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Analytical approximations are developed to determine the time-dependent offered load (effective demand)

and appropriate staffing levels that stabilize performance at designated targets in a many-server queueing

model with time-varying arrival rates, customer abandonment from queue and random feedback with addi-

tional delay after completing service. To provide a flexible model that can be readily fit to system data, the

model has history-dependent Bernoulli routing, where the feedback probabilities, service-time and patience

distributions all may depend on the visit number. Before returning to receive a new service, the fed-back

customers experience delays in an infinite-server or finite-capacity queue, where the parameters may again

depend on the visit number. A new refined modified-offered-load approximation is developed to obtain good

results with low waiting-time targets. Simulation experiments confirm that the approximations are effective.

A many-server heavy-traffic FWLLN shows that the performance targets are achieved asymptotically as the

scale increases.
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1. Introduction

This paper is part of an ongoing effort to develop effective methods to set staffing levels (the time-

dependent number of servers) in service systems with time-varying arrival rates in order to stabilize

performance at designated targets; see Green et al. (2007) for a review and Stolletz (2008), Defraeye

and van Nieuwenhuyse (2013), Liu and Whitt (2014) and Yom-Tov and Mandelbaum (2014) for

recent related work. We continue to focus on service systems that can be modeled as many-server
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queues with customer abandonment from queue, but here in addition we consider Bernoulli feedback

with additional delay after completing service. The delayed feedback is challenging because it can

significantly alter the time-varying demand, not only in magnitude but also in timing. For example,

the delayed feedback can amplify or damp the peak demand and shift it in time.

By focusing on queues with feedback, our work is a contribution to the literature on retrial

queues as in Ding et al. (2014a,b), de Vericourt and Zhou (2005), Yom-Tov and Mandelbaum

(2014) and references therein. As in these papers, we focus on feedback of customers after they

complete service rather than feedback from customers that initially cannot gain admission to the

facility. The literature exposes two common reasons for feedback after completing service: First,

de Vericourt and Zhou (2005) focus on call center customers that may return later because the

initial service was unsatisfactory. Second, Yom-Tov and Mandelbaum (2014) focus on the treatment

of patients by a doctor in a hospital that may naturally occur in stages, starting with an initial

screening and continuing later after tests have been ordered and completed. Our paper is closely

related to Yom-Tov and Mandelbaum (2014), where a modified-offered-load (MOL) approximation

was proposed to help set staffing levels at a queue with time-varying arrival rates and Markovian

feedback after a delay in an infinite-server (IS) queue. They showed that the MOL approximation

has great potential for improved performance analysis in healthcare, where there are longer service

times; see Armony et al. (2011) for further background.

Motivated by these applications, we consider a feedback model that we think has appealing

flexibility. In particular, instead of Markovian routing with fixed feedback probability p and one

fixed service-time distribution, we consider history-dependent Bernoulli routing, where the feed-

back probability p and the service-time distribution and the subsequent delay distribution (before

returning for a new service) all may vary with the visit number. We focus on the case of at most

one feedback, but the methods extend directly to any finite number of feedbacks. (We also con-

sider examples with two feedback opportunities.) We also allow customer abandonment, which

often tends to be more realistic for many service systems, as observed by Garnett et al. (2002).

The associated patience-time distributions are also allowed to depend on the visit number. These

history-dependent parameters significantly complicate the analysis, producing a multi-class model,

but our approach addresses it in an interesting and effective way; e.g., see the new multi-queue

offered load models in Figures 1 and 9.

To analyze this new feedback model, we draw on Liu and Whitt (2012c) in which we devel-

oped a delayed-infinite-server (DIS) offered-load approximation and a new DIS-MOL algorithm to

determine time-dependent staffing levels in order to stabilize expected delays and abandonment

probabilities at specified quality of service (QoS) targets in a many-server queue with time-varying
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arrival rates. The model was Mt/GI/st +GI model, having arrivals according to a nonhomoge-

neous Poisson process (NHPP, the Mt) with arrival rate function λ(t), independent and identically

distributed (i.i.d.) service times with a general distribution (the first GI), a time-varying num-

ber of servers (the st, to be determined), i.i.d. patience times with a general distribution (times

to abandon from queue, the final +GI), unlimited waiting space and the first-come first-served

(FCFS) service discipline. We included non-exponential service and patience distributions as well

as time-varying arrivals because they commonly occur; e.g. see Armony et al. (2011) and Brown

et al. (2005).

We refer to the base model with a single feedback as (Mt/GI,GI/st +GI,GI) + (GI/∞). The

main queue has the two service-time cdf’s Gi and patience cdf’s Fi, while the orbit queue has a

service-time cdf H, with all waiting customers entering service in a FCFS order. We also consider

the associated (Mt/GI,GI/st+GI,GI)+ (GI/st+GI) model in which the orbit queue has finite

capacity; in that case, it also has a staffing function and a patience distribution. The goal is

to stabilize expected potential waiting times (the virtual waiting time of an arrival with infinite

patience) at a fixed value w for all time and i= 1,2. Since these models are special kinds of two-class

queueing models, we also consider the more elementary
∑2

i=1(Mt/GI +GI)/st two-class queue,

in which the two classes arrive according to two independent NHPP’s with arrival rate functions

λ(i)(t) and their own service-time cdf’s Gi and patience cdf’s Fi, i = 1,2, but there is a single

service facility with a time-varying number of servers s(t), again to be determined.

The approximating DIS model for the (Mt/GI,GI/st +GI,GI) + (GI/∞) feedback queue has

five IS queues in series; see §2. (If there are k possible feedbacks, then the DIS model has 2 + 3k

IS queues in series; see §6.1 for the case k = 2.) We show that the simple DIS algorithm (staffing

directly to the DIS offered load) is effective for all three models with low QoS targets. To provide

theoretical support, we prove a new functional weak law of large numbers (FWLLN) showing that

any positive waiting-time target w is achieved asymptotically as the scale (arrival rate and number

of servers) increases.

