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Analytical approximations are developed to determine the time-dependent offered load (effective demand)

and appropriate staffing levels that stabilize performance at designated targets in a many-server queueing

model with time-varying arrival rates, customer abandonment from queue and random feedback with addi-

tional delay after completing service. To provide a flexible model that can be readily fit to system data, the

model has history-dependent Bernoulli routing, where the feedback probabilities, service-time and patience

distributions all may depend on the visit number. Before returning to receive a new service, the fed-back

customers experience delays in an infinite-server or finite-capacity queue, where the parameters may again

depend on the visit number. A new refined modified-offered-load approximation is developed to obtain good

results with low waiting-time targets. Simulation experiments confirm that the approximations are effective.

A many-server heavy-traffic FWLLN shows that the performance targets are achieved asymptotically as the

scale increases.
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1. Overview

This e-companion to the main paper has three more sections. We start in §2 by displaying the

explicit DIS performance functions with a sinusoidal arrival rate function. Then in §3 we prove

Theorem 2 in the main paper. Finally, in §3.5 we give examples with a lower arrival rate, and thus

lower staffing levels.
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2. Performance Functions with a Sinusoidal Arrival Rate

Since many service systems have daily cycles, it is natural to consider sinusoidal and other periodic

arrival rates, as was done in Jennings et al. (1996), Feldman et al. (2008), Liu and Whitt (2012c).

For periodic arrival processes, we can simply focus on the dynamic steady state if we start the

system at the infinite past.

Theorem 1. Consider the DIS approximation for the (Mt/GI,GI/st +GI,GI) + (GI/∞) model

specified above, starting in the distant past with specified delay target w > 0 and with sinusoidal

arrival-rate function λ(t) = a+b ·sin(ct). Then Q1(t), B1(t), O(t), Q2(t) and B2(t) are independent

Poisson random variables having sinusoidal means

E[Q1(t)] = E[T1](a+ γ(T1,e)b · sin(ct− θ(T1,e))),

E[B1(t)] = F̄1(w)E[S1] (a+ γ(S1,e)b · sin[c(t−w)− θ(S1,e)]) ,

E[O(t)] = p F̄1(w)E[U ] (a+ γ(S1)γ(Ue)b · sin[c(t−w)− θ(S− 1)− θ(Ue)]) ,

E[Q2(t)] = p F̄2(w)E[T2] (a+ γ(S1)γ(U)γ(T2,e)b · sin[c(t−w)− θ(S1)− θ(U)− θ(T2,e)]) ,

E[B2(t)] = p F̄1(w)F̄2(w)E[S2] (a+ γ(S1)γ(U)γ(S2,e)b · sin[c(t− 2w)− θ(S1)− θ(U)− θ(S2,e)]) ,

where θ(X) ≡ arctan(φ1(X)/φ2(X)), γ(X) ≡
√

φ1(X)2+φ2(X)2, φ1(X) ≡ E[sin(cX)], φ2(X) ≡
E[cos(cX)]. The abandonment rates from the two waiting rooms are sinusoidal

ξ1(t) = aF1(w)+ γ̃(A)b · sin[ct− θ̃(A)],

ξ2(t) = apF2(w)F̄1(w)+ pF̄1(w)γ(S1)γ(U)γ̃(A)b · sin[c(t−w)− θ(S2)− θ(U)− θ̃(A)],

where θ̃(X) ≡ φ̃1(X)/φ̃2(X), γ̃(X) ≡
√

φ̃1(X)2 + φ̃2(X)2, φ̃1(X) ≡ E[sin(cX)1{X<w}], φ̃2(X) ≡
E[cos(cX)1{X<w}]. The rates of entering the two service facilities are sinusoidal

β1(t) = λ(t−w)F̄1(w),

β2(t) = pF̄1(w)F̄2(w) (a+ γ(S2)γ(U)b · sin[c(t− 2w)− θ(S2)− θ(U)]) ,

The departure rates from the two service facilities are sinusoidal

σ1(t) = F̄1(w) (a+ γ(S1)b · sin[c(t−w)− θ(S1)]) ,

σ2(t) = pF̄1(w)F̄2(w)
(

a+ γ(S2)
2γ(U)b · sin[c(t− 2w)− 2θ(S2)− θ(U)]

)

.

