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Abstract

Motivated by applications to service systems, we develop simple engineering approximation
formulas for the steady-state performance of heavily-loaded G/GI/n+GI multi-server queues,
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patience-time distributions. The formulas are based on recently established Gaussian many-
server heavy-traffic limits, but involve important heuristic refinements. Simulation experiments
show that the proposed approximations are effective for both large-scale and small-scale queueing
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significant range of the traffic intensity ρ and the abandonment rate θ parameters, roughly for
ρ > 1.02 and θ < 2.0.
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1 Introduction

In this paper we develop new engineering approximation formulas for heavily-loaded non-
Markovian queueing systems with customer abandonment. Models that account for customer
abandonment from queue due to customer impatience have generated substantial interest in re-
cent years because of their application to call centers and other service systems. This has led to
renewed interest in the Markovian M/M/n + M Erlang-A model [8, 25]. However, data analysis
from service systems has also shown that the distributions of the service and patience times are
often not nearly exponential [3]. Data analysis also has suggested that in some cases the arrival
process might not be well modeled by a Poisson process; see [1, 13, 15, 16, 38].

Thus, we focus on the stationary G/GI/n+GI queueing system, allowing a non-Poisson (and
even non-renewal) stationary arrival process (the G), independent and identically distributed (i.i.d.)
service times with a general distribution (the first GI), multiple (n) servers working in parallel,
unlimited waiting space, customer abandonment according to i.i.d. patience times with a general
distribution (the +GI) and the first-come first-served service discipline. We provide simple for-
mulas to approximate the mean, variance and distribution of important steady-state performance
measures, including the number of customers in the system, the number in queue and the waiting
time (which we take to be the potential waiting time, i.e., the time a potential arrival at time t that
is infinitely patient would have to wait before starting service). We also give formulas to approxi-
mate important steady-state probabilities, including the probability of delay (PoD) and probability
of abandonment (PoA).

Based on many-server heavy-traffic limits. Our primary source for these new engineering
approximations is the body of many-server heavy-traffic (MSHT) Gaussian process limits for the
time-varying non-Markovian Gt/GI/nt + GI queueing model in [19, 20, 21, 36], especially [21],
which includes the restriction to exponential (M) service. These theorems were established for
systems that alternate between underloaded or QD (quality-driven, [8]) and overloaded or ED
(efficiency-driven) regimes; the system was assumed to be never in the critically loaded or QED
(quality-and-efficiency-driven) regime. Thus, the limits provide an alternating one-sided view.
Nevertheless, simulation experiments showed that the approximations are remarkably effective for
difficult time-varying systems that are mostly not nearly critically loaded.

The limit theorems in [19, 20, 21] are for the more general time-varying model. For service
systems, there is also strong motivation for the time-varying feature, because service systems typi-
cally have arrival rates that vary strongly by the time of day. Nevertheless, what we do here still
has significant relevance for service systems because stationary models often can be applied when
the service times are relatively short, as in most call centers. With short service times, stationary
models can be used in a nonstationary way via the pointwise stationary approximation [9, 29], as
reviewed in [10]. Indeed, that is the common approach used to staff service systems in practice.

The MSHT limit theorems in [19, 20, 21, 36] apply to our stationary model as a special case.
We investigate the direct application of these Gaussian proocess limits, but we find that the direct
approximations are ineffective when the system is near critical loading, i.e., when the traffic intensity
ρ is near 1. Thus, a significant contribution here is to develop effective heuristic refinements. We
conduct extensive simulation experiments investigating when these approximations are effective.

Consistent with the one-sided approach to the MSHT limits in [21], the refined Gaussian ap-
propximations are only effective in giving a one-sided view. For ρ > 1 (ρ < 1), the approximations
are effective for describing the steady-state number in queue (in service), but not the other. Since,
we primarily want to describe queue lengths and waiting times, we primarily focus on heavily load-
ed models with ρ > 1. We find that the effectiveness of the refined Gaussian approximations for
heavily loaded models primarily depends on two parameters: the traffic intensity ρ and the aban-
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donment rate θ. Assuming that the scale is not to small, we find that the refined approximations
are effective roughly for ρ > 1.02 and θ < 2.0. Since our approximations tend to work better when
the system is heavily loaded, the quality of the approximations tends to improve as ρ increases and
as θ decreases.

Even though we focus on heavily loaded models with ρ > 1, as observed previously, e.g. [35, 36],
these are practical cases that often occur in practice, because the abandonment always keeps the
system stable. For these cases, the proposed approximations not only cover general non-Markovian
models, but the accuracy of the approximations and simplicity of the formulas makes the proposed
approximatioons attractive alternatives even for the Markovian M/M/n + M Erlang-A model,
as in [8, 25]; e.g., for quick approximations it may not be necessary to solve any birth-and-death
equations. (For example, see the M/M/n+M base case with ρ = 1.05 in Table 2. The steady-state
mean number in system and abandonment probabilities are representative of what is often seen in
practice.)

From the range of abandonment rates θ, it should be evident that we are only considering models
with abandonment, and only at a typical level; we are not considering the G/G/n/0 loss model or
the G/G/n/∞ delay model, which already have been quite heavily studied, e.g., see [17, 33, 31] and
references therein. While the proposed approximations should be useful, they are far from universal
approximations; we are not claiming that the approximations apply to all multi-server queueing
models. To appreciate the limitations, recall that the waiting time distribution in M/M/n queue
and G/GI/n generalizations has an exponential tail, unlike our Gaussian approximations, which
arise because of the abandonment.

The nice Gaussian approximations here can be understood as a generalization of exact results for
the M/M/n+M model that hold when θ = µ, where µ is the individual service rate. As discussed
in §6 of [6], for that special parameter choice, the number in system has the same structure as in the
associated M/M/∞ infinite-server model, so that the steady-state distribution is exactly Poisson,
which is approximately Gaussian provided that the arrival rate is not too small. Limit theorems
supporting such Gaussian approximations for the M/M/∞ model go back to [14] and there has
been much work since then. The limits in [21] can be viewed as generalizations.

Related literature. There are two streams of important related work. The first stream is
the literature on MSHT limits, starting with models without abandonment in [14, 11] and then
continuing with stationary models with abandonment [8, 4, 5], and then time-varying Markov
models in [23] and non-Markovian models in [19, 20, 21]; we refer to those papers for further
discussion of the MSHT literature.

The second stream is the literature on exact results and approximations for the M/GI/n+GI
model. Exact results for the M/M/n + GI model were established in [37], which led to further
studies that provided better understanding, such as [24]. However, exact results for the M/GI/n+
GI model with non-exponential service remains an important open problem. Approximations
for the M/GI/n + GI model were developed in [35]. As we have confirmed in our simulation
experiments, these approximations from [35] are remarkably effective, but they are substantially
more complicated, requiring approximation by a state-dependent M/M/s+M(n) model and then
a numerical algorithm.

A main conclusion in [35, 36] was that the steady state performance of the M/GI/n+GI model
tends to be nearly insensitive to the service-time distribution beyond its mean. Our experiments
confirm that conclusion for the performance measures considered, but not for all performance
measures. In particular, our simulations show that the mean values of the steady-state queue
length and waiting time have this near-insensitivity property, but the variance and distribution
do not; they depend significantly on the service-time distribution beyond its mean. Moreover, the
simulations show that the new approximations of these quantities for the M/GI/n + GI model
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with a non-exponential service times are effective; e.g., see Tables 7 and 8. Since the limit in [21] is
only for the Gt/M/st+GI model, with exponential service times, our approximation in this step is
only heuristic. It does follow from a natural modification to account for GI service, but it remains
to be better justified theoretically.

Refinements to the direct MSHT approximations for the time-varying Markovian Mt/M/st+M
model in [23] have also been developed by [26]. These Gaussian and skewness closure approxima-
tions are remarkably effective, even for critically loaded models, but so far they are restricted to
Markovian models.

Overview of the proposed Approach. We now give a brief overview of our approach.
We start by applying the MSHT limits to generate a Gaussian approximation for the number of
customers in the system. Unfolding the limit in the usual way, we obtain a direct approximation
for the total number of customers in the system at time t, Xn(t), as

Xn(t) ≈ nX(t) +
√
nX̂(t)

d
= N (nX(t), nσ2

X̂
(t)), (1)

where X is the fluid approximation analyzed directly in [19] and obtained as a limit in the MSHT
functional weak law of large numbers (FWLLN) in [20], while X̂ is a zero-mean Gaussian process
with variance σ2

X̂
(t) ≡ V ar(X̂(t)) obtained from the MSHT functional central limit theorem (FCLT)

in [21] (which assumes M service), and N (m,σ2) denotes a Gaussian random variable with mean
m and variance σ2. To obtain associated approximations for the steady-state variable, denoted by
Xn(∞), we take the direct approach and simply let t→∞ in (1) and obtain

Xn(∞) ≈ nX(∞) +
√
nX̂(∞)

d
= N (nX(∞), nσ2

X̂
(∞)) = N (nX(∞), nσ2

X̂
(∞)). (2)

Since these direct Gaussian approximations are ineffective except when the system is signifi-
cantly overloaded, e.g., when ρ > 1.2, we investigate a simple refinement based on truncation that
was proposed in (1.2) of [21], but never tested; indeed that is the purpose of the present paper. As
in (1.2) of [21], the first step is to make the obvious refinement for the queue length, letting

Qn(∞) ≡ (Xn(∞)− n)+ ≈ (nX(∞) +
√
nX̂(∞))− n)+. (3)

The remaining approximations involve variations on this truncation idea. Thus these approxima-
tions based on the FCLT for the G/M/n + GI model are called the truncated Gaussian approxi-
mations (TGAs); see §3 for the details.

Organization of the paper. In §2 we give a brief review of the heavy-traffic limits which are
the building blocks for our approximations. In §3 we develop the TGA formulas for the GI/GI/n+
GI queueing systems. In §4 and §5, we present results of numerical examples to test the performance
of the Gaussian approximations. We conclude in in §9. Additional material, including results
revealing the limitations of our approximations, appear in the appendix [22].

