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Abstract

Continuing research by Jennings, Mandelbaum, Massey and Whitt (1996), we investigate methods to perform
time-dependent staffing for many-server queues. Our aim is to achieve time-stable performance in face of
general time-varying arrival rates. It turns out that it suffices to target a stable probability of delay. That
procedure tends to produce time-stable performance for several other operational measures. Motivated by
telephone call centers, we focus on many-server models with customer abandonment, especially the Markovian
Mt/M/st + M model, having an exponential time-to-abandon distribution (the+M ), an exponential service-
time distribution and a nonhomogeneous Poisson arrival process. We develop three different methods for
staffing, with decreasing generality and decreasing complexity: First, we develop a simulation-based iterative-
staffing algorithm (ISA), and conduct experiments showing that it is effective. The ISA is appealing because it
applies to very general models and is automatically validating: we directly see how well it works. Second, we
extend the square-root-staffing rule, proposed by Jennings et al., which is based on the associated infinite-server
model. The rule dictates that the staff level at timet best = mt + β

√
mt, wheremt is the offered load (mean

number of busy servers in the infinite-server model) and the constantβ reflects the service grade. We show that
the service gradeβ in the staffing formula can be represented as a function of the target delay probabilityα by
using approximations for the steady-state delay probability in the associated stationaryM/M/s + M model,
drawing on Garnett, Mandelbaum and Reiman (2002). Finally, for many-server queues with abandonment,
we show that simply staffing at the offered load itself (i.e., lettingst = mt) is remarkably effective in typical
operating regimes. Indeed, for practical examples with relatively short service times, it suffices to letst =
λ(t)/µ, whereλ(t) is the arrival rate and1/µ is the mean service time, as in a naive deterministic method.

Keywords: Contact centers; call centers; staffing; operator staffing; queues; non-stationary queues; queues
with time-dependent arrival rates; multi-server queues; infinite-server queues; capacity planning; queues with
abandonment.
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1 Introduction

1.1 Background on Services and Call Centers

Service systems such as banks, insurance companies and hospitals play an important role in our society. Ser-
vices employ about 60–80% of the work force in western economies, and their importance is sharply on the
rise, both within service and manufacturing companies. In our service-driven economy, it is estimated that over
70% of the business transactions are carried out over the phone. Most of these transactions are processed by
telephone call centers, which have become the preferred and prevalent means for companies to communicate
with their customers. Indeed, it is estimated that more than 3% of the U.S. work force is employed in call
centers—more than in agriculture! For an overview of call centers and models of them, readers are referred to
the recent review by Gans, Koole and Mandelbaum (2003).

The modern call center is a highly complex operation that fuses advanced technology and human beings. But
the economic and managerial significance of the latter clearly outweighs the former. More specifically, labor
costs (agents’ salaries, training, etc.) typically run as high as 70% of the total operating costs of a call center,
and attrition rates in call centers reach anywhere from 30% per year (considered low) to over 200% at times.
In such circumstances, perhaps the most important operational decision to be made is staffing: what is the
appropriate number of telephone agents that are to be accessible for serving calls. Over-staffing is wasteful,
while under-staffing leads to low service-levels and overworked agents.

1.2 The Staffing Problem

The staffing problem typically takes the following form: Under an existing operational reality, and given a
desired quality of service, we seek the least number of agents at each time that is required to meet a given
service-level constraint. This problem, which has received much attention over the years (see Chapter 4 in
Gans et. al.), is challenging both theoretically and practically. The challenges are easy to understand, because
the natural model for the staffing problem is a many-server queue with a time-varying arrival rate, which is
notoriously difficult to analyze. The practical importance of staffing is highlighted by considering a bank em-
ploying 10,000 telephone agents and catering to millions of customers per day; even small gains in operational
efficiency or service quality clearly can provide great benefit.

Figure 1 depicts a typical arrival-rate function to a telephone call center. Call volumes are low around midnight
(hour 0), starting to increase in the early hours of the morning, peaking at late morning, then dropping somewhat
around midday (12, lunch break), rising again afterwards, and then dropping thereafter to midnight levels. The
displayed arrival-rate function is an average of several similar days; the actual number of arrivals, in a given
hour on a given day, fluctuates randomly around this average. (The functional form in Figure1 is typical; the
particular values for the arrival rates were adapted from Green, Kolesar and Soares (2001) in order to benchmark
our algorithm; see Section4.)

Staffing planners are thus faced with two sources of variability:predictable variability – time-variations of
the expected load – andstochastic variability – random fluctuations around this time-dependent average. Most
available staffing algorithms are designed to cope only with stochastic variability; they avoid the predictable
variability in various ways. For example, when the service times are relatively short, as in many call centers
when service is provided by a telephone call, it is usually reasonable to use apointwise stationary approximation
(PSA), i.e., to act as if the system at timet were in steady-state with the arrival rate occurring at that instant (or
during that half hour). With PSA, one performs a stationary or steady-state analysis with a stationary model
having parameters that vary by the time of day; see Green and Kolesar (1991) and Whitt (1991). The PSA is
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Figure 1:Hourly call volumes to a medium-size call center
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the leading term in theuniform-acceleration(UA) approximation; see Massey and Whitt (1998) and references
therein.

However, service times are not always short, even in call centers. If relatively lengthy interactions are not
uncommon, then PSA tends to be inappropriate. When service times are not so short, significant predictable
variability can cause PSA to produce poor performance. As a consequence, some parts of the day may be
over-staffed, while others are under-staffed.

In this paper we address the staffing problem withboth predictable and stochastic variability. Here is the
problem we aim to solve:

Given a daily performance goal, and faced with both predictable and stochastic variability, we seek to
find the minimal staffing levels that meet this performance goal stablyover the day.

In particular, we aim to find an appropriate time-dependent staffing function forany arrival-rate function, where
“appropriate” means that we achieve time-stable performance. For given service-time distribution, we allow
arbitrary arrival-rate functions, i.e., arbitrary predictable variability. We aim to agree with PSA when it is
appropriate and do significantly better when it is not appropriate.

1.3 Our Point of Departure

Our point of departure is our (with Otis B. Jennings) previous paper: Jennings, Mandelbaum, Massey and Whitt
(1996). In that paper, we showed For theMt/M/st model that it is possible to achieve time-stable performance.
That observation strongly motivates the present study.