However, as in Liu and Whitt (2012c), the DIS algorithm is ineffective for low waiting-time tar-

gets. We develop a new DIS-MOL approximation for that case and conduct simulation experiments

to show that it is effective. Given previous MOL approximations, ideally the MOL approximation

for the main case would involve a stationary (M/GI,GI/s+GI,GI)+ (GI/∞) feedback queue to

apply at each time t. Since no steady-state performance results exist for such a complex stationary

model, we develop an aggregate single-class stationary M/GI/s+GI model. With this new aggre-

gate approximating stationary model, we are able to apply the algorithm from Whitt (2005) just

as in Liu and Whitt (2012c). Fortunately, simulation experiments confirm that this aggregation

approach is effective.
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Here is how the rest of this paper is organized: We start in §2 by giving explicit expres-

sions for all the key performance functions of the new (Mt/GI,GI/st +GI,GI) + (GI/∞) queue

with Bernoulli feedback and an IS orbit queue, with fixed delay target w. In the e-companion we

also give explicit formulas in structured special cases when the arrival-rate function is sinusoidal.

In §3 we state the supporting many-server heavy-traffic FWLLN showing that the DIS approxi-

mation asymptotically stabilizes the expected delay as the scale increases. We defer the proof to

the e-companion. In §4 we develop the new DIS-MOL approximation. In §5 we show the results

of simulation experiments to support the approximations. In §6 we show that the good results

also hold for (i) the more elementary
∑2

i=1(Mt/GI+GI)/st two-class queue, (ii) the more compli-

cated (Mt/GI,GI/st+GI,GI)+ (GI/st+GI) queue with Bernoulli feedback and a (GI/st+GI)

finite-capacity orbit queue and (iii) the generalization of the base model allowing two feedback

opportunities. Finally, in §7 we draw conclusions. Additional supporting material appears in an

e-companion maintained by the journal and a longer online appendix maintained by the authors.

2. The Delayed-Infinite-Server (DIS) Approximation

We now develop the DIS approximation for the (Mt/GI,GI/st +GI,GI) + (GI/∞) model with

FCFS service, which has Bernoulli feedback with probability p for each new customer completing

service; otherwise the customer departs. Customers arrive according to an external NHPP arrival

process with arrival rate function λ. The original (feedback) arrivals have i.i.d. service times and

patience times distributed as generic random variables S1 with cdf G1 and A1 with cdf F1 (S2

with cdf G2 and A2 with cdf F2), respectively. Customers that are fed back encounter i.i.d. delays

distributed as the generic random variable U with cdf H. The arrival-rate function of the fed-back

customers is λF . This feedback model is depicted on the left in Figure 1.

2.1. The Approximating Five-Queue DIS Model

The approximating DIS model, depicted on the right in Figure 1, has five IS queues in series, the

first two for the external arrivals, in queue and in service, the third for the IS orbit queue (which is

directly an IS queue) and the last two for the fed-back customers, in queue and in service. Since all

arrivals to a queue are forced to remain in the waiting room a constant time w unless they abandon

in this approximating model, the service times in the first and fourth IS queues (representing the

waiting room) are distributed as T1 ≡A1 ∧w and T2 ≡A2 ∧w, respectively. The service times in

the second and fifth IS queues (representing the service facility) are distributed as S1 and S2, and

the service times in the third IS queue (representing the orbit queue) are distributed as U . The

performance functions for the five IS queues are then calculated recursively using Eick et al. (1993).

Theorem 1 of Eick et al. (1993) implies that the departure process from the Mt/GI/∞ IS queue is
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Figure 1 The (Mt/GI,GI/st+GI,GI)+(GI/∞) model with delayed customer feedback and its Delayed Infinite-

Server (DIS) approximation. The approximating offered load is m(t) = m1(t) + m2(t) ≡ E[B1(t)] +

E[B2(t)].

itself an NHPP with an explicitly specified rate function. It is also well know that an independent

thinning of an NHPP is again an NHPP. Thus all five IS queues are Mt/GI/∞ models.

In the DIS approximation for the (Mt/GI,GI/st +GI,GI) + (GI/∞) model, we let Qi(t) and

Bi(t) be the number of customers in waiting room i and in service facility i at time t, i=1,2. We

let O(t) be the number of customers in the orbit room at time t. The approximating offered load

(OL) function, which of course is a function of the waiting time target w, is

m(t)≡m1(t)+m2(t)≡E[B1(t)]+E[B2(t)]. (1)

As before, all flows are Poisson processes, with rate functions as depicted in Figure 1. The

abandonment rates from the two waiting rooms (IS queues 1 and 4) are ξi(t); The rates into service

from the waiting rooms (IS queues 2 and 5) are βi(t); the departure rate of original customers from

the service facility (both fed-back and not) is σ1(t); the departure rates from the system of original

customers and fed-back customers are (1− p)σ1(t) and σ2(t); and the feedback rate (leaving the

service facility and entering the orbit IS queue) is pσ1(t).
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2.2. The DIS Performance Functions

In this section we display the performance functions for the DIS approximation of the

(Mt/GI,GI/st +GI,GI)+ (GI/∞) model. All these performance functions are crucial in provid-

ing time-varying staffing functions and predicting system performance under these staffing policies.

The next theorem generalizes Theorem 1 in Liu and Whitt (2012c) and follows directly from Eick

et al. (1993). (Also see Massey and Whitt (1993).)

For a non-negative random variableX with finite mean E[X] and cdf FX , letXe denote a random

variable with the associated stationary-excess cdf (or residual-lifetime cdf) F e
X , defined by

F e
X(x)≡ P (Xe ≤ x)≡

1

E[X]

∫ x

0

F̄X(y)dy, x≥ 0,

where F̄X(y)≡ 1−FX(y). The moments of Xe can be easily expressed in terms of the moments of

X via

E[Xk
e ] =

E[Xk+1]

(k+1)E[X]
, k≥ 1.

Let 1C be the indicator variable, which is equal to 1 if event C occurs and is equal to 0 otherwise.