2 Many-Server Heavy-Traffic Limits

The MSHT limits are obtained by considering a sequence of queueing models indexed by the
integers n. In the nth model, there are sn = dnse servers and the arrival rate is λn = nλ, where
λ is the base arrival rate. The service times and patience times are unscaled; they are assumed to
come from independent sequences of i.i.d. random variables with cumulative distribution functions
(cdfs) G and F with means E[S] = 1/µ = 1 and E[A] = 1/θ and finite second moments. Let F̄ and
Ḡ be the complementary cumulative distribution functions (ccdfs) of F and G. Thus the traffic
intensity is ρn = λn/snµ = λ/s ≡ ρ for all n.
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The arrival process Nn(t) is assumed to satisfy a FCLT

(Nn(t)− nλ t) /
√
n⇒ cλB(t) in D as n→∞, (4)

where B is a standard Brownian motion (BM), cλ > 0 is a variability parameter, ⇒ denotes
weak convergence and D denotes the space of right-continuous functions that have left limits, see
[2, 21, 32] for details.

Let Qn(t) and Bn(t) to be the number of customers waiting in queue and in service at time
t. Let Xn(t) = Qn(t) + Bn(t) be the total number in the system. Let Wn(t) and Vn(t) to be the
elapsed head-of-line waiting time and the potential waiting time at time t (the waiting time of an
infinitely patient arrival at time t if there were an arrival at that time). We next review the MSHT
FWLLN and FCLT limits for the stationary model, which are the building blocks for our Gaussian
approximations.

FWLLN limits for the G/GI/n+GI queue. Let the LLN-scaled processes be

X̄n(t) =
Xn(t)

n
, Q̄n(t) =

Qn(t)

n
, B̄n(t) =

Bn(t)

n
, W̄n(t) = Wn(t) and V̄n(t) = Vn(t).

The waiting times need no spatial scaling because the service-time and patience-time cdf’s are not
scaled. By Theorem 1 in [20], we have the joint convergence for the LLN-scaled functions(

X̄n, Q̄n, B̄n, W̄n, V̄n
)
⇒ (X,Q,B,w, v), in D5, (5)

where the limit is a vector of deterministic functions, specified in [36, 19]. We next summarize the
steady state performance.

Theorem 2.1 (Theorem 3.1 in [36] and Theorem 4.1 in [18]). The stationary fluid model with
capacity s arising as the MSHT FWLLN limit of stationary G/GI/n+GI models, where model n
has mean service time E[S] = 1 and sn servers, has a steady state characterized by the deterministic
vector (b(∞), q(∞), B(∞), Q(∞), X(∞), w(∞), v(∞)) in R7, where X(∞) = B(∞) + Q(∞) and
the other variables depend on the value of the traffic intensity ρ ≡ λ/sµ = λ/s .

(a) If ρ ≤ 1, then for x ≥ 0,

B(∞) =

∫ ∞
0

b(x) dx = sρ, b(x) = λḠ(x), Q(∞) =

∫ ∞
0

q(x) dx = w(∞) = v(∞) = q(x) = 0.

(b) If ρ > 1, then

B(∞) =

∫ ∞
0

b(x) dx = s, b(x) = sµḠ(x) for x ≥ 0,

v(∞) = w(∞) = F−1
(

1− 1

ρ

)
, q(x) = λF̄ (x) for 0 ≤ x ≤ w(∞),

Q(∞) =

∫ ∞
0

q(x) dx = λ

∫ w(∞)

0
F̄ (x)dx.
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FCLT limits for the G/M/n + GI queue. As in [21], we now restrict to the G/M/n + GI
model having M service. To provide the FCLT limits, let the CLT-scaled processes be

X̂n(t) =
Xn(t)− nX(t)√

n
, Q̂n(t) =

Qn(t)− nQ(t)√
n

, B̂n(t) =
Bn(t)− nB(t)√

n
,

Ŵn(t) =
√
n (Wn(t)− w(t)) , V̂n(t) =

√
n (Vn(t)− v(t)) , (6)

where n is the number of servers, while X(t), Q(t), B(t), w(t) and v(t) are the deterministic limit
functions in (5), i.e., the deterministic fluid functions in [19]. The FCLT follows directly from the
FCLT for the time-varying Gt/M/st +GI model (Theorems 4.2 and 5.1 in [21]) by simply letting
λ(t) = λ and s(t) = s = 1. (As in Theorem 2.1, we let the limiting fluid model have capacity 1, so
that there are n servers in model n.)

Theorem 2.2 (MSHT FCLT limits for the G/M/n+GI queues). Consider the sequence of time-
varying G/M/n + GI queues having sn servers. Under regularity conditions in [21], including
appropriate initial convergence at time 0,(

X̂n, B̂n, Q̂n, Ŵn, V̂n

)
⇒
(
X̂, B̂, Q̂, Ŵ , V̂

)
in D5 as n→∞.

(a) When ρ < 1, i.e. in an underloaded (UL) interval, Q̂ = Ŵ = V̂ = 0, and B̂
d
= X̂ satisfies the

stochastic differential equation (SDE)

dX̂(t) = −µX̂(t)dt+
√
c2λλ+ µX(t)dB(t),

where B is a standard Brownian motion, so that X̂(t) is a Gaussian process with

σ2X(t) = (c2λ − 1)

∫ t

0
Ḡ2(t− s)λds+

∫ t

0
Ḡ(t− s)λds.

(b) When ρ > 1, i.e. in a OL interval, B̂(t) = 0, Q̂(t) = X̂(t) where

X̂(t) = X̂(0)F̄w(t) +
3∑
i=1

∫ t

0
Ki(t, u)dBi(u),

Ŵ (t) = Ŵ (0)H(t, 0) +

3∑
i=1

∫ t

0
H(t, u)Ii(u)dBi(u),

V̂ (t) =
Ŵ (t+ v(t))

1− ẇ(t+ v(t))
,

where B1 ≡ Bλ, B2 ≡ Bs and B3 ≡ Ba are independent standard BMs, that are the FCLT
limits of the scaled arrival process (the subscript “λ”), service process (the subscript “s”) and
abandonment process (the subscript “a”). In addition, H(t, u), Ii(t), Ki(t) are deterministic
analytic functions given in §?? of the appendix. Both X̂(t) and Ŵ (t) are zero mean Gaussian
processes with variance process

σ2W (t) = H2(t, 0)

(∫ t

0
H2(u, 0)I2(u)du+ Var

(
Ŵ (0)

))
, (7)

σ2X(t) =

∫ t

t−w(t)
λ F̄ (t− s)

(
(c2λ − 1)F̄ (t− s) + 1

)
ds

+λ2F̄ 2(w(t))σ2W (t) + Var
(
X̂(0)

)
·
(
F̄w(t)

)2
. (8)
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We next provide steady-state distribution for the FCLT limits of the G/M/n+GI model.

Theorem 2.3 (Steady-state of the MSHT FCLT limit of G/M/n+GI queues). The steady-state of
the Gaussian process arising in the MSHT FCLT limit for the sequence of G/M/n+GI models with
sn servers in model n is given by the vector (Q̂(∞), B̂(∞), X̂(∞), Ŵ (∞), V̂ (∞)) specified below:

(a) If ρ < 1, then

Q̂(∞) = Ŵ (∞) = V̂ (∞) = 0 and B̂(∞) = X̂(∞)
d
= N

(
0, σ2X

)
,

where the variance is

σ2X ≡ λ(c2λ − 1)

∫ ∞
0

Ḡ2(s)ds+ λ

∫ ∞
0

Ḡ(s)ds. (9)

(b) If ρ > 1, then

Q̂(∞)
d
= X̂(∞)

d
= N

(
0, σ2X

)
, B̂(∞) = 0, Ŵ (∞)

d
= V̂ (∞)

d
= N (0, σ2W ),

where the variances are

σ2W ≡
(c2λ − 1) + 2ρ

2ρ2f(w(∞))
and σ2X ≡ σ2W + λ

∫ w(∞)

0
F̄ (u)

(
1 + (c2λ − 1)F̄ (u)

)
du, (10)

with w(∞) being the steady-state fluid waiting time in the OL case, given in Theorem 2.1.

Proof. Because the limit process is a zero-mean Gaussian process, it suffices to show that the
variances converge as t→∞. In particular, it suffices to show that σ2W (t)→ σ2W and σ2X(t)→ σ2X
as→∞. That is easy to check in underloaded interval, thus we focus on the limit in the overloaded
interval.

σ2W = lim
t→∞

σ2W (t) =

∫ t

0
I2(u) ·H2(u, 0)du

= lim
t→∞

(c2λ − 1)ρ−1 + 2

2ρf(w(∞))
e
− 2f(w(∞))

F̄ (w(∞))
t
∫ t

0
e

2f(w(∞))

F̄ (w(∞) du

=
(c2λ − 1) + 2ρ

2ρ2f(w(∞))
.

Inserting it to (8), we get the remaining limit

σ2X ≡ lim
t→∞

σ2X(t) = lim
t→∞

Var
(
X̂(0)

)
·
(
F̄w(t)

)2
+ lim
t→∞

λ2F̄ 2(w(t))σ2W (t)

+ lim
t→∞

∫ t

t−w(t)
λ F̄ (t− s)

(
(c2λ − 1)F̄ (t− s) + 1

)
ds

= σ2W + lim
t→∞

λ

∫ w(t)

0
F̄ (u)

(
(c2λ − 1)F̄ (u) + 1

)
du

= σ2W + λ

∫ w(∞)

0
F̄ (u)

(
(c2λ − 1)F̄ (u) + 1

)
du,

where limt→∞Var
(
X̂(0)

)
·
(
F̄w(t)

)2
= 0 since F̄ (t)→ 0 as t→∞ but Var

(
X̂(0)

)
is bounded.

Full convergence of the multivariate Gaussian distribution in R5 requires convergence of the
pairwise covariances too. That also follows from the representation in Theorem 2.2, but we omit
the details, because we will not be applying that.
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Remark 2.1 (Interchange of the two limits). Our MSHT approximation is based on an iterated
limit in which first n→∞ and then t→∞, but we need the iterated limit in the other order. As
often is done in MSHT approximations, we are assuming without proof that a limit interchange is
valid, in particular,

lim
t→∞

X̂(t) = lim
t→∞

lim
n→∞

X̂n(t) = lim
n→∞

lim
t→∞

X̂n(t) = lim
n→∞

X̂n(∞). (11)

We conjecture that (11) holds for the G/GI/n+GI model under mild regularity conditions, if any.
For the more elementary M/M/n, M/M/n+M and M/M/n+GI models, that limit interchange
was proved in [11, 8, 37].

Remark 2.2 (The underloaded case). The MSHT limits above are relatively elementary in the
underloaded case with ρ < 1. In that case the results reduce to corresponding infinite-server results
in [27] and references there, as shown for the M/M/n model in [14].