In that paper, we proposed aninfinite-server approximation for many-server queues with time-varying arrival
rate, without customer abandonment, in particular for theMt/G/s model, having a nonhomogeneous Poisson
arrival process with arrival-rate functionλ(t) and independent and identically distributed(IID) service times
{Sn : n ≥ 1}, distributed as a random variableS with a generalcumulative distribution function(cdf) G
having meanE[S] = 1/µ. For theMt/G/s model, we suggested staffing according to thesquare-root-staffing
formula :

st = mt + β
√

mt, 0 ≤ t ≤ T, (1.1)
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where the constantβ is a measure of thegrade of serviceand the deterministic functionmt is theoffered
load, i.e., the mean number of busy servers in the associatedMt/G/∞ infinite-server model (with same arrival
process and service times).

The underlying motivation for this square root formula comes from the fact that the number of customers in the
Mt/G/∞ infinite-server model has aPoisson distributionfor all times0 < t ≤ T whenever the number in the
system at timet = 0 has a similar distribution (being empty is a degenerate case of a Poisson distribution). The
mean and the variance are equal for a Poisson distribution. Therefore, the fact thatmt equals themeanfor the
“offered load process” (infinite server model) at timet implies that

√
mt equals thestandard deviationfor this

offered load process. Thus we are simply setting the number of serversst equal to the mean plus some number
β of standard deviations of the offered load.

The important insight above is that the“right” offered load above should be the time-dependent mean number
of busy servers in the associated infinite-server model. For the stationary model, the right offered load is known
to beλE[S]. The “obvious” direct time-dependent generalization isλ(t)E[S], which is the PSA offered load.
However,λE[S] is also the mean number of busy servers in the associated stationary infinite-server model. It
turns out that the mean number of busy servers in the infinite-server model is a better generalization of “offered
load” for most time-varying many-server models. (Indeed, it may be considered exactly the right definition for
the infinite-server model itself.)

It is also significant that, for theMt/G/∞ model, the time-dependent mean number of busy servers,mt, has
a tractable expression. Let Lt(∞) be the number of busy servers at timet in the infinite-server model. Then
the explicit formula formt is

mt ≡ E [Lt(∞)] =
∫ t

−∞
Gc(t− u)λ(u) du = E

[∫ t

t−S
λ(u) du

]
= E [λ(t− Se)]E[S] , (1.2)

whereSe is a random variable with the associatedstationary-excess cdf(or equilibrium-residual-lifetime cdf)
Ge associated with the service-time cdfG, defined by

Ge(t) ≡ P (Se ≤ t) ≡ 1
E[S]

∫ t

0
[1−G(u)] du, t ≥ 0 ; (1.3)

see Theorem 1 of Eick et al. (1993a) and references therein. For more on the stationary-excess cdfGe, see pp.
424 and 431 of Ross (2003);G = Ge if and only if G is exponential.

¿From (a special case of) Theorem 10 in Eick et al. (1993a), we canquantify the difference between the
infinite-server offered loadmt and the PSA offered loadλ(t) · E[S]. Letting (Se)e be a random variable with
the twofold stationary-excess cdf(Ge)e, we have the formula

mt − λ(t) · E[S] = E
[
λ′ (t− (Se)e)

]
· E[Se] · E[S] =

1
2
· E

[
λ′ (t− (Se)e)

]
· E[S2]. (1.4)

¿From (1.4), it follows that the PSA offered load willnot be a good approximation of the infinite-server of-
fered load when the arrival rate varies rapidly in time (large derivativeλ′). For a given mean service time,
they may also be far apart when the second moment of the service time,E[S2], (or variance) is large. The
second condition has implications for non-exponential distributions that are heavy tailed; see Whitt (2000) for
background.

Given that we use the square-root-staffing formula in (1.1) and that we can directly calculate the offered load
by (1.2), the remaining problem is to determine an appropriate grade of serviceβ in (1.1). Toward that end, we
chose to make thedelay probability – the probability an arrival will have to wait before beginning service – the
target performance measure. Our goal was to have the delay probability at every timet be a targetα. That
choice was by no means arbitrary. As proved in Halfin and Whitt (1981) and further discussed in Whitt (1992)
and Jennings et al. (1996), the delay probability is an ideal performance measure because it has a nondegenerate
many-server heavy-traffic limit. That means that the delay probability tends to have a meaningful interpretation,
independent of scale (the load and the number of servers). We discuss how to relate the grade of serviceβ to
the target delay probabilityα later.
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1.4 Our Contributions to the Staffing Problem

Our goal in this paper is to develop staffing algorithms for more complicated time-varying many-server mod-
els, such as many-server queues with abandonment. For example, we want to treat the much more realistic
Mt/G/s + G model with non-exponential service times (the firstG) and non-exponential abandonments (the
+G). For call centers, our ultimate goal is to treat realistic multi-server systems with multiple call types and
skill-based routing (SBR). We do not consider SBR models here, but the methods here may extend to that
setting, especially when combined with the methods of Wallace and Whitt (2004), which use appropriate cross
training to reduce SBR staffing to single-group staffing.

1.4.1 A Simulation-Based Iterative Staffing Algorithm.

Our first contribution is a simulation-based Iterative-Staffing Algorithm(ISA) for many-server queues with
time-varying arrival rate. By being based on simulation, ISA has two important advantages: First, by using
simulation, we achievegenerality: We can apply the approach to a large class of models; we are not restricted
by having to have a model that is analytically tractable. We are able to include realistic features, not ordinarily
considered in analytical models. For example, we can carefully consider what happens to agents who are in
the middle of a call when their scheduled shift ends. Second, by using simulation, we achieveautomatic
validation: In the process of performing the algorithm, we directly confirm that ISA achieves its goal; we
directly observe the performance of the system under the final staffing function{st : 0 ≤ t ≤ T}.

Following Jennings et. al. (1996), we assume that, in principle,any number of servers can be assigned at any
time. In our implementation, however, time is divided into short intervals (we take 0.1 service times), and we
keep the number of servers fixed over each of these small intervals. The service discipline is FCFS, and servers
follow an exhaustive service discipline: a server that finishes a shift in the middle of a service will complete
the service and sign out only when finished. (Our results prevail also for preemptive service disciplines under
which servers leave at end-of-shifts and their customers, if any, are moved to the front of the queue.)

Continuing to follow Jennings et al. (1996), we usethe delay probability as our target performance measure,
but the same method could be applied to other performance measures. Specifically, given a target probability
of delay, we identify time-varying staffing levels under which the actual probability of delay remains approx-
imately equal to the given target at all times. Other performance measures, such as the average waiting time,
queue-length tail delay-probabilities and the probability of abandonment, turn out to be relatively constant over
time as well.

For the main model we study, the MarkovianMt/M/st + M model, we not only implement and evaluate ISA,
but we also provide a proof of convergence. To do so, we must set aside the (important) issue of estimating the
time-dependent delay probability for any given staffing function by computer simulation, which is subject to
statistical error. That statistical error decreases as we increase the number of independent replications, so it can
be made arbitrarily small at the expense of computational effort, but for any given amount of computational
effort it is always present. However, if we assume that we actually know the true delay probabilities associated
with each staffing function, then we obtain monotone convergence to a limiting staffing function. That is
accomplished by applying sample-path stochastic-order notions, as in Whitt (1981).

