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Abstract: Motivated by applications to service systems, we develop simple engineering approximation formulas for the steady-
state performance of heavily loaded G/GI/n+GI multiserver queues, which can have non-Poisson and nonrenewal arrivals and
non-exponential service-time and patience-time distributions. The formulas are based on recently established Gaussian many-server
heavy-traffic limits in the efficiency-driven (ED) regime, where the traffic intensity is fixed at ρ > 1, but the approximations also
apply to systems in the quality-and-ED regime, where ρ > 1 but ρ is close to 1. Good performance across a wide range of parameters
is obtained by making heuristic refinements, the main one being truncation of the queue length and waiting time approximations to
nonnegative values. Simulation experiments show that the proposed approximations are effective for large-scale queuing systems
for a significant range of the traffic intensity ρ and the abandonment rate θ , roughly for ρ > 1.02 and θ > 2.0. © 2016 Wiley
Periodicals, Inc. Naval Research Logistics 63: 187–217, 2016

Keywords: many-server queues; queues with customer abandonment; queuing performance approximations; steady-state
performance; queues with non-exponential distributions

1. INTRODUCTION

In this article, we develop and evaluate new engineering
approximation formulas for heavily loaded non-Markovian
queuing systems with customer abandonment. Models that
account for customer abandonment from queue due to cus-
tomer impatience have generated substantial interest in recent
years because of their application to call centers and other
service systems. This has led to renewed interest in the Mar-
kovian M/M/n+M Erlang- A model [11, 30, 40]. However,
data analysis from service systems has also shown that the
distributions of the service and patience times are often not
nearly exponential [6]. Data analysis also has suggested that
in some cases the arrival process might not be well modeled
by a Poisson process; see [1, 17, 19, 21, 45].

Thus, we focus on the stationary G/GI/n + GI queuing
system, allowing a non-Poisson (and even nonrenewal) sta-
tionary arrival process (the G), independent and identically
distributed (i.i.d.) service times with a general distribution
(the first GI ), multiple (n) servers working in parallel, unlim-
ited waiting space, customer abandonment according to i.i.d.
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patience times with a general distribution (the +GI ) and the
first-come first-served service discipline. We provide simple
formulas to approximate the mean, variance and distribution
of important steady-state performance measures, including
the number of customers in the system, the number in queue
and the waiting time (which we take to be the potential wait-
ing time, that is, the time a potential arrival at time t that is
infinitely patient would have to wait before starting service).
We also give formulas to approximate important steady-state
probabilities, including probability of abandonment (P a),
the time-averaged probability of delay (P d ), and customer-
averaged probability of delay (P d,C). By the PASTA property,
P d,C = P d for M arrivals, but not more generally. However,
in our case these are not very different (see Tables 3–4, 9, and
10), so we use the same approximation for both P d,C and P d ;
see §5 of [39] for further discussion.

The stationary G/GI/n + GI queuing model has sev-
eral model elements. Even the basic M/M/n + M Erlang-
A model has four parameters: the arrival rate λ, the indi-
vidual service rate μ, the number of servers n, and the
abandonment rate θ . Without loss of generality (by choos-
ing units to measure time), we can let μ = 1 so that there
is the parameter triple (λ, n, θ) or equivalently (ρ, n, θ), with
ρ ≡ λ/nμ ≡ λ/n being the traffic intensity. In addition,
the stationary G/GI/n + GI queuing model has a general
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service-time cdf G with mean μ−1, a general patience-time
cdf F with mean θ−1 and a general stationary arrival process
with rate λ, allowing complex dependence among interar-
rival times. We develop performance approximations for that
general G/GI/n + GI model and we conduct extensive
experiments to study how all its model elements affect (i)
the performance of the system and (ii) the accuracy of the
proposed approximations. We summarize our conclusions
in §10.

1.1. A Basis in Many-Server Heavy-Traffic Limits

We primarily base these new engineering approximations
on the many-server heavy-traffic (MSHT) functional central
limit theorem (FCLT) for the time-varying non-Markovian
Gt/M/nt+GI queuing model in [26], with Gaussian process
limits, but we also draw on the MSHT functional weak law of
large numbers (FWLLN) for the more general time-varying
Gt/GI/nt + GI queuing model in [24, 25, 42], yielding
deterministic fluid limits. Scaled fluid limits appear as cen-
tering terms in the FCLT and so provide the mean values of
the resulting Gaussian approximations. These MSHT limits
apply to the stationary G/GI/n+GI model as a special case.
In this article, we investigate the quality of those approx-
imations and develop heuristic refinements that are more
effective.

For service systems, there is strong motivation for the
time-varying feature, because service systems typically have
arrival rates that vary strongly by the time of day. Neverthe-
less, what we do here still has significant relevance for service
systems because stationary models often can be applied when
the service times are relatively short, as in most call centers.
With short service times, stationary models can be used in a
nonstationary way via the pointwise stationary approxima-
tion [12, 35], as reviewed in [13]. Indeed, that is the common
approach used to staff service systems in practice.

The MSHT limits indicate when the approximations
should be effective. Because MSHT limits involve letting
the arrival rate and number of servers grow without bound,
we expect the approximations to be more effective with large
scale. Hence, our base case has n = 100 servers, but we also
find that the approximations are quite effective for smaller
scale, for example, n = 20, 10 and 5.

The MSHT limits for the time-varying non-Markovian
Gt/M/nt + GI model in [26] are for systems with a contin-
uous time-varying arrival-rate function that makes the sys-
tem alternate between overloaded (OL) intervals, where we
locally have ρ > 1, and underloaded (UL) intervals, where
we locally have ρ < 1, without being critically loaded (CL),
where we locally have ρ ≈ 1, over a positive interval. That
limit yields one-sided approximations in each of the OL and
UL intervals. Nevertheless, simulation experiments showed
that the approximations are remarkably effective for difficult

time-varying systems that are mostly not nearly CL. How-
ever, for stationary models, these MSHT limits hold only for
OL models with ρ > 1 or UL models with ρ < 1. Moreover,
only the OL approximations are effective for the queue length
and waiting time processes. For that reason, the approxima-
tions in this article are only for heavily loaded models. We
do provide information about the corresponding (less useful)
approximations for UL systems in §8 and in the Supporting
Information Appendix [27].

We investigate the direct application of the MSHT Gauss-
ian process limit in [26], but we find that the direct approx-
imations are ineffective when the traffic intensity ρ is near
1. Thus, a significant contribution here is to develop effec-
tive heuristic refinements. We conduct extensive simula-
tion experiments investigating when these approximations
are effective. We find that the effectiveness of the refined
Gaussian approximations for heavily loaded models primar-
ily depends on two parameters: the traffic intensity ρ and the
abandonment rate θ . Assuming that the scale (which is char-
acterized by the relevant number of servers n) is not too small,
we find that the refined approximations are effective roughly
for ρ > 1.02 and θ < 2.0. Since our approximations tend to
work better when the system is heavily loaded, the quality of
the approximations tends to improve as ρ increases and as θ

decreases. We also find that our approximations are relatively
robust to the variability in the arrival process, service times
and patience times, in a reasonable range.

Even though we focus on heavily loaded models with
ρ > 1, as observed previously, for example, [41, 42], these
are practical cases that often occur in practice, because the
abandonment always keeps the system stable. (e.g., see the
M/M/n+M base case with ρ = 1.05 in Table 2. The steady-
state mean number in system and abandonment probabilities
is representative of what is often seen in practice.) For these
cases, the proposed approximations not only cover general
non-Markovian models, but the accuracy of the approxima-
tions and simplicity of the formulas makes the proposed
approximations attractive alternatives even for the Markovian
M/M/n+M Erlang-Amodel, as in [11, 30]; for example, for
quick approximations of OL models it may not be necessary
to solve any birth-and-death equations.

From the range of abandonment rates θ , it should be
evident that we are only considering models with abandon-
ment, and only at a typical level; we are not considering the
G/G/n/0 loss model or the G/G/n/∞ delay model, which
already have been quite extensively studied, for example,
see [22, 39, 37] and references therein. While the proposed
approximations should be useful, they are far from universal
approximations; we are not claiming that the approxima-
tions apply to all multiserver queuing models. To appreciate
the limitations, recall that the waiting time distribution in
M/M/n queue and G/GI/n generalizations has an expo-
nential tail [14], unlike the much more rapidly decaying tails
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of our Gaussian approximations, which arise because of the
abandonment.

The nice Gaussian approximations here can be understood
as a generalization of exact results for the M/M/n + M

model that hold when θ = μ, where μ is the individual ser-
vice rate. As discussed in §6 of [9], for that special parameter
choice, the number in system has the same structure as in
the associated M/M/∞ infinite-server model, so that the
steady-state distribution is exactly Poisson, which is approx-
imately Gaussian provided that the arrival rate is not too
small. Limit theorems supporting such Gaussian approxima-
tions for the M/M/∞ model go back to [18] and there has
been much work since then. The limits in [26] can be viewed
as generalizations.

1.2. Overview of the Proposed Approach

We now give a brief overview of our approach. We start by
applying the MSHT limits to generate a Gaussian approxi-
mation for the number of customers in the system. Unfolding
the limit in the usual way, we obtain a direct approximation
for the total number of customers in the system at time t ,
Xn(t), as

Xn(t) ≈ nX(t) + √
nX̂(t)

d= N (nX(t), nσ 2
X̂
(t)), (1)

where X is the fluid approximation analyzed directly in
[24] and obtained as a limit in the MSHT FWLLN in [25],
while X̂ is a zero-mean Gaussian process with variance
σ 2

X̂
(t) ≡ V ar(X̂(t)) obtained from the MSHT FCLT in

[26] (which assumes M service), and N (m, σ 2) denotes a
Gaussian random variable with mean m and variance σ 2. To
obtain associated approximations for the steady-state vari-
able, denoted by Xn(∞), we take the direct approach and
simply let t → ∞ in (1) and obtain

Xn(∞) ≈ nX(∞) + √
nX̂(∞)

d= N (nX(∞), nσ 2
X̂
(∞)).

(2)

Of course, the associated number in queue satisfies
Qn(t) ≡ (Xn(t) − n)+, where (a)+ ≡ max {a, 0} and ≡
denotes equality by definition, but if ρ > 1, then its MSHT
limit holds without that truncation. If ρ > 1, then X(∞) > 1
in (2), so that the direct MSHT limit for the number in queue
yields

Qn(∞) ≈ n(X(∞) − 1) + √
nX̂(∞), (3)

without any truncation. That makes the approximation have
P(Qn(∞) < 0) > 0, even though that is not possible. Sim-
ilarly, the direct approximation allows P(Bn(∞) > n) > 0,
where Bn(∞) is the steady-state number in service, even
though that is not possible. As a consequence, these direct

MSHT approximations produce probability distributions in
regions that cannot occur. Moreover, this defect can seriously
degrade the approximations; for example, see Table 2.

Because these direct Gaussian approximations are ineffec-
tive except when the system is significantly OL or UL, for
example, when ρ > 1.2, we investigate a simple refinement
based on truncation that was proposed in (1.2) of [26], but
never tested; indeed that is the purpose of this article. As in
(1.2) of [26], the first step is to make the obvious refinement
for the queue length, letting

Qn(∞) ≡ (Xn(∞) − n)+ ≈ (nX(∞) + √
nX̂(∞) − n)

+
.

(4)

Similarly, we let the number in service be

Bn(∞) ≡ Xn(∞) ∧ n ≈ (nX(∞) + √
nX̂(∞) ∧ n,

where a ∧ b ≡ min {a, b}. We call these approximations
based on the FCLT for the G/M/n + GI model in [26] the
truncated Gaussian approximations (TGAs); see §3 for the
details. In this article, we show that the approximations based
on the MSHT limit plus this simple truncation refinement is
remarkably effective for OL models.

1.3. Related Literature

There are two streams of important related work. The first
stream is the literature on MSHT limits, starting with models
without abandonment in [14, 18] and then continuing with
stationary models with abandonment [7, 8, 11, 16, 20, 33],
and then time-varying Markov models in [28] and non-
Markovian models in [24–26]; we refer to those papers for
further discussion of the MSHT literature.

The second stream is the literature on exact results and
approximations for the M/GI/n + GI model [2, 4, 5, 44].
The exact results for the M/M/n + GI model in [44] led
to further studies that provided better understanding, such as
[29]. However, exact results for the M/GI/n + GI model
with non-exponential service remains an important open
problem. Approximations for the M/GI/n+GI model were
developed in [41]. As we have confirmed in our simulation
experiments, these approximations from [41] are remarkably
effective, but they are substantially more complicated, requir-
ing approximation by a state-dependent M/M/s + M(n)

model and then a numerical algorithm.
A main conclusion in [41, 42] was that the steady state

performance of the M/GI/n + GI model tends to be nearly
insensitive to the service-time distribution beyond its mean.
Our experiments confirm that conclusion for the performance
measures considered, but not for all performance measures.
In particular, our simulations show that the mean values of
the steady-state queue length and waiting time have this near-
insensitivity property, but the variance and distribution do
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not; they depend significantly on the service-time distribu-
tion beyond its mean. Moreover, the simulations show that the
new approximations of these quantities for the M/GI/n+GI

model with a non-exponential service times are effective; for
example, see Tables 7 and 8. Since the limit in [26] is only for
the Gt/M/st + GI model, with exponential service times,
our approximation in this step is only heuristic. It does follow
from a natural modification to account for GI service, but it
remains to be better justified theoretically.

Refinements to the direct MSHT approximations for the
time-varying Markovian Mt/M/st + M model in [28] have
also been developed by [31]. These Gaussian and skewness
closure approximations are remarkably effective, even for CL
models, but so far they are restricted to Markovian models.

1.4. Organization of the Paper

In §2, we give a brief review of the heavy-traffic limits
which are the building blocks for our approximations. In
§3, we develop the TGA formulas for the GI/GI/n + GI

queuing systems. In §§4–7, we present results of numerical
examples to test the performance of the Gaussian approxima-
tions: In §4, we consider the Markovian M/M/n+M model;
in §5, we consider the extensions to non- M arrival processes
and non- M patience distributions; in §6, we consider the
extension to non- M service; and in §7, we consider examples
with fewer servers and a corresponding lower arrival rate.

We provide additional supporting material in §§8 and 9. In
§8, we give examples exposing the limitations of the approxi-
mations. In §§8.1 and 8.2, we compare our approximations to
previous approximations developed by Whitt [41] and Reed
and Tezcan [33]; these tend to perform better in the quality-
and-efficiency-driven (QED) regime. In §8.3, we expose the
limitations of the approximations for UL models. In §9, we
elaborate on the simulation methodology. We draw conclu-
sions in §10. We present additional material in a Supporting
Information Appendix [27], which is available as supporting
information on the journal and author web pages.

2. THE MANY-SERVER HEAVY-TRAFFIC LIMITS
FOR STATIONARY MODELS

The MSHT limits are obtained by considering a sequence
of stationary queuing models indexed by the integers n. In
the nth model, there are sn = �ns	 servers and the arrival
rate is λn = nλ, where λ is the base arrival rate. (The scaling
factor becomes the number of servers when we let s ≡ 1.)
The service times and patience times are unscaled; they are
assumed to come from independent sequences of i.i.d. ran-
dom variables with cumulative distribution functions (cdfs)
G and F with means E[S] = 1/μ = 1 and E[A] = 1/θ

and finite second moments. Let f and F̄ be the probability

density function (pdf) and complementary cumulative distri-
bution function (ccdf) of F ; and let Ḡ be the ccdf of G. Thus
the traffic intensity is ρn = λn/snμ = λ/sμ ≡ ρ for all n.

The arrival process Nn(t) is assumed to satisfy a FCLT

(Nn(t) − nλ t) /
√

n ⇒ cλB(t) in D as n → ∞, (5)

where B is a standard Brownian motion (BM), cλ > 0 is a
variability parameter, ⇒ denotes weak convergence and D

denotes the space of right-continuous functions that have left
limits; see [3, 26, 38] for details.

Let Qn(t) and Bn(t) to be the number of customers waiting
in queue and in service at time t . Let Xn(t) = Qn(t)+Bn(t)

be the total number in the system. Let Wn(t) and Vn(t) to be
the head-of-line waiting time (the elapsed waiting time of the
head-of-line customer if there is any) and the potential wait-
ing time at time t (the waiting time of an infinitely patient
arrival at time t if there were an arrival at that time). We next
review the MSHT FWLLN and FCLT limits for the station-
ary model, which are the building blocks for our Gaussian
approximations.

2.1. The FWLLN Yielding Fluid Limits for the
G/GI/n + GI Queue

Let the LLN-scaled processes be

X̄n(t) = Xn(t)

n
, Q̄n(t) = Qn(t)

n
, B̄n(t) = Bn(t)

n
,

W̄n(t) = Wn(t) and V̄n(t) = Vn(t).

The waiting times need no spatial scaling because the service-
time and patience-time cdf’s are not scaled. By Theorem 1
in [25], we have the joint convergence for the LLN-scaled
functions(

X̄n, Q̄n, B̄n, W̄n, V̄n

) ⇒ (X, Q, B, w, v), in D
5, (6)

where the limit is a vector of deterministic functions, specified
in [24, 42]. We next summarize the steady state performance.

