b(t,x) = Pe_xl{xst} +e b0, x — s,
Bt)=p—(p—BO)e, 0=r=n. (52)

The total fluid content in service B(¢) increases in ¢ until time #; at which we first have
B(t) = B(t1) = 1. After time 71, since the arrival rate p is greater than the maximum
departure rate which is 1, the system stays in the OL regime. After time #;, we can
apply (22) to describe the evolution of b(t, x). In particular, for ¢ > #; and for each
x>0,

b(t —11,x) = ¢ Nxrsy) + b1, x —t +1)e” TV x>t -1},  (53)
where

b(t1,x) = pe “lix<ny + e b0, x — 1) 1x=1), (54)

so that, by Assumption (49), the second term in (53) is asymptotically negligible as
t — 0o, implying that b(¢, x) — e™* = b(x) as t — oo.
Since we start UL, we first have a queue buildup at time #;. By (23), we have

q(t,x) = pF ) L x<wni—r) > 1, (55)

where the BWT w satisfies the ODE

w)=1-

———=H , fort>n, 56
pFw) W O). forezn e

with initial condition w(¢;) = 0. It is easy to see that ¢ (¢, x) — g (x) = pF (x) Lix<w@)
if w(t) > wast — 0.

Letw=F1(1-1 /p). Since the cdf F has a positive density, the function H is
strictly decreasing and H (w) = 0. Therefore, if w(t;) = w at some t>, w(t) will stay
at w for all t > 15, since w'(f;) = H(w) = 0. Moreover, if w(?) < w, then w'(¢) =
Hw()) > Hw)=0.

The function w(¢) starts at O at time 71, and is increasing (has positive derivative)
as long as w(t) < w. We also know that w(¢) will stay at w if it hits w, and w(z) is
continuous. Therefore, to show that w(¢) — w as t — 00, it remains to show that for
any € > 0, there exits a 7. such that w(¢) > w — € for any ¢ > t..

Because H is strictly decreasing in a neighborhood of w, we have w'(r) =
Hw@®) > H(w —¢€¢)=6() > Hw) =0, if w(t) < w — €. Therefore, the deriv-
ative of w(¢) is not only positive, but also bounded by 5(¢) > 0. So w(r) will hit
w — € at least linearly fast with slope é(¢), i.e., for any ¢ > (w — €)/§(¢), we have
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w(t) > w — €. Therefore, we conclude that w(¢) 1 w as t 1 co. As a consequence,
we getq(t,x) = q(x) = pﬁ(x)l{oixfw} as t — oo from (55).

We now establish (50) and (51). To do so, we assume the system is initially OL
with w(0) = wo. From the above analysis, if o > 1, then the system stays OL for all
t > 0, which implies that y (f) = us =1 for all ¢ > 0. Hence, after T = Q(0)/us =
0(0), all fluid that was in queue at ¢ = 0 is gone (has entered service or abandoned). If
w(T) = w, then the system is already in equilibrium. If w(7T) > w (the case w(T) <
w is similar), then the above analysis implies that w’(r) < 0 for t > T since H in (56)
is decreasing. Therefore, the monotonicity of w follows. Integrating (56) yields, for
t>T,

1 [ 1
—w@ =t-T—~| ———d
win) —w() =1 p/T Fe)

t
z—T—l/ ! ds:(t—T)(l—_;)
o Jr F(w(t)) pF(w(r))

F(w) — Fw(®))
F(w(t))

—@t—T)(w@) — w)fuf(,) <—(t—T)(w() - w)fuf(owrﬁ

where the first inequality holds because w(s) > w(z) by the monotonicity of w,
the third equality holds because F(w) = 1/p, the second inequality holds because
w(t) > w and F(w(s)) < 1, the last inequality holds because w(#) < w(0) + T for
0 <t < T and w is monotone non-increasing for ¢t > 7. This immediately yields

IA

=—@-T)

IA

Aw(t) = w(t) —w < — £} )7t = T) Aw(®) + (w(T) — w)
= —fy st — T)Aw() + Aw(T),
and

Aw(r) = Aw(T).