3 The Steady-State Gaussian Approximations

In this section, we develop the Gaussian approximation formulas for the steady-state distribution
of the stationary G/GI/n+GI model. Henceforth, we focus on steady-state random variables and
no longer discuss stochastic processes. Thus, for simplicity, we omit the time argument t, which
would become ∞ in steady state; i.e., we let Qn denote the steady-state queue length in model
n with n servers and we let Q and Q̂ denote the steady-state of the fluid and diffusion limits,
respectively, and similarly for the other variables. (Previously, these were denoted by Qn(∞),
Q(∞) and Q̂(∞).) Since the steady-state head-of-line waiting time Wn and potential waiting time
Vn should coincide, as do the limits in Theorem 2.1 (b) and Theorem 2.3 (b), we henceforth use
only the notion Wn, w and Ŵ for the waiting time (instead of Wn(∞), Vn(∞), w(∞), v(∞), Ŵ (∞)
and V̂ (∞)).

We start in §3.1 with direct Gaussian approximations (DGA) and then turn to the basic trun-
cation refinement TGA for the G/M/n+GI model in §3.2. Afterwards, in §3.3 we generalize TGA
from M service to GI service, which we refer to as TGA-G.

3.1 Direct Gaussian Approximations

The most straightforward performance approximation is a direct application of the steady-state
of the deterministic fluid and the zero-mean Gaussian limits. We we use superscript “DGA” to
denote these approximations, which are

Xn ≈ XDGA
n ≡ nX +

√
nX̂, (12)

Bn ≈ BDGA
n ≡ nB +

√
nB̂, QDGAn ≡ nQ+

√
nQ̂, (13)

Wn ≈WDGA
n ≡ w +

1√
n
Ŵ , (14)

where X, B, Q and w are given in Theorem 2.1 and X̂, B̂, Q̂ and Ŵ are given in Theorem 2.3.
(Recall that we have eliminated the infinite time argument from the steady-state quantities given
in Theorems 2.1 and 2.3.)

In addition to approximating means and variances, defined in the obvious direct way, we have
associated approximations for the PoD and PoA, namely,

PoDn ≈ PoDDGA
n ≡ P

(
WDGA
n > 0

)
and (15)

PoAn ≈ PoADGAn ≡ P
(
WDGA
n > A

)
, (16)
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where A is a generic independent patience time.

3.2 Truncated Gaussian Approximations

It is natural to refine the DGA approximations by truncation because Qn = (Xn − sn)+ and
Bn = (Xn ∧ sn)+, where a+ is max{0, a} and a ∧ b = min{a, b}. Thus, our TGA approximations
for Qn and Bn are

QTGAn ≡
(
XDGA
n − sn

)+
=
√
nσX

(
X̂

σX
+

√
n(X − s)
σX

)+

≡
√
nσX (Z ∨ −aX(n)) + n(X − s),

BTGA
n ≡

(
XDGA
n ∧ sn

)+
=
√
nσX

(
(Z ∧ −aX(n)) +

√
n

σX
X

)+

, (17)

where Z is a standard Gaussian random variable, σX is given in (10), and

aX(n) =
√
n(ρn − 1)/σX . (18)

In the same spirit, we truncate the DGAs for waiting times (14) to obtain their TGAs.

W TGA
n = V TGA

n =
(
WDGA
n

)+
=

(
w +

Ŵ√
n

)+

= w +
σW√
n

(Z ∨ −aW (n))

= w

(
Z

aW (n)
+ 1

)+

(19)

where σW is given in (10) and

aW (n) =
√
nw/σW . (20)

Again, the means, variances and distributions are then approximated in the obvious way, while the
PoD and PoA are natural analogs of (15) and (16), i.e.,

PoDn ≈ PoDTGA
n ≡ P

(
W TGA
n > 0

)
= P

(
w

(
Z

aW (n)
+ 1

)
> 0

)
= Φ (−aW (n)) , (21)

PoAn ≈ PoATGAn ≡ P
(
W TGA
n > A

)
= P

(
w

(
Z

aW (n)
+ 1

)
> A

)
=

∫ ∞
0

Φ
(
aW (n)

( x
w
− 1
))

f(x)dx, (22)

where Φ(·) is the ccdf of standard normal distribution and f(·) is the probability density function
(pdf) of patience time.

Notice that several of the TGA approximations coincide with their DGA counterparts, i.e.,

(XTGA
n , E[XTGA

n ],Var(XTGA
n ), PoATGA, PoDTGA) = (XDGA

n , E[XDGA
n ],Var(XDGA

n ), PoADGA, PoDDGA)

9



3.3 The Refinement for Non-Exponential Service: TGA-G

Recall that both DGAs and TGAs are developed based on Theorems 2.2 and 2.3 for the
G/M/n+GI queue. Because of the M service, the service-completion process is a Poisson process
with rate µs(t), which yields Brownian FCLT limit, corresponding to the BM B2 = Bs in Theorem
2.2 (See Theorem 4.2 in [21] for details; also see (4.5) and (6.64) there). When service becomes GI,
the prelimit of the service-completion process is much more complicated (no longer Poisson). We
capture the nonexponential service distribution using the first and second moments. Specifically,
we scale the BM B2 by the service-time squared coefficient of variation (scv, variance divided by
the square of the mean) cs, which will replace the “1” by “cs” in the numerator of (10), yielding

σ2WG
=

(c2λ − 1) + (cs + 1)ρ

2sρ2f(w)
. (23)

By replacing σW by σWG
in (10), (17)–(19), we obtain TGA-G. It is significant that TGA-G reduces

to TGA when service is M , for which c2s = 1.

4 Evaluating the Gaussian Approximations for Markov Models

Since the Markovian M/M/n+M model is relatively tractable, we primarily want to develop
effective approximations for other non-Markov G/GI/n + GI models. Nevertheless, it is conve-
nient to start examining the proposed Gaussian approximations by making comparisons with exact
numerical results for the M/M/n + M model because numerical algorithms are readily available.
A minimum requirement for our proposed approximations is that they perform well for this basic
model.

Hence, we start evaluating the proposed approximations in this section by comparing with exact
numerical results for M/M/n+M model. For that purpose, we use the numerical algorithm from
[35]. That algorithm was developed to treat more general models, but it applies to the M/M/n+M
model as a special case. That model includes a finite waiting room; we let it be so large that it
does not affect the formulas.

Our base case has n = 100 servers, but we also examine smaller systems later. For the overloaded
systems of primary interest, we considered a range of traffic intensities from ρ = 1.5 down to 1.001.
The case ρ = 1.5 is so overloaded that there is little need for truncation, so that the TGA and DGA
approximations nearly coincide, and the performance is very good; see Table 12 in the appendix.
We thus start by showing the experimental results for ρ = 1.2 with abandonment rates 0.5, 1.0
and 2.0 in Table 1, where M(m) refers to an exponential distribution with mean m. For the lower
two abandonments rates (θ ≤ 1.0), the system is still highly heavily loaded. For these two cases in
Table 1, TGA and DGA are quite close with all errors less than 5%. However, for θ = 2.0, we see
that TGA provides some improvement.

We regard the case ρ = 1.2 as quite heavily loaded, much more in the ED heavy-traffic regime
than the QED regime. Hence, we primarily focus on models with lower traffic intensities. For the
traffic intensity, we regard ρ = 1.05 as our base case; it corresponds to levels often encountered in
practice. Moreover, for n = 100 and ρ = 1.05, the system is operating in the more practical QED
regime, which can be characterized by the quality-of-service (QoS) parameter β ≡ (1−ρ)

√
n = −0.5;

see [11, 8]. Table 2 shows the main performance measures for the three abandonment rates θ = 0.5,
1.0 and 2.0. Table 2 shows that DGA performs poorly in this case, but TGA provides dramatic
improvement, having all errors less than 10%.

Most of the rest of this paper is devoted to showing that the good results in Table 2 extend to
a wide class of models and parameters. However, we do point out that, even for the M/M/n+M
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Table 1: M(λ−1)/M(1)/100 +M(θ−1) with λ = 100ρ = 120 and θ = 0.5, 1 and 2

θ = 0.1 θ = 0.25 θ = 0.5

Perf. Exact DGA TGA Exact DGA TGA Exact DGA TGA

E[X] 3.00E+2 3.00E+2 same 1.80E+2 1.80E+2 same 1.40E+2 1.40E+2 same
rel. err. 0% 0% 0%

Var(X) 1.20E+3 1.20E+3 same 4.80E+2 4.80E+2 same 2.39E+2 2.40E+2 same
rel. err. 0% 0% 0%

E[Q] 2.00E+2 2.00E+2 2.00E+2 8.00E+1 7.99E+1 7.99E+1 4.00E+1 3.99E+1 3.99E+1
rel. err. 0% 0% 0% 0% 0% 0%

Var(Q) 1.20E+3 1.20E+3 1.20E+3 4.80E+2 4.80E+2 4.80E+2 2.38E+2 2.40E+2 2.38E+2
rel. err. 0% 0% 0% 0% 1% 0%

E[W ] 1.83E+0 1.82E+0 1.82E+0 7.34E-1 7.29E-1 7.29E-1 3.70E-1 3.65E-1 3.65E-1
rel. err. 0% 0% 1% 1% 1% 1%

Var(W ) 1.00E-1 1.00E-1 1.00E-1 4.00E-2 4.00E-2 4.00E-2 1.99E-2 2.00E-2 1.98E-2
rel. err. 0% 0% 0% 0% 1% 0%

PoD 1.00E+0 1.00E+0 same 1.00E+0 1.00E+0 same 9.97E-1 9.95E-1 same
rel. err. 0% 0% 0%

PoA 1.67E-1 1.66E-1 same 1.67E-1 1.66E-1 same 1.67E-1 1.65E-1 same
rel. err. 0% 1% 1%

θ = 1 θ = 2 θ = 4

Perf. Exact DGA TGA Exact DGA TGA Exact DGA TGA

E[X] 1.20E+2 1.20E+2 same 1.10E+2 1.10E+2 same 1.04E+2 1.05E+2 same
rel. err. 0% 0% 1%

Var(X) 1.20E+2 1.20E+2 same 6.35E+1 5.99E+1 same 3.76E+1 2.99E+1 same
rel. err. 0% 6% 20%

E[Q] 2.01E+1 1.98E+1 2.00E+1 1.02E+1 9.86E+0 1.02E+1 5.22E+0 4.92E+0 5.47E+0
rel. err. 1% 1% 3% 0% 6% 5%

Var(Q) 1.14E+2 1.20E+2 1.13E+2 5.22E+1 5.99E+1 5.00E+1 2.29E+1 2.99E+1 2.14E+1
rel. err. 5% 1% 15% 4% 31% 7%

E[W ] 1.88E-1 1.82E-1 1.83E-1 9.76E-2 9.10E-2 9.43E-2 5.17E-2 4.60E-2 5.09E-2
rel. err. 3% 3% 7% 3% 11% 2%

Var(W ) 9.61E-3 1.00E-2 9.40E-3 4.48E-3 5.00E-3 4.19E-3 2.04E-3 2.50E-3 1.81E-3
rel. err. 4% 2% 11% 7% 23% 11%

PoD 9.72E-1 9.66E-1 same 9.06E-1 9.01E-1 same 8.01E-1 8.21E-1 same
rel. err. 1% 1% 2%

PoA 1.68E-1 1.64E-1 same 1.70E-1 1.65E-1 same 1.74E-1 1.73E-1 same
rel. err. 2% 3% 1%

model, the TGA approximation degrades as a function of the parameter pair (ρ, θ) as either ρ
decreases further toward 1.0 or as θ moves away from the range (0, 2.0]. As indicated earlier, we
find good performance for θ ≤ 2.0. For θ = 0.1 and 0.25 with (n, ρ) = (100, 1.05), the maximum
percentage error among the means E[X], E[Q], E[W ] and the probabilities PoD and PoA for TGA
was 7%. On the other hand, Table 15 shows that the performance of TGA degrades for θ = 4
and 10, but then the high abandonment rate makes the system far from being overloaded; e.g.,
E[Q] = 1.47 and E[W ] = 0.017 for θ = 4.