THEOREM 2.1: (Theorem 3.1 in [42] and Theorem 4.1 in
[23]): The stationary fluid model with capacity s arising as the
MSHT FWLLN limit of stationary G/GI/n+GI model with sn

servers has a steady state characterized by the deterministic
vector (b(∞), q(∞), B(∞), Q(∞), X(∞), w(∞), v(∞)) in
R

7, where X(∞) = B(∞) + Q(∞) and the other variables
depend on the value of the traffic intensity ρ ≡ λ/sμ = λ/s.

(a) If ρ ≤ 1, then for x ≥ 0,

B(∞) =
∫ ∞

0
b(x)dx = sρ, b(x) = λḠ(x),

Q(∞) =
∫ ∞

0
q(x)dx = w(∞) = v(∞) = q(x) = 0.
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(b) If ρ < 1, then

B(∞) =
∫ ∞

0
b(x) dx = s,

b(x) = sμḠ(x) for x ≥ 0,

v(∞) = w(∞) = F−1

(
1 − 1

ρ

)
,

q(x) = λF̄ (x) for 0 ≤ x ≤ w(∞),

Q(∞) =
∫ ∞

0
q(x) dx = λ

∫ w(∞)

0
F̄ (x)dx.

2.2. The FCLT Yielding Gaussian limits for the
G/M/n + GI Queue

As in [26], we now restrict to the G/M/n+GI model hav-
ing M service. To provide the FCLT limits, let the CLT-scaled
processes be

X̂n(t) = Xn(t) − nX(t)√
n

, Q̂n(t) = Qn(t) − nQ(t)√
n

,

B̂n(t) = Bn(t) − nB(t)√
n

, Ŵn(t) = √
n (Wn(t) − w(t)) ,

V̂n(t) = √
n (Vn(t) − v(t)) , (7)

wheren is the number of servers, whileX(t), Q(t), B(t), w(t)

and v(t) are the deterministic limit functions in (6), that is,
the deterministic fluid functions in [24]. The FCLT follows
directly from the FCLT for the time-varying Gt/M/st + GI

model (Theorems 4.2 and 5.1 in [26]) by simply letting
λ(t) = λ and s(t) = s.

THEOREM 2.2: (MSHT FCLT limits for the [INEQ-
START): G/M/n + GI queues] Consider the sequence of
G/M/n + GI queuing models having sn servers. Under
regularity conditions in [26], including appropriate initial
convergence at time 0,(

X̂n, B̂n, Q̂n, Ŵn, V̂n

)
⇒

(
X̂, B̂, Q̂, Ŵ , V̂

)
in D

5 as n → ∞.

(a) When ρ < 1, that is, in an UL interval, Q̂ =
Ŵ = V̂ = 0, and B̂

d= X̂ satisfies the stochastic
differential equation (SDE)

dX̂(t) = −μX̂(t)dt +
√

c2
λλ + μX(t)dB(t),

where B is a standard Brownian motion, so that X̂(t)

is a Gaussian process with

σ 2
X(t) = (c2

λ − 1)

∫ t

0
Ḡ2(t − u)λdu

+
∫ t

0
Ḡ(t − u)λdu.

(b) Whenρ > 1, that is, in an OL interval, B̂(t)=0, Q̂(t)=X̂(t)

where

X̂(t) = X̂(0)F̄w(t) +
3∑

i=1

∫ t

0
Ki(t , u)dBi (u),

Ŵ (t) = Ŵ (0)H(t , 0) +
3∑

i=1

∫ t

0
H(t , u)Ii(u)dBi (u),

V̂ (t) = Ŵ (t + v(t))

1 − ẇ(t + v(t))
,

where B1 ≡ Bλ, B2 ≡ Bs , and B3 ≡ Ba are inde-
pendent standard BMs, that are the FCLT limits of
the scaled arrival process (the subscript “λ′′), service
process (“s’’) (the subscript “a’’) and abandonment
process (the subscript “a’’). Both X̂(t) and Ŵ (t) are
zero mean Gaussian processes with variance process

σ 2
W(t) =

∫ t

0
H 2(t , u)I 2(u)du + H 2(t , 0)Var(Ŵ (0)),

(8)

σ 2
X(t) =

∫ t

t−w(t)

λF̄ (t − u)
(
(c2

λ − 1)F̄ (t − u) + 1
)

du

+ λ2F̄ 2(w(t))σ 2
W(t) + Var(X̂(0)) · (F̄w(t))

2
.

(9)

Finally, H(t , u), Ii(t), Ki(t) are deterministic ana-
lytic functions given by

H(t , u) = exp

{∫ t

u

h(v)dv

}

= exp

{∫ t

u

−f (w(∞))

F̄ (w(∞))
dv

}

= e
− f (w(∞))

F̄ (w(∞))
(t−u),

I 2
1 (t) = c2

λF̄ (w(u))b(u, 0)

q̃2(u, w(u))
= c2

λF̄ (w(∞))sμ

λ2F̄ 2(w(∞))

= c2
λλ

−1,

I 2
2 (t) = b(u, 0)

q̃2(u, w(u))
= sμ

λ2F̄ 2(w(∞))
= ρ/λ,

I 2
3 (t) = F(w(u))b(u, 0)

q̃2(u, w(u))
= F(w(∞))sμ

λ2F̄ 2(w(∞))

= (ρ − 1)/λ,

I 2(t) = I 2
1 (t) + I 2

2 (t) + I 2
3 (t)

= (c2
λ − 1)ρ−1 + 2

μs
, displaybreak

K1(t , u) = cλF̄ (t − u)
√

λ(u)1{t−w(t)u<t}

+ q̃(t , w(t))
√

λ(u)Ī1(L
−1(u))

× 1{0≤u≤t−w(t)},
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K2(t , u) = −√
b(t , 0) − ṡ(t)H(t , u),

K3(t , u) = −
√

λ(u)F (t − u)F̄ (t − u)1{t−w(t)≤u≤t}

+ q̃(t , w(t))
√

λ(u)Ī3(L
−1(u))

× H(t , L−1(u))1{0≤u≤t−w(t)},

where

Ī1(t) = cλF̄ (w(u))b(u, 0)

q̃(u, w(u))
= cλF̄ (w(∞))sμ

λF̄ (w(∞))
,

Ī3(t) = −
√

F̄ (w(u))b(u, 0)

q̃(u, w(u))
= − F̄ (w(∞))sμ

λF̄ (w(∞))
,

L(t) = t − w(∞), λ(t) = λt , and 1A is an indicator
random variable of A.

We next provide steady-state distribution for the FCLT
limits of the G/M/n + GI model.

THEOREM 2.2: (Steady-state of the MSHT FCLT limit of
[INEQ-START) G/M/n + GI queues] The steady-state of
the Gaussian process arising in the MSHT FCLT limit for the
sequence of G/M/n+GI models with sn servers in model n
is given by the vector (Q̂(∞), B̂(∞), X̂(∞), Ŵ (∞), V̂ (∞))

specified below:

(a) If ρ < 1, then

Q̂(∞) = Ŵ (∞) = V̂ (∞) = 0 and

B̂(∞) = X̂(∞)
d= N

(
0, σ 2

X

)
,

where the variance is

σ 2
X ≡ λ(c2

λ − 1)

∫ ∞

0
Ḡ2(u)du + λ

∫ ∞

0
Ḡ(u)du.

(10)

(b) If ρ > 1, then

Q̂(∞)
d= X̂(∞)

d= N
(
0, σ 2

X

)
, B̂(∞) = 0,

Ŵ (∞)
d= V̂ (∞)

d= N (0, σ 2
W),

where the variances are

σ 2
W ≡ (c2

λ − 1) + 2ρ

2μsρ2f (w(∞))
and

σ 2
X ≡ (μs)2σ 2

W

+ λ

∫ w(∞)

0
F̄ (u)

(
1 + (c2

λ − 1)F̄ (u)
)

du,

(11)

with w(∞) being the steady-state fluid waiting time
in the OL case, given in Theorem 2.1.

PROOF: Because the limit process is a zero-mean Gauss-
ian process, it suffices to show that the variances converge as
t → ∞. In particular, it suffices to show that σ 2

W(t) → σ 2
W

and σ 2
X(t) → σ 2

X as → ∞. That is easy to check in UL
interval, thus we focus on the limit in the OL interval.

σ 2
W = lim

t→∞σ 2
W(t)

= lim
t→∞

(∫ t

0
I 2(u) · H 2(t , u)du + H 2(t , 0)Var(Ŵ (0))

)

= lim
t→∞

(
(c2

λ − 1)ρ−1 + 2

μs

∫ t

0
e
− 2f (w(∞))

F̄ (w(∞))
(t−u)du

+ e
− 2f (w(∞))

F̄ (w(∞))
tVar(Ŵ (0))

)

= F̄ (w(∞))

2f (w(∞))

(c2
λ − 1)ρ−1 + 2

μs
= (c2

λ − 1) + 2ρ

2μsρ2f (w(∞))
,

where the last equality holds because F̄ (w(∞)) = 1/ρ.
Inserting it to (9), we get the remaining limit

σ 2
X ≡ lim

t→∞σ 2
X(t)

= lim
t→∞Var

(
X̂(0)

)
· (

F̄w(t)
)2 + lim

t→∞λ2F̄ 2(w(t))σ 2
W(t)

+ lim
t→∞

∫ t

t−w(t)

λ F̄ (t − s)
(
(c2

λ − 1)F̄ (t − s) + 1
)

ds

= (λ/ρ)2σ 2
W + lim

t→∞λ

∫ w(t)

0
F̄ (u)

(
(c2

λ − 1)F̄ (u) + 1
)

du

= (μs)2σ 2
W + λ

∫ w(∞)

0
F̄ (u)

(
(c2

λ − 1)F̄ (u) + 1
)

du,

where lim
t→∞F̄ (w(t)) = F̄ (w(∞)) = 1/ρ, lim

t→∞Var
(
X̂(0)

)
·(

F̄w(t)
)2 = 0 since F̄ (t) → 0 as t → ∞ but Var

(
X̂(0)

)
is

bounded.
Full convergence of the multivariate Gaussian distribution

in R
5 requires convergence of the pairwise covariances too.

That also follows from the representation in Theorem 2.2, but
we omit the details, because we will not be applying that. �

REMARK 2.1 (Interchange of the two limits): Our MSHT
approximation is based on an iterated limit in which first
n → ∞ and then t → ∞, but we need the iterated limit in
the other order. As often is done in MSHT approximations,
we are assuming without proof that a limit interchange is
valid, in particular,

lim
t→∞X̂(t) = lim

t→∞ lim
n→∞X̂n(t) = lim

n→∞ lim
t→∞X̂n(t)

= lim
n→∞X̂n(∞). (12)
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We conjecture that (12) holds for the G/GI/n+GI model
under mild regularity conditions, if any. For the more elemen-
tary M/M/n, M/M/n+M , and M/M/n+GI models, that
limit interchange was proved in [11, 14, 44].

REMARK 2.2 (The underloaded case): The MSHT limits
above are relatively elementary in the UL case with ρ < 1. In
that case the results reduce to corresponding infinite-server
results in [32] and references there, as shown for the M/M/n

model in [18].

3. THE STEADY-STATE GAUSSIAN
APPROXIMATIONS

In this section, we develop the Gaussian approximation
formulas for the steady-state distribution of the stationary
G/GI/n + GI model. Henceforth, we focus on steady-state
random variables and no longer discuss stochastic processes.
Thus, for simplicity, we omit the time argument t , which
would become ∞ in steady state; that is, we let Qn denote
the steady-state queue length in model n with sn servers and
we let Q and Q̂ denote the steady-state of the fluid and
diffusion limits, respectively, and similarly for the other vari-
ables. (Previously, these were denoted by Qn(∞), Q(∞),
and Q̂(∞).) Since the steady-state head-of-line waiting time
Wn and potential waiting time Vn should coincide, as do the
limits in Theorem 2.1 (b) and Theorem 2.3 (b), we henceforth
use only the notion Wn, w, and Ŵ for the waiting time (instead
of Wn(∞), Vn(∞), w(∞), v(∞), Ŵ (∞), and V̂ (∞)).

We start in §3.1 with direct Gaussian approximations
(DGA) and then turn to the basic truncation refinement TGA
for the G/M/n + GI model in §3.2. Afterwards, in §3.3 we
generalize TGA from M service to GI service, which we
refer to as TGA-G.

3.1. Direct Gaussian Approximations

The most straightforward performance approximation is a
direct application of the steady-state of the deterministic fluid
and the zero-mean Gaussian limits. We we use superscript
“DGA” to denote these approximations, which are

Xn ≈ XDGA
n ≡ nX + √

nX̂, (13)

Bn ≈ BDGA
n ≡ nB + √

nB̂, QDGA
n ≡ nQ + √

nQ̂,
(14)

Wn ≈ WDGA
n ≡ w + 1√

n
Ŵ , (15)

where X, B, Q, and w are given in Theorem 2.1 and X̂, B̂,
Q̂, and Ŵ are given in Theorem 2.3. (Recall that we have
eliminated the infinite time argument from the steady-state
quantities given in Theorems 2.1 and 2.3.)

In addition to approximating means and variances, defined
in the obvious direct way, we have associated approximations
for the P d and P a , namely,

P d ≈ P d,C ≈ P DGA
D (n) ≡ P

(
WDGA

n > 0
)

and (16)

P a ≈ P DGA
A (n) ≡ P

(
WDGA

n > A
)

, (17)

where A is a generic independent patience time.

3.2. Truncated Gaussian Approximations

It is natural to refine the DGA approximations by trunca-
tion because Qn = (Xn − sn)

+ and Bn = (Xn ∧ sn)
+, where

a+ is max {0, a} and a ∧ b = min {a, b}. Thus, our TGA
approximations for Qn and Bn are

QT GA
n ≡ (

XDGA
n − ns

)+ = √
nσX

(
X̂

σX

+
√

n(X − s)

σX

)+

≡ √
nσX (Z ∨ −aX(n)) + n(X − s),

BT GA
n ≡ (

XDGA
n ∧ ns

)+

= √
nσX

(
(Z ∧ −aX(n)) +

√
n

σX

X

)+
, (18)

where Z is a standard Gaussian random variable, σX is given
in (11), and

aX(n) = √
n(X − s)/σX. (19)

In the same spirit, we truncate the DGAs for waiting times
(15) to obtain their TGAs.

WT GA
n = V T GA

n = (
WDGA

n

)+ =
(

w + Ŵ√
n

)+

= w + σW√
n

(Z ∨ −aW(n)) , (20)

where σW is given in (11) and

aW(n) = √
nw/σW . (21)

The means, variances and distributions are then approxi-
mated in the obvious way. The formulas can be conveniently
expressed as functions of the standard normal ccdf � and pdf
φ via

E[V TGA
n ] = E[w + σW√

n
(Z ∨ −aW(n))]

= w

(
�(aW(n)) + φ(aW(n))

aW (n)

)
,

Var(V TGA
n ) = Var(w + σW√

n
(Z ∨ −aW(n))),
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= (aW (n)σW )2

n

[ (
1 + 1

a2
W(n)

)
�(aW(n))

− φ(aW(n))

aW (n)
−

(
φ(aW(n))

aW (n)
− �(aW(n))

)2]
,

E[QT GA
n ] = E[n(X − s) + σX√

n
(Z ∨ −aX(n))]

= n(X − s)

(
�(aX(n)) + φ(aX(n))

aX(n)

)
,

Var(QT GA
n ) = Var(n(X − s) + σX√

n
(Z ∨ −aX(n)))

= n(aX(n)σX)2

[ (
1 + 1

a2
X(n)

)
�(aX(n))

− φ(aX(n))

aX(n)
−

(
φ(aX(n))

aX(n)
− �(aX(n))

)2]
,

where aW(n) and aX(n) are given in (21) and (19).
The P d , P d,C , and P a are natural analogs of (16) and (17),

that is,

P d ≈ P d,c ≈ P TGA
D (n) ≡ P

(
WTGA

n > 0
)

= P

(
w

( Z
aW(n)

+ 1

)
> 0

)
= � (−aW(n)) , (22)

P a ≈ P TGA
A (n) ≡ P

(
WTGA

n > A
)

= P

(
w

( Z
aW(n)

+ 1

)
> A

)

=
∫ ∞

0
�

(
aW(n)

( x

w
− 1

))
f (x)dx, (23)

where f is the pdf of the patience time, as before.
Notice that several of the TGA approximations coincide

with their DGA counterparts, that is,

(XTGA
n , E[XTGA

n ], Var(XTGA
n ), P TGA

A (n), P TGA
D (n))

= (XDGA
n , E[XDGA

n ], Var(XDGA
n ), P DGA

A (n), P DGA
D (n))

3.3. The Refinement for Non-Exponential Service:
TGA-G

Recall that both DGAs and TGAs are developed based on
Theorems 2.2 and 2.3 for the G/M/n + GI queue. How-
ever, the form of the limit in 2.3 allows us to identify the
impact of the service process. In particular, we see that the
three sources of variability, the arrival process, service times
and patience times, produce identifiable impacts on the limit-
ing Gaussian processes through three independent Brownian
motions. Thus, even though the impact of the service process
is complicated, we can exploit this separability to see how to
introduce a good candidate heuristic approximation.