1
1+ fw(0)+T(t -T)

Relation (51) follows from (50) by splitting interval [T, ¢] into N disjoint subintervals
with equal lengths. Mathematical induction implies that

Aw(T).
1+ f$(0)+r(_t7vT)

Letting N — oo yields the desired (51). 0

Aw(ﬂi(

We next give explicit expressions of all performance functions in the G/M /s + M
fluid model, with exponential abandonment, when the system is initially empty.

Corollary 2 (the G/M /s + M fluid queue) Consider the G/M /s + M fluid queue
with model parameters A, i,s, 0, where 6 > 0 is the abandonment rate, starting

empty.

@ Springer



Queueing Syst (2011) 67: 145-182 167

@ Ifp=X/spu> 1, then

1 P 1
U)(t) = 510g<1 n (p — 1)6_9(1_t1)>1{t>t1} T 510g,0, (57)
q(t,x) = )»eigx 1{0§x§w(1),t2t1} 1 )Leigxl{05x§(logp)/0}v (58)
A 1 A 1
HNn==(1—=)1-—e ") 1-—), 59
o) 9( p)( e ){mlm@( p) (59)
1
a(t)=00(@) 1 )»(l — —), (60)
P
b(t,x) = A€7Mx1{0§x§t,051<t1} + Mseilul{chgt,tztl} — use " (61)
B(t) = ps(1 —eim)'1{0§t<t1}+s'1{zztl} 1s, (62)
o(t)=uB() tus, ast— oo, forx >0, (63)

where t1 = —1/ulog(1 —1/p).
(b) If p <1, then

q(t,x)= Q@) =a(t) =w() =0,
b(t,x) = puse " lo<x<sy 1 mse
B(t)=ps(l—e ™) 1 ps,
o) =ir(l—e) ta

Proof We only prove case (a) since (b) is similar. First, since the system is initially
empty, flow conservation of the service facility implies

A=B'(t)+ uB(), B(0) =0,

which has unique solution B(r) = ps(1 —e~#) when t is small. The system switches
to the OL regime at t; where ps(1 —e ™ #1) = s, and stays in that regime for all t > 7;.
This yields (62), from which (63) and (61) follow. For ¢ > ¢, we have the ODE for
BWT

’ S
w(t):W’ w(t) =0,
which has unique solution (57), from which (58), (59) and (60) follow. [l

We give a numerical example illustrating Corollary 2 in Appendix A.2.

Remark 3 (explicit results for queues in series) We can apply Corollary 2 to obtain
explicit expressions for the performance functions with two or more queues in series,
with exponential abandonment, because the arrival rate of each successive queue is
the departure rate from the previous queue, and the departure rate from each queue is
available explicitly.
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6 Periodic steady state (PSS) for periodic models

In this section, we consider the special case of periodic fluid models. We provide
conditions under which (i) there exists a unique periodic steady state (PSS) for a
periodic fluid model and (ii) the time-varying performance converges to that PSS for
all (finite) initial conditions.

6.1 Theory

Recall that a function of a nonnegative real variable, g, is periodic with period t if
g(t + 1) =g(¢) for all + > 0, where 7 is the least such value, required to be strictly
positive. If the relation holds for arbitrary small t, then the function is constant; we
exclude that case. We say that a G,;/M,/s; + GI, fluid queue is a periodic model if
the function mapping ¢ into the vector (A(?), u(t), s(z), {F;(x) : x > 0}) in R3x D
is periodic. If the four component functions are periodic, where there is a finite least
common multiple of the periods, then the overall function is periodic with the overall
period being that least common multiple of the component periods. (The condition
is needed, e.g., +/2 and 1 have no least common multiple.) Since the time-varying
abandonment time cdf’s { F;(x) : x > 0}) are defined on the entire real line, we require
that they be periodic on their entire domain.