5 Evaluating the Approximations for G/M/n+GI Models

We now start investigating the approximations for non-Markov models, first considering the
G/M/n + GI models for which the MSHT limits have been established in [21]. For these and all
other non-Markov models, we will use simulation to estimate the exact values of the performance
measures. We describe our simulation methodology in §8.
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Table 2: M(λ−1)/M(1)/100 +M(θ−1) with λ = 100ρ = 105 and θ = 0.5, 1 and 2

θ = 0.1 θ = 0.25 θ = 0.5

Perf. Exact DGA TGA Exact DGA TGA Exact DGA TGA

E[X] 1.52E+2 1.50E+2 same 1.22E+2 1.20E+2 same 1.11E+2 1.10E+2 same
rel. err. 1% 2% 1%

Var(X) 9.25E+2 1.05E+3 same 3.47E+2 4.20E+2 same 1.81E+2 2.10E+2 same
rel. err. 16% 21% 16%

E[Q] 5.22E+1 4.99E+1 5.08E+1 2.30E+1 1.99E+1 2.17E+1 1.27E+1 9.94E+0 1.21E+1
rel. err. 4% 2% 14% 6% 22% 5%

Var(Q) 8.99E+2 1.05E+3 9.41E+2 3.05E+2 4.20E+2 3.11E+2 1.35E+2 2.10E+2 1.33E+2
rel. err. 19% 7% 37% 2% 56% 1%

E[W ] 5.14E-1 4.88E-1 4.96E-1 2.29E-1 1.95E-1 2.12E-1 1.28E-1 9.80E-2 1.18E-1
rel. err. 5% 3% 15% 8% 23% 7%

Var(W ) 8.59E-2 1.00E-1 8.97E-2 2.93E-2 4.00E-2 2.97E-2 1.31E-2 2.00E-2 1.27E-2
rel. err. 19% 7% 36% 1% 53% 3%

PoD 9.67E-1 9.39E-1 same 8.90E-1 8.35E-1 same 8.03E-1 7.56E-1 same
rel. err. 3% 6% 6%

PoA 4.97E-2 4.80E-2 same 5.47E-2 5.09E-2 same 6.04E-2 5.60E-2 same
rel. err. 4% 7% 8%

θ = 1 θ = 2 θ = 4

Perf. Exact DGA TGA Exact DGA TGA Exact DGA TGA

E[X] 1.05E+2 1.05E+2 same 1.01E+2 1.02E+2 same 9.86E+1 1.01E+2 same
rel. err. 0% 1% 3%

Var(X) 1.05E+2 1.05E+2 same 6.85E+1 5.24E+1 same 5.00E+1 2.61E+1 same
rel. err. 0% 23% 48%

E[Q] 7.03E+0 4.92E+0 7.01E+0 3.88E+0 2.36E+0 4.22E+0 2.12E+0 1.13E+0 2.65E+0
rel. err. 30% 0% 40% 8% 47% 25%

Var(Q) 5.92E+1 1.05E+2 5.71E+1 2.57E+1 5.24E+1 2.50E+1 1.10E+1 2.61E+1 1.13E+1
rel. err. 77% 3% 103% 3% 139% 3%

E[W ] 7.22E-2 4.90E-2 6.91E-2 4.09E-2 2.40E-2 4.18E-2 2.32E-2 1.20E-2 2.65E-2
rel. err. 32% 4% 42% 2% 48% 14%

Var(W ) 5.88E-3 1.00E-2 5.49E-3 2.64E-3 5.00E-3 2.42E-3 1.18E-3 2.50E-3 1.10E-3
rel. err. 70% 7% 89% 9% 112% 6%

PoD 7.00E-1 6.88E-1 same 5.92E-1 6.33E-1 same 4.87E-1 5.95E-1 same
rel. err. 2% 6% 22%

PoA 6.70E-2 6.43E-2 same 7.40E-2 7.59E-2 same 8.07E-2 9.31E-2 same
rel. err. 3% 3% 16%

5.1 Non-Poisson arrivals

Renewal processes To illustrate a non-Markovian arrival process, we consider a non-Poisson
renewal process. We let the interarrival-time distribution be lognormal, denoted by LN(λ−1, c2λ),
where λ−1 is its mean, which is the reciprocal of the fixed arrival rate λ = nρ = 105, and c2λ denotes
its scv. Recall that an LN(λ−1, c2λ) random variable is distributed as eµ̂+σ̂Z , where Z is a stardard

Gaussian random variable, µ̂ = log
(
λ−1/

√
1 + c2λ

)
and σ̂ =

√
log
(
1 + c2λ

)
.

Table 3 shows the experimental results for five values of c2λ with 0.25 ≤ c2λ ≤ 4.0. Table 3
also shows the experimental results for the case of a Poisson (M) arrival process, which is interest-
ing, because the LN(λ−1, 1) distribution is different from the corresponding M(λ−1) exponential
distribution, even though they have the same mean and variance.

Table 3 compares the Gaussian approximations to simulations for the LN/M/n+M queueing
model with (n, ρ, θ) = (100, 1.05, 0.5). First, Table 3 shows that the interarrival time distribution
has a significant impact upon performance. For example, E[Q] increases from 11.5 to 16.1 as c2λ
increases from 0.25 to 4.0. Moreover, by comparing the results for M(λ−1) and LN(λ−1, 1), we see
that the interarrival-time distribution matters beyond its mean and variance.
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Table 3: LN(λ−1, c2λ)/M(1)/100 +M(2) with (λ, ρ, θ) = (100, 1.05, 0.5)

c2λ = 0.25 c2λ = 0.5 c2λ = 1

Perf. Sim DGA TGA Sim DGA TGA Sim DGA TGA

E[X] 1.11E+2 1.10E+2 same 1.11E+2 1.10E+2 same 1.11E+2 1.10E+2 same
rel. err. ±1.16E-1 1% ±1.25E-1 1% ±1.44E-1 1%

Var(X) 1.16E+2 1.31E+2 same 1.38E+2 1.57E+2 same 1.80E+2 2.10E+2 same
rel. err. ±2.62E+1 13% ±2.83E+1 14% ±3.27E+1 17%

E[Q] 1.15E+1 9.94E+0 1.12E+1 1.20E+1 9.94E+0 1.15E+1 1.27E+1 9.94E+0 1.21E+1
rel. err. ±1.04E-1 14% 3% ±1.10E-1 17% 5% ±1.24E-1 22% 5%

Var(Q) 9.22E+1 1.31E+2 9.23E+1 1.07E+2 1.57E+2 1.06E+2 1.33E+2 2.10E+2 1.33E+2
rel. err. ±3.18E+0 42% 0% ±3.62E+0 48% 0% ±4.46E+0 58% 0%

E[W ] 1.18E-1 9.80E-2 1.10E-1 1.23E-1 9.80E-2 1.13E-1 1.28E-1 9.80E-2 1.18E-1
rel. err. ±1.05E-3 17% 7% ±1.10E-3 20% 8% ±1.22E-3 23% 7%

Var(W ) 9.46E-3 1.29E-2 9.03E-3 1.07E-2 1.52E-2 1.03E-2 1.30E-2 2.00E-2 1.27E-2
rel. err. ±1.05E-3 36% 5% ±1.10E-3 42% 4% ±1.22E-3 54% 2%

PoD 8.22E-1 8.06E-1 same 8.08E-1 7.86E-1 same 7.80E-1 7.56E-1 same
rel. err. ±3.02E-3 2% ±3.15E-3 3% ±3.31E-3 3%

PoA 5.60E-2 5.36E-2 same 5.83E-2 5.49E-2 same 6.01E-2 5.75E-2 same
rel. err. ±6.45E-4 4% ±6.70E-4 6% ±6.99E-4 4%

M, c2λ = 1 c2λ = 2 c2λ = 4

Perf. Exact DGA TGA Sim DGA TGA Sim DGA TGA

E[X] 1.05E+2 1.05E+2 same 1.12E+2 1.10E+2 same 1.13E+2 1.10E+2 same
rel. err. 0% ±1.69E-1 2% ±2.17E-1 3%

Var(X) 1.05E+2 1.05E+2 same 2.60E+2 3.15E+2 same 4.08E+2 5.25E+2 same
rel. err. 5% ±3.88E+1 21% ±5.02E+1 29%

E[Q] 7.03E+0 4.92E+0 7.01E+0 1.39E+1 9.94E+0 1.31E+1 1.61E+1 9.94E+0 1.50E+1
rel. err. 30% 0% ±1.40E-1 29% 6% ±1.73E-1 38% 7%

Var(Q) 5.92E+1 1.05E+2 5.71E+1 1.79E+2 3.15E+2 1.82E+2 2.61E+2 5.25E+2 2.75E+2
rel. err. 86% 2% ±5.81E+0 76% 2% ±8.52E+0 101% 6%

E[W ] 7.22E-2 4.90E-2 6.91E-2 1.38E-1 9.80E-2 1.28E-1 1.56E-1 9.80E-2 1.45E-1
rel. err. 32% 4% ±1.36E-3 29% 7% ±1.63E-3 37% 7%

Var(W ) 5.88E-3 1.00E-2 5.49E-3 1.68E-2 2.95E-2 1.72E-2 2.32E-2 4.86E-2 2.57E-2
rel. err. 79% 2% ±1.36E-3 76% 3% ±1.63E-3 110% 11%

PoD 7.00E-1 6.88E-1 same 7.51E-1 7.16E-1 same 7.26E-1 6.72E-1 same
rel. err. 4% ±3.46E-3 5% ±3.76E-3 8%

PoA 6.70E-2 6.68E-2 same 6.46E-2 6.22E-2 same 7.29E-2 7.02E-2 same
rel. err. 1% ±7.69E-4 4% ±8.58E-4 4%
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Figure 1: TGA Approximating Distributions of Qn and Vn for the LN(λ−1, c2λ)/M(1)/100 +M(2)
model with (λ, ρ, θ) = (100, 1.05, 0.5)
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Second, Table 3 shows that, just like Table 2, TGA performs consistently well, whereas DGA
does not. Figure 1 adds to the story by showing that the full distributions of the queue length Qn
and potential waiting time Wn are well approximated by TGA as well.