1.4.2 An Extended Version of the Square-Root Staffing Formula.

While working with ISA, we discovered that the simulation-based solutions we were finding had astonishing
regularity. In particular, we found that global performance measures coincide with the performance measures
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of the associated stationary model. In particular, when we used ISA to staff the time-varyingMt/M/st + M
model, we found that the staffing could be related to the steady-state behavior of the associated stationary
M/M/s + M model.

That leads us to our second contribution: We extend the square-root staffing formula. In particular, we suggest
staffing according to thesquare-root-staffing formula in (1.1), where the service gradeβ ≡ β(α) is derived
from a theoreticalone-to-one relation betweenα and β for the corresponding stationary model. In par-
ticular, we propose usingβ(α), for which staffing levels ofs = m + β

√
m would lead to the desired delay

probabilityα in the corresponding stationary model, wherem = λ/µ is the stationary offered load. For the
Mt/M/st + M model, we use explicit formulas relatingα to β obtained from the many-server heavy-traffic
limits in Garnett, Mandelbaum and Reiman (2002). We justify this simple analytic staffing formula by con-
ducting experiments for theMt/M/st + M model, but we propose the approximation more generally. The
effectiveness in any other context can be verified by applying the simulation-based ISA.

1.4.3 Simple Deterministic Approximations

Finally, we make yet one more contribution. To describe it, we remind readers of the three heavy-traffic
regimes for many-server queues:Quality-Driven(QD, lightly loaded),Efficiency-Driven(ED, heavily loaded)
andQuality-and-Efficiency-Driven(QED, normally loaded); see Garnett, Mandelbaum and Reiman (2002). In
our experiments for the many-server queue with abandonments we found thatsimply staffing according to
the offered load itself is remarkably effective in the QED regime, i.e., staffing by lettingst = mt for the
Mt/M/st + M model works very well in the QED regime. Needless to say, abandonments play a crucial role
in this property. This is another example of the importance of including abandonments in the model, when
customers actually do abandon; see Garnett et al. (2002) for more discussion.

Theoretical justification for this heuristic can be found in Mandelbaum, Massey and Reiman (1998). In that
setting, we can apply the many-server heavy-traffic scaling to theMt/M/st + M model and obtain the follow-
ing result for a family of number-in-system stochastic processes{Lη | η > 0 } indexed byη, associated with
Mt/M/st + M queues. Ifθη = θ andµη = µ, while

λη
t = η · λt and sη

t = η ·mt +
√

η · s(1)
t + o(

√
η ). (1.5)

wheremt is the mean for theMt/M/∞ queue and so

d

dt
mt = λt − µt ·mt, (1.6)

we then have
lim

η→∞
P (Lη(t) ≥ sη

t ) = P
(
L(1)(t) ≥ s

(1)
t

)
, (1.7)

whereL(1) =
{

L(1)(t) | t ≥ 0
}

is a one-dimensional diffusion.

Here is the implication: It says that, asymptotically, controlling the delay for this queue with abandonment is
a second orderstaffing effort (selectings(1)

t ) whereas the leading order staffing level is satisfied by using the
offered load. Moreover, for the special case of the abandonment rate equaling the service rate, we can apply this
argument to rigorously obtain the square-root staffing formula used in Jennings et al. (1996) for the multiserver
queue without abandonment. This is also the one case where the diffusionL(1) is Gaussian. In the Appendix
of this paper we show how these results are derived.

Even though staffing according to the offered load is a remarkably simple method, there remains substantial
sophistication, because we have to know that we should use the deterministic offered-load functionmt. When
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the service times are relatively short (compared to the fluctuations in the arrival-rate function), we can use a
truly naive deterministic approximation: We can then simply staff according to the PSA offered load: we can
setst = λ(t)/µ (which will coincide with the offered load,mt, in that scenario). When we staff according to the
PSA offered loadλ(t)/µ, we are truly ignoring all stochastic variability; we are using only deterministic data
about the model: the deterministic arrival-rate functionλ(t) and the deterministic mean service time1/µ. Even
though the infinite-server offered loadmt is a deterministic function, it depends on the service-time distribution
beyond its mean, as is apparent from (1.2).

1.5 Summary of The Paper

In §2 we present examples illustrating the performance of our algorithm, and provide a theoretical motivation
for the derived results. In§3 we describe our algorithm and give definitions of the performance measures that
we display. Then, in§4, we present additional examples: We start by revisiting the “challenging example” in
Jennings et al. (1996); we follow by expanding the analysis of the Erlang-A example from§2.1with different
patience parameters, emphasizing the stationary (time-stable) performance of our staffing algorithm. Then,
we analyze a realistic example (the one presented in Figure1). In contrast to Green et. al. (2001), we also
incorporate abandonment, which significantly and positively impacts staffing results. In§5, the dynamics of
the iterative algorithm is discussed. In§6 we discuss directions for future research. We provide additional
theoretical perspective for the square-root-staffing algorithm from a uniform-acceleration perspective in a final
appendix.

2 Examples and Motivation

We start with two examples demonstrating the performance of our algorithm: first, the time-varying Erlang-A
model (with abandonments) and, second, the corresponding time-varying Erlang-C model (without abandon-
ments).

2.1 The Time-Varying Erlang-A Model

2.1.1 A Sinusoidal Arrival-Rate Function

Consider a queueing system that is faced with a non-homogeneous Poisson arrival process with asinusoidal
arrival-rate function

λ(t) = a + b · sin(ct), 0 ≤ t ≤ T , (2.8)

wherea = 100, b = 20 andc = 1; i.e.,

λ(t) = 100 + 20 · sin(t), 0 ≤ t ≤ T . (2.9)

Let the service times and the customer times to abandon (if they have not yet started service) come from
independent sequences of independent and identically distributed (IID) exponential random variables having
mean 1. As can be seen from PSA, the arrival rate is sufficiently large, that about100 servers are required,
so this example captures the many-server spirit of a call center. However, the sinusoidal form of the arrival-
rate function is clearly a mathematical abstraction, which has the essential property of producing significant
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fluctuations over time, i.e., significant predictable variability. This particular arrival-rate function is by no
means critical for our analysis;our methods apply to an arbitrary arrival-rate function .