We have not yet said anything about the initial conditions {b(0, x) : x > 0} and
{g(0,x) : x > 0}. If these initial conditions can be chosen so that the system perfor-
mance of the periodic model with period 7, {P(¢) : t > 0}, where the system state vec-
tor P(t) = ({b(t,x) : x >0}, {(q(t,x) : x =0}, B(t), Q(t), w(t), v(t), o (t), x(t)), is
a periodic function of ¢ with period 7, then those initial conditions produce a periodic
steady state (PSS) for the periodic model with period t. The performance function
‘P constitutes the PSS. See Fig. 5 for an example. In order to discuss continuity and
convergence in the domain of P, we use norm

IP®| =|BO|+ |00+ |a@®)] +|o @)+ |w®)| + [v@)|
/oob(t,x)dx

0

+

o0
+ ‘/ q(t,x)dx
0

A common case is a periodic model that does not start in a PSS. We then want to
conclude that the performance converges to a PSS as time evolves for all finite initial
conditions. We say that a function of a nonnegative real variable, g, is asymptotically
periodic with period T > 0 if there exists a (finite) function g, such that g(nt +1) —
8oo(t) as n — oo for all + with 0 <t < 7, for the given positive value of t, but no
smaller value; the limit go, necessarily is a periodic function with period . This
limit can be viewed as an application of the shift operator ¥; on the function g:
V. (g)(t) =g(t +1),t > 0. The function g is asymptotically periodic if and only if
successive iterates of the shift operator converge, i.e., if lI/t(")(g) = lI/r(lI/,("_l)(g))
converges as n — 00.

Theorem 7 (PSS for the periodic fluid model) Consider a periodic fluid queue with
period t > 0. If the conditions of Lemma 1 hold, then
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(a) There exists a unique PSS P* with period t, but not with smaller period.
(b) For any finite initial conditions, the performance P is asymptotically periodic
with period t, i.e.,

YD PYt)=Pnt +1)— P*(t) asn— o0, 0<t<T. (64)

Proof First suppose that the system starts empty. By Theorem 1, the shift operator
¥ is a monotone operator on P(nt) for any n, because we can think of the perfor-
mance b(7, -) and ¢ (7, -) as alternative initial conditions for the model at time 0, since
the model is periodic with period 7. Therefore, the sequence of system performance
vectors P(0), P(t), P(2t), ... (at discrete time 0, 7, 27, ...) is monotonically non-
decreasing. By Lemma 1, the performance is bounded, so that there is a finite limit
for P(nt) as n — co. By Theorem 2, the operator is continuous as well, which im-
plies that P(r + nt) = ¥;(P(nt)) is convergent for all 0 <7 < t as n — co. Hence
the limit is a PSS. By Theorem 3, we have ALOM, which implies that we get the
same limit for all initial conditions. O

Theorem 3 shows that the rate of convergence to the PSS in Theorem 7 is expo-
nentially fast as well, under regularity conditions.

6.2 An example

Example 2 (G,/M /s; + M with periodic arrival rate and staffing) We now consider a
variant of Example 1 that has sinusoidal staffing as well as a sinusoidal arrival rate. As
before, we have the fluid queue with arrival rate function in (26) witha =c=1,b =
0.6, constant service rate ;. = 1 and constant abandonment rate 6 = 0.5. However,
now we also use the sinusoidal staffing function

s(t) =5 +usin(yt). (65)

Lets=a=c=u=1,u=0.3and y = 2. Note the period of A is 27 /c = 27, while
the period of s is 27t /y = 7. Hence the overall model has period 2 /7. Figure 2 shows
the results after applying the algorithm in Sect. 8 of [8] to compute the performance
measures w(t), Q(t), B(t), X (¢) and b(t, 0). Instead of plotting just one OL and UL
interval in [0, T'] with T = 10 as we did in Example 1, here we plot four OL and UL
intervals in [0, T’] with T’ = 23.

Figure 2 shows that performance measures (w(t), Q(¢), B(t), X (¢), and b(t, 0))
converge very quickly to periodic limit functions, with period t = . In Appen-
dix A.6, we compare the fluid approximation in this example to simulation results
for a large-scale queueing system. As in [8], we see that the fluid model provides
a useful approximation for the queueing systems. It is very accurate for very large
queueing systems (with thousands of servers) and provides a good approximation for
mean values for smaller queueing systems (with tens of servers). In the Appendix,
we also consider the performance when y is changed from 2 to 0.5. Figure 4 there
shows that the period of the PSS becomes t = 4.
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Time t