Theorem 1. (performance functions starting from the infinite past) Consider the DIS approxima-

tion for the (Mt/GI,GI/st+GI,GI)+(GI/∞) model specified in §2, starting empty in the distant

past with specified delay target (parameter) w ≥ 0. The total numbers of customers in the waiting

rooms, service facilities, and in the orbit at time t, Qi(t), Bi(t) and O(t) are independent Poisson

random variables with means

E[Q1(t)] = E

[
∫ t

t−T1

λ(x)dx

]

=E[λ(t−T1,e)]E[T1],

E[B1(t)] = F̄1(w)E

[
∫ t−w

t−w−S1

λ(x)dx

]

= F̄1(w)E[λ(t−w−S1,e)]E[S1],

E[O(t)] = pE

[
∫ t

t−U

σ1(x)dx

]

= pE[σ1(t−Ue)]E[U ],

E[Q2(t)] = E

[
∫ t

t−T2

λF (x)dx

]

=E[λF (t−T2,e)]E[T2],

E[B2(t)] = F̄2(w)E

[
∫ t−w

t−w−S2

λF (x)dx

]

= F̄2(w)E[λF (t−w−S2,e)]E[S2],

where Ti ≡Ai ∧w. Thus, X(t), the total number of customers in the system at time t is a Poisson

random variable with a mean E[Q1(t)]+E[Q2(t)]+E[B1(t)]+E[B2(t)]. The processes counting the

numbers of customers abandoning from waiting room 1 and 2 are independent Poisson processes

with rate functions ξi(t), where

ξ1(t) =

∫ w

0

λ(t−x)dF1(x) =E[λ(t−T1)1{T1<w}],

ξ2(t) =

∫ w

0

λF (t−x)dF2(x) =E[λF (t−T2)1{T2<w}].
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The processes counting the numbers of customers entering service facility 1 and 2 are independent

Poisson processes with rate functions β1(t) and β2(t), where

β1(t) = λ(t−w)F̄1(w) and β2(t) = λF (t−w)F̄2(w).

The departure processes (counting the number of customers completing service) from service facility

1 and 2 are independent Poisson processes with rate (1− p)σ1(t) and σ2(t), where

σ1(t) = F̄1(w)

∫ ∞

0

λ(t−w−x)dG1(x) = F̄1(w)E[λ(t−w−S1)],

σ2(t) = F̄2(w)

∫ ∞

0

λF (t−w−x)dG2(x) = F̄2(w)E[λF (t−w−S2)].

The process counting the numbers of customers entering the second waiting room is a Poisson

process with rate function λF , where

λF (t) = p

∫ ∞

0

σ1(t−x)dH(x) = (1− p)E[σ1(t−U)].

When the arrival rate is constant, i.e., λ(t) = λ, the steady-state performance functions can be

easily obtained using simple calculations for a five-queue IS network, which in particular simplifies

to five IS queues in series; see the appendix. As discussed in Eick et al. (1993), Massey and Whitt

(1993), Liu and Whitt (2012c), simple linear and quadratic approximations derived from Taylor

series for general arrival-rate functions can be convenient. These approximations show simple time

lags and space shifts; see the appendix.

In applications, a typical objective is to design a staffing function for a specified planning period

[0, T ] (e.g., T = 24 for a day). To treat that case, we let λ(t) = 0 for t < 0 into Theorem 1 and

obtain the following concrete formulas for the performance measures.

Corollary 1. (performance functions of the initially empty DIS model) Consider the initially

empty DIS approximation for the (Mt/GI,GI/st + GI,GI) + (GI/∞) model with delay target

w > 0, starting at time 0. All results in Theorem 1 hold with rate functions

ξ1(t) =

∫ t∧w

0

λ(t−x)dF1(x),

β1(t) = λ(t−w) · F̄1(w) · 1{t≥w},

σ1(t) = F̄1(w)

∫ t−w

0

λ(t−w−x)dG1(x) · 1{t≥w},

λF (t) =

∫ t−w

0

pσ1(t− y)dH(y) · 1{t≥w}

= pF̄1(w)

∫ t−w

0

∫ t−w−y

0

λ(t−w−x− y)dG1(x)dH(y) · 1{t≥w},

ξ2(t) =

∫ (t−w)∧w

0

λF (t− z)dF2(z) · 1{t≥w}
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= (1− p)F̄1(w)

∫ (t−w)∧w

0

∫ t−w−z

0

∫ t−w−y−z

0

λ(t−w−x− y−w)dG1(x)dH(y)dF2(z) · 1{t≥w},

β2(t) = λF1
(t−w)F̄2(w) · 1{t≥2w}

= pF̄1(w)F̄2(w)

∫ t−2w

0

∫ t−2w−y

0

λ(t− 2w−x− y)dG1(x)dH(y) · 1{t≥2w},

σ2(t) =

∫ t−2w

0

β2(t− z)dG2(z) · 1{t≥2w}

= pF̄1(w)F̄2(w)

∫ t−2w

0

∫ t−2w−z

0

∫ t−2w−y−z

0

λ(t− 2w−x− y− z)dG1(x)dH(y)dG2(z) · 1{t≥2w},

and mean number of customers in these five IS queues

E[Q1(t)] =

∫ t∧w

0

λ(t−x)F̄1(x)dx,

E[B1(t)] = F̄1(w)

∫ t−w

0

λ(t−w−x)Ḡ1(x)dx · 1{t≥w},

E[O(t)] =

∫ t−w

0

pσ1(t−x)H̄(x)dx · 1{t≥w}

= pF̄1(w)

∫ t−w

0

∫ t−w−y

0

λ(t−w−x− y)dG1(x)H̄(y)dy · 1{t≥w},

E[Q2(t)] =

∫ (t−w)∧w

0

λF (t− z)F̄2(z)dz · 1{t≥w},

= pF̄1(w)

∫ (t−w)∧w

0

∫ t−w−z

0

∫ t−w−y−z

0

λ(t−w−x− y− z)dG1(x)dH(y)F̄2(z)dz · 1{t≥w},

E[B2(t)] = F̄2(w)

∫ t−2w

0

λF (t−w− z)Ḡ2(z)dz · 1{t≥2w}

= pF̄1(w)F̄2(w)

∫ t−2w

0

∫ t−2w−z

0

∫ t−2w−y−z

0

λ(t− 2w−x− y− z)dG1(x)dH(y)Ḡ2(z)dz · 1{t≥2w}.