Markov-Modulated Poisson processes (MMPP’s) We next consider an alternative non-
Poisson arrival process: Markov-modulated Poisson process (MMPP), which is a Poisson process
having a random rate modulated by a continuous-time Markov chain (CTMC) {Γ(t), t ≥}, e.g., see
[7]. Specifically, we can construct an MMPP by composition:

Nn(t) ≡M
(
nρ

∫ t

0
α(Γ(u)) du

)
,

where M is a rate-1 Poisson process, and the random rate α(Γ(t)) = αi when the CTMC Γ(t) = i.
In particular, we now consider an MMPP with an underlying CTMC {Γ(t), t ≥ 0} that is a
birth-and-death process having three states 0, 1 and 2. Let CTMC-dependent arrival rate be
(α0, α1, α2) = (3, 1, 1/3). The long-run rate of the MMPP arrival process is

λn = nρλ∗, λ∗ ≡ lim
t→∞

t−1
∫ t

0
α(Γ(u)) du =

2∑
j=0

πj αj ,

where π ≡ (π0, π1, π2) is the steady state distribution for the CTMC. We consider four sets of
birth and deaths rates: (i) λ̂0 = 20/81, λ̂1 = 5/27, µ̂1 = µ̂2 = 10/81, (ii) λ̂0 = 20/27, λ̂1 = 5/9,
µ̂1 = µ̂2 = 10/27, (iii) λ̂0 = 20/9, λ̂1 = 5/3, µ̂1 = µ̂2 = 10/9, and (iv) λ̂0 = 40/9, λ̂1 = 10/3,
µ̂1 = µ̂2 = 20/9, which yild the same steady state π = (1/6, 1/3, 1/2) and asymptotic rate λ∗ = 1,
but different asymptotic variability parameter: (i) c2λ = 10, (ii) c2λ = 4, (iii) c2λ = 2 and (iv) c2λ = 1.5,
where

c2λ = 1 + c2C , where c2C ≡ 2
2∑
j=1

1

λ̂jπj

(
j∑
i=1

πi (αi − λC)

)2

.

See Proposition 1 in [30] and also see [12].
We denote by MMPP (λ−1, c2λ) our MMPP arrival process having rate λ and variability pa-

rameter c2λ. Table 4 compares DGA, TGA to the simulation results for MMPP/M/n+M models
with λ = 105, n = 100, µ = 1, θ = 0.5, and different variability parameters c2λ = 1.5, 2, 4 and 10.

5.2 Non-exponential patience

It has been shown that the full abandonment distribution has a significant impact on the perfor-
mance; e.g., see [35, 36]. We confirm that here when we study how our TGAs works in M/M/n+GI
models using different abandonment distributions, again using the lognormal distribution. Tables
5 and 6 compare the DGAs and TGAs to the simulations of the M/M/n+ LN(2, c2ab) model with
the same parameter triple (λ, ρ, θ) = (100, 1.05, 0.5) we have been using, where scv of abandonment
distribution c2ab ranges from 0.25 to 4.0. Paralleling Table 3, we add a column for the results of
Erlang-A models.
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Table 4: MMPP (λ−1, c2λ)/M/100 +M(θ−1) with (λ, ρ, θ) = (105, 1.05, 0.5).

c2λ = 1.5 c2λ = 2 c2λ = 4 c2λ = 10

Perf. Sim TGA Sim TGA Sim TGA Sim TGA

E[X] 1.12E+2 1.10E+2 1.12E+2 1.10E+2 1.13E+2 1.09E+2 1.15E+2 1.10E+2
rel. err. ±1.62E-1 2% ±1.77E-1 2% ±2.16E-1 3% ±3.20E-1 5%

Var(X) 2.22E+2 2.62E+2 2.65E+2 3.15E+2 4.30E+2 5.25E+2 9.19E+2 1.15E+3
rel. err. ±3.71E+1 18% ±4.08E+1 19% ±5.15E+1 22% ±8.05E+1 26%

E[Q] 1.34E+1 1.26E+1 1.38E+1 1.31E+1 1.60E+1 1.50E+1 2.06E+1 1.91E+1
rel. err. ±1.37E-1 6% ±1.48E-1 5% ±1.78E-1 7% ±2.55E-1 7%

Var(Q) 1.62E+2 1.58E+2 1.88E+2 1.82E+2 2.93E+2 2.75E+2 6.02E+2 5.35E+2
rel. err. ±5.46E+0 2% ±6.21E+0 3% ±9.55E+0 6% ±1.95E+1 11%

E[W ] 1.34E-1 1.24E-1 1.37E-1 1.28E-1 1.55E-1 1.45E-1 1.91E-1 1.85E-1
rel. err. ±1.33E-3 8% ±1.43E-3 6% ±1.67E-3 6% ±2.26E-3 3%

Var(W ) 1.53E-2 1.50E-2 1.74E-2 1.72E-2 2.56E-2 2.57E-2 4.68E-2 4.94E-2
rel. err. ±5.16E-4 2% ±5.76E-4 1% ±8.21E-4 0% ±1.50E-3 6%

PoD 7.83E-1 7.33E-1 7.61E-1 7.16E-1 7.22E-1 6.72E-1 6.61E-1 6.18E-1
rel. err. ±3.33E-3 6% ±3.50E-3 6% ±3.55E-3 7% ±4.00E-3 7%

PoA 6.32E-2 5.82E-2 6.44E-2 6.02E-2 7.15E-2 6.72E-2 8.61E-2 8.28E-2
rel. err. ±7.49E-4 8% ±7.86E-4 7% ±8.71E-4 6% ±1.10E-3 4%

Table 5: M/M/100 + LN(θ−1, c2ab) with (λ, ρ, θ) = (100, 1.05, 0.5).

LN(2, 0.25) LN(2, 0.5)

Perf. Sim DGA TGA Sim DGA TGA

E[X] 1.77E+2 1.85E+2 same 1.52E+2 1.59E+2 same
rel. err. ±4.92E-1 4% ±3.94E-1 4%

Var(X) 6.39E+2 4.54E+2 same 5.22E+2 4.04E+2 same
rel. err. ±1.63E+2 29% ±1.15E+2 23%

E[Q] 7.67E+1 8.46E+1 8.46E+1 5.21E+1 5.85E+1 5.85E+1
rel. err. ±4.89E-1 10% 10% ±3.88E-1 12% 12%

Var(Q) 6.33E+2 4.54E+2 4.54E+2 5.07E+2 4.04E+2 4.03E+2
rel. err. ±6.55E+1 28% 28% ±3.72E+1 20% 21%

E[W ] 7.39E-1 8.13E-1 8.13E-1 5.05E-1 5.64E-1 5.64E-1
rel. err. ±4.54E-3 10% 10% ±3.64E-3 12% 12%

Var(W ) 5.42E-2 3.69E-2 3.69E-2 4.46E-2 3.45E-2 3.45E-2
rel. err. ±5.80E-3 32% 32% ±3.30E-3 22% 23%

PoD 9.95E-1 1.00E+0 same 9.81E-1 9.99E-1 same
rel. err. ±8.22E-4 1% ±1.47E-3 2%

PoA 4.83E-2 6.10E-2 same 4.90E-2 6.00E-2 same
rel. err. ±8.35E-4 26% ±8.02E-4 22%

LN(2, 2) LN(2, 4)

Perf. Sim DGA TGA Sim DGA TGA

E[X] 1.18E+2 1.21E+2 same 1.10E+2 1.11E+2 same
rel. err. ±1.75E-1 2% ±1.13E-1 1%

Var(X) 2.25E+2 2.23E+2 same 1.43E+2 1.42E+2 same
rel. err. ±4.14E+1 1% ±2.49E+1 0%

E[Q] 1.90E+1 2.07E+1 2.13E+1 1.12E+1 1.10E+1 1.22E+1
rel. err. ±1.58E-1 9% 12% ±9.19E-2 1% 9%

Var(Q) 1.87E+2 2.23E+2 1.92E+2 9.96E+1 1.42E+2 1.03E+2
rel. err. ±6.78E+0 19% 3% ±2.74E+0 43% 3%

E[W ] 1.87E-1 2.01E-1 2.06E-1 1.12E-1 1.08E-1 1.19E-1
rel. err. ±1.52E-3 7% 10% ±8.96E-4 3% 6%

Var(W ) 1.72E-2 2.02E-2 1.76E-2 9.43E-3 1.31E-2 9.59E-3
rel. err. ±6.30E-4 17% 2% ±2.62E-4 39% 2%

PoD 8.84E-1 9.21E-1 same 7.97E-1 8.27E-1 same
rel. err. ±2.85E-3 4% ±3.07E-3 4%

PoA 5.45E-2 6.18E-2 same 6.10E-2 6.49E-2 same
rel. err. ±7.34E-4 13% ±7.19E-4 6%
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Table 6: Impact of the abandonment distribution beyond its mean and variance: comparison between
M(λ−1)/M/n+M(2) and M(λ−1)/M/n+ LN(2, 1) models, where (λ, ρ, n) = (105, 1.05, 100).