The arrival rate to the second waiting room is sinusoidal

λF (t) = pF̄1(w) (a+ γ(S1)γ(U)b · sin[c(t−w)− θ(S1)− θ(U)]) .
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Remark 1. (extreme values of the sinusoidal performance functions) Note the extreme values of

E[Q1(t)], E[B1(t)], E[O(t)], E[Q2(t)] and E[B2(t)] occur at

tQ1
= tλ + θ(T1,e)/c,

tB1
= tλ +w+ θ(S1,e)/c,

tO = tλ +w+(θ(S1)+ θ(Ue))/c,

tQ2
= tλ +w+(θ(S1)+ θ(U)+ θ(T2,e))/c,

tB2
= tλ +2w+(θ(S1)+ θ(U)+ θ(S2,e))/c,

respectively, where tλ = π/2c+ nπ/c for n integer are times at which the extreme values of λ(t)

occurs. Their extreme values are

E[Q1(tQ1
)] = E[T1](a+ γ(T1,e)b),

E[B1(tB1
)] = F̄1(w)E[S1] (a+ γ(S1,e)b) ,

E[O(tO)] = p F̄1(w)E[U ] (a+ γ(S1)γ(Ue)b) ,

E[Q2(tQ2
)] = p F̄1(w)E[T2] (a+ γ(S1)γ(U)γ(T2,e)b) ,

E[B2(tB2
)] = p F̄ (w)2E[S] (a+ γ(S1)γ(U)γ(S2,e)b) ,

respectively.

It is interesting to investigate how the new feature of delayed feedback influence the variation

of the OL function. In particular, we want to see if the relative amplitude of the new OL function

is flattened or exaggerated compared to the old one. However, the general scheme is complicated

because the OL function strongly depends not only on the basic model parameters Fi, Gi, H

and λ, it also depends on the target service level w. For the rest of this section, we assume that

F1 =F2 = F and G1 =G2 =G. Under that condition, we consider two special cases: (i) exponential

service (S) and orbit (U) times and (ii) deterministic service and orbit times. Let RA(m) and

RA(m∗) be the relative amplitude (relative variation around the average) of the new and old OL

functions, respectively. We also want to investigate the time lag incurred by the feedback structure.

Let the phase difference of the two OL functions be ∆PH(m,m∗)≡ Phase(m∗)−Phase(m). The

following result is proved in the appendix.

Theorem 2. Consider the DIS approximation for the (Mt/GI,GI/st +GI,GI) + (GI/∞) model

specified above with F1 = F2 = F and G1 =G2 =G. Let the system start empty in the distant past

with specified delay target w > 0 and with sinusoidal arrival-rate function λ(t) = a+b · sin(ct). Then
the OL function m(t)≡E[B1(t)]+E[B2(t)] is sinusoidal

m(t) = F̄ (w)E[S]
(

a(1+ p F̄ (w))+ bγ(Se)
√
u2 + v2 sin[c(t−w)− θ̄]

)

, (1)
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where θ̄ ≡ arctan(u/v), u ≡ sin[θ(Se)] + p F̄ (w)γ(S)γ(U) sin(θ̃), v ≡ cos[θ(Se)] +

p F̄ (w)γ(S)γ(U) cos(θ̃), θ̃ ≡ cw + θ(S) + θ(U) + θ(Se), θ(X) ≡ φ1(X)/φ2(X), γ(X) ≡
√

φ1(X)2+φ2(X)2, φ1(X)≡E[sin(cX)], φ2(X)≡E[cos(cX)].

(i) If both service (S) and orbit (U) times are exponential, then

RA(m) < RA(m∗) if

(

1+
c2

µ2

)(

1+
c2

δ2

)

> 1.

(ii) If both service and orbit times are deterministic, then RA(m)≤RA(m∗).

Furthermore, in both cases

lim
c→0

RA(m)

RA(m∗)
= 1,

lim
c→0

∆PH(m,m∗) = 0.

3. Proof of the Main Limit Theorem

In this section we prove Theorem 2 in the main paper. We first act as if the service facility can

be partitioned into two parts, one dedicated to the new arrivals, with the other dedicated to the

fed-back customers. In model n, the capacities of these two parts are si,n(t)≡ ⌈nsi(t)⌉ for i= 1,2.