The total number of busy servers (or number of customers in service) at time t is B(t)≡B1(t)+

B2(t). As in Liu and Whitt (2012c), we let m(t)≡ E[B(t)] =E[B1(t)] +E[B2(t)] be the DIS OL

function.

In the e-companion we give explicit formulas for the case of sinusoidal arrival rate functions,

which are often used to create stylized models. In the longer online appendix we also consider a

slightly generalized scheme. Suppose the system is not empty at the beginning of the day (at time

0) and the initial number of waiting customers in the system along with their elapsed waiting times

are observed (not random). For instance, there are n customers waiting in a single line at time 0

and their elapsed waiting times are 0≤ w1 ≤ w2 ≤ · · · ≤ wn. The goal is to design an appropriate

staffing function s(t) for 0≤ t≤ T such that the average customer waiting times can be stabilized

during [0, T ] (e.g., T =8 or T = 24). A typical example is the Manhattan DMV office. On a regular

morning, by the opening of the office (8:00 am), which may have a line of waiting customers outside

the door. This variant is also analyzed in the appendix.
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3. Asymptotic Effectiveness as the Scale Increases

In this section we state the many-server heavy-traffic FWLLN for the (Gt/GI,GI/st +GI,GI)+

(GI/∞) model with Bernoulli feedback after a random delay in an IS orbit queue, implying that

the DIS staffing algorithm is effective in stabilizing the expected waiting times for all customers

at a fixed positive value w asymptotically as the scale increases. (In the rest of this paper we

restrict attention to Mt arrivals. The greater generality provides a basis for extensions. See He et al.

(2015) for a discussion of Gt arrivals.) The associated abandonment probability targets αi = Fi(w)

for i = 1,2, where i = 1 corresponds to external arrivals and i = 2 corresponds to feedback after

completing service, are then achieved asymptotically as well.

Paralleling Liu and Whitt (2012b,c), the FWLLN involves a sequence of (Gt/GI,GI/st +

GI,GI) + (GI/∞) models indexed by n. As before, we let the service and patience distributions

Gi, Fi,H be independent of n. The cdf’s Gi, Fi and H are differentiable, with positive finite prob-

ability density functions (pdf’s) gi, fi and h.

In Liu and Whitt (2012c) we assumed that the arrival process Nn(t) was NHPP, but greater

generality is allowed by Liu and Whitt (2012b,a). In order to simplify the proof, we make the DIS

staffing simply be proportional to the scale parameter n. We achieve that by letting the arrival

rate in model n be a scaled version of a fixed arrival rate function. As in Liu and Whitt (2012c),

that works directly if we assume that the external arrival process is an NHPP, but to allow greater

generality we assume a specific process representation.

We now assume that the queue has a base external arrival counting process that can be expressed

as

N (e)(t) =N (b)(Λ(t)), t≥ 0, (2)

where Λ(t) is a differentiable cumulative rate function with

Λ(t)≡

∫ t

0

λ(s)ds (3)

where λ(t) is specified as part of the model data. and N (b) ≡ {N (b)(t) : t≥ 0} is a rate-1 stationary

point process satisfying a FWLLN, i.e.,

n−1N (b)(nt)⇒ t in D as n→∞, (4)

where ⇒ denotes convergence in distribution in the function space D with the topology of uniform

convergence over bounded subintervals of the domain [0,∞) as in Whitt (2002).

In that framework, we then define the external arrival process in model n by letting

N (e)
n (t)≡N (b)(nΛ(t)), t≥ 0, (5)
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which gives it cumulative arrival rate function Λn(t) = nΛ(t), a simple multiple of the base arrival

rate function. On account of this construction and assumption (4), we deduce that N (e)
n also obeys

the FWLLN

N̄ (e)
n (t)≡ n−1N (e)(nt)⇒Λ1(t) in D as n→∞, (6)

where the limit is the cumulative external arrival rate function of the fluid model.

Since the external arrival rate has been constructed by simple scaling, the associated DIS staffing

can be constructed by simple scaling as well; see §4 of Liu and Whitt (2012a). Hence, in model n,

we can use a time-varying number of servers sn(t)≡ ⌈ns(t)⌉ (the least integer above ns(t)), which

we assume is set by the DIS staffing algorithm, which is a scaled version of the staffing in the

associated fluid model with cumulative arrival rate Λ, already specified in Theorem 1, in particular,

s(t) =m(t) =m1(t) =m2(t) =E[B1(t)]+E[B2(t)]. (7)

We define the following performance functions for the nth model: Let Nn(t) be the total number

of (external plus internal) arrivals in the interval [0, t]; let Q(i)
n (t) be the number of customers of

type i waiting in queue at time t; let W (i)
n (t) be the corresponding potential waiting time, i.e., the

virtual waiting time at time t if there were an arrival at time t of type i, assuming that arrival had

unlimited patience; let A(i)
n (t) be the number of type i customers that have abandoned from queue

in the interval [0, t]; let A(i)
n (t, u) be the number of type-i customers among arrivals to the queue in

[0, t] that have abandoned in the interval [0, t+u]; let D(i)
n (t) be the number of type-i customers to

complete service in the interval [0, t]; let D(1,2)
n (t) be the number of type-1 customers to complete

service that have been fed back in the interval [0, t]; let D(2)
n (t) be the number of type-2 customers

to arrive back at the queue in the interval [0, t]. Define associated FWLLN-scaled processes: by

letting N̄n(t) ≡ n−1Nn(t), and similarly for the other processes except the process W (i)
n (t) is not

scaled.