M(2) LN(2, 1)

Perf. Exact DGA TGA Sim DGA TGA

E[X] 1.05E+2 1.05E+2 same 1.32E+2 1.36E+2 same
rel. err. 0% ±2.79E-1 3%

Var(X) 1.05E+2 1.05E+2 same 3.58E+2 3.18E+2 same
rel. err. 0% ±7.27E+1 11%

E[Q] 7.03E+0 4.92E+0 7.01E+0 3.24E+1 3.65E+1 3.66E+1
rel. err. 30% 0% ±2.67E-1 13% 13%

Var(Q) 5.92E+1 1.05E+2 5.71E+1 3.32E+2 3.18E+2 3.07E+2
rel. err. 77% 3% ±1.74E+1 4% 8%

E[W ] 7.22E-2 4.90E-2 6.91E-2 3.15E-1 3.53E-1 3.54E-1
rel. err. 32% 4% ±2.54E-3 12% 12%

Var(W ) 5.88E-3 1.00E-2 5.49E-3 2.98E-2 2.82E-2 2.73E-2
rel. err. 70% 7% ±2.54E-3 6% 9%

PoD 7.00E-1 6.88E-1 same 9.48E-1 9.82E-1 same
rel. err. 2% ±2.19E-3 4%

PoA 6.70E-2 6.43E-2 same 5.08E-2 6.04E-2 same
rel. err. 3% ±7.74E-4 19%

Tables 5 and 6 show that TGA is again consistently quite accurate for all the first-moment
measures (mean and probability) in all cases, but the accuracy degrades to 20 − 30% for the
variances when c2ab is low. Moreover, by comparing the results for the M/M/n + LN(2, 1) and
M/M/n + M(2) models in Table 6, we can see that the patience distribution has an impact on
the queueing system beyond its mean and variance, just as for the interarrival-time distribution.
Approximations of distributions of Qn and Wn are given in Figure 2.
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Figure 2: TGA Approximating Distributions of Qn and Wn for the M/M/100 +LN(θ−1, c2ab) with
(λ, ρ, θ) = (100, 1.05, 0.5)
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6 Non-Exponential Service

6.1 Refined Gaussian Approximations for the M/GI/n+M Model

We now evaluate the heuristic approximation TGA-G developed in §3.3. We let the service-
time distribution be phase-type, denoted by PH with fixed mean 1/µ = 1 and scv c2s ranging in
[0.25, 4]. To be specific, for cases with c2s = 0.25, 0.5 < 1, we used Erlang 4 (E4) and Erlang 2 (E2)
distribution and for cases with c2s = 2, 4 > 1, we used the two-phase hyperexponential distribution
(H2) with balanced means, see [28] for more details.

Table 7: M(λ−1)/PH(1, c2s)/100 +M(θ−1) with (λ, ρ, θ) = (100, 1.05, 0.5)

c2s = 0.25 c2s = 0.5

Perf. Meas. Sim. DGA TGA TGA-G Sim. DGA TGA TGA-G

E[X] 1.11E+2 1.10E+2 same same 1.11E+2 1.10E+2 same same
rel. err. ±1.21E-1 1% ±1.30E-1 1%

Var(X) 1.34E+2 1.60E+2 same same 1.50E+2 1.81E+2 same same
rel. err. ±2.72E+1 19% ±2.94E+1 20%

E[Q] 1.20E+1 9.94E+0 1.21E+1 1.15E+1 1.22E+1 9.94E+0 1.21E+1 1.17E+1
rel. err. ±1.06E-1 17% 1% 4% ±1.13E-1 19% 1% 4%

Var(Q) 1.02E+2 1.60E+2 1.33E+2 1.07E+2 1.13E+2 1.81E+2 1.33E+2 1.18E+2
rel. err. ±3.45E+0 57% 30% 6% ±3.83E+0 60% 18% 5%

E[W ] 1.20E-1 9.80E-2 1.18E-1 1.13E-1 1.22E-1 9.80E-2 1.18E-1 1.15E-1
rel. err. ±1.01E-3 18% 1% 6% ±1.10E-3 20% 3% 6%

Var(W ) 9.41E-3 1.50E-2 1.27E-2 1.02E-2 1.06E-2 1.71E-2 1.27E-2 1.12E-2
rel. err. ±3.20E-4 59% 35% 8% ±3.64E-4 60% 19% 6%

PoD 8.42E-1 7.88E-1 same same 8.27E-1 7.73E-1 same same
rel. err. ±2.67E-3 6% ±2.81E-3 6%

PoA 5.72E-2 5.36E-2 same same 5.81E-2 5.46E-2 same same
rel. err. ±7.60E-4 6% ±7.81E-4 6%

c2s = 2 c2s = 4

Perf. Meas. Sim. DGA TGA TGA-G Sim. DGA TGA TGA-G

E[X] 1.01E+2 1.02E+2 same same 1.12E+2 1.10E+2 same same
rel. err. ±6.90E-2 1% ±2.17E-1 2%

Var(X) 7.32E+1 6.28E+1 same same 2.57E+2 3.10E+2 same same
rel. err. ±1.38E+1 14% ±5.03E+1 20%

E[Q] 3.93E+0 2.36E+0 4.22E+0 4.48E+0 1.36E+1 9.94E+0 1.21E+1 1.31E+1
rel. err. ±3.68E-2 40% 7% 14% ±1.84E-1 27% 11% 4%

Var(Q) 2.74E+1 6.28E+1 2.50E+1 2.92E+1 1.90E+2 3.10E+2 1.33E+2 1.80E+2
rel. err. ±5.49E-1 129% 9% 7% ±7.74E+0 63% 30% 5%

E[W ] 4.18E-2 2.40E-2 4.18E-2 4.44E-2 1.39E-1 9.80E-2 1.18E-1 1.29E-1
rel. err. ±3.85E-4 43% 0% 6% ±1.90E-3 29% 15% 7%

Var(W ) 2.88E-3 6.03E-3 2.42E-3 2.84E-3 1.97E-2 3.00E-2 1.27E-2 1.75E-2
rel. err. ±5.93E-5 109% 16% 1% ±8.32E-4 53% 35% 11%

PoD 5.81E-1 6.21E-1 same same 7.54E-1 7.14E-1 same same
rel. err. ±3.36E-3 7% ±4.50E-3 5%

PoA 7.47E-2 8.01E-2 same same 6.43E-2 6.04E-2 same same
rel. err. ±9.21E-4 7% ±1.06E-3 6%

Table 7 compares the approximations for all three Gaussian approximations for the M/PH/n+
M model. Table 7 shows that TGA-G outperforms TGA, while both are far better than DGA.
The new approximation TGA-G is especially important for the variances, which depend quite
strongly on the service-time distribution, unlike the means. Figure 3 shows the corresponding
approximations of the distributions.

In Table 8 we consider the M/H2/n + M model, with hyperexponential service according to
H2(1/µ, c

2
s), which denotes mean 1/µ = 1 and SCV c2s = 2, for a range of abandonment rates with
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Figure 3: Approximating the distributions of Qn and Vn for M(105−1)/PH/100 + M(2) with c2s
ranges from 0.25, 0.5, 1, 2, to 4

0.25 ≤ θ ≤ 2.0. More generally, we observe that the performance of TGA-G is acceptable for a
range of the abandonment rate θ ∈ [0.1, 2]. However, just as for the M/M/n + M model, the
approximation accuracy starts to degrade when θ increases; see the appendix for more examples.

Table 8: M(λ−1)/H2(1, 2)/100 +M(θ−1) with λ = 100, ρ = 105 and 0.5 ≤ θ ≤ 2

θ = 0.1 θ = 0.25 θ = 0.5 θ = 1 θ = 2

Perf. Sim TGAG Sim TGAG Sim TGAG Sim TGAG Sim TGAG

E[X] 1.53E+2 1.50E+2 1.23E+2 1.20E+2 1.12E+2 1.10E+2 1.05E+2 1.05E+2 1.01E+2 1.02E+2
rel. err. ±8.30E-1 2% ±3.20E-1 2% ±1.75E-1 2% ±1.07E-1 0% ±6.90E-2 1%

Var(X) 1.24E+3 1.26E+3 4.31E+2 5.03E+2 2.15E+2 2.51E+2 1.18E+2 1.26E+2 7.32E+1 6.28E+1
rel. err. ±2.69E+2 2% ±8.23E+1 17% ±4.00E+1 17% ±2.27E+1 6% ±1.38E+1 14%

E[Q] 5.38E+1 5.12E+1 2.37E+1 2.22E+1 1.32E+1 1.25E+1 7.19E+0 7.35E+0 3.93E+0 4.48E+0
rel. err. ±8.16E-1 5% ±3.00E-1 6% ±1.49E-1 5% ±7.62E-2 2% ±3.68E-2 14%

Var(Q) 1.19E+3 1.09E+3 3.76E+2 3.57E+2 1.59E+2 1.53E+2 6.67E+1 6.62E+1 2.74E+1 2.92E+1
rel. err. ±1.05E+2 9% ±1.91E+1 5% ±5.78E+0 4% ±1.84E+0 1% ±5.49E-1 7%

E[W ] 5.32E-1 5.01E-1 2.37E-1 2.18E-1 1.34E-1 1.23E-1 7.42E-2 7.26E-2 4.18E-2 4.44E-2
rel. err. ±8.06E-3 6% ±3.00E-3 8% ±1.51E-3 8% ±7.83E-4 2% ±3.85E-4 6%

Var(W ) 1.16E-1 1.05E-1 3.71E-2 3.43E-2 1.60E-2 1.47E-2 6.81E-3 6.40E-3 2.88E-3 2.84E-3
rel. err. ±1.03E-2 10% ±1.90E-3 8% ±5.93E-4 8% ±1.94E-4 6% ±5.93E-5 1%

PoD 9.48E-1 9.20E-1 8.64E-1 8.13E-1 7.82E-1 7.36E-1 6.80E-1 6.72E-1 5.81E-1 6.21E-1
rel. err. ±2.84E-3 3% ±3.47E-3 6% ±3.72E-3 6% ±3.74E-3 1% ±3.36E-3 7%

PoA 5.12E-2 4.83E-2 5.60E-2 5.19E-2 6.29E-2 5.79E-2 6.87E-2 6.72E-2 7.47E-2 8.01E-2
rel. err. ±9.66E-4 6% ±9.03E-4 7% ±9.25E-4 8% ±9.48E-4 2% ±9.21E-4 7%

6.2 The General GI/GI/n+GI Model

We have also considered examples in which all three stochastic components of the G/GI/n+GI
model are non-exponential. We illustrate some of these now. Table 9 shows comparisons of TGA
and TGA-G to simulation estimates for the H2/PH/n+H2 model, having a renewal arrival process
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with H2 inter-arrival times, PH service times (in the settings of Table 7), n = 100 servers, and H2

patience times. We fix the scv’s for arrival and patience times at c2λ = c2ab = 2 and consider a range
of service scv: 0.25 ≤ c2s ≤ 4.0.