For the fluid model, the corresponding capacities are si(t) =mi(t)≡E[Bi(t)] for i= 1,2. We first

discuss the fluid limit and then establish the FWLLN for the partitioned system. Afterwards, we

show that the performance in the original system is asymptotically equivalent to the performance

in the partitioned system.

3.1. The Partitioned Fluid Model

It is significant that the limit in the FWLLN for the each component of the partitioned system

is a deterministic fluid model. The fluid model for the first component also has parameter vectors

(λ, s1, F1,G1,w,α1), but they have a different interpretation: Now λ(t) is the arrival rate of the

divisible deterministic fluid at time t. A proportion F1(x) of the fluid to directly enter the queue

from the external input abandons by time x of entering the queue if it has not yet entered service; a

proportion G1(x) of the fluid to directly enter service from the external input completes service by

time x after it has begun service. The staffing function s1(t) stabilizes the waiting time in the fluid

model at w. We refer to §4 of Liu and Whitt (2012a) for a discussion of the connection between

the DIS model and the fluid model and §10 of Liu and Whitt (2012a) for the explicit performance

functions achieving the waiting-time target w.

Just as in Liu and Whitt (2012a), the content of the two types of fluid in service and queue are

described by two-parameter deterministic functions Bi(t, y) and Qi(t, y); Bi(t, y) is the quantity of

type-i fluid in service at time t that has been so for time at most y, while Qi(t, y) is the quantity
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of type-i fluid in queue at time t that has been so for time at most y. The total content of type-i

fluid in service and in queue at time t are thus Bi(t) =Bi(t,∞) and Qi(t) =Qi(t,∞), respectively.

The overall totals are the sums over the two types.

Given the staffing function that we have used, we can verify that the type-i fluid content in

service is Bi(t) =mi(t) and the overall content is B(t) =m(t) for all t > w, and that all fluid waits

exactly time w before entering service if it does not first abandon. We summarize these observations

in the following theorem. (We first establish this result for the partitioned model and then the

original model.)

Theorem 3. (DIS staffing stabilizes the waiting time in the fluid model with feedback) The DIS

staffing in §2 of the main paper is the unique staffing that stabilizes the waiting time at w and the

abandonment probabilities at αi = Fi(w) for i= 1,2 in the (Gt/GI,GI/st+GI,GI)+(GI/∞) fluid

queue with Bernoulli feedback. All fluid waits in queue exactly time w before entering service if it

has not abandoned. Just as in Theorem 1 in the main paper, the abandonment rates of the two kinds

of fluid are ξi(t), the rates that the two kinds of fluid enter service are βi(t), the service-completion

rates of the two kinds of fluid are σi(t) and the feedback arrival rate function is λF (t).

3.2. The FWLLN for the Partitioned System

For the partitioned system, we can establish the FWLLN recursively, just as we analyze the DIS

model in §2. We first consider the model with staffing functions s1,n(t) containing only the external

arrivals. For this model, just as in Liu and Whitt (2012c), we can apply the established FWLLN

in Liu and Whitt (2012b) to obtain the desired FWLLN. Since the waiting time target is w, we

can use §10 of Liu and Whitt (2012a) to uniquely characterize the limiting fluid model, which has

staffing function si(t).

We now proceed forward to the next queue. From this initial FWLLN for the first partition

of the system, we obtain the limit for the sequence of scaled departure counting processes of

these customers, denoted by {D̄(1)
n : n≥ 1}. Given that D̄(1)

n ⇒ D̄(1) in D, we can next obtain the

corresponding limit for the sequence of customers fed back after service completion, denoted by

{D̄(1,2)
n : n≥ 1}. For that purpose, let {Xn,1,k : k≥ 1} be a sequence of i.i.d. routing random variables

with Xn,i,k =2 if the jth departure in D(1)
n is fed back. Then we can represent D(1,2)

n (t) explicitly as

D(1,2)
n (t) =

D
(1)
n (t)
∑

k=1

1{Xn,1,k=2}, t≥ 0, (2)

and the associated scaled version as

D̄(1,2)
n (t) =

∑

i

Z̄n(t) ◦ D̄(1)
n (t), t≥ 0, (3)
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where ◦ is the composition function and

Z̄n(t)≡
1

n

⌊nt⌋
∑

k=1

1{Xn,1,k=2} ⇒ pt in D (4)

We now apply the continuous mapping theorem in §3.4 of Whitt (2002) for the continuous compo-

sition functions appearing in (3), see Theorem 13.2.1 of Whitt (2002), with the established limit

for D(1)
n and the FWLLN for partial sums of i.i.d. random variables Z̄n,i,j. to obtain the limit

D̄(1,2)
n ⇒ D̄(1,2).