An important issue, however, is the rate of fluctuation in the arrival-rate function compared to the expected
service-time distribution. To be concrete, we will measure time in hours, and focus on a24-hour day, so that
T = 24. A cycle of the sinusoidal arrival-rate function in (2.8) is 2π/c; since we have setc = 1, a cycle is
2π ≈ 6.3 hours. Thus there will be about4 cycles during the day. That roughly matches the daily cycle in
Figure (1) for the six-hour period around 12:00 noon.

Since we let the mean service time be1 and have chosen to measure time in hours, the mean service time in this
example is1 hour. That clearly is relatively long for most call centers, where the interactions are short telephone
calls. If we were to change the time units in order to rectify that, making the expected service time10 minutes,
then a cycle of the arrival-rate function would become about1 hour, making for more rapid fluctuations in the
arrival rate than are normally encountered in call centers. Thus our example is more challenging than usually
encountered in call centers, but may be approached in evolving contact centers if many interactions do indeed
take an hour or more. (We will consider a practical example in Section4.4.) From this preliminary analysis, we
anticipate that the service times are sufficiently long in our example that the traditional PSA method is likely to
perform poorly here, just as in Jennings et al. (1996).

The arrival rate coincides with the PSA offered load, because the mean service time here is1. The (infinite-
server) offered load is given in (1.2). Since we have a sinusoidal arrival-rate function, we can apply Eick et
al. (1993b) to give an explicit formula for the offered-loadmt, i.e., the mean number of busy servers in the
associated infinite-server system. Since the service-time distribution is exponential, we can apply formula (15)
of Eick et al. (1993b). For the sinusoidal arrival-rate function in (2.8), the offered load is

mt = a +
b

1 + c2
[sin(ct)− c · cos(ct)] = 100 + 10[sin(t)− cos(t)] . (2.10)

The second formula in (2.10) is based on the specific parameters:a = 100, b = 20 andc = 1 from (2.9).

In order to put our model into perspective, in Figure2 we plot the offered loadmt in (2.10) for the sinusoidal
arrival-rate function in (2.8) for the parametersa = 100 andb = 20, as in our example, but with four four
different values of the time-scaling parameterc: 0.5, 1, 2 and20. Note that the offered loadmt is also a
periodic function with the same period2π/c as the arrival-rate functionλ(t), but the size of the fluctuations
decrease. Asc increases, the modified offered load approaches the average valuea = 100. It is important to
understand the offered load, because it is a primary determinant of the required staffing, as we will see.

Our simulation-based iterated-staffing algorithm ISA generates staffing functions, for any given target delay
probabilityα. In Figure3 we present three graphs, showing the generated staffing functions for three regimes
of operation:Quality-Driven(QD) - targetα = 0.1, Quality-and-Efficiency-Driven(QED) - targetα = 0.5 and
Efficiency-Driven(ED) - targetα = 0.9. In each graph, we plot three curves: the arrival rateλ(t) (blue), the
offered loadmt (green) and the staffing functionst (red).

Note that we start our system empty. This allows us to observe the behavior of the transient stage. In particular,
there is a rampup at the left side of the plot. Our methods respond appropriately to that rampup. That is
consistent with Section 7 of Jennings et al. (1996).

Also note that, in the QED regime (α = 0.5), the staffing function dictated by ISA falls right on top of the
offered load: In that QED case, it would have sufficed to simply letst = mt. We will see this phenomenon
repeated throughout the rest of this paper. That itself is quite stunning.
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Figure 2: The offered loadmt for the sinusoidal arrival-rate function in (2.8) with parametersa = 100, b = 20
and four possible values ofc: 0.5, 1, 2 and20. The offered load is the mean number of busy servers in the
Mt/M/∞ model. The plotting is done at granularity0.1, so the plot forc = 20 looks a bit strange.

Figure 3:Staffing function for: (1) Target α = 0.1 (2) Target α = 0.9 (3) Target α = 0.5
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2.1.2 Time-Stable Performance

We now show that ISA achieves time-stable performance. In Figure4 we show the actual probability of delay
obtained by applying our algorithm with targetα for α = 0.1, 0.2, . . . , 0.9. These delay probabilities are
estimated by performing multiple (5000) independent replications with the final staffing function determined
by our algorithm. Under the staffing levels produced by our algorithm, the delay probabilities are remarkably
accurate and stable.

In addition to stabilizing the delay probability, other performance measures (e.g. utilization, tail probabilities
abandon probabilities, etc.) are found to be quite stable as well. Precise explanations and definitions of the
performance measures are given in Section3.2. Below are summary results graphs for all targetα’s.

However, as the target delay probability increases toward heavy loading, the abandonment probability becomes
much less time-stable. We discuss this phenomenon further in Subsection2.2 below. Other measures of con-
gestion such as average waiting time and average queue length were also found to be relatively stable, but like
the abandonment probabilities, these too become less time-stable under heavy loads.
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Figure 4:Delay probability summary for various α’s.
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Figure 5:Utilization summary for the Erlang-A example
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2.1.3 Validating the Square-Root-Staffing Formula

Next we define animplied service grade: A function{βt : 0 ≤ t ≤ T} is defined by setting

βt ≡
st −mt√

mt
, 0 ≤ t ≤ T , (2.11)

wheremt is again the offered load in (1.2) and (2.10). andst is the staffing function obtained by the ISA algo-
rithm. Sincest is obtained from the ISA algorithm, the functionβt is itself obtained from the ISA algorithm.
It thus becomes interesting to see if the implied service grade is approximately constant as a function of time.
And, indeed, it is, as shown in Figure9.

Figure9 is extremely important because it validates the square-root-staffing formula for this example. First,
Figure4 shows that ISA is able to produce the target delay probabilityα for a wide range ofα. Then Figure
9 shows that, when this is done, the square-root-staffing formula holds empirically. In other words, we have
shown that we could have staffed directly by the square-root-staffing formula instead of by the ISA.
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Figure 6:Tail probability summary for the Erlang-A example
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Figure 7:Abandon probability summary for the Erlang-A example
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Figure 8:Congestion: (1) Targetα = 0.1 (2) Target α = 0.5 (3) Target α = 0.9
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2.1.4 Relatingβ to α

However, one issues remains: In order to staff directly by the square-root staffing formula, we need to be able
to relate the grade of serviceβ to the target delay probabilityα. Indeed, we want a function mappingα into β.
We propose a simple answer: For the time-varying Erlang-A model,use the associated stationary Erlang-A
model, i.e., theM/M/s + M model. Moreover, we suggest using simple formulas obtained from the many-
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Figure 9:Summary of Implied Service-gradeβ
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server heavy-traffic limit for the Erlang-A model in Garnett et al. (2002). TheGarnett function mappingβ
into α is

α =

[
1 +

√
θ

µ
· h(β̂)
h(−β)

]−1

, −∞ < β < ∞; (2.12)

whereβ̂ = β
√

θ/µ, with µ the individual service rate andθ the individual abandonment rate (both here set
equal to1 now) andh(x) = φ(x)/(1 − Φ(x)) is thehazard rateof the standard normal distribution, withφ
being theprobability density function(pdf) andΦ the cdf. Of course, we want a function mappingα into β.
Thus, we use theinverse of the Garnett function, which is well defined.