Just as in Table 7, Table 9 shows that the mean values such as EQ and the probabilities such as
PoD are relatively insensitive to the service-time distribution beyond its mean; these entries differ
little in the three cases. However, as before, we see differences in the variances. Table 9 shows
that both TGA and TGA-G are effective for the mean values such as E[Q] and the probabilities
such as PoD, but TGA-G provides significant improvement for the variances. Additional results
on other combinations of arrival processes, patience times and service times are given in Table 14
in the appendix.

Table 9: H2(λ
−1, 2)/PH/100 +H2(1/θ, 2) with (λ, ρ, θ) = (100, 1.05, 0.5).

c2s = 0.25 c2s = 0.5

Perf. Sim TGA TGA-G Sim TGA TGA-G

E[X] 1.09E+2 1.07E+2 1.07E+2 1.09E+2 1.07E+2 1.07E+2
rel. err. ±1.21E-1 1% 1% ±1.31E-1 1% 1%

Var(X) 1.84E+2 2.37E+2 2.00E+2 1.95E+2 2.37E+2 2.15E+2
rel. err. ±2.64E+1 29% 8% ±2.89E+1 22% 11%

E[Q] 1.07E+1 1.05E+1 1.01E+1 1.09E+1 1.05E+1 1.03E+1
rel. err. ±9.32E-2 2% 6% ±1.02E-1 3% 5%

Var(Q) 1.12E+2 1.29E+2 1.12E+2 1.21E+2 1.29E+2 1.19E+2
rel. err. ±3.01E+0 15% 0% ±3.44E+0 7% 1%

E[W ] 1.06E-1 1.03E-1 9.84E-2 1.07E-1 1.03E-1 1.00E-1
rel. err. ±8.77E-4 2% 7% ±9.71E-4 4% 7%

Var(W ) 1.00E-2 1.22E-2 1.05E-2 1.10E-2 1.22E-2 1.12E-2
rel. err. ±2.65E-4 22% 5% ±3.09E-4 12% 3%

PoD 7.52E-1 6.88E-1 7.04E-1 7.42E-1 6.88E-1 6.97E-1
rel. err. ±3.05E-3 9% 6% ±3.18E-3 7% 6%

PoA 6.54E-2 6.34E-2 6.09E-2 6.66E-2 6.34E-2 6.19E-2
rel. err. ±8.09E-4 3% 7% ±8.67E-4 5% 7%

c2s = 2 c2s = 4

Perf. Sim TGA TGA-G Sim TGA TGA-G

E[X] 1.09E+2 1.07E+2 1.07E+2 1.09E+2 1.07E+2 1.07E+2
rel. err. ±1.64E-1 1% 1% ±1.95E-1 1% 1%

Var(X) 2.30E+2 2.37E+2 2.69E+2 2.50E+2 2.37E+2 3.13E+2
rel. err. ±3.66E+1 3% 17% ±4.36E+1 5% 25%

E[Q] 1.13E+1 1.05E+1 1.09E+1 1.13E+1 1.05E+1 1.14E+1
rel. err. ±1.29E-1 7% 3% ±1.52E-1 7% 0%

Var(Q) 1.47E+2 1.29E+2 1.43E+2 1.61E+2 1.29E+2 1.62E+2
rel. err. ±4.69E+0 12% 3% ±5.75E+0 20% 0%

E[W ] 1.13E-1 1.03E-1 1.07E-1 1.14E-1 1.03E-1 1.11E-1
rel. err. ±1.28E-3 9% 5% ±1.54E-3 10% 2%

Var(W ) 1.42E-2 1.22E-2 1.36E-2 1.60E-2 1.22E-2 1.55E-2
rel. err. ±4.58E-4 14% 4% ±5.93E-4 23% 3%

PoD 7.11E-1 6.88E-1 6.77E-1 6.94E-1 6.88E-1 6.64E-1
rel. err. ±3.88E-3 3% 5% ±4.51E-3 1% 4%

PoA 6.80E-2 6.34E-2 6.53E-2 6.92E-2 6.34E-2 6.78E-2
rel. err. ±9.75E-4 7% 4% ±1.10E-3 8% 2%

7 Smaller Scale: Lower Arrival Rates and Fewer Servers

Since the MSHT limits involve a sequence of queueing systems with increasing scale, the MSHT
approximations such as DGA and TGA-G should perform better as the scale increases. Thus, we
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considered the base case with n = 100 as a good case, because it is large but also small enough
to be of practical value. However, we also want to apply the approximations to even smaller scale
systems. Thus, in this section, we examine the effectiveness of DGA, TGA and TGA-G for smaller
systems.

In order to set the parameters for these smaller systems, it is good to exploit the MSHT limits.
When the system is in the QED regime, we know that the scaling factor n (number of servers) and
the traffic intensity ρn should roughly satisfies the relation

√
n (1− ρn) ≈ β, −∞ < β <∞, (24)

where the β is the QoS factor. Since β =
√
n(1 − ρn) = −0.5 when ρn = 1.05 and n = 100 as in

previous tables, we now fix β as we change n. In particular, we now consider smaller scaling n, but
we also change the value of ρn so that the QoS factor remains fixed at β = −0.5. Note that this
increases the traffic intensity as ρ decreases.

Table 10 shows the results for an H2/H2/n + H2 model for three values of n: 20, 10, 5, which
corresponds to traffic intensities ρn = 1.11, 1.16, 1.22.

Table 10: H2(λ
−1)/H2(1, 2)/n+H2(θ

−1, 2) with ρ = 1− β/
√
n, λ = nρ

n = 20 n = 10 n = 5

Perf. Sim DGA TGA-G Sim DGA TGA-G Sim DGA TGA-G

E[X] 2.40E+1 2.34E+1 2.34E+1 1.29E+1 1.24E+1 1.24E+1 7.08E+0 6.69E+0 6.69E+0
rel. err. ±7.46E-2 3% 3% ±5.38E-2 4% 4% ±3.96E-2 5% 5%

Var(X) 4.86E+1 5.06E+1 5.69E+1 2.52E+1 2.65E+1 2.97E+1 1.32E+1 1.41E+1 1.57E+1
rel. err. ±3.84E+0 4% 17% ±1.55E+0 5% 18% ±6.61E-1 6% 19%

E[Q] 5.16E+0 4.82E+0 4.98E+0 3.68E+0 3.46E+0 3.57E+0 2.65E+0 2.49E+0 2.57E+0
rel. err. ±5.93E-2 7% 4% ±4.31E-2 6% 3% ±3.21E-2 6% 3%

Var(Q) 3.19E+1 2.74E+1 3.01E+1 1.68E+1 1.42E+1 1.56E+1 9.04E+0 7.50E+0 8.19E+0
rel. err. ±1.03E+0 14% 6% ±5.46E-1 15% 7% ±3.01E-1 17% 9%

E[W ] 2.61E-1 2.28E-1 2.36E-1 3.77E-1 3.18E-1 3.30E-1 5.60E-1 4.44E-1 4.61E-1
rel. err. ±2.96E-3 13% 10% ±4.38E-3 16% 13% ±6.90E-3 21% 18%

Var(W ) 7.54E-2 6.01E-2 6.70E-2 1.61E-1 1.19E-1 1.33E-1 3.67E-1 2.34E-1 2.62E-1
rel. err. ±2.55E-3 20% 11% ±5.72E-3 26% 18% ±1.45E-2 36% 29%

PoD 7.22E-1 6.85E-1 6.74E-1 7.26E-1 6.82E-1 6.71E-1 7.34E-1 6.79E-1 6.68E-1
rel. err. ±3.74E-3 5% 7% ±3.75E-3 6% 8% ±3.74E-3 7% 9%

PoA 1.43E-1 1.28E-1 1.31E-1 1.92E-1 1.67E-1 1.71E-1 2.54E-1 2.15E-1 2.19E-1
rel. err. 1.72E-3 11% 9% 2.15E-3 13% 11% ±2.70E-3 16% 14%

Table 10 shows that TGA-G remains effective for systems with fewer servers. Complementing
Table 10, Figure 4 shows that TGA-G can be used to approximate the distributions of key perfor-
mance measures. Figure 4 shows that the simulated histograms for the H2/M/n + H2 model are
well approximated by the pdfs of the corresponding Gaussian approximations, for n = 100, 50, 20
and 5. Additional simulation results appear in the appendix.

8 Simulation Methodology

We used simulation to estimate the exact values for all non-Markovian models. We now provide
extra details about our simulation methodology. For n = 100, we estimated all the performance
measures using 2000 independent replications over the time interval [0, T ] with T = 100, starting
empty in each case. To have statistical precision for all the steady-state estimates, we need to
ensure, first, that the system has approximately reached the steady state before sampling, and,
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Figure 4: Approximating the distributions of Bn, Qn, Vn and Xn for H2(λ
−1, 2)/M/n+H2(θ

−1, 2)
with θ = 0.5.

second, that enough sampled data are collected to give reasonable accuracy, which we judge by
using 95% confidence intervals. We discuss these issues in turn.

8.1 From Transient to Steady State

To avoid bias caused by the initial transient starting empty, we do not collect data from an
initial portion of each run. We stop sampling at time 0.95T = 95 We also eliminate a final portion
so that we can observe the waiting times experienced by all arrivals in the main measurement
interval; i.e., to avoid abnormal zeroes in sampled potential waiting times, which results from that
some virtual customers’ (potential) waiting times not being sampled at the end of simulation at
T = 100. In particular, for n = 100 we use the data in [40, 95] from each run over [0, 100] to
estimate the steady-state performance functions.

To illustrate the initial transient and when it tends to disappear, we show an example, using the
H2(105−1, 2)/H2(1, 2)/100+H2(2, 2) model. Figure 5 shows plots of the transient (time-dependent)
mean and variance functions for the queue length. Figure 5 shows that the performance is close
to steady state after time 20. To be safe, we use the data in [40, 95] to estimate the steady-state
performance functions.