Time t

Fig. 2 Performance of the G;/M /sy + M model with sinusoidal arrival and staffing, y =2

6.3 Direct computation of PSS performance

Given the rapid convergence, it usually is not difficult to compute the PSS by simply
applying the algorithm with any convenient initial condition. However, the PSS can
also be determined in another way. We can start by observing that there are only
three cases for PSS: (i) the system is OL for all 0 <t < t; (ii) the system is UL for
all 0 < t; or (iii) there is at least one switch between UL and OL regimes in [0, 7].
We can simply check which of these cases prevails. For each of these scenarios, we
can seek a fixed point in the performance at times 7 and 0. That produces equations
we can solve. One of these three cases will yield the PSS.

Consider case (i) in which the system is OL. It suffices to characterize its perfor-
mance in one cycle [0, T]. We can write

w(0)
B(t)=s() and Q(0)= / At — x)F,_x(x) dx for w(0) >0,
0

because in the PSS the system remains OL. Hence, we must have ¢(z, 0) = A(¢) and
q(t,x) =Xt — x)F;—x(x). Note that wy = w(0) is the only unknown here. To solve
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for the PSS, we do a search of the initial wq such that during the cycle [0, 7], the
system is always OL, i.e., w(¢) > 0, and w(tr) = wg. The uniqueness of the PSS
guarantees that there is at most one of such wy. If the system switches to UL regime
at some time, then we know this is not the right scenario for the PSS.

Next consider case (ii) in which the system is UL in the interval [0, 7]. Since
the system is UL, the fluid content in service B(t) satisfies the ODE A(¢) = B'(t) +
u(t) B(t) with initial condition B(0) = By > 0 which has a unique solution

t s
B(t) = ¢~ Jon®)ds (/ elo @ duy oy gs 4 Bo), for0<r<t. (66)
0

Since we seek B(t) = By, it suffices to solve equation

T T S
By = e~ Jo 1()ds (/ elo M”)d”k(s) ds + Bo)

0

for By. Again, the uniqueness of PSS guarantees that there is at most one such By > 0.
If this equation does not have a solution, then we know this is not the right scenario
for the PSS.

Finally, consider case (iii) in which the system switches at least twice between
UL and OL regimes, as shown in Fig. 2. Since system regime changes in the PSS,
we consider the interval [0, ] and assume that in PSS the system is critically loaded
at t =0 and becomes OL at 4, i.e., we can always let the beginning of the cycle of
PSS be a regime switching point from UL to OL. We assume that the phase difference
between the PSS cycle and the model functions is 0 < #y < 7. Hence, we start with
the BWT ODE

w(t +10)s(t +to) + s (t)

wt)=1- _
A+ 10 — w@) Frqig—w(ey (w(1))

,  with w(0) =0,

andlets; =inf{r > 0: w() =0, A(t+1) < u(@)s@)+s' (@)} If 11 > 7 (e.g., 1} = 00),
then we know this is not the right scenario. If #; < 7, the system switches to the UL
regime at #1. Then, just as in (66), we have

t roo
Bty =e Tt (/ elo et i (5 4 19) ds + B(n)),
n

with B(t1) = s(t; +t9). We let t, =inf{t > 11 : B(t) > s(t +1t9)}. If t, < 7, then the
system switches back to OL regime after t,. We repeat the above procedure until we
get to time t. If the initial phase difference variable #( is the right one, the system
should again be critically loaded at . We do a search for #g in [0, t].

Since analytic expressions are available for the G/M /s + M fluid model as shown
in Corollary 2, we show how explicit PSS performance functions can be calculated
in the next example.

Example 3 (explicit PSS performance in special cases) Consider the G;/M /s + M

fluid model in Example 1 that has sinusoidal arrival rate as in (26), exponential service
distribution with rate w, constant staffing s and exponential patience distribution with
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rate 6. We suppose that we are in case (iii) above, in which there is a switching
point from UL to OL regimes, which we can take to be at the beginning of a cycle.
We assume the arrival rate is A(f) = A(t 4 1) for some 0 < #y < 7. At some #; for
0 <t <1=2m/c, the system will switch to the UL regime. Hence, in order to
characterize the complete performance in a cycle [0, 7], it remains to determine the
valuesof fp and t; for0<f <t1,0<t <T.