We now look at additional simulation output, aimed at establishing the validity of this stationary-model ap-
proach of relatingα andβ. First, we compare the empirical distribution of the customer waiting times to the
theoretical distribution of those waiting times in the stationary Erlang-A model. Specifically, in Figure10 we
plot theempirical conditional waiting time pdfgiven wait, i.e. the distribution of the waiting time for those
who were in fact delayed, during the entire time-horizon. In doing so, we are looking at all the waiting times
experienced across the day. As before, we obtain statistically precise estimates by averaging over a large num-
ber of independent replications (here again5000). In this case, the empirical conditional distribution is based
on statistics gathered from the time of reaching steady until the end of the horizon.

In Figure10 we compare the empirical conditional waiting-time distribution to many-server heavy-traffic ap-
proximations for the conditional waiting-time distribution in thestationary M/M/s + M queue, drawing on
Garnett et al. (2002). Note that the approximation for the conditional waiting-time distribution in the stationary
queues matches the performance of our time-varying model remarkably well.

We now go on to relate the empirical(α, β) pairs to the Garnett function in (2.12). We define the empirical
valuesᾱ andβ̄ as simply the time-averages of the observed (time-stable) values displayed in the plots in Figures
4and9. In Figure11, we plot the pairs of(ᾱi, β̄i) alongside the Garnett function. Needless to say, the agreement
is phenomenal!

We close this subsection by observing that other common approximations, such as the PSA or the SSA (the
simple stationary approximation, using the overall time-average arrival rate; see Jennings et al. (1996)) perform
poorly for this example. Demonstrations are omitted for lack of space, but such examples were already given
in Jennings et al. (1996).
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Figure 10:Waiting time given wait: (1) Target α = 0.1 (2) Target α = 0.5 (3) Target α = 0.9
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Figure 11:Algorithm-Generated Performance vs. the Garnett Function
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2.2 Theoretical Motivation: The Caseθ = µ

In one special case, we can analyze the time-dependent Erlang-A model just considered (i.e., theMt/M/st+M
model) in considerable detail. That is the case we have just considered, in which the individual service rateµ
equals the individual abandonment rateθ. For the rest of this subsection, letθ andµ be fixed withθ = µ, but
here we do not set these equal to1.

2.2.1 Connections to Other Models

With that condition, it is easy to relate theMt/M/st + M model to two other models that have been fully
analyzed previously: the corresponding time-dependent infinite-server model (theMt/M/∞ model with the
same arrival-rate function and service rate) and a corresponding time-dependent family of stationary Erlang-A
models (theM/M/s + M model with the same service and abandonment rates, but with special arrival rate
and number of servers). We can thus do some theoretical analysis for the model just simulated in the previous
subsection.

To express the relations, let{st : t ≥ 0} be an arbitrary staffing function; letLt ≡ Lt(Mt/M/st + M) be the
number of customers in the systemat timet, let W q

t be thevirtual waiting time at timet (until service or
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abandonment, whichever occurs first, i.e., the waiting time in queue that would be spent by an arrival at time
t); let Pt(Ab) be thevirtual abandonment probability at timet (i.e., the probability of abandonment for an
arrival that would occur at timet). For simplicity, assume that all systems start empty in the distant past (at
time−∞). By havingλ(t) = 0 for t ≤ t0, we can start arrivals at any timet0.

The first elementary (important) observation is that, for any arrival-rate function{λ(t) : t ≥ 0} and any staffing
function {st : t ≥ 0}, the stochastic process{Lt : t ≥ 0} has the same distribution (finite-dimensional
distributions) in the two modelsMt/M/st + M andMt/M/∞, i.e.,

{Lt(Mt/M/st + M) : t ≥ 0} d= {Lt(Mt/M/∞) : t ≥ 0} . (2.13)

If we appropriately define the two models on the same sample space, giving both processes the same arrivals,
we can make the two equal with probability 1 as well.

The second elementary (important) observation is that, for both these models, the individual random variables
Lt have the same distribution as the steady-state number in systemL∞ in the corresponding stationary model
with appropriate arrival rate and number of servers.

To state the first of these results, let the service-time random variableS have an exponential distribution with
mean1/µ. First, for eacht,

Lt(Mt/M/∞) d= L∞(M/M/∞) , (2.14)

where the constant arrival rate in the stationaryM/M/∞model depends ont; in particular, the constant arrival
rateλ̂t in theM/M/∞ model is chosen to bêλt ≡ µmt, wheremt is the expected number in system in the

time-dependent infinite-server model in (1.2). SinceS has an exponential distribution,Se
d= S.

Theorem 1 of Eick et al. (1993a) states that, for theMt/M/∞model with time-dependent arrival-rate function,
for eacht, Lt has (exactly) a Poisson distribution with the meanmt in (1.2). On the other hand, in the stationary
M/M/∞ model,L∞ has a Poisson distribution with meanm = λ/µ. Hence, by letting the fixed arrival-rate
in the stationaryM/M/∞ model bêλt above, the limiting steady-state (stationary) number in systemL∞ also
has a Poisson distribution with meanmt.

By essentially the same reasoning, for eacht, we can connect the distribution ofLt to that in a stationary
Erlang-A model:

Lt(Mt/M/st + M) d= L∞(M/M/s + M) , (2.15)

where the constant staffing level in the stationaryM/M/s + M model is chosen to bêst ≡ st and the constant
arrival rate is chosen to bêλt above. ActuallyL∞ in theM/M/s + M model is independent ofs.

2.2.2 The Delay Probability

The virtual waiting timeW q
t and the virtual abandonment probabilityPt(Ab) in the Mt/M/st + M model

are considerably more complicated. Even though it is difficult to evaluate the full distribution ofW q
t , we

can immediately evaluate the virtual delay probability, because it clearly depends only on what the customer
encounters upon arrival at timet. Hence, we have

αt ≡ P (W q
t (Mt/M/st + M) > 0) = P (Lt(Mt/M/st + M) ≥ st)

= P (Poisson(mt) ≥ st) ≈ P

(
N(0, 1) >

st −mt√
mt

)
≡ Φc

(
st −mt√

mt

)
, (2.16)
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whereΦ(x) is again the standard normal cdf,Φc(x) ≡ 1 − Φ(x) is the associatedcomplementary cdfandmt

is the offered load in (1.2). From (2.16), we immediately obtain the square-root staffing rule in (1.1), whereα
is the target delay probability andβ is the associated target grade of service, withα andβ related according to

α = P (N(0, 1) > β) ≡ Φc(β) . (2.17)

As easily can be verified directly, the Garnett functionα(β) in (2.12) reduces to simplyΦc(β), as in (2.17),
whenµ = θ.