Theorem 2. (asymptotic effectiveness) Consider a sequence of (Gt/GI,GI/st+GI,GI)+(GI/∞)

models indexed by n with the external arrival processes in (5) and the many-server heavy-traffic

scaling specified above. Suppose that these systems start empty at time 0, the regularity conditions

in Liu and Whitt (2012b,a) are satisfied (including the finite positive densities) and E[S2
i ]<∞ for

all i. Then, with any expected waiting time target w > 0 and associated abandonment-probability

targets αi = Fi(w)> 0, i=1,2, use the DIS staffing sn(t)≡ ⌈ns(t)⌉, where

s(t) =m(t) =m1(t)+m2(t) =E[B1(t)]+E[B2(t)], (8)
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as given in Theorem 1. Then the expected delays and abandonment probabilities are stabilized at

their targets w and αi for i=1,2 asymptotically as n→∞. Moreover, for any time b with w< b<

∞,

sup
0≤t≤b

{|Q̄(i)
n (t)−E[Q(i)(t)]|} ⇒ 0, sup

0≤t≤b

{|W (i)
n (t)−w|}⇒ 0, E[W (i)

n (t)]→w, t≥ 0,

sup
0≤t≤b

{|Ā(i)
n (t)−A(i)(t)|} ⇒ 0 and sup

0≤t≤bi,wi<u<bi

{|Ā(i)
n (t, t+u)−A(i)(t, u)|}⇒ 0 (9)

as n→∞, where (with λ1 = λ and λ2 = λF )

E[Q(i)(t)] = E[Q(i)(t,0)]≡

∫ wi

0

λi(t−x)F̄i(x)dx, A(i)(t)≡

∫ t

0

ξi(s)ds

ξi(t) ≡

∫ wi

0

λi(t−x)fi(x)dx and A(i)(t, u)≡Λi(t)αi, u > wi. (10)

We give the proof in the e-companion. Essentially the same argument yields corresponding

FWLLN’s for the
∑2

i=1(Mt/GI + GI)/st two-class queue and the (Mt/GI,GI/st + GI,GI) +

(GI/st+GI) model when the orbit queue has finite capacity.

4. The Refined DIS-MOL Approximation

Paralleling the DIS-MOL approximation in Liu and Whitt (2012c), we let the DIS-MOL staffing

be the time-varying number of servers needed in the stationary M/GI/s+GI model with time-

varying total arrival rate λmol(t), regarded as constant at each time t, depending on the offered

loads mi(t), and associated parameters according to

λMOL(t)≡
2

∑

i=1

λmol,i(t), (11)

where

λmol,i(t)≡
mi(t)

(1−αi)E[Si]
(12)

where mi(t) = E[Bi(t)] for each i. We enforce the additivity in (11) and the additivity m(t) =

m1(t)+m2(t).

We now elaborate on our reasoning. As in Liu and Whitt (2012c), the idea behind (12) is that

we want to exploit the basic offered load relation for the stationary model, which corresponds to

Little’s law applied to the service facility, i.e., m = λE[S]. However, the arrival rate should be

adjusted for abandonment. Hence, if λ is the external arrival rate, not adjusted for abandonment,

thenm= λ(1−α)E[S] and λ=m/(1−α)E[S]. However, now we have two classes of customers with

different parameters, so we havemi = λi(1−αi)E[Si] for each i, which leads to λi =mi/(1−αi)E[Si]

for each i. The total arrival rate is the sum of these two arrival rates. When we substitute mi(t)

for mi, we obtain our DIS-MOL arrival rates (12) to use in the stationary M/GI/s+GI model.
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The MOL arrival rate in (11) generalizes the relatively simple formula λMOL(t) =mα(t)/(1−

α)E[S] for a single queue in Liu and Whitt (2012c). Formula (11) reduces to that when Fi = F for

all i, so that αi = α, and Gi =G for all i, so that E[Si] =E[S] for all i. Given the MOL arrival rate

function in (11), we apply the approximations for the performance in the stationary M/GI/s+GI

model from Whitt (2005), just as in Liu and Whitt (2012c), except we use w as the target for the

expected waiting time.

4.1. Constructing the Aggregate Stationary Model

We have just constructed the aggregate DIS-MOL arrival rate in (11). In order to produce a

stationary M/GI/s+GI model for each time t, it now remains to define appropriate aggregate

service-time and patience cdf’s Gmol and Fmol to be used in the stationary model at time t. We let

these be defined as appropriate averages. In particular, we let

Fmol(t) =
λmol,1(t)F1 +λmol,2(t)F2

λmol(t)
(13)

so that

1−αmol(t) =
λmol,1(t)(1−α1)+λmol,2(t)(1−α2)

λmol(t)
(14)

and

Gmol(t) =
(1−α1)λmol,1(t)G1+(1−α2)λmol,2(t)G2

(1−αmol(t))λmol(t)
. (15)

Let Smol(t) and Amol(t) be generic random variables with the cdf’s Gmol and Fmol at time t. From

(15), we have

E[Smol(t)] =
(1−α1)λmol,1(t)E[S1] + (1−α2)λmol,2(t)E[S2]

(1−αmol(t))λmol(t)
(16)

Since these definitions are averages, we meet the obvious consistency condition that Gmol(t) =G

if G1 =G2 =G and Fmol(t) = F if F1 = F2 = F .

Proposition 1. (additivity) With these definitions, we maintain the important MOL additivity

assuming that

mmol(t)≡ (1−αmol(t))λmol(t)E[Smol(t)]. (17)

Then

mmol(t) ≡ (1−αmol(t))λmol(t)E[Smol(t)]

= (1−α1)λmol,1(t)E[S1] + (1−α2)λmol,2(t)E[S2] =m1(t)+m2(t) =m(t), (18)

as it should.

Proof. We start with (17) and then apply the definition of E[Smol(t)] in (16) to get the second

line. We then apply (12).
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4.2. Computing the DIS-MOL Staffing Function

For each time t, we apply the constant arrival rate in (11), abandonment cdf in (13) and service-

time cdf in (15) in order to obtain a stationary M/GI/s+GI model, which of course depends on

t. We numerically select the staffing level smol(t) to be the smallest value for which the expected

steady-state potential waiting time (virtual waiting time for a customer, if that customer had

unlimited patience) is less than the target w.