Since the system is critically loaded at t = 0, OL in [0, #;) and UL in [#1, T], we
need two equations for two unknowns fy and #;. First, the BWT ODE implies that
w(0) =0 and

WS | wselt
At — w(r))ew® At — w(r))eft—w)’

w(t)=1-

which yields that

pa—wiy 40— w®)

pse® = (t —w®)e? T (1 —w'(1)) = A(t — w(t))e =

Integrating both sides and let v(t) =t — w(t), we have

t v(r) _
/ wse? du = / A(n)e? dy.
0 0

Plugging the sinusoidal arrival rate A(f) = A(r + fo) into the above equation yields

KS or oy G o) b l 0v(1) o
5 (" —1)= ; (e 1)+ T |:0e sin(cv(r) + cto)

- ;_z(eeu(t) cos(cv(t) + ctg) — cos(cto)):|.
Since v(t1) =t — w(t)) =11, letting ¢t = #; in the above equation yields

) a b 1 .
%(@0” — 1) = 5(€9t1 — 1) + m[é@gtl 51n(ct1 + Cto)

¢ 0t
—53 (e cos(cty + ctg) — cos(cto))]. (67)
Second, since the system is UL in [¢1, 7], we have

At +10) =A(1t)=B'(1)+uB@®), tH<t<rt,

which implies that

t
B(t)e" — B(t))e* = / Au +t9)e"" du.
n
Since the system becomes critically loaded again at #; and at the end of the cycle,
i.e., B(t;) = B(t) = B(2m/c) = s, plugging the sinusoidal arrival rate into the above
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equation yields
S(efiﬂn/c _ e*/u])

_ & (—n2mfe _ ,—un
(e e )

m
+ b l(e“z”/c sin(27 + ctg) — eV sin(cto + ct))
1+ c2/u?
- %(e“z”/c cos(2m + ctg) — e cos(cty + ctl)):|. (68)
m

Unfortunately, (67) and (68) evidently do not have explicit solutions in general,
but they can be solved quite easily numerically by performing a search over the two
unknowns. However, we can continue analytically in a special case with convenient
parameters: (a) a = sy and (b) u =6.

Note that (a) says that the average traffic intensity is p = A/su = a/spu = 1 and
(b) says that this model is equivalent to an infinite-server model, because 6 = u.

With these extra assumptions, (67) and (68) simplify to

¢ _ 0t _¢
7 cos(cty) = —e sin(ct1 + ctp) 7 cos(cty + cty) |,

en?r/e |:sin(cto) L cos(cto)i| =Ml |:sin(ct1 + ctg) — < cos(cty + cto)i|.
w o
Adding these two equations yields

1
0<ty=-— arctan(l - e_"zn/c) <m/c. (69)
c
Note that we need A(0) = a + bsin(ctg) > us so that the system switches from UL
to UL regime at + = 0. Similarly, we require A(fp 4 #1) < ws, which implies that
w/c <to+t <2m/c. Hence, plugging (69) into the first equation above implies that
t1 is the solution to

u2w/c
/0" 4,

where ¥ = arctan(x/y), x = el¥/C — 1 — (c/)e!?™/c, y = l2T/C 4 (¢/0)
(e,u27'r/c 1.

sin(ct; +¥) = — (70

Given ¢ and t;, we can compute analytically all performance functions of this
G:/M /s + M example in a cycle [0, ] = [0, 27 /c]. For 0 <t < 11, the system is OL
with

q(t,0) = A(t) = a + bsin[c(t + 10)],
q(t,x) = At —x)e ¥ =7 0% (a +b sin[c(t + 19— x)]),
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wt)=1t—A"" (%(69[ - 1))

w(t) s
o) =/ q(t,x)dx =e_0tA(t) _ 7(1 _ e—@t)’
0

a () =600(),
B(t) =, o(t) = us,
b(t,x) = pwse " Liveure  ((+kr—n)* k)