Given the limit for D̄(1,2)
n just established, we can apply the FWLLN for the IS orbit queue

in Pang and Whitt (2010) to obtain the FWLLN for all the processes associated with the orbit

queue, including its departure process, which serves as the arrival process to the second part of the

partitioned system, serving the fed-back customers.

Finally, we obtain a corresponding FWLLN for the second partition of the partitioned system,

serving the fed-back customers, using the same reasoning as above. Since the waiting-time target is

w for both classes the fluid models are uniquely determined by Theorem 8 in §10 of Liu and Whitt

(2012a). Hence all the performance functions are as described. It only remains to show that the

partitioned system is asymptotically equivalent to the original system. We first discuss the relation

between the corresponding fluid models in the partitioned system.

3.3. Additivity of Fluid Models

We now observe that the limiting fluid model in the theorem is actually equivalent to the fluid

limit for the partitioned system, because both systems have the common constant waiting time w.

This equivalence is a consequence of the following more general theorem about fluid models, which

we state without proof.

Theorem 4. (additivity of fluid models) Two fluid models with the FCFS discipline indexed by i

that are combined into a two-class FCFS fluid queue by having total arrival-rate function λ= λ1+λ2

and staffing s(t) = s1(t)+ s2(t) have additive performance with

B(t, x) =B1(t, x)+B2(t, x) and Q(t, x) =Q1(t, x)+Q2(t, x) for all t, x (5)

if and only if the two boundary waiting functions wi(t) coincide, in which case w(t) =w1(t) =w2(t)

for all t.

3.4. Asymptotic Equivalence

Even though the limiting fluid models of the partitioned system and the original system are the

same, it remains to show that the established FWLLN for the partitioned system implies a corre-

sponding FWLLN for the original system, with identical limits. The problem is that the two kinds
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of customers interact in the original system, so that the partitioning is not actually valid for each n.

However, we can show that the customers from the different components of the partition interact

over an asymptotically small part of the total capacity. Thus, the difference can be shown to be

asymptotically negligible. To visually think of the separation, we can think of the servers being

numbered, with arrivals from one class taking the smallest numbered free server, while arrivals

from the other class taking the largest numbered free server. Then the two classes contend only

in the middle, when the system becomes full (which will be the case here after an initial transient

period).

We will sketch the argument to show the asymptotic equivalence. To do so, we observe from §10
of Liu and Whitt (2012a) that a small perturbation of the waiting-time target w in the fluid model

yields a controlled uniformly small perturbation of the staffing over any bounded time interval

[a, b], where a>w. Let si(t,w) be the staffing function for the two classes (i= 1 for external input

and i= 2 for the fedback fluid) at time t as a function of the constant waiting-time target w. It

follows that, for any ǫ > 0, there exists δ ≡ δ(ǫ)> 0 so that

si(t,w+ ǫ)− δ < si(t,w)< si(t,w− ǫ)+ δ for a≤ t≤ b and i= 1,2. (6)

Moreover, by the FWLLN for the partitioned system just established, the scaled content B̄n
i (t,w)

can be made arbitrarily close to the staffing s(t,w), i.e, for any a>w > 0,

sup
a≤t≤b

{|B̄n
i (t,w)− si(t,w)|}⇒ 0 as n→∞. (7)

Hence, given w > ǫ > 0, suppose that the waiting-time target is required to fall in the interval

[w− ǫ,w+ ǫ]. Then, there exists δ ≡ δ(ǫ)> 0 and n0 such that for n≥ n0

si(t,w+ ǫ)− 2δ < B̄n
i (t,w)<si(t,w− ǫ)+ 2δ for a≤ t≤ b and i= 1,2. (8)

Of course, in our combined system we also have s(t,w) = s1(t,w)+ s2(t,w), but we now have slack

so that the content of one class can be too large, while the content of the other class is too small.