First, for the OL model, where asymptotically all servers
are busy all the time, we can act as if the servers are continu-
ously busy. Because of the assumed exponential service time

distribution, the approximating service-completion process is
a Poisson process with rate μs(t), which yields a Brownian
FCLT limit, corresponding to the BM B2 = Bs in Theo-
rem 2.2 (See Theorem 4.2 in [26] for details; also see (4.5)
and (6.64) there). When service becomes GI , and when the
servers are all busy, the service process is the superposition
of i.i.d. renewal processes. Because the number of servers
n grows in the limit, that superposition departure process
is complicated, as discussed in §9.8 of [38]. However, one
candidate approximation is to act as if n is fixed. Then the
departure process again satisfies a FCLT with a Brownian
motion limit, but with the prefactor cs , just as if the ser-
vice process were a single renewal process with c2

s being
the squared coefficient of variation (scv, variance divided by
the square of the mean) of the time between renewals; see
§9.4 of [38].

Consequently, in our heuristic approximation we capture
the nonexponential service distribution by scaling the BM B2

by adding the prefactor cs . That leads to replacing the “1” by
“ cs” in the numerator of (11), yielding

σ 2
WG

= (c2
λ − 1) + (cs + 1)ρ

2μsρ2f (w)
. (24)

By replacing σW by σWG
in (11), (18)–(20), we obtain

TGA-G. It is significant that TGA-G reduces to TGA when
service is M , for which c2

s = 1.

4. EVALUATING THE GAUSSIAN
APPROXIMATIONS FOR MARKOV MODELS

Since the Markovian M/M/n + M model is relatively
tractable, we primarily want to develop effective approxima-
tions for other non-Markov G/GI/n+GI models. Neverthe-
less, it is convenient to start examining the proposed Gaussian
approximations by making comparisons with exact numerical
results for the M/M/n + M model because numerical algo-
rithms are readily available. A minimum requirement for our
proposed approximations is that they perform well for this
basic model.

Hence, we start evaluating the proposed approximations
in this section by comparing with exact numerical results
for M/M/n + M model. For that purpose, we use the
numerical algorithm from [41]. That algorithm was devel-
oped to treat the more general M/GI/n + GI model by
approximating it by the Markovian M/M/n + M(n) model
with state-dependent abandonment rate, but it applies to the
M/M/n+M model as a special case. That model includes a
finite waiting room; we let it be so large that it does not affect
the formulas.

Our base case has n = 100 servers, but we also examine
smaller systems later. For the OL systems of primary inter-
est, we considered a range of traffic intensities from ρ = 1.5
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Table 1. A comparison of the TGA and DGA approximations to exact numerical values in the M(λ−1)/M(1)/100 + M(θ−1) model with
λ = 100ρ and ρ = 1.2 for six values of θ , 0.10 ≤ θ ≤ 4.00

θ = 0.1 θ = 0.25 θ = 0.5

Perf. Exact DGA TGA Exact DGA TGA Exact DGA TGA

E[X] 3.00 E + 2 3.00 E + 2 same 1.80 E + 2 1.80 E + 2 same 1.40 E + 2 1.40 E + 2 same
rel. err. 0% 0% 0%
Var(X) 1.20 E + 3 1.20 E + 3 same 4.80 E + 2 4.80 E + 2 same 2.39 E + 2 2.40 E + 2 same
rel. err. 0% 0% 0%
E[Q] 2.00 E + 2 2.00 E + 2 2.00 E + 2 8.00 E + 1 7.99 E + 1 7.99 E + 1 4.00 E + 1 3.99 E + 1 3.99 E + 1
rel. err. 0% 0% 0% 0% 0% 0%
Var(Q) 1.20 E + 3 1.20 E + 3 1.20 E + 3 4.80 E + 2 4.80 E + 2 4.80 E + 2 2.38 E + 2 2.40 E + 2 2.38 E + 2
rel. err. 0% 0% 0% 0% 1% 0%
E[W ] 1.83 E + 0 1.82 E + 0 1.82 E + 0 7.34 E −1 7.29 E −1 7.29 E −1 3.70 E −1 3.65 E −1 3.65 E −1
rel. err. 0% 0% 1% 1% 1% 1%
Var(W) 1.00 E −1 1.00 E −1 1.00 E −1 4.00 E −2 4.00 E −2 4.00 E −2 1.99 E −2 2.00 E −2 1.98 E −2
rel. err. 0% 0% 0% 0% 1% 0%
P d 1.00 E + 0 1.00 E + 0 same 1.00 E + 0 1.00 E + 0 same 9.97 E −1 9.95 E −1 same
rel. err. 0% 0% 0%
P a 1.67 E −1 1.66 E −1 same 1.67 E −1 1.66 E −1 same 1.67 E −1 1.65 E −1 same
rel. err. 0% 1% 1%

θ = 1 θ = 2 θ = 4

Perf. Exact DGA TGA Exact DGA TGA Exact DGA TGA

E[X] 1.20 E + 2 1.20 E + 2 same 1.10 E + 2 1.10 E + 2 same 1.04 E + 2 1.05 E + 2 same
rel. err. 0% 0% 1%
Var(X) 1.20 E + 2 1.20 E + 2 same 6.35 E + 1 5.99 E + 1 same 3.76 E + 1 2.99 E + 1 same
rel. err. 0% 6% 20%
E[Q] 2.01 E + 1 1.98 E + 1 2.00 E + 1 1.02 E + 1 9.86 E + 0 1.02 E + 1 5.22 E + 0 4.92 E + 0 5.47 E + 0
rel. err. 1% 1% 3% 0% 6% 5%
Var(Q) 1.14 E + 2 1.20 E + 2 1.13 E + 2 5.22 E + 1 5.99 E + 1 5.00 E + 1 2.29 E + 1 2.99 E + 1 2.14 E + 1
rel. err. 5% 1% 15% 4% 31% 7%
E[W ] 1.88 E −1 1.82 E −1 1.83 E −1 9.76 E −2 9.10 E −2 9.43 E −2 5.17 E −2 4.60 E −2 5.09 E −2
rel. err. 3% 3% 7% 3% 11% 2%
Var(W) 9.61 E −3 1.00 E −2 9.40 E −3 4.48 E −3 5.00 E −3 4.19 E −3 2.04 E −3 2.50 E −3 1.81 E −3
rel. err. 4% 2% 11% 7% 23% 11%
P d 9.72 E −1 9.66 E −1 same 9.06 E −1 9.01 E −1 same 8.01 E −1 8.21 E −1 same
rel. err. 1% 1% 2%
P a 1.68 E −1 1.64 E −1 same 1.70 E −1 1.65 E −1 same 1.74 E −1 1.73 E −1 same
rel. err. 2% 3% 1%

down to 1.001. The case ρ = 1.5 is so OL that there is
little need for truncation, so that the TGA and DGA approx-
imations nearly coincide, and the performance is very good;
see Table 18 in the Supporting Information Appendix. We
thus start by showing the experimental results for ρ = 1.2
with abandonment rates 0.1 ≤ θ ≤ 4.0 in Table 1, where
M(m) refers to an exponential distribution with mean m. For
the lower three abandonments rates (θ ≤ 0.5), the system is
still highly heavily loaded. For these two cases in Table 1,
TGA and DGA are quite close with all errors less than 1%.
However, otherwise we see that TGA provides significant
improvement.

We regard the case ρ = 1.2 as quite heavily loaded,
much more in the ED heavy-traffic regime than the QED
regime. Hence, we primarily focus on models with lower
traffic intensities. For the traffic intensity, we regard ρ = 1.05

as our base case; it corresponds to levels often encountered
in practice. Moreover, for n = 100 and ρ = 1.05, the system
is operating in the more practical QED regime, which can
be characterized by the quality-of-service (QoS) parameter
β ≡ (1 − ρ)

√
n = −0.5; see [11, 14]. Table 2 shows the

main performance measures for six abandonment rates with
0.1 ≤ θ ≤ 4.0. Table 2 shows that DGA performs poorly in
this case, but TGA provides dramatic improvement, having
all errors in the means E[Q] and E[W ] and variances Var(Q)

and V ar(W) less than 10% for θ ≤ 2.0.
As indicated earlier, we find good performance for θ ≤ 2.0.

For θ = 0.1 and 0.25 with (n, ρ) = (100, 1.05), the maxi-
mum percentage error among the means E[X], E[Q], E[W ]
and the probabilitiesP d andP a for TGA was 7%. Conversely,
Table 21 shows that the performance of TGA degrades for
θ = 4 and 10, but then the high abandonment rate makes the
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Table 2. A comparison of the TGA and DGA approximations to exact numerical values in the M(λ−1)/M(1)/100 + M(θ−1) model with
λ = 100ρ and ρ = 1.05 for six values of θ , 0.10 ≤ θ ≤ 4.00.3

θ = 0.1 θ = 0.25 θ = 0.5

Perf. Exact DGA TGA Exact DGA TGA Exact DGA TGA

E[X] 1.52 E + 2 1.50 E + 2 same 1.232 E + 2 1.20 E + 2 same 1.11 E + 2 1.10 E + 2 same
rel. err. 1% 2% 1%
Var(X) 9.25 E + 2 1.05 E + 3 same 3.47 E + 2 4.20 E + 2 same 1.81 E + 2 2.10 E + 2 same
rel. err. 16% 21% 16%
E[Q] 5.22 E + 1 4.99 E + 1 5.08 E + 1 2.30 E + 1 1.99 E + 1 2.17 E + 1 1.27 E + 1 9.94 E + 0 1.21 E + 1
rel. err. 4% 2% 14% 6% 22% 5%
Var(Q) 8.99 E + 2 1.05 E + 3 9.41 E + 2 3.05 E + 2 4.20 E + 2 3.11 E + 2 1.35 E + 2 2.10 E + 2 1.33 E + 2
rel. err. 19% 7% 37% 2% 56% 1%
E[W ] 5.14 E −1 4.88 E −1 4.96 E −1 2.29 E −1 1.95 E −1 2.12 E −1 1.28 E −1 9.80 E −2 1.18 E −1
rel. err. 5% 3% 15% 8% 23% 7%
Var(W) 8.59 E −2 1.00 E −1 8.97 E −2 2.93 E −2 4.00 E −2 2.97 E −2 1.31 E −2 2.00 E −2 1.27 E −2
rel. err. 19% 7% 36% 1% 53% 3%
P d 9.67 E −1 9.39 E −1 same 8.90 E −1 8.35 E −1 same 8.03 E −1 7.56 E −1 same
rel. err. 3% 6% 6%
P a 4.97 E −2 4.80 E −2 same 5.47 E −2 5.09 E −2 same 6.04 E −2 5.75 E −2 same
rel. err. 4% 7% 5%

θ = 1 θ = 2 θ = 4

Perf. Exact DGA TGA Exact DGA TGA Exact DGA TGA

E[X] 1.05 E + 2 1.05 E + 2 same 1.01 E + 2 1.02 E + 2 same 9.86 E + 1 1.01 E + 2 same
rel. err. 0% 1% 3%
Var(X) 1.05 E + 2 1.05 E + 2 same 6.85 E + 1 5.24 E + 1 same 5.00 E + 1 2.61 E + 1 same
rel. err. 0% 23% 48%
E[Q] 7.03 E + 0 4.92 E + 0 7.01 E + 0 3.88 E + 0 2.36 E + 0 4.22 E + 0 2.12 E + 0 1.13 E + 0 2.65 E + 0
rel. err. 30% 0% 40% 8% 47% 25%
Var(Q) 5.92 E + 1 1.05 E + 2 5.71 E + 1 2.57 E + 1 5.24 E + 1 2.50 E + 1 1.10 E + 1 2.61 E + 1 1.13 E + 1
rel. err. 77% 3% 103% 3% 139% 3%
E[W ] 7.22 E −2 4.90 E −2 6.91 E −2 4.09 E −2 2.40 E −2 4.18 E −2 2.32 E −2 1.20 E −2 2.65 E −2
rel. err. 32% 4% 42% 2% 48% 14%
Var(W) 5.88 E −3 1.00 E −2 5.49 E −3 2.64 E −3 5.00 E −3 2.42 E −3 1.18 E −3 2.50 E −3 1.10 E −3
rel. err. 70% 7% 89% 9% 112% 6%
P d 7.00 E −1 6.88 E −1 same 5.92 E −1 6.33 E −1 same 4.87 E −1 5.95 E −1 same
rel. err. 2% 6% 22%
P a 6.70 E −2 6.43 E −2 same 7.40 E −2 7.59 E −2 same 8.07 E −2 9.31 E −2 same
rel. err. 3% 3% 16%

system far from being OL; for example, E[Q] = 1.47 and
E[W ] = 0.017 for θ = 4.

Most of the rest of this article is devoted to showing that
the good results in Table 2 extend to a wide class of models
and parameters. We illustrate in Figs. 1–3, which graphically
show the performance for the M/M/n+M model as a func-
tion of ρ and θ . Figures 1 and 2 show the performance as a
function of ρ for two values of θ : 0.5 to 2.0. Figure 3 shows
the performance as a function of θ for ρ = 1.05.

5. EVALUATING THE APPROXIMATIONS
FOR G/M/N + GI MODELS

We now start investigating the approximations for non-
Markov models, first considering the G/M/n + GI models
for which the MSHT limits have been established in [26]. For

these and all other non-Markov models, we will use simula-
tion to estimate the exact values of the performance measures.
We estimated all the performance measures using 2000 inde-
pendent replications over the time interval [0, 100], starting
empty in each case. To ensure the system is nearly in steady
state, we use the data after time T ′ = 40. To construct con-
fidence intervals, on each sample path, we sample values for
the performance measures (e.g., queue length and waiting
times) at evenly spaced time points in the interval [40, 100].
We describe the detailed simulation methodology in §9.

5.1. Non-Poisson arrivals

Theorems 2.1–2.3 show that the MSHT limits depend on
the non-Poisson arrival process only through the asymptotic
variance c2

λ in the FCLT assumed for the arrival process in
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Figure 1. The relative error in the approximations of six performance measures as a function of the traffic intensity ρ for 1.001 ≤ ρ ≤ 1.500
(with ρ − 1 in log scale) in the M(1/100ρ)/M(1)/100 + M(2.0) model with abandonment rate θ = 0.5. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

Figure 2. The relative error in the approximations of six performance measures as a function of the traffic intensity ρ for 1.001 ≤ ρ ≤ 1.500
(with (with ρ − 1 in log scale) in the M(1/100ρ)/M(1)/100 + M(0.5) model with abandonment rate θ = 2.0. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

Figure 3. The relative error in the approximations of six performance measures as a function of the abandonment rate θ for 0.01 ≤ θ ≤ 4.00
(with θ in log scale) in the M(1/105)/M(1)/100 +M(1/θ) model having traffic intensity ρ = 1.05. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

(5). For a renewal arrival process the parameter c2
λ coincides

with the scv of an interarrival time, but not more generally.

5.1.1. Renewal processes

To illustrate a non-Markovian arrival process, we consider
a non-Poisson renewal process. We let the interarrival-time

distribution be lognormal, denoted by LN(λ−1, c2
λ), where

λ−1 is its mean, which is the reciprocal of the fixed arrival
rate λ = nρ = 105, and c2

λ denotes its scv. Recall that
an LN(λ−1, c2

λ) random variable is distributed as eμ̂+σ̂Z ,
where Z is a standard Gaussian random variable, μ̂ =
log

(
λ−1/

√
1 + c2

λ

)
and σ̂ =

√
log

(
1 + c2

λ

)
.