+ At = x)e M N veue (+krit et r—nl)s

where A(x) = f(f A(y)e?? dy. For t; <t <, the system is UL with

q(t,x)=0@)=w)=a() =0,
b(t,0) = A(t) = a + bsin[c(t +10)],

b(t,x) =Mt = x)e™ " Nxeuse  (t+k—1r)t kT —n])

— X
+ mse ™ N veus  (—trthe ko)

t
B(t) = se M=) 4 ef‘”/ )™ du,

n

o(t) = uB(),

7 Conclusions

In this paper, we supplemented [8, 9, 16] by studying the large-time asymptotic be-
havior of the G,/ M, /s; + GI; many-server fluid queue with time-varying model para-
meters. In Sect. 4, we established the asymptotic loss of memory (ALOM) property,
concluding that the difference between performance functions evaluated at time ¢,
with different initial conditions, dissipates exponentially fast as t — oo, under reg-
ularity conditions. In Sect. 5, we applied ALOM to establish convergence to steady
state for the stationary model. In Sect. 5, we also went beyond ALOM to provide
additional details, e.g., we showed that the system changes regimes (overloaded or
underloaded) at most once. In Sect. 6, we applied ALOM, first, to establish the ex-
istence of a unique periodic steady state (PSS) and, second, to establish convergence
to that PSS in the periodic model, where the period is the least common multiple of
the periods of the model functions, assumed to be some finite value.

There are many directions for future research: First, it remains to establish ALOM
properties for the G;/GI/s; + GI fluid queue with non-exponential (GI) service that
was considered in [8] (under regularity conditions that exclude the counterexample
in [10]) and the (G;/M;/s; + GI;)" /M, network of fluid queues with proportional
routing considered in [9]. Second, it remains to establish many-server heavy-traffic
limits showing that appropriately scaled stochastic processes in many-server queues
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converge to the fluid queues, as discussed in [8, 16]. It also remains to establish re-
fined stochastic approximations as a consequence of many-server heavy-traffic lim-
its. Third, it remains to establish corresponding ALOM (or weak ergodicity) and PSS
properties for the corresponding stochastic queueing models and the refined stochas-
tic approximation; see [3, 5, 6, 17] and references therein. Fourth, it remains to exploit
the deterministic fluid models to approximately solve important control problems for
the stochastic systems and, fifth, it remains to apply the fluid models to analyze large-
scale service systems, such as hospital emergency departments. We hope to contribute
to these goals in the future.

Acknowledgements  This research was supported by NSF grant CMMI 0948190.

Appendix
A.1 Overview

This appendix contains additional supplementary material. In Sect. A.2, we give
a numerical example illustrating convergence to steady state for the stationary
G/M /s + M model starting empty. In Sect. A.3, we give the other half of the proof
of Theorem 6, establishing pointwise convergence of the fluid densities b(¢, x) and
q(t,x) as t — oo when the system is initially OL. In Sect. A.4, we give another ex-
ample of periodic steady state (PSS) in a model with both sinusoidal arrival rate and
staffing function, complementing Example 2. In Sect. A.5, we verify the explicit for-
mulas for the PSS in Example 3. In Sect. A.6, we compare the fluid approximation to
results from simulations of corresponding stochastic queueing models, for the exam-
ple considered in Sect. A.2. These simulation results substantiate that (i) the theorems
are correct, (ii) the numerical algorithm is effective, and (iii) the fluid approximation
for the stochastic queueing system is effective. The fluid model accurately describes
single sample paths of very large queueing systems and accurately describes the mean
values for smaller queueing systems, e.g., with 20 servers.

A.2 Convergence to steady state in the G/M /s + M fluid queue

In this section, we give a numerical example illustrating the convergence to steady
state for a G/M /s + M queue starting empty, as characterized by Corollary 2. Here
weletu=1,1=1.5,5s=1,0 =0.5.In Fig. 3, we show how performance functions
(the solid lines) converge to their steady states (the dashed lines), applying the algo-
rithm described in Sect. 8 of [8]. Figure 3 shows that w(t), Q(¢), B(¢), and b(¢,0)
quickly converge to their steady state values.