To do so, we exploit the approximating state-dependent Markovian M/M/s+M(n) model for

the stationary M/GI/s+GI queue, developed in Whitt (2005). With that model, we first compute

the steady-state distribution πi ≡ P (Q(∞)= i), i≥ 0, for the M/M/s+M(n) queue, as indicated

in §7 of Whitt (2005). We next compute the expected steady-state potential waiting time by

conditioning on the total number of customers in the queue. As a function of the number of servers

s, we write

E[Ws(∞)] =
∞
∑

i=s

E[Ws(∞)|Q(∞) = i] ·πi =
∞
∑

i=s

s−i
∑

k=0

1

sµ+ δk
·πi, (19)

where µ is the reciprocal of the mean service time in (16) and δk is the state-dependent abandonment

rate in (3.4) of Whitt (2005). The goal here is to find an smol(t) such that smol(t) = min{s >

0,E[Ws(∞)]<w} for each stationary (M/GI/s+GI)t model.

In closing this section, we also remark that we could also be staffing at time t to satisfy the new

abandonment target αmol(t) given in (14), i.e., we could choose the minimum number of servers

so that the steady-state probability of abandonment is below αmol(t). This is so because if the

potential waiting time is indeed w for an arrival, then the probability that this arrival will abandon

is approximately Fmol(t,w) =αmol(t).

5. Comparison with Simulations

We now describe results of simulation experiments to show the effectiveness of the approximations.

5.1. The Base Model

Our base model is the (Mt/GI,GI/st +GI,GI) + (GI/∞) model with Bernoulli feedback after

a random delay in an IS orbit queue. (We consider other models in §6 and the appendix.) Just

as in Feldman et al. (2008), Liu and Whitt (2012c), for our base case we let the system start

empty and we use a sinusoidal arrival rate function with average offered load for new arrivals of

approximately 100, so that the staffing would fluctuate around 100 for the external arrivals alone.

(We also consider cases with smaller arrival rates in the appendix.) In particular, we use the arrival

rate function

λ(t) = λ̄(1+ r sin(t)) = 100(1+ r sin(t)), t≥ 0, (20)
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for relative amplitudes r, denoted by Mt(r); here we let r=0.2. We let the feedback probability be

p=0.2, but we let the mean service times for the original and fed-back customers be µ−1
1 ≡E[S1] =

1 and µ−1
2 ≡ E[S2] = 5, respectively, so that the offered loads of the two kinds of customers are

roughly equal. In the appendix we obtain similar results for the corresponding model with p=0.5

and µ−1
2 ≡E[S2] = 2, which has more similar mean service times.

We let the three service-time distributions be hyperexponential (H2) with squared coefficient of

variation (scv, variance divided by the square of the mean) c2 = 4, with balanced means, as on p.

137 of Whitt (1982); we thus write H2(m,4) with specified mean m. We let the patience times of

the original and fed-back customers be exponential, but with different means, denoted by M(m).

In particular, we consider the (Mt(r)/H2(1,4),H2(5,4)/st+M(2),M(1))+ (p,H2(1,4)/∞) model

with r= p= 0.2. All service-time distributions are H2, while all patience distributions are M , but

the means vary, so that the complex refined DIS-MOL formulas in §4 associated with the aggregate

model are needed, and are tested in these experiments. We also consider corresponding models

with non-exponential patience cdf’s in the appendix.

5.2. Results from the Simulation Experiment

We simulated the model above starting empty over the time interval [0,20]. We estimated the

performance functions by taking averages from 2000 independent replications. (Additional details

are given in the appendix.)

Figures 2 and 3 show the results of the simulation experiment for high and low waiting-time

targets, respectively, In Figure 2 the waiting-time targets are w= 0.10,0.20,0.30,0.40, so that the

simple DIS staffing is used, while in Figure 3 the waiting-time targets are w=0.01,0.02,0.03,0.04,

ten times smaller, so that the refined DIS-MOL staffing is used. The performance functions are

averages based on 2000 independent replications.

Consistent with Liu and Whitt (2012c) and the FWLLN in §3, with the higher waiting-time

targets in Figure 2 we see very smooth and accurate plots of the expected waiting times and

abandonment probabilities, which are the performance functions to be stabilized, but strongly

fluctuating expected queue lengths and delay probabilities, which agree closely with the formulas

in §2. With the higher waiting-time targets, there is higher abandonment probability, so that

the maximum staffing is about 160 instead of about 100+ 100 = 200 in Figure 3 with the lower

waiting-time targets. There is greater variability with the lower waiting-time targets.

Figure 3 shows that, consistent with experience in Feldman et al. (2008) and Liu and Whitt

(2012c), all performance functions tend to be stabilized simultaneously with the lower waiting-

time targets, after an initial startup effect due to starting empty. The delay probability starts at

1 because the stabilizing staffing algorithm does not start staffing until time w > 0. That feature
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Figure 2 Performance functions in the (Mt(0.2)/H2(1,4),H2(5,4)/st +M(2),M(1)) + (0.2,H2(1,4)/∞) model

with the sinusoidal arrival rate in (20) for λ̄ = 100 and r = 0.2, Bernoulli feedback with probability

p= 0.2 and an IS orbit queue: four cases of high waiting-time (low QoS) targets (w = 0.10, 0.20, 0.30

and 0.40) and simple DIS staffing.
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ensures that all arrivals wait exactly w in the limiting fluid model (see §10 of Liu and Whitt

(2012a)), but it would probably not be used in applications.
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Figure 3 Performance functions in the (Mt(0.2)/H2(1,4),H2(5,4)/st +M(2),M(1)) + (0.2,H2(1,4)/∞) model

with the sinusoidal arrival rate in (20) for λ̄ = 100 and r = 0.2, Bernoulli feedback with probability

p= 0.2 and an IS orbit queue: four cases of low waiting-time (high QoS) targets (w = 0.01, 0.02, 0.03

and 0.04) and DIS-MOL staffing.
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5.3. Square Root Staffing

We emphasize that the DIS OL m(t) given explicitly in §2 is the key quantity being computed.