When aiming for a certain target delay probabilityα at all times (which is equivalent to aiming for a target
grade of serviceβ at all times), approximation (2.16) dictates that we should choosest according to (1.1) and
(2.17). Since (2.17) agrees with (2.12) in this case (withµ = θ), we have provided theoretical support for the
square-root staffing formula, using the associated stationary model to relateα andβ.

Since the only approximation in (2.16) is the normal approximation for the Poisson distribution, we can an-
ticipate that the approximation will perform extremely well unlessmt is very small. In particular, by this
argument, we haveproved that we do indeed achieveasymptotically time-stable delay probability α in the
Mt/M/st + M model withµ = θ asmt →∞when we staff according to (1.1) and (2.12). As a consequence,
we have given a theoretical explanation for the regularity observed in Figure4.

2.2.3 Approximations for the Waiting-Time Distribution

However, from Figures7 and10, we see that the virtual abandonment probabilityPt(Ab) and the expected
virtual waiting timeE[W q

t ] fluctuate much more than the delay probability. We will explain that greater fluctu-
ation.

We actually can mathematically analyze the time-dependent virtual waiting timeW q
t and the time-dependent

virtual abandonment probabilityPt(Ab). Here is an important initial observation: Conditional on the event that
W q

t > 0, whose probability we have analyzed above,W q
t is distributed (exactly) as the first passage time of

the (Markovian) stochastic process{Lu : u ≥ t} from the initial valueLt encountered at timet down to the
staffing function{su : u ≥ t}, provided that we ignore all future arrivals after timet. In other words,W q

t is
distributed as the first passage time of the pure-death stochastic process with state-dependent death rateµLu

for u ≥ t down from the initial valueLt to the curve{su : u ≥ t}. (Of course,W q
t = 0 if Lt < st.) As a

consequence, the distribution ofW q
t and the value ofPt(Ab) depend on onlyLt and the future staffing levels,

i.e.,{su : u ≥ t}. The time-dependent arrival-rate function contributes nothing further. It is easy to see that we
can establish stochastic bounds on the distribution ofW q

t if the staffing level is monotone after timet.

We can go further if we make approximations: Even though exact relations are difficult to obtain, it is not
difficult to generate very good approximations for the case in which the number of servers tends to be large,
e.g., as in the specific example in the previous subsection. Then,W q

t tends to be very small, so that it is often
reasonable to assume that the staffing level remains constant atst in the time shortly aftert. In other words, to
studyW q

t (Mt/M/st+M) andPt(Ab)(Mt/M/st+M), we make the approximationsu ≈ st for all u > t. We
make this approximation, not because the staffing level should be nearly constant for allu aftert, but because
we think we only need to consider timesu slightly greater thant. We are thinking of applications in which the
time-dependent arrival-rate function is continuous, and the staffing changes relatively slowly.

If the future-staffing-level approximation held as an equality, then we would obtain the following approxima-
tions as equalities:

W q
t ≡ W q

t (Mt/M/st + M) ≈ W q
∞(M/M/s + M) ≡ W q

∞ (2.18)
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and
Pt(Ab) ≡ Pt(Ab;Mt/M/st + M) ≈ P∞(Ab;M/M/s + M) ≡ P∞(Ab) , (2.19)

where the constant staffing level in the stationaryM/M/s + M model on the righthand sides is chosen to
be ŝt ≡ st and the constant arrival rate is chosen to beλ̂t above. Hence, we propose (2.18) and (2.19) as
approximations.

Given approximations (2.18) and (2.19), we can use established results for the stationaryM/M/s + M model,
e.g., as in Garnett et al. (2002) and Whitt (2004, 2005). For example, algorithms to compute the (exact)
distribution ofW q

∞ are given there, including the corresponding conditional distributions obtained when we
condition on whether or not the customer eventually is served.

2.2.4 Asymptotic Time-Stability in the Many-Server Heavy-Traffic Limit

As in the literature for stationary models, e.g., Garnett et al. (2002), important insight can be gained by con-
sidering many-server heavy-traffic limits. That is achieved for ourMt/M/st + M model, by considering a
sequence of models indexed byn, where the arrival-rate function is allowed to depend uponn. We can leave
the service rate and abandonment rate unchanged, independent ofn (andt). Thus, for eachn, we have arrival-
rate functionλn ≡ {λn(t) : t ≥ 0}. As in the stationary context, we want to let the arrival rate increase
asn → ∞. However, now we need to carefully specify how the entire functionλn increases. Since we are
staffing in response to the arrival rate, we do not need to make any direct assumptions about the staffing levels
st. We will assume that we staff according to the square-root-staffing formula (1.1) with a fixed target delay
probabilityα. We then want to determine when that yields asymptotically time-stable performance.

As an initial condition, we want to assume thatλn(t) → ∞ asn → ∞ for eacht, but we will need more than
that. From the analysis so far, it is clear that we needmt,n → ∞, wheremt,n is the time-dependent mean
number in thenth Mt/M/∞ model. However, that actually is not enough to get asymptotic time-stability for
quantities such as the mean virtual waiting timeE[W q

t ] and the virtual abandonment probabilityPt(Ab).

To proceed, we exploit the approximations in (2.18) and (2.19). From approximation (2.19), we obtain the
associated approximation

E[W q
t ] ≡ E[W q

t (Mt/M/st + M)] ≈ E[W q
∞(M/M/s + M)] (2.20)

where the constant staffing level in the stationaryM/M/s + M model on the righthand sides is chosen to be
ŝt ≡ st and the constant arrival rate is chosen to be as in (??).

Now we observe that previous heavy-traffic limits for the Erlang-A model in the QED regime, Theorems 3 and
4 of Garnett et al. (2002), imply that

√
mtPt(Ab)(Mt/M/st + M) → η and

√
mtE[W q

t (Mt/M/st + M)] → η

θ
(2.21)

asmt →∞, where

η ≡ αE[N(0, 1)− β|N(0, 1) > β] = α

(
φ(β)
Φc(β)

− 1
)

> 0 (2.22)

andθ = µ.

The important practical conclusion we deduce from (2.21) is that we see that
√

mtPt(Ab) and
√

mtE[W q
t ]

will be asymptotically constant (time-stable and nondegenerate) asmt increases if we are in the QED regime.
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However, in general, consistent with Figures7 and10, the performance measuresPt(Ab) andE[W q
t ] them-

selves need not be asymptotically time-stable. In order for them to be asymptotically time-stable too, we need
to ensure that the mean functionmt itself is asymptotically time-stable, which requires an extra condition.