A.3 Proof of Theorem 6

Proof We now complete the proof of Theorem 6 by proving (47) and (48) when the
system is initially OL, i.e., g (0, x) > 0 for some x, w(0) > 0, Q(0) > 0 and B(0) = .
As before, for simplicity, we assume p = s = 1 and therefore p = A/su = A.
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Fig. 3 Performance measures of the G/M /s + M fluid queue converge to their steady states

(i) p < 1. Since the service is exponential at the fixed rate .« = 1 and the staffing is
fixed at s = 1, the output rate of the service facility is 1. Hence, Q'(t) = A — a(t) —
b(t,0) < A — b(t,0) < 1 as long as the system is in the OL regime; moreover, the
OL regime will end after some 0 < T < 1/(1 — p). The system will switch to the UL
regime at T (i.e., Q(T) = w(T) =0, B(T) = s = 1) and will stay there forall r > T.
Thus we can apply (21) to characterize the density in service. By Assumption (49),
fort>T,

b(t.x) = pe " lo<x<i—1) + b(T.x —t + T)e™ "oy p

= pe o<x<i—1) + b0, x —1)e 1 x=—71)

X

— pe " ast— 00, x>0,

t—T o)
B(1) = / pe dx +/ b(T,x —t+T)e " Ddx
0 t—T

=p(l—e D4 DRT)> p ast — .

Moreover, o (1) = B(t) — p as t — oo.
(i1) p > 1. Asin case (i), the maximum output rate of the service facility is 1. Since
o > 1, A > 1, so that the system necessarily will stay in the OL or CL regime forever.
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Fig. 4 Performance of the G;/M/s; + M model with sinusoidal arrival and staffing, y = 0.5

Since b(t,0) = o (t) = 1, all old fluid will leave the queue after T = Q(0)/b(t,0) =
Q(0). Therefore, for t < T, we have g(t,x) = pF(x)l{xgw(t)A(,_T)} — q(x) =
PF (x) 1 (x<u) if w(t) — w as t — o0.

If w(T) < w, the same reasoning in part (ii) of the proof in the main paper im-
plies that w(¢) 1 w monotonically after 7. If w(T) = w, then from (56) we see that
w’(T) = 0, which implies that the system is already in steady state and thus will
stays there forever. If w(T) > w, it is easy to see that w'(t) = H(w(t)) < H(w) =0
for t > T, where H(-) is defined in (56). Therefore, w(¢) is decreasing (has neg-
ative derivative) as long as w(¢) > w. To show that w(t) - w as t — oo, it re-
mains to show that for any € > 0, there exits a 7. such that w(t) < w + € for
any t > t.. Because H is strictly decreasing in a neighborhood of w, we have
w ) =Hw@) <Hw+¢€)=8() < Hw) =0, if w(t) > w + €. Therefore, the
derivative of w(t) is not only negative, but also bounded by é(¢) < 0. So w(¢) will hit
w + € atleast linearly fast with slope §(¢),i.e., forany t > T + (w(T) —w —e€)/|5(¢)],
we have w(t) < w4 €. Therefore, we conclude that w(z) | w as t — oo. All the other
results follow from the same reasoning as in the proof in the main paper. U
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Fig. 5 The G;/M /s + M model in Example 3 is in PSS at time 0, with period 7 = 27w = 6.28. In each
cycle [nt, (n + 1)7] of PSS, the system switches between UL and OL regimes twice at time nt and
nt +3.15

A.4 Another example of periodic steady state

We complement Example 2 by considering another value for the parameter y in the
sinusoidal staffing function in (65). Here we let y = 0.5 instead of 2.0. That makes
the model period 4 instead of . Figure 4 shows the performance functions.

A.5 Verifying the sinusoidal PSS

We now verify the PSS for Example 3. To verify 79 and #; in (69) and (70), we let
a=s=pu=c=60=1,b=0.6. For these parameters, we get 7o = 0.78 and #r; = 3.15
from (69) and (70). We apply the algorithm in Sect. 8 of [8] and plot the performance
measures w(t), Q(t), B(t), X(t), and b(¢,0) in Fig. 5 for 0 <t <3 -2n/c =61
(three cycles) with the system initially critically loaded and arrival rate A(t) =a + b -
sin(c(t + 7)) (see Plot 1 in Fig. 5 for the phase difference: 6.28 — 5.50 = 0.78 = 1y).