The DIS OL quantifies the essential demand, combining the impact of the random service times

with the time-varying arrival rate, both of which are complicated by the feedback. The relatively
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complicated DIS-MOL staffing, which requires an algorithm for computing an approximation for

the steady-state performance in the stationary M/GI/s+GI model, is of course also important

in identifying the exact staffing level required to stabilize the expected potential waiting times at

the target w. However, except for the specific QoS parameter β, the same goal could be achieved

by applying the simple square root staffing (SRS) formula

s(t)≡m(t)+β
√

m(t), (21)

with this DIS OL m(t). Without the DIS-MOL step, we could just search for the appropriate

constant β to use in the SRS formula. The DIS OL already succeeds in eliminating the dependence

on time.

As in Feldman et al. (2008), we demonstrate the importance of the DIS OL in the present context

by plotting the implied empirical QoS,

βDIS−MOL(t) =
sDISMOL(t)−m(t)

√

m(t)
(22)

for the example considered in Figure 3. Figure 4 shows that the DIS-MOL staffing is indeed

equivalent to SRS staffing for an appropriate QoS parameter β, which is given on the y axis on the

left, as a function of the target w on the right. We present similar empirical QoS plots for other

examples in the appendix.

Figure 4 The empirical Quality of Service (QoS) provided by the DIS-MOL staffing in the

(Mt(0.2)/H2(1,4),H2(5,4)/st +M(2),M(1)) + (0.2,H2(1,4)/∞) example of Figure 3 as a function of

the waiting-time target w.
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The DIS OL is appropriate for smaller models as well, but then the actual staffing and the result-

ing performance are complicated because the discretization becomes very important. However, the

DIS OL remains an important first step to identify the effective time-dependent demand.
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6. Other Models

In this section we discuss the other two models mentioned in the introduction. We first discuss the
∑2

i=1(Mt/GI+GI)/st two-class queue, in which the two classes arrive according to two independent

NHPP’s. We then discuss the (Mt/GI,GI/st+GI,GI)+(GI/st+GI) feedback model in which the

orbit queue has finite capacity. Afterwards, we discuss the model with two feedback opportunities.

More examples are discussed in the appendix.

6.1. Two-Class Queue

In this section we consider the associated
∑2

i=1(Mt/GI +GI)/st two-class queue, in particular,

the
∑2

i=1(Mt/H2(mi,4)+M(mi)/st model with H2(m,4) service-time cdf’s for both classes with

m1 = 1.0 andm2 =0.6 andM(m) patience cdf’s for both classes with m1 =2.0 andm2 = 1.0. We let

the arrival processes be independent NHPP’s, but with different sinusoidal arrival-rate functions,

in particular,

λ1(t) = 100(1+0.2 sin(t)), and λ2(t) = 60(1+0.2 sin(0.8t+2)). (23)

The analysis of this model is more elementary. First, there is no orbit queue. We get the DIS

OL by simply applying the DIS approximation to the two classes separately. That yields the per-

class OL’s mi(t) = E[Bi(t)] for i = 1,2 and then we add to get the total OL: m(t) = m1(t) +

m2(t). Given this overall DIS OL, we apply the same refined DIS-MOL approximation in §4. The

results of simulation experiments for high and low waiting-time targets,based on 2000 independent

replications, are shown in Figures 5 and 6. The results are good, just as in §5.

6.2. A Finite-Capacity Orbit Queue

In this section we consider the associated (Mt/GI,GI/st +GI,GI) + (GI/st +GI) model with

Bernoulli feedback after a random delay in a finite-capacity orbit queue. We use the same waiting-

time targets to set the staffing levels in the orbit queue and the main queue. In particular, we

consider the (Mt(r)/H2(1,4),H2(10/6,4)/st +M(2),M(1)) + (p,H2(1,4)/st +M(1)) model with

r= 0.2 and p=0.6. Just as in §5, all service-time distributions are H2, while all patience distribu-

tions are M , but the means vary, so that the complex refined DIS-MOL formulas in §4 associated

with the aggregate model are needed. Figures 7 and 8 show the results of the simulation experiment

for high and low waiting-time targets, respectively, again based on 2000 independent replications,

each starting empty.
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Figure 5 Performance functions in the
∑

2

i=1
(Mt/H2(mi,4)+M(mi)/st two-class model with the two sinusoidal

arrival-rate functions in (23), service-time means m1 = 1.0 and m2 = 0.6 and patience means m1 = 2.0

and m2 = 1.0: four cases of identical high waiting-time (low QoS) targets (w=0.10, 0.20, 0.30 and 0.40)

and simple DIS staffing at both queues.
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Figure 6 Performance functions in the
∑

2

i=1
(Mt/H2(mi,4)+M(mi)/st two-class model with the two sinusoidal

arrival-rate functions in (23), service-time means m1 = 1.0 and m2 = 0.6 and patience means m1 = 2.0

and m2 = 1.0: four cases of identical low waiting-time (high QoS) targets (w=0.01, 0.02, 0.03 and 0.04)

and DIS-MOL staffing at both queues.
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6.3. Two Feedback Opportunities

In this section we consider a modification of the base model in which there are two feedback

opportunities. Each customer that has been fed back once returns again with probability p2 after
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Figure 7 Performance functions in the (Mt(0.2)/H2(1,4),H2(10/6,4)/st + M(2),M(1)) + (0.6,H2(1,4)/st +

M(1)) model with the sinusoidal arrival rate in (20) for λ̄= 100 and r = 0.2, Bernoulli feedback with

probability p= 0.6 and a finite-capacity orbit queue: four cases of identical high waiting-time (low QoS)

targets (w=0.10, 0.20, 0.30 and 0.40) and simple DIS staffing at both queues.