Naval Research Logistics DOI 10.1002/nav



198 Naval Research Logistics, Vol. 63 (2016)

Table 3. A comparison of the TGA and DGA approximations to simulation estimates in the LN(λ−1, c2
λ)/M(1)/100 + M(2) model with

i.i.d. lognormal interarrival times and (λ, ρ, θ) = (100, 1.05, 0.5) for six values of the interarrival time scv c2
λ, 0.25 ≤ c2

λ ≤ 4.00

c2
λ = 0.25 c2

λ = 0.5 c2
λ = 1

Perf. Sim DGA TGA Sim DGA TGA Sim DGA TGA

E[X] 1.11 E + 2 1.10 E + 2 same 1.11 E + 2 1.10 E + 2 same 1.11 E + 2 1.10 E + 2 same
rel. err. ± 1.16 E −1 1% ± 1.25 E −1 1% ± 1.44 E −1 1%
Var(X) 1.16 E + 2 1.31 E + 2 same 1.38 E + 2 1.57 E + 2 same 1.80 E + 2 2.10 E + 2 same
rel. err. ± 2.62 E + 1 13% ± 2.83 E + 1 14% ± 3.27 E + 1 17%
E[Q] 1.15 E + 1 9.94 E + 0 1.12 E + 1 1.20 E + 1 9.94 E + 0 1.15 E + 1 1.27 E + 1 9.94 E + 0 1.21 E + 1
rel. err. ± 1.04 E −1 14% 3% ± 1.10 E −1 17% 5% ± 1.24 E −1 22% 5%
Var(Q) 9.22 E + 1 1.31 E + 2 9.23 E + 1 1.07 E + 2 1.57 E + 2 1.06 E + 2 1.33 E + 2 2.10 E + 2 1.33 E + 2
rel. err. ± 3.18 E + 0 42% 0% ± 3.62 E + 0 48% 0% ± 4.46 E + 0 58% 0%
E[W ] 1.18 E −1 9.80 E −2 1.10 E −1 1.23 E −1 9.80 E −2 1.13 E −1 1.28 E −1 9.80 E −2 1.18 E −1
rel. err. ± 1.05 E −3 17% 7% ± 1.10 E −3 20% 8% ± 1.22 E −3 23% 7%
Var(W) 9.46 E −3 1.29 E −2 9.03 E −3 1.07 E −2 1.52 E −2 1.03 E −2 1.30 E −2 2.00 E −2 1.27 E −2
rel. err. ± 1.05 E −3 36% 5% ± 1.10 E −3 42% 4% ± 1.22 E −3 54% 2%
P d 8.22 E −1 8.06 E −1 same 8.08 E −1 7.86 E −1 same 7.80 E −1 7.56 E −1 same
rel. err. ± 3.02 E −3 2% ± 3.15 E −3 3% ± 3.31 E −3 3%
P d,C 8.41 E −1 8.06 E −1 same 8.24 E −1 7.86 E −1 same 8.08 E −1 7.56 E −1 same
rel. err. ± 3.00 E −3 4% ± 3.10 E −3 5% ± 3.20 E −3 6%
P a 5.60 E −2 5.36 E −2 same 5.83 E −2 5.49 E −2 same 6.01 E −2 5.75 E −2 same
rel. err. ± 6.45 E −4 4% ± 6.70 E −4 6% ± 6.99 E −4 4%

M , c2
λ = 1 c2

λ = 2 c2
λ = 4

Perf. Exact DGA TGA Sim DGA TGA Sim DGA TGA

E[X] 1.11 E + 2 1.10 E + 2 same 1.12 E + 2 1.10 E + 2 same 1.13 E + 2 1.10 E + 2 same
rel. err. 1% ± 1.69 E −1 2% ± 2.17 E −1 3%
Var(X) 1.81 E + 2 2.10 E + 2 same 2.60 E + 2 3.15 E + 2 same 4.08 E + 2 5.25 E + 2 same
rel. err. 16% ± 3.88 E + 1 21% ± 5.02 E + 1 29%
E[Q] 1.27 E + 1 9.94 E + 0 1.21 E + 1 1.39 E + 1 9.94 E + 0 1.31 E + 1 1.61 E + 1 9.94 E + 0 1.50 E + 1
rel. err. 22% 5% ± 1.40 E −1 29% 6% ± 1.73 E −1 38% 7%
Var(Q) 1.35 E + 2 2.10 E + 2 1.33 E + 2 1.79 E + 2 3.15 E + 2 1.82 E + 2 2.61 E + 2 5.25 E + 2 2.75 E + 2
rel. err. 56% 1% ± 5.81 E + 0 76% 2% ± 8.52 E + 0 101% 6%
E[W ] 1.28 E −1 9.80 E −2 1.18 E −1 1.38 E −1 9.80 E −2 1.28 E −1 1.56 E −1 9.80 E −2 1.45 E −1
rel. err. 23% 7% ± 1.36 E −3 29% 7% ± 1.63 E −3 37% 7%
Var(W) 1.31 E −2 2.00 E −2 1.27 E −2 1.68 E −2 2.95 E −2 1.72 E −2 2.32 E −2 4.86 E −2 2.57 E −2
rel. err. 53% 3% ± 1.36 E −3 76% 3% ± 1.63 E −3 110% 11%
P d 8.03 E −1 7.56 E −1 same 7.51 E −1 7.16 E −1 same 7.26 E −1 6.72 E −1 same
rel. err. 6% ± 3.46 E −3 5% ± 3.76 E −3 8%
P d,C 8.03 E −1 7.56 E −1 same 7.81 E −1 7.16 E −1 same 7.70 E −1 6.72 E −1 same
rel. err. 6% ± 3.50 E −3 8% ± 3.50 E −3 7%
P a 6.04 E −2 5.75 E −2 same 6.46 E −2 6.22 E −2 same 7.29 E −2 7.02 E −2 same
rel. err. 5% ± 7.69 E −4 4% ± 8.58 E −4 4%

Table 3 and Fig. 4 show the experimental results for five
values of c2

λ with 0.25 ≤ c2
λ ≤ 4.0. Table 3 also shows the

experimental results for the case of a Poisson (M) arrival
process, which is interesting, because the LN(λ−1, 1) distri-
bution is different from the corresponding M(λ−1) exponen-
tial distribution, even though they have the same mean and
variance.

Table 3 compares the Gaussian approximations to simula-
tions for the LN/M/n + M queuing model with (n, ρ, θ) =
(100, 1.05, 0.5). First, Table 3 shows that the interarrival
time distribution has a significant impact on performance.

For example, E[Q] increases from 11.5 to 16.1 as c2
λ

increases from 0.25 to 4.0. Moreover, by comparing the
results for M(λ−1) and LN(λ−1, 1), where the approxima-
tions coincide, we see that the interarrival-time distribu-
tion matters little beyond its mean and variance, just as
predicted.

Second, Table 3 shows that, just like Table 2, TGA per-
forms consistently well, whereas DGA does not. Figure 5
adds to the story by showing that the full distributions of
the queue length Qn and potential waiting time Wn are well
approximated by TGA as well.
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Figure 4. The relative error in the approximations of six performance measures as a function of the interarrival-time scv c2
λ for 0.25 ≤ c2

λ ≤ 4.0
(with c2

λ in log scale) in the LN(1/105, c2
λ)/M(1)/100 + M(2) model. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 5. Simulation estimates (histograms) of the TGA approximating distributions of the steady-state queue length Qn (left) and waiting
time Vn (right) for the LN(λ−1, c2

λ)/M(1)/100 + M(2) model with (λ, ρ, θ) = (100, 1.05, 0.5). [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

5.1.2. Markov-Modulated Poisson processes )

We next consider an alternative non-Poisson arrival
process: Markov-modulated Poisson process (MMPP),
which is a Poisson process having a random rate modulated
by a continuous-time Markov chain (CTMC) {	(t), t ≥}, for

example, see [10]. Specifically, we can construct an MMPP
by composition:

Nn(t) ≡ M

(
nρ

∫ t

0
α(	(u)) du

)
,
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Table 4. A comparison of the TGA approximations to simulation estimates in the MMPP(λ−1, c2
λ)/M/100 + M(θ−1) model with

(λ, ρ, θ) = (105, 1.05, 0.5) for four values of the arrival process variability parameter c2
λ in (5), 1.5 ≤ c2

λ ≤ 10.0

c2
λ = 1.5 c2

λ = 2 c2
λ = 4 c2

λ = 10

Perf. Sim TGA Sim TGA Sim TGA Sim TGA

E[X] 1.12 E + 2 1.10 E + 2 1.12 E + 2 1.10 E + 2 1.13 E + 2 1.09 E + 2 1.15 E + 2 1.10 E + 2
rel. err. ± 1.62 E −1 2% ± 1.77 E −1 2% ± 2.16 E −1 3% ± 3.20 E −1 5%
Var(X) 2.22 E + 2 2.62 E + 2 2.65 E + 2 3.15 E + 2 4.30 E + 2 5.25 E + 2 9.19 E + 2 1.15 E + 3
rel. err. ± 3.71 E + 1 18% ± 4.08 E + 1 19% ± 5.15 E + 1 22% ± 8.05 E + 1 26%
E[Q] 1.34 E + 1 1.26 E + 1 1.38 E + 1 1.31 E + 1 1.60 E + 1 1.50 E + 1 2.06 E + 1 1.91 E + 1
rel. err. ± 1.37 E −1 6% ± 1.48 E −1 5% ± 1.78 E −1 7% ± 2.55 E −1 7%
Var(Q) 1.62 E + 2 1.58 E + 2 1.88 E + 2 1.82 E + 2 2.93 E + 2 2.75 E + 2 6.02 E + 2 5.35 E + 2
rel. err. ± 5.46 E + 0 2% ± 6.21 E + 0 3% ± 9.55 E + 0 6% ± 1.95 E + 1 11%
E[W ] 1.34 E −1 1.24 E −1 1.37 E −1 1.28 E −1 1.55 E −1 1.45 E −1 1.91 E −1 1.85 E −1
rel. err. ± 1.33 E −3 8% ± 1.43 E −3 6% ± 1.67 E −3 6% ± 2.26 E −3 3%
Var(W) 1.53 E −2 1.50 E −2 1.74 E −2 1.72 E −2 2.56 E −2 2.57 E −2 4.68 E −2 4.94 E −2
rel. err. ± 5.16 E −4 2% ± 5.76 E −4 1% ± 8.21 E −4 0% ± 1.50 E −3 6%
P d 7.83 E −1 7.33 E −1 7.61 E −1 7.16 E −1 7.22 E −1 6.72 E −1 6.61 E −1 6.18 E −1
rel. err. ± 3.33 E −3 6% ± 3.50 E −3 6% ± 3.55 E −3 7% ± 4.00 E −3 7%
P d,C 7.85 E −1 7.33 E −1 7.76 E −1 7.16 E −1 7.44 E −1 6.72 E −1 7.20 E −1 6.18 E −1
rel. err. ± 4.80 E −3 7% ± 4.90 E −3 8% ± 5.20 E −3 10% ± 5.40 E −3 14%
P a 6.32 E −2 5.82 E −2 6.44 E −2 6.02 E −2 7.15 E −2 6.72 E −2 8.61 E −2 8.28 E −2
rel. err. ± 7.49 E −4 8% ± 7.86 E −4 7% ± 8.71 E −4 6% ± 1.10 E −3 4%

where M is a rate-1 Poisson process, and the random rate
α(	(t)) = αi when the CTMC 	(t) = i. In particu-
lar, we now consider an MMPP with an underlying CTMC
{	(t), t ≥ 0} that is a birth-and-death process having three
states 0, 1 and 2. Let CTMC-dependent arrival rate be
(α0, α1, α2) = (3, 1, 1/3). The long-run rate of the MMPP
arrival process is

λn = nρλ∗,

λ∗ ≡ lim
t→∞t−1

∫ t

0
α(	(u)) du =

2∑
j=0

πj αj ,

where π ≡ (π0, π1, π2) is the steady state distribution for
the CTMC. We consider four sets of birth and deaths rates:
(i) λ̂0 = 20/81, λ̂1 = 5/27, μ̂1 = μ̂2 = 10/81, (ii)
λ̂0 = 20/27, λ̂1 = 5/9, μ̂1 = μ̂2 = 10/27, (iii) λ̂0 = 20/9,
λ̂1 = 5/3, μ̂1 = μ̂2 = 10/9, and (iv) λ̂0 = 40/9,
λ̂1 = 10/3, μ̂1 = μ̂2 = 20/9, which yield the same steady
state π = (1/6, 1/3, 1/2) and asymptotic rate λ∗ = 1, but
different asymptotic variability parameter: (i) c2

λ = 10, (ii)
c2
λ = 4, (iii) c2

λ = 2, and (iv) c2
λ = 1.5, where

c2
λ = 1 + c2

C , where

c2
C ≡ 2

2∑
j=1

1

λ̂jπj

(
j∑

i=1

πi (αi − λC)

)2

.

See Proposition 1 in [36] and also see [15].

We denote by MMPP(λ−1, c2
λ) our MMPP arrival process

having rate λ and variability parameter c2
λ. Table 4 compares

TGA to the simulation results for MMPP/M/n + M mod-
els with λ = 105, n = 100, μ = 1, θ = 0.5, and different
variability parameters c2

λ = 1.5, 2, 4 and 10.

5.2. Non-Exponential Patience

It has been shown that the full abandonment distribution
has a significant impact on the performance; for example, see
[41, 42]. We confirm that here when we study how our TGAs
works in M/M/n + GI models using different abandon-
ment distributions, again using the lognormal distribution.
Figure 6 and Tables 5 and 6 compare the DGAs and TGAs
to the simulations of the M/M/n + LN(2, c2

ab) model with
the same parameter triple (λ, ρ, θ) = (100, 1.05, 0.5) we have
been using, where scv of abandonment distribution c2

ab ranges
from 0.25 to 4.0. Paralleling Table 3, we add a column for
the results of Erlang-A models.

Figure 6 and Tables 5 and 6 show that TGA is again consis-
tently quite accurate for all the first-moment measures (mean
and probability) in all cases, but the accuracy degrades to
20 − 30% for the variances when c2

ab is low. Moreover,
by comparing the results for the M/M/n + LN(2, 1) and
M/M/n + M(2) models in Table 6, we can see that the
patience distribution has a significant impact on the queuing
system beyond its mean and variance, unlike the interarrival-
time distribution. Approximations of distributions of Qn and
Wn are given in Fig. 7.
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Figure 6. The relative errors in the approximations of six performance measures as a function of the patience-time scv c2
ab for 0.25 ≤ c2

ab ≤ 4.0
(with c2

ab in log scale) in the M(1/105)/M(1)/100 + LN(2, c2
ab) model. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Table 5. A comparison of the TGA and DGA approximations to simulation estimates in the M/M/100 + LN(θ−1, c2
ab) model with with

(λ, ρ, θ) = (100, 1.05, 0.5) for four values of the patience scv c2
ab, 0.25 ≤ c2

ab ≤ 4.00

LN(2, 0.25) LN(2, 0.5)

Perf. Sim DGA TGA Sim DGA TGA

E[X] 1.77 E + 2 1.85 E + 2 same 1.52 E + 2 1.59 E + 2 same
rel. err. ± 4.92 E −1 4% ± 3.94 E −1 4%
Var(X) 6.39 E + 2 4.54 E + 2 same 5.22 E + 2 4.04 E + 2 same
rel. err. ± 1.63 E + 2 29% ± 1.15 E + 2 23%
E[Q] 7.67 E + 1 8.46 E + 1 8.46 E + 1 5.21 E + 1 5.85 E + 1 5.85 E + 1
rel. err. ± 4.89 E −1 10% 10% ± 3.88 E −1 12% 12%
Var(Q) 6.33 E + 2 4.54 E + 2 4.54 E + 2 5.07 E + 2 4.04 E + 2 4.03 E + 2
rel. err. ± 6.55 E + 1 28% 28% ± 3.72 E + 1 20% 21%
E[W ] 7.39 E −1 8.13 E −1 8.13 E −1 5.05 E −1 5.64 E −1 5.64 E −1
rel. err. ± 4.54 E −3 10% 10% ± 3.64 E −3 12% 12%
Var(W) 5.42 E −2 3.69 E −2 3.69 E −2 4.46 E −2 3.45 E −2 3.45 E −2
rel. err. ± 5.80 E −3 32% 32% ± 3.30 E −3 22% 23%
P d 9.95 E −1 1.00 E + 0 same 9.81 E −1 9.99 E −1 same
rel. err. ± 8.22 E −4 1% ± 1.47 E −3 2%
P a 4.83 E −2 6.10 E −2 same 4.90 E −2 6.00 E −2 same
rel. err. ± 8.35 E −4 26% ± 8.02 E −4 22%

LN(2, 2) LN(2, 4)

Perf. Sim DGA TGA Sim DGA TGA

E[X] 1.18 E + 2 1.21 E + 2 same 1.10 E + 2 1.11 E + 2 same
rel. err. ± 1.75 E −1 2% ± 1.13 E −1 1%
Var(X) 2.25 E + 2 2.23 E + 2 same 1.43 E + 2 1.42 E + 2 same
rel. err. ± 4.14 E + 1 1% ± 2.49 E + 1 0%
E[Q] 1.90 E + 1 2.07 E + 1 2.13 E + 1 1.12 E + 1 1.10 E + 1 1.22 E + 1
rel. err. ± 1.58 E −1 9% 12% ± 9.19 E −2 1% 9%
Var(Q) 1.87 E + 2 2.23 E + 2 1.92 E + 2 9.96 E + 1 1.42 E + 2 1.03 E + 2
rel. err. ± 6.78 E + 0 19% 3% ± 2.74 E + 0 43% 3%
E[W ] 1.87 E −1 2.01 E −1 2.06 E −1 1.12 E −1 1.08 E −1 1.19 E −1
rel. err. ± 1.52 E −3 7% 10% ± 8.96 E −4 3% 6%
Var(W) 1.72 E −2 2.02 E −2 1.76 E −2 9.43 E −3 1.31 E −2 9.59 E −3
rel. err. ± 6.30 E −4 17% 2% ± 2.62 E −4 39% 2%
P d 8.84 E −1 9.21 E −1 same 7.97 E −1 8.27 E −1 same
rel. err. ± 2.85 E −3 4% ± 3.07 E −3 4%
P a 5.45 E −2 6.18 E −2 same 6.10 E −2 6.49 E −2 same
rel. err. ± 7.34 E −4 13% ± 7.19 E −4 6%
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Table 6. The impact of the abandonment distribution beyond its mean and variance: a performance comparison betweenM(λ−1)/M/n+M(2)
and M(λ−1)/M/n + LN(2, 1) models, where (λ, ρ, n) = (105, 1.05, 100)