We actual see the greatest departures from time-stability ofPt(Ab) andE[W q
t ] for theMt/M/st +M model in

Figures7 and10when the target delay probability is large. In those cases, it is evident that the system actually
should be regarded as in the ED regime, not the QED regime. From Garnett et al. (2002) and Whitt (2004),
we can see the appropriate ED asymptotics, which also suggests that time-stability will not hold for the perfor-
mance measuresPt(Ab) andE[W q

t ], staffing as we have done. Moreover, it suggests that we might consider
a different staffing method designed to achieve time-stable abandonment in the ED regime. In particular, ISA
extends directly by changing the target performance measure from the delay probability to the abandonment
probability. The performance of such alternative iterative-staffing algorithms is a topic for future research.

2.3 The Time-Varying Erlang-C Model

For comparison, we now show the performance of ISA for the same system described in Section2.1 only
without abandonment (infinite patience). As expected, the required staffing levels are higher than with aban-
donment, for all target delay probabilities. For example, forα = 0.5, the maximum staffing level becomes
about 120 instead of 115.

Figure 12:Staffing levels: (1) Targetα = 0.1 (2) Target α = 0.5 (3) Target α = 0.9
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2.3.1 Time-Stable Performance

As before, we achieve accurate time-stable delay probabilities when we apply the ISA.

The service gradeβ is stabilizing as well, only in much slower rate, as can be seen below for largeα’s.

Without abandonment the system is more congested, but still congestion measures remain relatively stable.
That is just as we would expect, since the time-dependent Erlang-C model is precisely the system analyzed in
Jennings et al. (1996).

Figure17 shows that here the time until system reaches (dynamic) steady-state is much longer compared to a
system with abandonment. In fact, steady-state was not yet reached after 24 time-units in the case above.

2.3.2 Validating the Square-Root-Staffing Formula

Just as for the time-varying Erlang-A model, we want to validate the square-root-staffing formula in (1.1). We
thus repeat the various experiments we did in Section2.1.
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Figure 13:Delay probability summary for the Erlang-C example
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Figure 14:Implied service gradeβ summary for the Erlang-C example

-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Target Alpha=0.1 Target Alpha=0.2 Target Alpha=0.3 Target Alpha=0.4 Target Alpha=0.5
Target Alpha=0.6 Target Alpha=0.7 Target Alpha=0.8 Target Alpha=0.9

Recall that, for thestationaryM/M/s queue, the conditional waiting-time(Wq | Wq > 0) is (exactly) expo-
nentially distributed. As seen in Figure17, the empirical conditional waiting-time distribution given wait, in
our time-varyingqueue and overall customers, also fits the exponential distribution well . The mean of the
plotted exponential distribution was taken to be the overall average waiting time of those who were actually
delayed during[0, T ].

Here, the relation betweenα andβ is compared with theHalf-Whitt function from Halfin and Whitt (1981),
namely,

P{delay} ≡ α ≡ α(β) ≈
[
1 + β · Φ(β)

φ(β)

]−1

, 0 < β < ∞ , (2.23)

whereφ is again the pdf) associated with the standard normal cdfΦ. The Half-Whitt function in (2.23) is
obtained from the Garnett function in (2.12) by lettingθ → 0.

Just as we use the Garnett function to relate the target delay probabilityα to the grade of serviceβ in the
square-root-staffing formula in (1.1) for theMt/M/st + M model, so we use the Half-Whitt function to relate
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Figure 15:Utilization summary for the Erlang-C example
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Figure 16:Tail probability summary for the Erlang-C example
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Figure 17:Target α=0.5: (1) Congestion (2) Waiting time given wait distribution
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α to β in the square-root-staffing formula in (1.1) for theMt/M/st model. And that essentially corresponds to
the refinement performed in Section 4 of Jennings et al. (1996). The results in Figure18are again remarkable.
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Figure 18:Comparison of empirical results with the Halfin-Whitt approximation
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2.4 Benefits of Taking Account of Abandonment

The following graphs show the benefit of staffing a system taking account of abandonment (assuming that it
in fact occurs). When compared to the model without abandonment, abandonment in the model reduces the
required staff. We show the difference between staffing levels for the two models introduced in§2.1and§2.3,
in the three regimes of operation:QD, QEDandED.

Figure 19:Staffing levels: (1)α = 0.1 (2) α = 0.5 (3) α = 0.9

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Arrived Staffing (θ=0) Staffing (θ=1)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Arrived Staffing (θ=0) Staffing (θ=1)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Arrived Staffing (θ=0) Staffing (θ=1)

It is natural to quantify the savings of labor by the area between the curves. In this case, the savings in labor,
had one usedθ = 1, is 46.5 time units whenα = 0.1, 113.3 whenα = 0.5, and 256.4 whenα = 0.9. It
may perhaps be better to quantify savings by looking at the savings of labor per shift. Dividing the saving
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in time-units by the number of time-units they are taken over, we come up with savings of about 2, 5 and 12
servers per shift, forα = 0.1, 0.5, 0.9 respectively. The labor savings increases asα increases.

3 The Simulation-Based Iterative-Staffing Algorithm

In this section we describe the simulation-based interactive-staffing algorithm (ISA). As indicated before, we
determine time-dependent staffing levels aiming to achieve a given constant probability of delay at all times. In
the process of applying the ISA, we directly confirm that our goal is being met. Indeed, the goal will necessarily
be met, to a specified tolerance, if the algorithm converges. We then can confirm that other performance
measures, such as server utilization, tail probabilities, average waits and abandonment probabilities, remain
stable as well.

3.1 The ISA

For our implementation of the algorithm, we assume that we have anMt/G/st +G ≡ Mt/GI/st +GI model
with independent sequences of IID service times and IID times to abandon, which are independent of the arrival
process, having general distributions, and a nonhomogeneous Poisson arrival process, which is fully specified
by its arrival-rate function{λ(t); 0 ≤ t ≤ T}. (It will be evident that our approach extends to more general
models.) For application of our algorithm, assuming that we use theMt/G/st+G model, there are issues about
model fitting. For discussion about fitting non-homogeneous Poisson arrival processes, see Massey, Parker and
Whitt (1996).

To start, we fix an arrival-rate function, a service-time distribution, a time-to-abandon (patience) distribution
(when relevant) and a time-horizon[0, T ]. For any random quantity of interest, letXn(t) denote the value at
time t in thenth iteration, fort ∈ [0, T ] (the given time horizon). Although our algorithm is time-continuous,
we make staffing changes only at discrete times. That is achieved by dividing the time-horizon into small
intervals of length∆. In all experiments presented in this paper, we use∆ = 0.1. We then let the number of
servers be constant within each of these intervals.