Figure 5 shows that the fluid performance immediately becomes stationary (a DSS
cycle starts at time 0 and ends at 277). Since the M;/M /s + M model here is equiva-
lent to the M, /M /oo model, we can also verify these analytical formulas by showing
that they agree with previous ones derived for the M;/M /oo model in [1].
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w(t)

Q

B(t) and s(t)

X(t) = B(t) + Q(t)

Time t

Fig. 6 Performance of the G;/M/s; + M fluid model compared with simulation results: one sample path

of the scaled queueing model for n = 30

w(t)

0.5

Time t

Time t

Fig.7 Performance of the G;/M/s; + M fluid model compared with simulation results: one sample path

of the scaled queueing model for n = 100
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w(t)

Q(t)

B(t) and s(t)

B(t) + Q(t)

X(t)

Time t

Fig. 8 Performance of the G;/M/s; + M fluid model compared with simulation results: one sample path
of the scaled queueing model for n = 1000

A.6 A comparison with simulation

In Sect. A.4, we considered the G;/M/s; + M fluid queue, which has a sinusoidal
arrival rate A(t) as in (26) with a = ¢ = 1, b = 0.6, sinusoidal staffing function
s(¢) as in (65) with s = 1, u = 0.3, y = 0.5, exponential service and abandonment
distributions with rate u =1 and 6 = 0.5. We let the system be initially UL with
B(0) = 0.5 < s(0). We now compare the fluid approximation as shown in 4 with
computer simulations of the associated M,/ M /s; + M queueing model.

This queueing model has the same service and abandonment rates, but scaled ar-
rival rate and number of servers: nA(¢) and ns(¢). There are nB(0) customers in
service at time 0. Let W, (¢) be the elapsed waiting time of the customer at the head
of the queue at ¢, Qn (t) be the number of customers in queue and B be the number
of customers in service. Applying the spatial scaling, we let Q, (t) = 0, (1) /n and
B, (1) = B, (t)/n. We let X,,(t) = Q,(t) + B, (¢) be the scaled total number of cus-
tomers in the system at ¢. In Figs. 6, 7 and 8, we compare the simulation results for the
queue performance functions W,,, Q, and B, from a single simulation run to the as-
sociated fluid model counterparts w, Q and B, with n = 30, n = 100 and n = 1000.
The solid lines represent the queueing model performance, while the dashed lines
represent the corresponding fluid performance. We observe that the bigger the scal-
ing n is, the more accurate the fluid approximation becomes. When n = 1000, we
have a large-scale queueing model (with arrival rate 1000 4 600sin(¢) and staffing
1000+ 3005sin(0.57) servers) and we get close agreement for individual sample paths.
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Fig.9 Performance of the G;/M/s; + M fluid model compared with simulation results: an average of 20
sample paths of the scaled queueing model based on n = 100
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Fig. 10 Performance of the G;/M/s; + M fluid model compared with simulation results: an average of
200 sample paths of the scaled queueing model based on n = 30
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When 7 is smaller, there are bigger stochastic fluctuations as shown in Figs. 6
and 7, but the mean values of the queueing functions still are quite well approxi-
mated by the fluid performance functions when the system is not nearly critically
loaded. We illustrate by considering the cases n = 100 and n» = 30 in Figs. 9 and 10,
where average sample paths of simulation estimates are compared with fluid approx-
imations. In Fig. 9, we average 20 sample paths for n = 100; in Fig. 10, we average
200 sample paths for n = 30. We need more samples for smaller scaling n, because
there are bigger fluctuations.

A careful examination of Figs. 9 and 10 shows that in both cases the total fluid
content, X (¢), very accurately approximates the expected value of the scaled total
number of customers, X, (¢), in the queueing system. However, the fluid queue con-
tent Q(¢) and the fluid service content B(¢) do not approximate the mean values of
their counterparts in the queueing system as well. In particular, the quality of these
approximations degrades when the system is nearly critically loaded. That is under-
standable because only positive fluctuations will be captured by the queue length,
while only negative fluctuations will be captures by the number of busy servers.
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