M(2) LN(2, 1)

Perf. Exact DGA TGA Sim DGA TGA

E[X] 1.05 E + 2 1.05 E + 2 same 1.32 E + 2 1.36 E + 2 same
rel. err. 0% ± 2.79 E −1 3%
Var(X) 1.05 E + 2 1.05 E + 2 same 3.58 E + 2 3.18 E + 2 same
rel. err. 0% ± 7.27 E + 1 11%
E[Q] 7.03 E + 0 4.92 E + 0 7.01 E + 0 3.24 E + 1 3.65 E + 1 3.66 E + 1
rel. err. 30% 0% ± 2.67 E −1 13% 13%
Var(Q) 5.92 E + 1 1.05 E + 2 5.71 E + 1 3.32 E + 2 3.18 E + 2 3.07 E + 2
rel. err. 77% 3% ± 1.74 E + 1 4% 8%
E[W ] 7.22 E −2 4.90 E −2 6.91 E −2 3.15 E −1 3.53 E −1 3.54 E −1
rel. err. 32% 4% ± 2.54 E −3 12% 12%
Var(W) 5.88 E −3 1.00 E −2 5.49 E −3 2.98 E −2 2.82 E −2 2.73 E −2
rel. err. 70% 7% ± 2.54 E −3 6% 9%
P d 7.00 E −1 6.88 E −1 same 9.48 E −1 9.82 E −1 same
rel. err. 2% ± 2.19 E −3 4%
P a 6.70 E −2 6.43 E −2 same 5.08 E −2 6.04 E −2 same
rel. err. 3% ± 7.74 E −4 19%

Figure 7. Simulation estimates (histograms) of the TGA approximating distributions of the steady-state queue length Qn (left) and waiting
time Vn (right) in the M/M/100 + LN(θ−1, c2

ab) model with (λ, ρ, θ) = (100, 1.05, 0.5). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

6. NON-EXPONENTIAL SERVICE

6.1. Refined Gaussian Approximations for the
M/GI/n + M Model

We now evaluate the heuristic approximation TGA-G
developed in §3.3. We let the service-time distribution be

phase-type, denoted by PH with fixed mean 1/μ = 1 and
scv c2

s ranging in [0.25, 4]. To be specific, for cases with
c2
s = 0.25, 0.5 < 1, we used Erlang 4 (E4) and Erlang 2 (E2)

distribution and for cases with c2
s = 2, 4 > 1, we used the

two-phase hyperexponential distribution (H2) with balanced
means, see [34] for more details.
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Table 7. A comparison of the TGA-G, TGA, and DGA approximations to simulation estimates in the M(λ−1)/PH(1, c2
s )/100 + M(θ−1)

model with (λ, ρ, θ) = (100, 1.05, 0.5) for four different phase-type (Ph) service distributions characterized by their scv c2
s , 0.25 ≤ c2

s ≤ 4.00

c2
s = 0.25 c2

s = 0.5

Perf. Meas. Sim. DGA TGA TGA-G Sim. DGA TGA TGA-G

E[X] 1.11 E + 2 1.10 E + 2 same same 1.11 E + 2 1.10 E + 2 same same
rel. err. ± 1.21 E −1 1% ± 1.30 E −1 1%
Var(X) 1.34 E + 2 1.60 E + 2 same same 1.50 E + 2 1.81 E + 2 same same
rel. err. ± 2.72 E + 1 19% ± 2.94 E + 1 20%
E[Q] 1.20 E + 1 9.94 E + 0 1.21 E + 1 1.15 E + 1 1.22 E + 1 9.94 E + 0 1.21 E + 1 1.17 E + 1
rel. err. ± 1.06 E −1 17% 1% 4% ± 1.13 E −1 19% 1% 4%
Var(Q) 1.02 E + 2 1.60 E + 2 1.33 E + 2 1.07 E + 2 1.13 E + 2 1.81 E + 2 1.33 E + 2 1.18 E + 2
rel. err. ± 3.45 E + 0 57% 30% 6% ± 3.83 E + 0 60% 18% 5%
E[W ] 1.20 E −1 9.80 E −2 1.18 E −1 1.13 E −1 1.22 E −1 9.80 E −2 1.18 E −1 1.15 E −1
rel. err. ± 1.01 E −3 18% 1% 6% ± 1.10 E −3 20% 3% 6%
Var(W) 9.41 E −3 1.50 E −2 1.27 E −2 1.02 E −2 1.06 E −2 1.71 E −2 1.27 E −2 1.12 E −2
rel. err. ± 3.20 E −4 59% 35% 8% ± 3.64 E −4 60% 19% 6%
P d 8.42 E −1 7.88 E −1 same same 8.27 E −1 7.73 E −1 same same
rel. err. ± 2.67 E −3 6% ± 2.81 E −3 6%
P a 5.72 E −2 5.36 E −2 same same 5.81 E −2 5.46 E −2 same same
rel. err. ± 7.60 E −4 6% ± 7.81 E −4 6%

c2
s = 2 c2

s = 4

Perf. Meas. Sim. DGA TGA TGA-G Sim. DGA TGA TGA-G

E[X] 1.01 E + 2 1.02 E + 2 same same 1.12 E + 2 1.10 E + 2 same same
rel. err. ± 6.90 E −2 1% ± 2.17 E −1 2%
Var(X) 7.32 E + 1 6.28 E + 1 same same 2.57 E + 2 3.10 E + 2 same same
rel. err. ± 1.38 E + 1 14% ± 5.03 E + 1 20%
E[Q] 3.93 E + 0 2.36 E + 0 4.22 E + 0 4.48 E + 0 1.36 E + 1 9.94 E + 0 1.21 E + 1 1.31 E + 1
rel. err. ± 3.68 E −2 40% 7% 14% ± 1.84 E −1 27% 11% 4%
Var(Q) 2.74 E + 1 6.28 E + 1 2.50 E + 1 2.92 E + 1 1.90 E + 2 3.10 E + 2 1.33 E + 2 1.80 E + 2
rel. err. ± 5.49 E −1 129% 9% 7% ± 7.74 E + 0 63% 30% 5%
E[W ] 4.18 E −2 2.40 E −2 4.18 E −2 4.44 E −2 1.39 E −1 9.80 E −2 1.18 E −1 1.29 E −1
rel. err. ± 3.85 E −4 43% 0% 6% ± 1.90 E −3 29% 15% 7%
Var(W) 2.88 E −3 6.03 E −3 2.42 E −3 2.84 E −3 1.97 E −2 3.00 E −2 1.27 E −2 1.75 E −2
rel. err. ± 5.93 E −5 109% 16% 1% ± 8.32 E −4 53% 35% 11%
P d 5.81 E −1 6.21 E −1 same same 7.54 E −1 7.14 E −1 same same
rel. err. ± 3.36 E −3 7% ± 4.50 E −3 5%
P a 7.47 E −2 8.01 E −2 same same 6.43 E −2 6.04 E −2 same same
rel. err. ± 9.21 E −4 7% ± 1.06 E −3 6%

Table 7 compares the approximations for all three Gaussian
approximations for the M/PH/n+M model. Table 7 shows
that TGA-G outperforms TGA, while both are far better than
DGA. The new approximation TGA-G is especially impor-
tant for the variances, which depend quite strongly on the
service-time distribution, unlike the means. Figure 8 shows
that the TGA-G approximation accuracy tends to be inde-
pendent of the service-time distribution scv c2

s , consistent
with the observations in [41, 42]. Figure 9 shows that corre-
sponding TGA-G approximations of the distributions remain
good.

In Table 8, we consider the M/H2/n + M model, with
hyperexponential service according to H2(1/μ, c2

s ), which
denotes mean 1/μ = 1 and SCV c2

s = 2, for a range of

abandonment rates with 0.25 ≤ θ ≤ 2.0. We observe that the
performance of TGA-G is acceptable. However, just as for the
M/M/n + M model, the approximation accuracy degrades
when θ increases; see the Supporting Information Appendix
for more examples.

6.2. The General GI/GI/n + GI Model

We have also considered examples in which all three sto-
chastic components of the G/GI/n + GI model are non-
exponential. We illustrate some of these now. Table 9 shows
comparisons of TGA and TGA-G to simulation estimates for
the H2/PH/n+H2 model, having a renewal arrival process
with H2 inter-arrival times, PH service times (in the settings
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Figure 8. The relative error in the TGA-G approximations of six performance measures as a function of the service-time scv c2
s for

0.25 ≤ c2
s ≤ 4.0 (with c2

s in log scale) in the M(1/105)/PH(1, c2
s )/100 + M(2) model. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 9. Simulation estimates (histograms) of the TGA-G approximating distributions of the steady-state queue length Qn (left) and waiting
time Vn (right) in the M(105−1)/PH/100 + M(2) model for five service distributions with 0.25 ≤ c2

s ≤ 4.0. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

of Table 7), n = 100 servers, and H2 patience times. We fix
the scv’s for arrival and patience times at c2

λ = c2
ab = 2 and

consider a range of service scv: 0.25 ≤ c2
s ≤ 4.0.

Just as in Table 7, Table 9 shows that the mean values such
as E[Q] and the probabilities such as P d are relatively insen-
sitive to the service-time distribution beyond its mean; these
entries differ little in the three cases. However, as before,

we see differences in the variances. Table 9 shows that both
TGA and TGA-G are effective for the mean values such as
E[Q] and the probabilities such as P d , but TGA-G provides
significant improvement for the variances. Additional results
on other combinations of arrival processes, patience times
and service times are given in Table 20 in the Supporting
Information Appendix.
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Table 8. A comparison of the TGA-G approximations to simulation estimates in the M(λ−1)/H2(1, 2)/100 +M(θ−1) model with λ = 100,
ρ = 1.05 and five different abandonment rates θ , 0.1 ≤ θ ≤ 2.0

θ = 0.1 θ = 0.25 θ = 0.5 θ = 1 θ = 2

Perf. Sim TGA-G Sim TGA-G Sim TGA-G Sim TGA-G Sim TGA-G

E[X] 1.53 E + 2 1.50 E + 2 1.23 E + 2 1.20 E + 2 1.12 E + 2 1.10 E + 2 1.05 E + 2 1.05 E + 2 1.01 E + 2 1.02 E + 2
rel. err. ± 8.30 E −1 2% ± 3.20 E −1 2% ± 1.75 E −1 2% ± 1.07 E −1 0% ± 6.90 E −2 1%
Var(X) 1.24 E + 3 1.26 E + 3 4.31 E + 2 5.03 E + 2 2.15 E + 2 2.51 E + 2 1.18 E + 2 1.26 E + 2 7.32 E + 1 6.28 E + 1
rel. err. ± 2.69 E + 2 2% ± 8.23 E + 1 17% ± 4.00 E + 1 17% ± 2.27 E + 1 6% ± 1.38 E + 1 14%
E[Q] 5.38 E + 1 5.12 E + 1 2.37 E + 1 2.22 E + 1 1.32 E + 1 1.25 E + 1 7.19 E + 0 7.35 E + 0 3.93 E + 0 4.48 E + 0
rel. err. ± 8.16 E −1 5% ± 3.00 E −1 6% ± 1.49 E −1 5% ± 7.62 E −2 2% ± 3.68 E −2 14%
Var(Q) 1.19 E + 3 1.09 E + 3 3.76 E + 2 3.57 E + 2 1.59 E + 2 1.53 E + 2 6.67 E + 1 6.62 E + 1 2.74 E + 1 2.92 E + 1
rel. err. ± 1.05 E + 2 9% ± 1.91 E + 1 5% ± 5.78 E + 0 4% ± 1.84 E + 0 1% ± 5.49 E −1 7%
E[W ] 5.32 E −1 5.01 E −1 2.37 E −1 2.18 E −1 1.34 E −1 1.23 E −1 7.42 E −2 7.26 E −2 4.18 E −2 4.44 E −2
rel. err. ± 8.06 E −3 6% ± 3.00 E −3 8% ± 1.51 E −3 8% ± 7.83 E −4 2% ± 3.85 E −4 6%
Var(W) 1.16 E −1 1.05 E −1 3.71 E −2 3.43 E −2 1.60 E −2 1.47 E −2 6.81 E −3 6.40 E −3 2.88 E −3 2.84 E −3
rel. err. ± 1.03 E −2 10% ± 1.90 E −3 8% ± 5.93 E −4 8% ± 1.94 E −4 6% ± 5.93 E −5 1%
P d 9.48 E −1 9.20 E −1 8.64 E −1 8.13 E −1 7.82 E −1 7.36 E −1 6.80 E −1 6.72 E −1 5.81 E −1 6.21 E −1
rel. err. ± 2.84 E −3 3% ± 3.47 E −3 6% ± 3.72 E −3 6% ± 3.74 E −3 1% ± 3.36 E −3 7%
P a 5.12 E −2 4.83 E −2 5.60 E −2 5.19 E −2 6.29 E −2 5.79 E −2 6.87 E −2 6.72 E −2 7.47 E −2 8.01 E −2
rel. err. ± 9.66 E −4 6% ± 9.03 E −4 7% ± 9.25 E −4 8% ± 9.48 E −4 2% ± 9.21 E −4 7%

7. SMALLER SCALE: LOWER ARRIVAL RATES
AND FEWER SERVERS

Since the MSHT limits involve a sequence of queuing sys-
tems with increasing scale, the MSHT approximations DGA
and TGA-G should perform better as the scale increases.
Thus, we considered the base case with n = 100, because
it is large but also small enough to be of practical value.
However, we also want to apply the approximations to even
smaller scale systems. Thus, in this section, we examine the
effectiveness of DGA, TGA, and TGA-G for smaller systems.

To set the parameters for these smaller systems, it is good
to exploit the MSHT limits. When the system is in the QED
regime, we know that the scaling factor n (number of servers)
and the traffic intensity ρn should roughly satisfies the relation

√
n (1 − ρn) ≈ β, −∞ < β < ∞, (25)

where the β is the QoS factor. Since β = √
n(1−ρn) = −0.5

when ρn = 1.05, and n = 100 as in previous tables, we now
fix β at −0.5 as we change n. Note that this increases the
traffic intensity as ρ decreases.

Table 10 shows the results for an H2/H2/n + H2 model
for three values of n: 20, 10, 5, which correspond to traf-
fic intensities ρn = 1.11, 1.16, 1.22. Table 10 shows that
TGA-G remains effective for systems with fewer servers.
Figure 10 shows that accuracy consistently degrades as the
scale decreases, but remains reasonable. Figure 11 shows
that TGA-G can be used to approximate the distributions of
key performance measures. Figure 11 shows that the sim-
ulated histograms for the H2/M/n + H2 model are well
approximated by the pdfs of the corresponding Gaussian
approximations, for n = 100, 50, 20 and 5. Additional

simulation results appear in the Supporting Information
Appendix.

8. LIMITATIONS OF THE PROPOSED
APPROXIMATIONS

We first compare our TGA-G approximation to previous
approximations in [41] and [33]. Then we show that the
performance is not good for UL models.

8.1. Comparison with Approximations in [41]

A numerical approximation algorithm for the M/GI/n +
GI model was developed and evaluated in [41]. It was based
on an application of an exact analysis of an associated state-
dependent Markov M/M/n+M(n) queue, after approximat-
ing the GI abandonment by an appropriate state-dependent
M(n) abandonment mechanism. (The GI service was sim-
ply approximated by M). That numerical procedure has the
advantage that it applies to all loadings (UL, CL, and OL), but
it is much more computationally intensive. That approxima-
tion was shown to be quite effective. A shortcoming of [41]
that we address here is that it does not describe the impact of
non- M arrival processes and service times.

We now compare our new TGA-G approximation to the
approximation developed in [41] by comparing to the dis-
played results in Tables 6 and 7 of [41], which are also for
n = 100, but for the relatively light loading ρ = 1.02, which
is at the edge of the range of effectiveness for TGA-G.