0 2 4 6 8 10 12 14 16 18 20

90

100

110

A
rr

iv
al

 r
at

e

Main Queue

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

O
rb

it 
ar

riv
al

 r
at

e

Orbit Queue

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

E
xp

ec
te

d
qu

eu
e 

le
ng

th

0 2 4 6 8 10 12 14 16 18 20
0

10

20

E
xp

ec
te

d 
or

bi
t

qu
eu

e 
le

ng
th

  

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

A
ba

nd
on

m
en

t  
   

 
pr

ob
ab

ili
ty

 (
ne

w
)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

A
ba

nd
on

m
en

t  
   

 
pr

ob
ab

ili
ty

 (
ol

d)

Time

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

A
ba

nd
on

m
en

t  
   

   
pr

ob
ab

ili
ty

 (
or

bi
t)

Time

0 2 4 6 8 10 12 14 16 18 20

0.8

0.9

1

D
el

ay
   

   
pr

ob
ab

ili
ty

0 2 4 6 8 10 12 14 16 18 20

0.8

0.9

1

O
rb

it 
D

el
ay

pr
ob

ab
ili

ty

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

E
xp

ec
te

d
de

la
y 

  

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

O
rb

it
E

xp
ec

te
d 

de
la

y

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

S
ta

ffi
ng

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

O
rb

it 
S

ta
ffi

ng

another delay in an IS orbit queue with cdf H2. Upon return, these customers have service-time

cdf G3 and patience cdf F3. The new DIS model has eight IS queues in series, as depicted in Figure

9.
Since there are now three customer classes, characterized by their class-dependent service-time

and patience-time distributions, we easily generalize results in Theorem 1 to include the formulas

for class 3. We have

E[O2(t)] = p2E

[
∫ t

t−U2

σ2(x)dx

]

= p2E[σ2(t−U2,e)]E[U2],

E[Q3(t)] = E

[
∫ t

t−T3

λF,2(x)dx

]

=E[λF,2(t−T3,e)]E[T3],

m3(t)≡E[B3(t)] = F̄3(w)E

[
∫ t−w

t−w−S3

λF,2(x)dx

]

= F̄3(w)E[λF,2(t−w−S3,e)]E[S3],

λF,2(t) = p

∫ ∞

0

σ2(t−x)dH2(x) = (1− p2)E[σ2(t−U2)],

where T3 ≡A3 ∧w, and A3, S3 and U2 follow cdfs F3, G3 and H3.

Regarding the DIS-MOL approximation, we generalize (11)–(15) to

λMOL(t) ≡
3

∑

i=1

λmol,i(t), where λmol,i(t)≡
mi(t)

(1−αi)E[Si]
, i=1,2,3,
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Figure 8 Performance functions in the (Mt(0.2)/H2(1,4),H2(10/6,4)/st + M(2),M(1)) + (0.6,H2(1,4)/st +

M(1)) model with the sinusoidal arrival rate in (20) for λ̄= 100 and r = 0.2, Bernoulli feedback with

probability p= 0.6 and an IS orbit queue: four cases of low waiting-time (high QoS) targets (w= 0.01,

0.02, 0.03 and 0.04) and DIS-MOL staffing.
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Fmol(t) =

∑3

k=1 λmol,k(t)Fk

λmol(t)
, (1−αmol(t)) =

∑3

k=1 λmol,k(t)(1−αk)

λmol(t)
,

Gmol(t) =

∑3

k=1(1−α2)λmol,2(t)G2

(1−αmol(t))λmol(t)
.

Figures of simulation experiments in the appendix verify the effectiveness of our DIS and DIS-MOL

approaches just as in Figures 2 and 3. We remark that this analysis can generalize to the case of

any finite number of feedbacks.

7. Conclusions

In this paper we have extended the two-queue approximating Delayed-Infinite-Server (DIS) model

for the Mt/GI/st +GI model in Liu and Whitt (2012c) to the corresponding five-queue approx-

imating DIS model depicted in Figure 1 for the (Mt/GI,GI/st +GI,GI) + (GI/∞) model with

Bernoulli feedback after a random delay in an infinite-server orbit queue and a corresponding six-

queue approximating DIS model for the corresponding model with a (GI/st +GI) finite-capacity

orbit queue. These models present attractive alternatives to the Erlang-R model in Yom-Tov and

Mandelbaum (2014) because the fed-back customers can have different service-time and patience

cdf’s. The same approach extends to any finite number of feedbacks; the case of two feedbacks is

discussed in §6.3 and the appendix. The approach applies to systems with or without customer
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Figure 9 The DIS approximation for the (Mt/GI,GI/st+GI,GI)+ (GI/∞)+ (GI/∞) model with two delayed

customer feedback opportunities. Here there are two IS orbit queues. The approximating offered load is

m(t) =m1(t)+m2(t)+m3(t)≡E[B1(t)]+E[B2(t)]+E[B3(t)].

abandonment. Without customer abandonment, the offered load is mα(t) for α= 0; then we would

use a delay-probability target, as in Feldman et al. (2008), Jennings et al. (1996) and Yom-Tov

and Mandelbaum (2014).

Theorem 1 here and and Theorem 1 of the EC give explicit expressions for all DIS performance

functions in general and with sinusoidal arrival rate functions. Moreover, we have presented results

of simulation experiments showing that the DIS offered load (OL) itself provides staffing that

successfully stabilizes abandonment probabilities and expected waiting times with low QoS targets.

Theorem 2 establishes a FWLLN showing that the DIS staffing achieves its performance goals

asymptotically as the scale increases.

In §4 we have also developed a new aggregate approximating single-class Delayed-Infinite-Server

Modified-Offered-Load (DIS-MOL) approximation to set staffing levels with low waiting-time (high

QoS) targets. We showed that we can use either the aggregate abandonment probability target

or the waiting-time target, but the waiting-time target tends to produce a faster algorithm, in

part because the abandonment probability target Fmol(w; t) is a time-dependent function. We have

presented results of simulation experiments in §5 and §6 showing that the new DIS and DIS-MOL

staffing algorithms are effective across a wide range of QoS targets.



Liu and Whitt: Stabilizing Performance

Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 23

The queue with Bernoulli feedback after an additional delay in a finite-capacity orbit queue is

a special case of a network of many-server queues with feedback. Our excellent results in this case

indicate that the methods should apply to more general networks of queues, including multiple

queues and customer classes, with various forms of routing, but such more general models remain

to be examined carefully.
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