Since δ(ǫ) → 0 as ǫ → 0 and we can let ǫ be arbitrarily small, we achieve the fluid limit of the

partitioned model for the original model. Hence, the proof of Theorem 2 is complete.

In closing, we remark that an alternative proof can be done by the compactness argument, where

we show that the sequence of scaled queueing processes are tight and then uniquely characterize

the limit in terms of the fluid model. Tightness for the sequence of class-i scaled departure counting

processes holds because the increments, conditional on any history, are stochastically bounded over

any bounded interval by a constant rate Poisson process, with rate equal to the supremum of the

staffing function multiplied by the supremum of the service-time hazard-rate function, which is

bounded because the system starts empty and the service-time distributions have positive finite

densities.
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3.5. Lower Arrival Rates and Staffing

We now supplement §5 by showing in Figures 1 and 2 of the performance functions in the same

(Mt(0.2)/H2(1,4),H2(5,4)/st +M(2),M(1)) + (0.2,H2(1,4)/∞) model except that λ̄ is reduced

from 100 to 20. As the scale decreases, the discretization becomes a more and more serious issue.

Thus there is a limit to the stabilization that can be achieved with very small scale. Here we

increase the number of replications to 5000.

Figure 1 Performance functions in the (Mt(0.2)/H2(1,4),H2(5,4)/st +M(2),M(1)) + (0.2,H2(1,4)/∞) model

with the sinusoidal arrival rate in formula (20) of the main paper for λ̄ = 20 and r = 0.2, Bernoulli

feedback with probability p = 0.2 and an IS orbit queue: four cases of high waiting-time (low QoS)

targets (w=0.10, 0.20, 0.30 and 0.40) and simple DIS staffing.
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To show the discretization effect, we display the DIS staffing for this model with λ̄ = 20 with

high and low waiting-time targets, respectively, in Figures 3 and 4. Figure 3 shows that a difference

of 0.1 in the waiting-time target is approximately worth a single server in this context.

For comparison with Figure 3, we also show the DIS staffing in the corresponding model with λ̄

further reduced to 5 in Figure 5.
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Figure 2 Performance functions in the (Mt(0.2)/H2(1,4),H2(5,4)/st +M(2),M(1)) + (0.2,H2(1,4)/∞) model

with the sinusoidal arrival rate in in formula (20) of the main paper for λ̄= 20 and r = 0.2, Bernoulli

feedback with probability p = 0.2 and an IS orbit queue: four cases of low waiting-time (high QoS)

targets (w=0.01, 0.02, 0.03 and 0.04) and DIS-MOL staffing.
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Figure 3 DIS staffing functions in the (Mt(0.2)/H2(1,4),H2(5,4)/st +M(2),M(1)) + (0.2,H2(1,4)/∞) model

with the sinusoidal arrival rate in in formula (20) of the main paper for λ̄= 20 and r = 0.2, Bernoulli

feedback with probability p = 0.2 and an IS orbit queue: four cases of high waiting-time (high QoS)

targets (w=0.1, 0.2, 0.3 and 0.4) and DIS-MOL staffing.
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Figure 4 DIS staffing functions in the (Mt(0.2)/H2(1,4),H2(5,4)/st +M(2),M(1)) + (0.2,H2(1,4)/∞) model

with the sinusoidal arrival rate in in formula (20) of the main paper for λ̄= 20 and r = 0.2, Bernoulli

feedback with probability p = 0.2 and an IS orbit queue: four cases of low waiting-time (high QoS)

targets (w=0.0025, 0.01, 0.03 and 0.06) and DIS-MOL staffing.
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Figure 5 DIS staffing functions in the (Mt(0.2)/H2(1,4),H2(5,4)/st +M(2),M(1)) + (0.2,H2(1,4)/∞) model

with the sinusoidal arrival rate in in formula (20) of the main paper for λ̄ = 5 and r = 0.2, Bernoulli

feedback with probability p = 0.2 and an IS orbit queue: four cases of high waiting-time (high QoS)

targets (w=0.1, 0.2, 0.3 and 0.4) and DIS-MOL staffing.
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