As expected for this relatively light loading, Tables 11 and
12 show that the engineering approximations in [41], labeled
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Table 9. H2(λ
−1, 2)/PH/100 + H2(1/θ , 2) with (λ, ρ, θ) = (100, 1.05, 0.5)

c2
s = 0.25 c2

s = 0.5

Perf. Sim TGA TGA-G Sim TGA TGA-G

E[X] 1.09 E + 2 1.07 E + 2 1.07 E + 2 1.09 E + 2 1.07 E + 2 1.07 E + 2
rel. err. ± 1.21 E −1 1% 1% ± 1.31 E −1 1% 1%
Var(X) 1.84 E + 2 2.37 E + 2 2.00 E + 2 1.95 E + 2 2.37 E + 2 2.15 E + 2
rel. err. ± 2.64 E + 1 29% 8% ± 2.89 E + 1 22% 11%
E[Q] 1.07 E + 1 1.05 E + 1 1.01 E + 1 1.09 E + 1 1.05 E + 1 1.03 E + 1
rel. err. ± 9.32 E −2 2% 6% ± 1.02 E −1 3% 5%
Var(Q) 1.12 E + 2 1.29 E + 2 1.12 E + 2 1.21 E + 2 1.29 E + 2 1.19 E + 2
rel. err. ± 3.01 E + 0 15% 0% ± 3.44 E + 0 7% 1%
E[W ] 1.06 E −1 1.03 E −1 9.84 E −2 1.07 E −1 1.03 E −1 1.00 E −1
rel. err. ± 8.77 E −4 2% 7% ± 9.71 E −4 4% 7%
Var(W) 1.00 E −2 1.22 E −2 1.05 E −2 1.10 E −2 1.22 E −2 1.12 E −2
rel. err. ± 2.65 E −4 22% 5% ± 3.09 E −4 12% 3%
P d 7.52 E −1 6.88 E −1 7.04 E −1 7.42 E −1 6.88 E −1 6.97 E −1
rel. err. ± 3.05 E −3 9% 6% ± 3.18 E −3 7% 6%
P d,C 7.67 E −1 6.88 E −1 7.04 E −1 7.56 E −1 6.88 E −1 6.97 E −1
rel. err. ± 3.04 E −3 9% 6% ± 3.10 E −3 7% 6%
P a 6.54 E −2 6.34 E −2 6.09 E −2 6.66 E −2 6.34 E −2 6.19 E −2
rel. err. ± 8.09 E −4 3% 7% ± 8.67 E −4 5% 7%

c2
s = 2 c2

s = 4

Perf. Sim TGA TGA-G Sim TGA TGA-G

E[X] 1.09 E + 2 1.07 E + 2 1.07 E + 2 1.09 E + 2 1.07 E + 2 1.07 E + 2
rel. err. ± 1.64 E −1 1% 1% ± 1.95 E −1 1% 1%
Var(X) 2.30 E + 2 2.37 E + 2 2.69 E + 2 2.50 E + 2 2.37 E + 2 3.13 E + 2
rel. err. ± 3.66 E + 1 3% 17% ± 4.36 E + 1 5% 25%
E[Q] 1.13 E + 1 1.05 E + 1 1.09 E + 1 1.13 E + 1 1.05 E + 1 1.14 E + 1
rel. err. ± 1.29 E −1 7% 3% ± 1.52 E −1 7% 0%
Var(Q) 1.47 E + 2 1.29 E + 2 1.43 E + 2 1.61 E + 2 1.29 E + 2 1.62 E + 2
rel. err. ± 4.69 E + 0 12% 3% ± 5.75 E + 0 20% 0%
E[W ] 1.13 E −1 1.03 E −1 1.07 E −1 1.14 E −1 1.03 E −1 1.11 E −1
rel. err. ± 1.28 E −3 9% 5% ± 1.54 E −3 10% 2%
Var(W) 1.42 E −2 1.22 E −2 1.36 E −2 1.60 E −2 1.22 E −2 1.55 E −2
rel. err. ± 4.58 E −4 14% 4% ± 5.93 E −4 23% 3%
P d 7.11 E −1 6.88 E −1 6.77 E −1 6.94 E −1 6.88 E −1 6.64 E −1
rel. err. ± 3.88 E −3 3% 5% ± 4.51 E −3 1% 4%
P d,C 7.25 E −1 6.88 E −1 7.08 E −1 7.56 E −1 6.88 E −1 6.97 E −1
rel. err. ± 3.80 E −3 9% 6% ± 4.54 E −3 7% 6%
P a 6.80 E −2 6.34 E −2 6.53 E −2 6.92 E −2 6.34 E −2 6.78 E −2
rel. err. ± 9.75 E −4 7% 4% ± 1.10 E −3 8% 2%

as Eng. Approx. (W05), are more accurate overall. However,
TGA-G is better for D service.

First, Table 11 shows that TGA-G performs reasonably
well for the Erlang E2 patience distribution, except for the
variance Var(Q), even if not as accurate as Table 7 of [41].
In fact, TGA-G performs better for D service. Conversely,
Table 12 shows that the performance of TGA-G degrades
significantly for the LN(1, 1) patience distribution. Never-
theless, the TGA-G (=DGA) approximation for E[X] remains
good.

In summary, we have seen in previous sections that our pro-
posed TGA-G approximation for heavily loaded G/GI/n +
GI model is remarkably effective for a wide class of models.

Nevertheless, there are limitations, as exposed by Table 12.
Lack of accuracy is most likely as the loading decreases
toward critical loading. That breakdown is likely to occur
sooner (for higher ρ) if the component model elements devi-
ate more from M . The examples show difficulties for low
loading (ρ = 1.02) and non- M patience distributions.

8.2. Comparison with Approximations in [33]

A MSHT limit was established for the GI/M/n + GI

model in [33] and its corresponding numerical approxima-
tion was developed and evaluated. The MSHT limit in [33]
was in the QED regime, whereas ours in Theorem 2.3 from
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Table 10. Smaller scale: A comparison of the TGA-G and DGA approximations to simulation estimates in the H2(λ
−1, 2)/H2(1, 2)/n +

H2(θ
−1, 2) model with three pairs (n, ρ) with ρ = 1 − β/

√
n, λ = nρ, β = −0.5 and n = 20, 10 and 5

n = 20 n = 10 n = 5

Perf. Sim DGA TGA-G Sim DGA TGA-G Sim DGA TGA-G

E[X] 2.40 E + 1 2.34 E + 1 2.34 E + 1 1.29 E + 1 1.24 E + 1 1.24 E + 1 7.08 E + 0 6.69 E + 0 6.69 E + 0
rel. err. ± 7.46 E −2 3% 3% ± 5.38 E −2 4% 4% ± 3.96 E −2 5% 5%
Var(X) 4.86 E + 1 5.06 E + 1 5.69 E + 1 2.52 E + 1 2.65 E + 1 2.97 E + 1 1.32 E + 1 1.41 E + 1 1.57 E + 1
rel. err. ± 3.84 E + 0 4% 17% ± 1.55 E + 0 5% 18% ± 6.61 E −1 6% 19%
E[Q] 5.16 E + 0 4.82 E + 0 4.98 E + 0 3.68 E + 0 3.46 E + 0 3.57 E + 0 2.65 E + 0 2.49 E + 0 2.57 E + 0
rel. err. ± 5.93 E −2 7% 4% ± 4.31 E −2 6% 3% ± 3.21 E −2 6% 3%
Var(Q) 3.19 E + 1 2.74 E + 1 3.01 E + 1 1.68 E + 1 1.42 E + 1 1.56 E + 1 9.04 E + 0 7.50 E + 0 8.19 E + 0
rel. err. ± 1.03 E + 0 14% 6% ± 5.46 E −1 15% 7% ± 3.01 E −1 17% 9%
E[W ] 2.61 E −1 2.28 E −1 2.36 E −1 3.77 E −1 3.18 E −1 3.30 E −1 5.60 E −1 4.44 E −1 4.61 E −1
rel. err. ± 2.96 E −3 13% 10% ± 4.38 E −3 16% 13% ± 6.90 E −3 21% 18%
Var(W) 7.54 E −2 6.01 E −2 6.70 E −2 1.61 E −1 1.19 E −1 1.33 E −1 3.67 E −1 2.34 E −1 2.62 E −1
rel. err. ± 2.55 E −3 20% 11% ± 5.72 E −3 26% 18% ± 1.45 E −2 36% 29%
P d 7.22 E −1 6.85 E −1 6.74 E −1 7.26 E −1 6.82 E −1 6.71 E −1 7.34 E −1 6.79 E −1 6.68 E −1
rel. err. ± 3.74 E −3 5% 7% ± 3.75 E −3 6% 8% ± 3.74 E −3 7% 9%
P d,C 7.45 E −1 6.85 E −1 6.74 E −1 7.62 E −1 6.82 E −1 6.71 E −1 7.81 E −1 6.79 E −1 6.68 E −1
rel. err. ± 3.65 E −3 8% 10% ± 3.62 E −3 10% 12% ± 3.47 E −3 13% 14%
P a 1.43 E −1 1.28 E −1 1.31 E −1 1.92 E −1 1.67 E −1 1.71 E −1 2.54 E −1 2.15 E −1 2.19 E −1
rel. err. 1.72 E −3 11% 9% 2.15 E −3 13% 11% ± 2.70 E −3 16% 14%

Figure 10. Simulation estimates of the relative errors in the approximations for six performance measures as a function of the number of
servers, n, for n = 5, 10, 20, 100 (with n in log scale) in the H2(1/nρ, 2)/H2(1, 2)/n + H2(2, 2) model. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

[26] is in the ED regime. Nevertheless, it is natural to compare
the two candidate approximations for systems with ρ > 1,
because any such system can be regarded as one in a sequence
of systems satisfying a QED limit or an ED limit.

Before we present numerical comparison results, we first
summarize the differences between TGA and [33]. First, just
like [26], the MSHT limit in [33] is for the model with
exponential service times, and the resulting approximation
in [33] is limited to that case. Second, the formulas in [33]
require the knowledge of the entire patience-time cdf F or,
equivalently, of its hazard-rate function h(t) ≡ f (t)/F̄ (t).
In contrast, the ED fluid limit used in TGA depends on
the patience-time cdf F only on the value of its inverse

F−1 at the limiting fluid abandonment rate (ρ − 1)/ρ. The
TGA fluid head-of-line waiting time w(∞) is determined by
w(∞) = F−1((ρ − 1)/ρ). Third, the approximation formu-
las in [33] are rather complicated, requiring computation of
the triple integrals in (11), (12) and (13) in [33]. In contrast,
the TGA approximations are easier to compute. Finally, the
hazard-rate scaling in the MSHT limit in [33] makes that
approximation especially effective for models in which the
patience-time hazard-rate function changes rapidly near the
origin.

The examples in [33] considered three different patience
distributions. The first two are hyperexponential (H2) dis-
tributions with parameter triples (p, θ1, θ2). The first is a
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Figure 11. Simulation estimates (histograms) of the TGA-G approximating distributions for Bn, Qn, Vn and Xn in the H2(λ
−1, 2)/M/n +

H2(θ
−1, 2) model with β = −0.5 and four values of n, 5 ≤ n ≤ 100. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Table 11. Comparison of the TGA-G and DGA approximations with the M/M/n + M(n) approximation in [41] and simulation estimates
for the M(102−1)/GI(1, c2

s )/100/200 + E2 model with four service-time cdf’s with a range of scv’s: 0.0 ≤ c2
s ≤ 4.0

Serv. Dist. D, c2
s = 0 E2, c2

s = 0.5

Perf. Sim Eng. Approx. (W05) DGA TGAG Sim Eng. Approx. (W05) DGA TGAG

P(W = 0) 1.80 E −1 2.50 E −1 1.05 E −1 same 2.17 E −1 2.50 E −1 2.08 E −1 same
rel. err. ± 1.30 E −3 28% 42% ± 2.10 E −3 13% 4%
P a 3.09 E −2 3.81 E −2 2.86 E −2 same 3.51 E −2 3.81 E −2 3.83 E −2 same
rel. err. ± 1.70 E −4 19% 7% ± 2.90 E −4 8% 9%
E[Q] 1.11 E + 1 1.14 E + 1 1.08 E + 1 1.13 E + 1 1.15 E + 1 1.14 E + 1 1.08 E + 1 1.24 E + 1
rel. err. ± 4.20 E −2 3% 3% 2% ± 7.50 E −2 1% 6% 8%
Var(Q) 8.93 E + 1 1.22 E + 2 7.80 E + 1 6.42 E + 1 1.12 E + 2 1.22 E + 2 1.79 E + 2 1.22 E + 2
rel. err. ± 4.00 E −1 27% 12% 28% ± 7.10 E −1 8% 60% 9%
E[X] 1.10 E + 2 1.10 E + 2 1.11 E + 2 same 1.10 E + 2 1.10 E + 2 1.11 E + 2 same
rel. err. ± 4.90 E −2 0% 1% ± 9.20 E −2 0% 1%

Serv. Dist. M , c2
s = 1 LN(1, 1)

Perf. Sim Eng. Approx. (W05) DGA TGAG Sim Eng. Approx. (W05) DGA TGAG

P(W = 0) 2.46 E −1 2.50 E −1 2.33 E −1 same 2.33 E −1 2.50 E −1 2.33 E −1 same
rel. err. ± 2.00 E −3 2% 5% ± 2.10 E −3 7% 0%
P a 3.78 E −2 3.81 E −2 4.18 E −2 same 3.70 E −2 3.81 E −2 4.18 E −2 same
rel. err. ± 3.20 E −4 1% 11% ± 2.70 E −4 3% 13%
E[Q] 1.18 E + 1 1.14 E + 1 1.08 E + 1 1.29 E + 1 1.17 E + 1 1.14 E + 1 1.08 E + 1 1.29 E + 1
rel. err. ± 7.50 E −2 3% 8% 9% ± 6.30 E −2 3% 8% 10%
Var(Q) 1.29 E + 2 2.20 E + 2 1.43 E + 2 1.80 E + 2 1.23 E + 2 1.22 E + 2 2.20 E + 2 1.43 E + 2
rel. err. ± 9.40 E −1 70% 11% 39% ± 7.20 E −1 1% 79% 16%
E[X] 1.10 E + 2 1.10 E + 2 1.11 E + 2 same 1.10 E + 2 1.10 E + 2 1.11 E + 2 same
rel. err. ± 9.10 E −2 0% 1% ± 7.20 E −1 0% 1%
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Table 12. Comparison of the TGA-G and DGA approximations with the M/M/n + M(n) approximation in [41] and simulation estimates
for the M(102−1)/GI(1, c2

s )/100/200 + LN(1, 1) model with four service-time cdf’s with a range of scv’s: 0.0 ≤ c2
s ≤ 4.0

Serv. Dist. E2, c2
s = 0.5 M , c2

s = 1

Perf. Sim Eng. Approx. (W05) DGA TGA-G Sim Eng. Approx. (W05) DGA TGA-G

P(W = 0) 2.11 E −1 2.47 E −1 1.76 E −1 same 2.42 E −1 2.47 E −1 1.95 E −1 same
rel. err. ± 1.30 E −3 15% 17% ± 2.60 E −3 2% 20%
P a 3.48 E −2 3.79 E −2 5.13 E −2 same 3.76 E −2 3.79 E −2 5.51 E −2 same
rel. err. ± 2.10 E −4 8% 47% ± 3.20 E −4 1% 47%
E[Q] 1.14 E + 1 1.10 E + 1 1.29 E + 1 1.43 E + 1 1.14 E + 1 1.10 E + 1 1.29 E + 1 1.46 E + 1
rel. err. ± 3.90 E −2 3% 13% 25% ± 7.10 E −2 4% 13% 27%
Var(Q) 1.03 E + 2 1.07 E + 2 1.99 E + 2 1.43 E + 2 1.16 E + 2 1.07 E + 2 2.31 E + 2 1.61 E + 2
rel. err. ± 3.90 E −1 4% 94% 40% ± 4.60 E −1 8% 100% 39%
E[X] 1.10 E + 2 1.09 E + 2 1.13 E + 2 1.13 E + 2 1.10 E + 2 1.09 E + 2 1.13 E + 2 same
rel. err. ± 5.30 E −2 1% 3% ± 9.20 E −2 0% 3%

Serv. Dist. LN(1, 1) LN(1, 4)

Perf. Sim Eng. Approx. (W05) DGA TGA-G Sim Eng. Approx. (W05) DGA TGA-G

P(W = 0) 2.29 E −1 2.47 E −1 1.95 E −1 same 2.11 E −1 2.47 E −1 2.41 E −1 same
rel. err. ± 1.50 E −3 7% 15% ± 1.30 E −3 15% 14%
P a 3.66 E −2 3.79 E −2 5.51 E −2 same 3.48 E −2 3.79 E −2 6.66 E −2 same
rel. err. ± 2.40 E −4 3% 51% ± 2.10 E −4 8% 91%
E[Q] 1.14 E + 1 1.10 E + 1 1.29 E + 1 1.46 E + 1 1.14 E + 1 1.10 E + 1 1.29 E + 1 1.55 E + 1
rel. err. ± 5.10 E −2 4% 13% 27% ± 3.90 E −2 3% 13% 36%
Var(Q) 1.11 E + 2 1.07 E + 2 2.31 E + 2 1.61 E + 2 1.03 E + 2 1.07 E + 2 3.40 E + 2 2.16 E + 2
rel. err. ± 4.30 E −1 3% 109% 45% ± 3.90 E −1 4% 231% 111%
E[X] 1.10 E + 2 1.09 E + 2 1.13 E + 2 same 1.10 E + 2 1.09 E + 2 1.13 E + 2 same
rel. err. ± 6.20 E −2 1% 3% ± 5.30 E −2 1% 3%

regular H2 distribution with (p, θ1, θ2) = (0.5, 1, 2). The sec-
ond is a more extreme H2 distribution with (p, θ1, θ2) =
(0.9, 1, 200), which changes rapidly near the origin. The
third is another relatively extreme hazard-rate function that
increases rapidly near the origin. In [33] the new approxi-
mations were compared to exact values and approximations
“Z&M” from [44].