8.2 The Sampling Procedure

To determine the potential waiting times at time t, which are for an arrival with unlimited
patience that would arrive at time t (the usual virtual waiting time, modified to include unlimited
patience), we generate virtual customers that do not affect the other customers. In particular, in
the rth simulation replication, 1 ≤ r ≤ R, we periodically generate virtual arrivals at deterministic
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Figure 5: Converging to steady state of the H2/H2/n+H2 Model

times t1, tk, . . . , tNv with tk ≡ k∆t and ∆t = 0.1, 1 ≤ k ≤ Nv ≡ bT/∆tc. The virtual customers
have the same waiting time distribution. They abandon as if they are the real customers but they
will not be removed from the queue if they abandon. They still wait in queue until their turn to
enter service so that we can record their virtual waiting time as potential waiting times. We do
not allow them to enter service, so these virtual customers do not affect the system dynamics. We
use indicator variables ηar,k and ηdr,k to record if the virtual arrival at tk on the rth path abandons
and is delayed, namely

ηdr,k =

{
1, if Vr(k) > 0,
0, otherwise

and ηar,k =

{
1, if Vr(k) > Ak,
0, otherwise

, (25)

where Ak is the patience time of the kth virtual arrival, Vr(k) ≡ Er(k)−Ar(k) records the potential
waiting time at time tk, Ar(k) ≡ k ·∆t and Er(k) are the times at which the kth virtual customer
arrives and enters service.

For the number of customers in queue and service at each time, We sample the continuous-time
queue-length process and number of busy servers at discrete time points t1, t2, . . . , tNv , denoted by
Qr(k) and Br(k). Here we make sure to exclude the virtual arrivals.

8.3 Constructing Confidence Intervals

All estimates of target performance measures and corresponding confidence intervals are based
on assuming i.i.d. samples, which is justified because we take a single estimate from each of the
R = 2000 independent samples.

To illustrate how we construct these estimators, we use the queue-length process Q for an
example. On the rth path, we sample values for the queue length at N = 551 evenly-spaced
time points in the interval [0.4T, 0.95T ] = [40, 95], denoted by Qr,1, . . . , Qr,N . To construct the
confidence intervals for E[Q] and E[Q2], first, for each replication r = 1, 2, . . . , R, we let

Q̃r ≡
1

N

N∑
l=1

Qr,l and Q̃(2)
r ≡

1

N

N∑
l=1

(Qr,l)
2. (26)
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Even though the random variables being averaged in (26) are typically dependent, these are valid
estimators for the true mean E[Q] and second moment E[Q2]. Experience shows that the average
of these N = 551 values has lower variance than a single observation from the end of the run.

To get the overall estimators of E[Q] and second moment E[Q2], and their CI’s, we use the R

independent samples Q̃1, . . . , Q̃R (Q̃
(2)
1 , . . . , Q̃

(2)
R ) to compute the sample mean and sample variance

of the queue length and its second moment in the usual way, i.e.,

Q̄(R) ≡ 1

R

R∑
r=1

Q̃r and S2
Q(R) ≡ 1

R− 1

R∑
r=1

(
Q̃r − Q̄(R)

)2
, (27)

Q̄(2)(R) ≡ 1

R

R∑
r=1

Q̃(2)
r and S2

Q(2)(R) ≡ 1

R− 1

R∑
r=1

(
Q̃(2)
r − Q̄(2)(R)

)2
. (28)

The random variables Q̄(R) and Q̄(2)(R) in (27) our our final estimators for the true mean E[Q]
and second moment E[Q2].

As usual, the (1 − 100α%)-confidence intervals for the mean and second moment of the queue
length are Q̄(R)− zα/2

√
S2
Q(R)

R
, Q̄(R) + zα/2

√
S2
Q(R)

R

, and (29)

Q̄(2)(R)− zα/2

√
S2
Q(2)(R)

R
, Q̄(2)(R) + zα/2

√
S2
Q(2)(R)

R

, (30)

where zα is the α-percentile of the standard Gaussian distribution. Since we use 95% CI’s, we use
α = 0.025.

Since V ar(Q) = E[Q2]− (E[Q])2, we estimate the variance by

V̄ (R) ≡ Q̄(2)(R)−
(
Q̄(R)

)2
. (31)

We then approximate the CI halfwidth of the the variance by the CI halfwidth of the second
moment. We thus roughly estimate the CI of the variance asV̄ (R)− zα/2

√
S2
Q(2)(R)

R
, V̄ (R) + zα/2

√
S2
Q(2)(R)

R

. (32)

We discuss this approximation further with the numerical example below.
For the probability of abandonment (similar procedure for the probability of delay), we sample

values for the indicator at N = 551 evenly-spaced time points in the interval [0.4T, 0.95T ] on
the rth run, denoted by ηar,1, . . . , η

a
r,N , and we let P̃ ar ≡ (1/N)

∑N
l=1 η

a
r,l, for r = 1, 2, . . . , R. The

(1− 100α%)-confidence interval is[
P̄ a(R)− zα/2

√
S2
a(R)

R
, P̄ a(R) + zα/2

√
S2
a(R)

R

]
,

where

P̄ a(R) ≡ 1

R

R∑
r=1

P̃ ar and S2
a(R) ≡ 1

R− 1

R∑
r=1

(
P̃ ar − P̄ a(R)

)2
.
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To substantiate our procedures and verify that we obtain adequate statistical precision, we com-
pare the estimated performance measures of M/M/n+M model to corresponding exact solutions,
which are calculated by the same algorithms of [35]. The Table 11 shows that the procedures are
sound and the the statistical precision is adequate.

Table 11: Comparison between Exact Values for theM(102−1)/M(1)/100+M(θ−1) with Simulation
Estimates

θ = 0.1 θ = 0.25 θ = 0.5 θ = 1 θ = 2

Perf. Meas. Exact Sim. Exact Sim. Exact Sim. Exact Sim. Exact Sim.

E[X] 1.52E+2 1.52E+2 1.22E+2 1.22E+2 1.11E+2 1.11E+2 1.05E+2 1.05E+2 1.01E+2 1.01E+2
rel. err. ±6.75E-1 ±2.78E-1 ±1.46E-1 ±8.47E-2 ±5.61E-2

Var(X) 9.25E+2 9.07E+2 3.47E+2 3.46E+2 1.81E+2 1.80E+2 1.05E+2 1.05E+2 6.85E+1 6.81E+1
rel. err. ±2.12E+2 ±7.03E+1 ±3.32E+1 ±1.79E+1 ±1.12E+1

E[Q] 5.22E+1 5.20E+1 2.30E+1 2.31E+1 1.27E+1 1.27E+1 7.03E+0 7.01E+0 3.88E+0 3.90E+0
rel. err. ±6.67E-1 ±2.62E-1 ±1.26E-1 ±6.15E-2 ±3.06E-2

Var(Q) 8.99E+2 8.82E+2 3.05E+2 3.06E+2 1.35E+2 1.34E+2 5.92E+1 5.91E+1 2.57E+1 2.58E+1
rel. err. ±7.88E+1 ±1.55E+1 ±4.53E+0 ±1.41E+0 ±4.55E-1

E[W ] 5.14E-1 5.12E-1 2.29E-1 2.30E-1 1.28E-1 1.28E-1 7.22E-2 7.20E-2 4.09E-2 4.11E-2
rel. err. ±6.52E-3 ±2.57E-3 ±1.24E-3 ±6.16E-4 ±3.13E-4

Var(W ) 8.59E-2 8.41E-2 2.93E-2 2.94E-2 1.31E-2 1.31E-2 5.88E-3 5.88E-3 2.64E-3 2.64E-3
rel. err. ±7.58E-3 ±1.50E-3 ±4.45E-4 ±1.42E-4 ±4.69E-5

PoD 9.67E-1 9.67E-1 8.90E-1 8.91E-1 8.03E-1 8.03E-1 7.00E-1 6.99E-1 5.92E-1 5.95E-1
rel. err. ±1.93E-3 ±2.91E-3 ±3.17E-3 ±3.11E-3 ±2.81E-3

PoA 4.97E-2 4.98E-2 5.47E-2 5.50E-2 6.04E-2 6.07E-2 6.70E-2 6.65E-2 7.40E-2 7.40E-2
rel. err. ±8.36E-4 ±8.51E-4 ±8.43E-4 ±8.29E-4 ±8.34E-4

We use Table 11 to elaborate on the approximate CI for the variance. To do so, we focus on
the queue length in the case θ = 0.1. Notice that the CI for the mean is 30.0 ± 0.52, so that
the relative halfwidth for the mean is 1.7%. However, by squaring the upper and lower limits,
we see that a rough symmetric CI for (E[Q])2 is 900 ± 30, using the gap at the upper limit, so
that the relative halfwidth for the square of the mean is 3.3%. Our direct estimate of the second
moment is 613 + (30)2 = 1513 and our direct estimate of its CI is 1513± 43.6, so that the relative
halfwidth is 2.8%. Our approximation thus estimates the CI of the variance as 613± 43.6, so that
the approximate relative halfwidth is 7.1%, which we judge to be conservative.

9 Conclusion

In this paper we have developed and evaluated approximations for the key steady-state per-
formance measures in the stationary G/GI/n + GI model. These approximations are based on
many-server heavy-traffic (MSHT) limits in [19, 20, 21, 36], but also involve important heuristic
refinements. These approximations require that the scale (number of servers) n and the load (traffic
intensity) ρ be suitably large, and that the abandonment rate be not too high.

After reviewing the underlying MSHT limits in §2, we developed the approximations in §3.
After presenting the direct DGA Gaussian approximations in §3.1, we applied truncation to obtain
the refined TGA approximations in §3.2 and then subsequently, in §3.3, we heuristically modified
the MSHT limit in [21] for non-exponential GI service to obtain the final TGA-G approximations,
which coincide with TGA for exponential service times.

In §§4-7 we report results of extensive simulations studying the approximations. These exper-
iments show that, for large scale with n = 100, the approximations are effective for a significant
range of the traffic intensity (ρ) and the abandonment rate (θ) parameters, roughly for ρ > 1.02
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and θ < 2.0. After first comparing the approximations to exact numerical results for the Markov
M/M/n+M model in §4, we carefully examined the impact of non-Markov elements for the arrival
process (including a non-renewal MMPP example) and the patience distribution in §5 and for the
service time distribution in §§6.1 and 6.2. In §7 we showed that these approximations also remain
effective for smaller scale, assuming that the remaining parameters are adjusted appropriately. In
§8 we described the simulation methodology. Additional details are provided in an online appendix.

A main conclusion in [35, 36] was that the steady state performance of the M/GI/n+GI model
tends to be nearly insensitive to the service-time distribution beyond its mean. Our experiments
confirm that conclusion for the main performance measures considered, e.g., for the mean values of
the steady-state queue length and waiting time, but we show that the variance and full distribution
depend significantly on the service-time distribution beyond its mean. Moreover, our refined TGA-
G approximation successfully captures that effect.

There are many good directions for future research. It remains to provide better theoretical
justification, especially for the non-exponential service-time distributions. It also remains to develop
effective approximations in other ranges of the parameters.
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