We now compare our new TGA approximation to the
approximation developed in [33] by comparing our results to
the displayed results in [33] for the cases with ρ > 1. These
appear in Tables 3, 6, and 9 of [33]. As in [33], we consider
a range of scale n from n = 10 to n = 500, with the traf-
fic intensity ρ and number of server n satisfying the relation
(25) with β = −1, which are: n = 10 (ρ = 1.31), n = 50
(ρ = 1.14), n = 100 (ρ = 1.10), n = 200 (ρ = 1.07), and
n = 500 (ρ = 1.022). (The last case is at the edge of the
range of effectiveness for TGA.)

Table 13 compares TGA to the hazard-rate scaling (HRS)
approximation from [33] and the exact and approximate val-
ues from [44] for the first H2 patience distribution with
parameter (p, θ1, θ2) = (0.5, 1, 2). For this “easy” example,
Table 13 shows that all methods are effective for large scale,
but TGA is consistently appreciably better for the meanE[V ],
especially for small scale.

However, Tables 14 and 15 show that the performance of
TGA degrades significantly for the last two more challenging
patience distributions, while the HRS approximation from
[33] continues to be effective. However, even for these chal-
lenging examples, TGA performs better than HRS from [33]
and Z&M from [44] in the case of n = 10 (small scale).
Indeed, for n = 10, the TGA values are reasonable, whereas
Z&M is off by a factor of 10.5 for the mean E[V ] in Table
14 and HRS is off by a factor of 15.0 for the mean E[V ] in
Table 15. The is partly explained by the scaling, because for
n = 10 the QED scaling in (25) makes ρ = 1.31 even though
β = −0.5.

We conclude that all these approximations have advan-
tages, which at least partly depends on whether the QED or
ED regime is most natural.

8.3. Underloaded Models

In this section, we present the performance of the UL
M/M/n+M in QED regime, where β defined in (25) is fixed
at 0.5. During UL intervals, it is easy to check that P d and
P a are 0 in the MSHT limits. The fluid and diffusion limit of
waiting time in UL intervals implies that w(∞) = v(∞) = 0
and σW = 0. To improve the performance, we replace
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Table 13. A comparison of TGA and DGA approximations for the probability of delay P d , the mean wait E[V ] and the probability of
abandonment P a to the results in Table 3 of [33] for the M/M/n + H2 model with ρ = 1 + 1

√
n, λ = nρμ, μ = 1 and H2 patience with

(p, θ1, θ2) = (0.5, 1, 2)

P d E[V ] P a

n Exact Z&M HRS TGA Exact Z&M HRS TGA Exact Z&M HRS TGA

10 0.7952 0.7408 0.7806 0.7921 11.3858 12.8341 14.6407 10.1028 0.2755 0.3209 0.2679 0.2448
— 7% 2% 0% — 13% 29% 11% — 16% 3% 11%

50 0.7839 0.7586 0.7777 0.7982 5.6986 6.0298 6.4212 5.4381 0.1403 0.1507 0.1384 0.1399
— 3% 1% 2% — 6% 13% 5% — 7% 1% 0%

100 0.7814 0.7633 0.7771 0.7927 4.1484 4.4716 4.32 4.0355 0.1026 0.108 0.1016 0.103
— 2% 1% 1% — 8% 4% 3% — 5% 1% 0%

200 0.7796 0.7667 0.7766 0.7913 2.9963 3.0844 3.1859 2.9561 0.0743 0.0771 0.0738 0.0747
— 2% 0% 2% — 3% 6% 1% — 4% 1% 1%

500 0.7781 0.7698 0.7762 0.7937 1.932 1.9681 2.0093 1.9307 0.0481 0.0492 0.0478 0.0489
— 1% 0% 2% — 2% 4% 0% — 2% 1% 2%

The exact results and approximations Z&M come from [44].

Table 14. A comparison of TGA and DGA approximations for the probability of delay P d , the mean wait E[V ] and the probability of
abandonment P a to the results in Table 6 of [33] for the M/M/n + H2 model with ρ = 1 + 1

√
n, λ = nρμ, μ = 1 and H2 patience with

(p, θ1, θ2) = (0.9, 1, 200)

P d E[V ] P a

n Exact Z&M HRS TGA Exact Z&M HRS TGA Exact Z&M HRS TGA

10 0.7909 0.3139 0.7821 0.7462 11.8884 1.1349 16.2358 9.9089 0.2763 0.4268 0.2677 0.2584
— 60% 1% 6% — 90% 37% 17% — 54% 3% 6%

50 0.7158 0.3242 0.709 0.6014 4.5527 0.5277 5.405 3.4147 0.1455 0.1838 0.1428 0.1211
— 55% 1% 16% — 88% 19% 25% — 26% 2% 17%

100 0.6663 0.327 0.6587 0.5789 2.7067 0.377 3.0844 1.2267 0.1087 0.1313 0.1072 0.0761
— 51% 1% 13% — 86% 14% 55% — 21% 1% 30%

200 0.6063 0.329 0.5979 0.584 1.4942 0.2686 1.6453 0.6486 0.0808 0.0936 0.08 0.0613
— 46% 1% 4% — 82% 10% 57% — 16% 1% 24%

500 0.5213 0.3309 0.5127 0.5858 0.6201 0.1711 0.6577 0.3495 0.0541 0.0596 0.0538 0.0495
— 37% 2% 12% — 72% 6% 44% — 10% 1% 9%

Table 15. A comparison of TGA and DGA approximations for the probability of delay P d , the mean wait E[V ] and the probability of
abandonment P a to the results in Table 9 of [33] for the M/M/n + GI model with ρ = 1 + 1

√
n, λ = nρμ, μ = 1 and increasing

patience-time hazard rate

P d E[V ] P a

n Exact Z&M HRS TGA Exact Z&M HRS TGA Exact Z&M HRS TGA

10 0.4454 0.7408 0.2913 0.6324 0.8557 1.1349 12.8341 1.1201 0.3312 0.3209 0.3297 0.4072
— 66% 35% 42% — 33% 1400% 31% — 3% 0% 23%

50 0.4041 0.7586 0.3559 0.6647 0.5277 6.4212 0.565 0.9411 0.1679 0.1507 0.1658 0.2854
— 88% 12% 64% — 1117% 7% 78% — 10% 1% 70%

100 0.4152 0.7633 0.3859 0.6783 0.4786 4.4716 0.4877 0.8368 0.1215 0.108 0.1202 0.2254
— 84% 7% 63% — 834% 2% 75% — 11% 1% 86%

200 0.4351 0.7667 0.4169 0.6917 0.4107 3.0844 0.4191 0.7245 0.087 0.0771 0.0863 0.1692
— 76% 4% 59% — 651% 2% 76% — 11% 1% 94%

500 0.4688 0.7698 0.4588 0.7089 0.3347 1.9681 0.3404 0.5779 0.0553 0.0492 0.055 0.1084
— 64% 2% 51% — 488% 2% 73% — 11% 1% 96%
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w(∞) = 0 by E[WT GA] = E[QT GA]/μ and σW = 0
by Var

(
WT GA

) = Var
(
QT GA

) + E[QT GA], then design
P T GA

D (n) and P T GA
A (n) as

P T GA
D (n) = �

(−a′
W(n)

)
,

P T GA
A (n) =

∫ ∞

0
�

(
a′

W(n)
( x

w
− 1

))
f (x)dx, (26)

where a′
W(n) = √

nE[WT GA]/Var
(
Ŵ T GA

)
.

The main idea of (26) is to use WT GA = ∑QT GA

i=1 Si to
replace the zero waiting time; here Si is the processing time
of the ith customers. We omit the impact of abandonments
since according to the numerical results on UL intervals, the
probability of abandonments are about 10−2. To verify (26),
it is suffice to prove that

E[WTGA] = E[QTGA]/μ, and

Var
(
WTGA

) = Var
(
QTGA

) + E[QTGA].

PROOF: It is obvious for the expression of E[WTGA] so
we only focus on Var

(
WTGA

)
here.

E[(WTGA
)2] = E

⎡
⎣QTGA∑

i=1

S2
i + 2

QTGA∑
j<i

SiSj

⎤
⎦

= E

⎡
⎣E

⎡
⎣QTGA∑

i=1

S2
i + 2

QTGA∑
j<i

SiSj |QTGA

⎤
⎦

⎤
⎦

= E[2QTGA + QTGA(QTGA − 1)]
= E[QTGA] + E[(QTGA

)2],
which implies the expression of Var(WTGA). �

Table 16 shows the performance of an UL M/M/n + M

model with ρ = 0.95. In particular, with parameters λ = 100,
ρ = 0.95 and 0.1 ≤ θ ≤ 4.0. Table 16 shows good perfor-
mance of TGA for the means of Xn and Bn in all cases and
for the variances of Xn and Bn with 0.5 ≤ θ ≤ 2.0, but poor
performance otherwise.

9. SIMULATION METHODOLOGY

We used simulation to estimate the exact values for all
non-Markovian models. We now provide extra details about
our simulation methodology. For n = 100, we estimated all
the performance measures using 2000 independent replica-
tions over the time interval [0, T ] with T = 100, starting
empty in each case. To have statistical precision for all the
steady-state estimates, we need to ensure, first, that the system
has approximately reached the steady state before sampling,

and, second, that enough sampled data are collected to give
reasonable accuracy, which we judge using 95% confidence
intervals. We discuss these issues in turn.

9.1. From Transient to Steady State

To avoid bias caused by the initial transient starting empty,
we do not collect data from an initial portion of each run.
We stop sampling at time 0.95T = 95 We also eliminate a
final portion so that we can observe the waiting times expe-
rienced by all arrivals in the main measurement interval;
that is, to avoid abnormal zeroes in sampled potential wait-
ing times, which results from that some virtual customers’
(potential) waiting times not being sampled at the end of
simulation at T = 100. In particular, for n = 100 we use the
data in [40, 95] from each run over [0, 100] to estimate the
steady-state performance functions.

To illustrate the initial transient, we show an exam-
ple, using the H2(105−1, 2)/H2(1, 2)/100 +H2(2, 2) model.
Figure 12 shows plots of the transient (time-dependent) mean
and variance functions for the queue length. Figure 12 shows
that the performance is close to steady state after time 20. To
be safe, we use the data in [40, 95] to estimate the steady-state
performance functions.

9.2. The Sampling Procedure

To determine the potential waiting times at time t , which
are for an arrival with unlimited patience that would arrive
at time t (the usual virtual waiting time, modified to include
unlimited patience), we generate virtual customers that do
not affect the other customers. In particular, in the r th simula-
tion replication, 1 ≤ r ≤ R, we periodically generate virtual
arrivals at deterministic times t1, tk , . . . , tNv

with tk ≡ k�t

and �t = 0.1, 1 ≤ k ≤ Nv ≡ �T /�t�. The virtual
customers have the same waiting time distribution. They
abandon as if they are the real customers but they will not
be removed from the queue if they abandon. They still wait
in queue until their turn to enter service so that we can record
their virtual waiting time as potential waiting times. We do
not allow them to enter service, so these virtual customers do
not affect the system dynamics. We use indicator variables
ηa

r ,k and ηd
r ,k to record if the virtual arrival at tk on the rth path

abandons and is delayed, namely

ηd
r ,k =

{
1, if Vr(k) > 0,

0, otherwise
and

ηa
r ,k =

{
1, if Vr(k) > Ak ,

0, otherwise
, (27)

where Ak is the patience time of the kth virtual arrival,
Vr(k) ≡ Er(k) − Ar(k) records the potential waiting time

Naval Research Logistics DOI 10.1002/nav



212 Naval Research Logistics, Vol. 63 (2016)

Table 16. The performance for underloaded models: a comparison between simulation estimates and exact numerical values for the
M(λ−1)/M(1)/100 + M(θ−1) model with n = 100, ρ = 0.95 and 0.1 ≤ θ ≤ 2

θ = 0.1 θ = 0.25 θ = 0.5

Perf. Exact DGA TGA Exact DGA TGA Exact DGA TGA

E[X] 1.00 E + 2 9.50 E + 1 same 9.80 E + 1 9.50 E + 1 same 9.64 E + 1 9.50 E + 1 same
rel. err. 5% 3% 1%
Var(X) 2.18 E + 2 9.50 E + 1 same 1.56 E + 2 9.50 E + 1 same 1.20 E + 2 9.50 E + 1 same
rel. err. 56% 39% 21%
E[B] 9.44 E + 1 9.50 E + 1 9.31 E + 1 9.40 E + 1 9.50 E + 1 9.31 E + 1 9.36 E + 1 9.50 E + 1 9.31 E + 1
rel. err. 1% 1% 1% 1% 2% 0%
Var(B) 4.91 E + 1 9.50 E + 1 5.31 E + 1 5.03 E + 1 9.50 E + 1 5.31 E + 1 5.11 E + 1 9.50 E + 1 5.31 E + 1
rel. err. 94% 8% 89% 6% 86% 4%
E[Q] 5.78 E + 0 0.00 E + 0 1.89 E + 0 4.06 E + 0 0.00 E + 0 1.89 E + 0 2.88 E + 0 0.00 E + 0 1.89 E + 0
rel. err. 100% 67% 100% 53% 100% 34%
Var(Q) 1.04 E + 2 0.00 E + 0 1.59 E + 1 5.67 E + 1 0.00 E + 0 1.59 E + 1 3.22 E + 1 0.00 E + 0 1.59 E + 1
rel. err. 100% 85% 100% 72% 100% 51%
E[V ] 6.16 E −2 0.00 E + 0 1.89 E −2 4.37 E −2 0.00 E + 0 1.89 E −2 3.14 E −2 0.00 E + 0 1.89 E −2
rel. err. 100% 69% 100% 57% 100% 40%
Var(V ) 1.13 E −2 0.00 E + 0 1.78 E −3 6.24 E −3 0.00 E + 0 1.78 E −3 3.60 E −3 0.00 E + 0 1.78 E −3
rel. err. 100% 84% 100% 72% 100% 51%
P d 4.49 E −1 0.00 E + 0 6.73 E −1 4.06 E −1 0.00 E + 0 6.73 E −1 3.64 E −1 0.00 E + 0 6.73 E −1
rel. err. 100% 50% 100% 66% 100% 85%
P a 6.09 E −3 NaN 1.88 E −3 1.07 E −2 NaN 4.70 E −3 1.51 E −2 NaN 9.38 E −3
rel. err. NaN 69% NaN 56% NaN 38%

θ = 1 θ = 2 θ = 4

Perf. Exact DGA TGA Exact DGA TGA Exact DGA TGA

E[X] 9.50 E + 1 9.50 E + 1 same 9.38 E + 1 9.50 E + 1 same 9.28 E + 1 9.50 E + 1 same
rel. err. 0% 1% 2%
Var(X) 9.50 E + 1 9.50 E + 1 same 7.78 E + 1 9.50 E + 1 same 6.64 E + 1 9.50 E + 1 same
rel. err. 0% 22% 43%
E[B] 9.31 E + 1 9.50 E + 1 9.31 E + 1 9.26 E + 1 9.50 E + 1 9.31 E + 1 9.21 E + 1 9.50 E + 1 9.31 E + 1
rel. err. 2% 0% 3% 1% 3% 1%
Var(B) 5.16 E + 1 9.50 E + 1 5.31 E + 1 5.16 E + 1 9.50 E + 1 5.31 E + 1 5.12 E + 1 9.50 E + 1 5.31 E + 1
rel. err. 84% 3% 84% 3% 86% 4%
E[Q] 1.92 E + 0 0.00 E + 0 1.89 E + 0 1.21 E + 0 0.00 E + 0 1.89 E + 0 7.23 E −1 0.00 E + 0 1.89 E + 0
rel. err. 100% 1% 100% 57% 100% 161%
Var(Q) 1.69 E + 1 0.00 E + 0 1.59 E + 1 8.28 E + 0 0.00 E + 0 1.59 E + 1 3.82 E + 0 0.00 E + 0 1.59 E + 1
rel. err. 100% 6% 100% 92% 100% 315%
E[V ] 2.13 E −2 0.00 E + 0 1.89 E −2 1.38 E −2 0.00 E + 0 1.89 E −2 8.60 E −3 0.00 E + 0 1.89 E −2
rel. err. 100% 11% 100% 37% 100% 120%
Var(V ) 1.93 E −3 0.00 E + 0 1.78 E −3 9.79 E −4 0.00 E + 0 1.78 E −3 4.76 E −4 0.00 E + 0 1.78 E −3
rel. err. 100% 8% 100% 81% 100% 273%
P d 3.17 E −1 0.00 E + 0 6.73 E −1 2.68 E −1 0.00 E + 0 6.73 E −1 2.21 E −1 0.00 E + 0 6.73 E −1
rel. err. 100% 112% 100% 151% 100% 205%
P a 2.02 E −2 NaN 1.87 E −2 2.54 E −2 NaN 3.70 E −2 3.04 E −2 NaN 7.26 E −2
rel. err. NaN 7% NaN 46% NaN 139%

at time tk , Ar(k) ≡ k · �t and Er(k) are the times at which
the kth virtual customer arrives and enters service. We also use
indicator variables η

d,C
r ,k ’s to denote if the kth real (nonvirtual)

customer is delayed on its arrival on the rth replication.
For the number of customers in queue and service at

each time, we sample the continuous-time queue-length
process and number of busy servers at discrete time points
t1, t2, . . . , tNv

, denoted by Qr(k) and Br(k). Here we make
sure to exclude the virtual arrivals.

9.3. Constructing Confidence Intervals

All estimates of target performance measures and corre-
sponding confidence intervals are based on assuming i.i.d.
samples, which is justified because we take a single estimate
from each of the R = 2000 independent samples.

To illustrate how we construct these estimators, we use the
queue-length process Q for an example. On the r th path, we
sample values for the queue length at N = 551 evenly spaced
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Figure 12. Simulation estimates of the mean and variance of the queue length as a function of time in the H2/H2/n + H2 model to show
the approach to steady state.

time points in the interval [0.4T , 0.95T ] = [40, 95], denoted
by Qr ,1, . . . , Qr ,N . To construct the confidence intervals for
E[Q] and E[Q2], first, for each replication r = 1, 2, . . . , R,
we let

Q̃r ≡ 1

N

N∑
l=1

Qr ,l and Q̃(2)
r ≡ 1

N

N∑
l=1

(Qr ,l)
2. (28)

Even though the random variables being averaged in (28) are
typically dependent, these are valid estimators for the true
mean E[Q] and second moment E[Q2]. Experience shows
that the average of these N = 551 values has lower variance
than a single observation from the end of the run.

To get the overall estimators of E[Q] and second moment
E[Q2], and their CI’s, we use the R independent samples
Q̃1, . . . , Q̃R (Q̃(2)

1 , . . . , Q̃(2)
R ) to compute the sample mean

and sample variance of the queue length and its second
moment in the usual way, that is,

Q̄(R) ≡ 1

R

R∑
r=1

Q̃r and

S2
Q(R) ≡ 1

R − 1

R∑
r=1

(
Q̃r − Q̄(R)

)2
, (29)

Q̄(2)(R) ≡ 1

R

R∑
r=1

Q̃(2)
r and

S2
Q(2) (R) ≡ 1

R − 1

R∑
r=1

(
Q̃(2)

r − Q̄(2)(R)
)2

. (30)

The random variables Q̄(R) and Q̄(2)(R) in (29) our our
final estimators for the true mean E[Q] and second moment
E[Q2].

As usual, the (1 − 100α%)-confidence intervals for the
mean and second moment of the queue length are⎡
⎣Q̄(R) − zα/2

√
S2

Q(R)

R
, Q̄(R) + zα/2

√
S2

Q(R)

R

⎤
⎦ , and

(31)⎡
⎣Q̄(2)(R) − zα/2

√
S2

Q(2) (R)

R
, Q̄(2)(R) + zα/2

√
S2

Q(2) (R)

R

⎤
⎦ ,

(32)

where zα is the α-percentile of the standard Gaussian distri-
bution. Since we use 95% CI’s, we use α = 0.025.

Since Var(Q) = E[Q2] − (E[Q])2, we estimate the
variance by

V̄ (R) ≡ Q̄(2)(R) − (
Q̄(R)

)2
. (33)

We then approximate the CI halfwidth of the variance by
the CI halfwidth of the second moment. We thus roughly
estimate the CI of the variance as⎡
⎣V̄ (R) − zα/2

√
S2

Q(2) (R)

R
, V̄ (R) + zα/2

√
S2

Q(2) (R)

R

⎤
⎦ . (34)

We discuss this approximation further with the numerical
example below.
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For the probability of abandonment (similar procedure for
the time-averaged probability of delay), we sample values
for the indicator at N = 551 evenly spaced time points
in the interval [0.4T , 0.95T ] on the rth run, denoted by
ηa

r ,1, . . . , ηa
r ,N , and we let P̃ a

r ≡ (1/N)
∑N

l=1 ηa
r ,l , for r =

1, 2, . . . , R. The (1 − 100α%)-confidence interval is[
P̄ a(R) − zα/2

√
S2

a (R)

R
, P̄ a(R) + zα/2

√
S2

a (R)

R

]
,

where

P̄ a(R) ≡ 1

R

R∑
r=1

P̃ a
r and

S2
a (R) ≡ 1

R − 1

R∑
r=1

(
P̃ a

r − P̄ a(R)
)2

.

For the probability of customer-averaged delay, we sam-
ple values for the indicator at Nr time points, where Nr is
the number of arrivals occurred in the interval [0.5T , T ]
on the rth replication, denoted by η

d,C
r ,1 , . . . , ηd,C

r ,Nr
, and we

let P̃ d,C
r = (1/Nr)

∑Nr

n=1 ηd,C
r ,n for r = 1, 2, . . . , R. The

(1 − 100α%)-confidence interval is⎡
⎣P̄ d,C(R) − zα/2

√
S2

d,C(R)

R
, P̄ d,C(R) + zα/2

√
S2

d,C(R)

R

⎤
⎦ ,

where

P̄ d,C(R) = 1

R

R∑
r=1

P̃ d,C
r , and

S2
d,C = 1

R − 1

R∑
r=1

(
P̃ d,C − P̄ d,C(R)

)2
.

To substantiate our procedures and verify that we obtain
adequate statistical precision, we compare the estimated per-
formance measures of M/M/n+M model to corresponding
exact solutions, which are calculated by the same algorithms
of [41]. The Table 17 shows that the procedures are sound
and the the statistical precision is adequate.

We use Table 17 to elaborate on the approximate CI for
the variance. To do so, we focus on the queue length in the
case θ = 0.1. Notice that the CI for the mean is 30.0 ± 0.52,
so that the relative halfwidth for the mean is 1.7%. How-
ever, by squaring the upper and lower limits, we see that
a rough symmetric CI for (E[Q])2 is 900 ± 30, using the
gap at the upper limit, so that the relative halfwidth for the
square of the mean is 3.3%. Our direct estimate of the second
moment is 613 + (30)2 = 1513 and our direct estimate of
its CI is 1513 ± 43.6, so that the relative halfwidth is 2.8%.

Our approximation thus estimates the CI of the variance as
613±43.6, so that the approximate relative halfwidth is 7.1%,
which we judge to be conservative.

10. CONCLUSIONS

In this article, we have developed and evaluated approx-
imations for the key steady-state performance measures in
the heavily loaded stationary G/GI/n + GI model. These
approximations are remarkably simple and easy to imple-
ment, even though they have a relatively complicated basis
in MSHT limits. As can be seen from §3.2, the basic TGAs
for ρ > 1 can be expressed in terms of (i) the determin-
istic fluid approximating pair (w, Q) ≡ (w(∞), Q(∞)) in
Theorem 2.1 (b), (ii) the limiting variance pair (σW , σX) ≡
(σW (∞), σX(∞)) in Theorem 2.3 (b), and (iii) the standard
(mean-0, variance-1) Gaussian cdf � and pdf φ. The TGA-G
refinement in §3.3 only requires an adjustment toσW using the
service-time scv c2

s . The approximate probability of abandon-
ment P a in (23) also requires a numerical integration with the
full patience pdf f . Most of these approximate performance
measures are easier to compute than corresponding quantities
in the Markov M/M/n + M Erlang-A model; see [30, 41].
For that model, the advantage of such simple approximations
was previously emphasized by [11, 30, 40].

The basis for these simple approximations is the collec-
tion of MSHT limits for the G/GI/n + GI model in the
efficiency-driven (ED) regime in [24–26, 42], reviewed in §2.
These MSHT limits explain why the approximations require
that the scale (number of servers) n and the load (traffic inten-
sity) ρ be suitably large, and that the abandonment rate be
not too high.

It is significant that the approximations go beyond a direct
application of the MSHT limits. We developed the approx-
imations in §3. After presenting the direct DGA Gaussian
approximations in §3.1, we applied truncation to obtain the
refined TGA approximations in §3.2 and then subsequently,
in §3.3, we heuristically modified the MSHT limit in [26]
for non-exponential GI service to obtain the final TGA-G
approximations, which coincide with TGA for exponential
service times.

In §§4–7, we report results of extensive simulations study-
ing the approximations. These experiments show that, for
large scale with n = 100, the approximations are effective for
a significant range of the traffic intensity (ρ) and the abandon-
ment rate (θ ) parameters, roughly for ρ > 1.02 and θ < 2.0.
After first comparing the approximations to exact numeri-
cal results for the Markov M/M/n + M model in §4, we
carefully examined the impact of non-Markov elements for
the arrival process (including a non-renewal MMPP exam-
ple) and the patience distribution in §5 and for the service
time distribution in §§6.1 and 6.2. In §7, we showed that
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Table 17. A comparison between simulation estimates and exact numerical values for the M(102−1)/M(1)/100+M(θ−1) model, confirming
the validity of both algorithms

θ = 0.1 θ = 0.25 θ = 0.5 θ = 1 θ = 2

Perf. Meas. Exact Sim. Exact Sim. Exact Sim. Exact Sim. Exact Sim.

E[X] 1.52 E + 2 1.52 E + 2 1.22 E + 2 1.22 E + 2 1.11 E + 2 1.11 E + 2 1.05 E + 2 1.05 E + 2 1.01 E + 2 1.01 E + 2
rel. err. ± 6.75 E −1 ± 2.78 E −1 ± 1.46 E −1 ± 8.47 E −2 ± 5.61 E −2
Var(X) 9.25 E + 2 9.07 E + 2 3.47 E + 2 3.46 E + 2 1.81 E + 2 1.80 E + 2 1.05 E + 2 1.05 E + 2 6.85 E + 1 6.81 E + 1
rel. err. ± 2.12 E + 2 ± 7.03 E + 1 ± 3.32 E + 1 ± 1.79 E + 1 ± 1.12 E + 1
E[Q] 5.22 E + 1 5.20 E + 1 2.30 E + 1 2.31 E + 1 1.27 E + 1 1.27 E + 1 7.03 E + 0 7.01 E + 0 3.88 E + 0 3.90 E + 0
rel. err. ± 6.67 E −1 ± 2.62 E −1 ± 1.26 E −1 ± 6.15 E −2 ± 3.06 E −2
Var(Q) 8.99 E + 2 8.82 E + 2 3.05 E + 2 3.06 E + 2 1.35 E + 2 1.34 E + 2 5.92 E + 1 5.91 E + 1 2.57 E + 1 2.58 E + 1
rel. err. ± 7.88 E + 1 ± 1.55 E + 1 ± 4.53 E + 0 ± 1.41 E + 0 ± 4.55 E −1
E[W ] 5.14 E −1 5.12 E −1 2.29 E −1 2.30 E −1 1.28 E −1 1.28 E −1 7.22 E −2 7.20 E −2 4.09 E −2 4.11 E −2
rel. err. ± 6.52 E −3 ± 2.57 E −3 ± 1.24 E −3 ± 6.16 E −4 ± 3.13 E −4
Var(W) 8.59 E −2 8.41 E −2 2.93 E −2 2.94 E −2 1.31 E −2 1.31 E −2 5.88 E −3 5.88 E −3 2.64 E −3 2.64 E −3
rel. err. ± 7.58 E −3 ± 1.50 E −3 ± 4.45 E −4 ± 1.42 E −4 ± 4.69 E −5
P d 9.67 E −1 9.67 E −1 8.90 E −1 8.91 E −1 8.03 E −1 8.03 E −1 7.00 E −1 6.99 E −1 5.92 E −1 5.95 E −1
rel. err. ± 1.93 E −3 ± 2.91 E −3 ± 3.17 E −3 ± 3.11E-3 ± 2.81 E −3
P a 4.97 E −2 4.98 E −2 5.47 E −2 5.50 E −2 6.04 E −2 6.07 E −2 6.70 E −2 6.65 E −2 7.40 E −2 7.40 E −2
rel. err. ± 8.36 E −4 ± 8.51 E −4 ± 8.43 E −4 ± 8.29 E −4 ± 8.34 E −4

these approximations also remain effective for smaller scale,
assuming that the remaining parameters are adjusted appro-
priately. In §9, we described the simulation methodology.
Additional details are provided in an Supporting Information
Appendix.

10.1. The Impact of Model Features on System
Performance

It is well known that congestion tends to be increasing in
λ and decreasing in μ, n, and θ . The way that congestion
depends on these basic parameters is quite well understood.
We refer to [43] for a careful sensitivity study of performance
in the Erlang-A model, which shows that performance is quite
sensitive to small percentage changes in the arrival rate λ or
the service rate μ (and thus the traffic intensity ρ), but is
relatively insensitive to small changes in the abandonment
rate θ .

The MSHT limits help expose the structure as well,
as discussed for Markov models in [11, 14, 40]. First, the
MSHT scaling shows that, for n not too small, performance
depends on n and ρ primarily through the single parameter
(1 − ρ)

√
n ≡ β, with β < 0 corresponding to the OL case.

Second, §4 of [40] shows for the M/M/n + M model that
performance depends on n and θ primarily through n/θ for
large values of that ratio.

The fluid limits for the general G/GI/n + GI model in
Theorem 2.1 are very useful for exposing the primary impact
of model elements on performance. Theorem 2.1 shows that
performance primarily depends on the arrival process only
via its rate and on the service-time distribution only via its
mean. In contrast, when ρ > 1, the fluid limit depends on

the full patience-time cdf F , but then only on the value
of its inverse F−1 at the limiting fluid abandonment rate
(ρ−1)/ρ. the head-of-line waiting time w(∞) is determined
by w(∞) = F−1((ρ − 1)/ρ). From a practical engineering
perspective, we see that this characteristic of the patience cdf
is critical, not the mean or variance. Table 6 illustrated that
the patience cdf matters beyond its mean and variance. The
fluid approximation shows that, if the full patience cdf F gets
larger in stochastic order, that is, if the function F̄ increases
so that customers are more patient, then congestion should
increase, just as in the M/M/n + M model.

Moreover, As we have observed in §5, the general sta-
tionary G arrival process only affects the diffusion limit in
Theorem 2.3 though the asymptotic variance parameter c2

λ

appearing in the assumed FCLT for the arrival process in (5).
That was illustrated in Table 3 when we displayed results
for models that have M(1) and LN(1, 1) arrival processes.
Theorem 2.3 shows that congestion tends to increase approx-
imately proportional to c2

λ. In contrast, the patience-time cdf
F affects the diffusion limit in a complicated way.

A main conclusion in [41, 42] was that the steady state
performance of the M/GI/n + GI model tends to be nearly
insensitive to the service-time distribution beyond its mean.
Our experiments confirm that conclusion for the main per-
formance measures considered, for example, for the mean
values of the steady-state queue length and waiting time, but
we show that the variance and full distribution depend sig-
nificantly on the service-time distribution beyond its mean.
Moreover, our refined TGA-G approximation successfully
captures that effect.

Because Theorem 2.3 is for the G/M/s + GI model, we
do not directly see the impact of the service-time distribution,
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but the fluid limits suggests that it is not so great. Our heuristic
refinement TGA-G depends on the service-time distribution
only through its first two moments. In particular, the variance
σ 2

WG
in §3.3 is increasing in c2

s . Because the approximation
is quite effective, we conclude that the scv c2

s captures much
of the impact.

10.2. The Impact of Model Features on the Accuracy
of the Approximations

Much of this article has been devoted to carefully examin-
ing the accuracy of the proposed engineering approximations.
First, for the M/M/n+M model, Tables 1 and 2 and Figures
1–3 show that the accuracy of the approximation is quite good
for large scale, which we take to be n = 100, provided that
the model is reasonably OL, as specified by our OL condi-
tion ρ > 1.02 and θ < 2.0. Given that performance depends
on n and ρ for n not too small primarily through the single
parameter (1 − ρ)

√
n ≡ β, with β < 0 corresponding to the

OL case, it is noteworthy that for n = 100 our OL condition
ρ > 1.02 corresponds to β < −0.2.

Clearly, the system ceases to be OL as ρ decreases toward
critical loading (CL), characterized by ρ = 1, and as
θ increases above 2.0, as shown in Figures 1 and 3. The degra-
dation of performance for θ = 4 and 10 is shown in Figure
21 in the Supporting Information Appendix. These figures
show that, for ρ > 1, a high abandonment rate θ degrades
approximation accuracy the most.

Tables 3 and 4 and Figure 4 show that the accuracy is quite
insensitive to the arrival process variability as characterized
by c2

λ. Table 5 and Figure 6 show that the same is true for
the variability of the patience distribution as characterized
by c2

ab to a large extent, but there is some degradation as c2
ab

gets small.

10.3. Directions for Future Research

There are many good directions for future research.
First, exact performance measures are still needed for the
M/GI/n+GI model and more general models with GI ser-
vice. Second, MSHT limits are still needed for the G/GI/n+
GI models with abandonment and GI service, going beyond
the established MSHT fluid limits. More generally, It remains
to provide better theoretical justification for the TGA-G
approximation with non-exponential service-time distribu-
tions in §3.3 and/or even better simple approximations, if
possible. It also remains to develop effective approximations
for other ranges of the parameters. It remains to find and study
new approximations such as those recently proposed in [16];
they seem to effectively cope with rapidly changing patience
hazard rate functions caused by delay announcements over
time.
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