For any specified staffing function, the system simulation can be performed in a conventional manner. We
generate a continuous-time sample path for the number in system by successively advancing the next generated
event. The candidate next events are of course arrivals, service completions, abandonments and ends of shifts
(the times at which the staffing function is allowed to change). For non-stationary Poisson arrival process, we
can generate arrival times by thinning a single Poisson process with a constant rateλ∗ exceeding the maximum
of the arrival-rate functionλ(t) for all t, 0 ≤ t ≤ T . Then an event in the Poisson process at timet (a potential
arrival time) is in an actual arrival in the system with probabilityλ(t)/λ∗, independent of the history up to that
time; see Section 5.5 of Ross (1990). Alternatively, the times between successive arrivals can be generated as
independent events, according to probability distributions, determined by the last customer arrival time, and
adjusted if necessary at ends of shifts.

In this section, letsn(t) be the staffing level at timet in iterationn for 0 ≤ t ≤ T . LetLn(t) denote the random
total number of customers in the system at timet, under this staffing function. We estimate the distribution of
Ln(t) for eachn andt by performing multiple (5000) independent replications. We think of starting off with
infinitely many servers. Since this is a simulation, we choose a large finite number, ensuring that the probability
of delay (i.e., of having all servers busy upon arrival) is negligible for allt. For the two examples in Section 2,
it suffices to lets0(t) = 200 for all t.

The algorithm iteratively performs the following steps, until convergence is obtained. Here, convergence means
that the staffing levels do not change much after an iteration. (Practically, they are allowed to change by some
thresholdτ , which we take to be1.)
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3.1.1 The Steps of ISA

1. Given theith staffing function{si(t) : 0 ≤ t ≤ T}, evaluate the distribution ofLi(t), for all t, using
simulation.

2. For eacht, 0 ≤ t ≤ T , let si+1(t) be the least number of servers so that the delay-probability constraint is
met at timet; i.e., let

si+1(t) = arg min {c ∈ N : P{Li(t) ≥ c} < α} . (3.24)

3. If there is negligible change in the staffing from iterationi to iterationi + 1, then stop; i.e., if

‖si+1(·)− si(·)‖∞ ≡ max {|si+1(t)− si(t)| : 0 ≤ t ≤ T} ≤ τ , (3.25)

then stop and letsi+1(·) be the proposed staffing function. Otherwise, advance to the next iteration, i.e., replace
i by i + 1 and go back to step 1. (We letτ = 1.)

3.1.2 Implementation and Convergence

For further discussion, let∞ denote the index of the last iteration of ISA, so thats∞(t) denotes the final
staffing level at timet andL∞(t) denotes the number in system at timet with that staffing function.. Then,
if the algorithm converges, it converges to a staffing functions∞(·) for which P{L∞(t) ≥ s∞(t)} ≈ α,
0 ≤ t ≤ T .

Our implementation of ISA was written in C++. For the special case of the MarkovianMt/M/st + M model,
we can rigorously establish convergence of the algorithm, as we explain in Section5. That proof shows conver-
gence to a limit, but the limit does not necessarily meet the target delay probability; it is a best possible staffing.
Experience indicates that the algorithm consistently converges and does so relatively rapidly. The number of
iterations required depends on the parameters, especially the ratior ≡ θ/µ. If r = 1, corresponding to an
infinite-server queue as noted in Section2.2, then no more than two iterations are needed, since the distribution
of the number in system does not depend upon the number of servers. Asr departs from1, the number of
required iterations typically increases. For example, whenr = 10, the number of iterations can get as high as
6 − 12. Whenr is very small and the traffic intensity is very high, so that we are at the edge of stability, the
number of iterations can be very large. For more discussion, see Section5.

3.2 Performance Measures

Throughout this paper we present several performance measures. Their method of estimation will now be
described. Most measures are time-varying. We define them for each time-intervalt, and graph their values as
function overt ∈ [0, T ]. Other measures are global. They are calculated either as total counts (e.g. fraction
abandoning during[0, T ]), or via time-averages. We usedT = 24 in all our simulations.

For replicationk, the delay probability in interval t is estimated by the fraction of customers who are not
served immediately upon arrival, out of all arriving customers during thet time-interval. Namely, for thekth

replication, the estimator is:

α̂k(t) =
∑

i 1{customeri enteredqueueat interval t}∑
i 1{customeri enteredsystemat interval t}

≡ Q̂k(t)
Ŝk(t)

. (3.26)
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We obtain the overall estimator̂α(t) by averaging over all replications. That was found to be essentially the
same as (identical to for our purposes) the ratio of the average ofQ̂k(t) over all replications to the average of
Ŝk(t).

For replicationk, the estimator of theaverage waiting timein interval t is defined in an analogous way by

ŵk(t) =
∑

i wi1{customeri enteredsystemat interval t}∑
i 1{customeri enteredsystemat interval t}

(3.27)

wherewi is the total waiting time of customeri. Again we obtain the overall estimator̂w(t) by averaging over
all replications.

Theaverage queue lengthin interval t is taken to be constant over the time-interval. The queue length is also
averaged over all replications. By thetail probability in interval t we mean specifically the probability that
queue size is greater than or equal to 5 (taking5 to be illustrative). Specifically, the indicators1{L∞(t) −
s∞(t) ≥ 5} are averaged over all replications.

For replicationk, the estimator of theserver utilization in interval t is the fraction of busy-servers during the
time-interval, accounting for servers who are busy only a fraction of the interval:

ρ̂k(t) =
∑s∞(t)

i=1 bi

s∞(t) ·∆
(3.28)

wherebi denotes the busy time of serveri in intervalt. Again, we obtain the overall estimatorρ̂(t) by averaging
over all replications.

4 Additional Examples

4.1 The Challenging Example

In this section, we consider the “challenging example” presented in Jennings et al. (1996). It is a time-varying
Erlang-C model (no abandonment), with exponential service times having mean 1 and a nonhomogenous Pois-
son arrival process with the sinusoidal arrival-rate functionλ(t) = 30 + 20 · sin(5 · t). We want to see how
ISA performs on this same example. Figures20 and21 show that ISA also achieves time-stable performance
for this example, for the full range of target delay probabilities, ranging from0.1 to 0.9, just as before.

We now want to compare the empirical results, paralleling Figures11and18. We do so for this example below
in Figure22. Again the results are spectacular. In Figure22 we use the Half-Whitt function, just as in Figure
18. We also include the normal tail probability in (2.17), because that is the direct normal approximation used
by Jennings et al. (1996), before they apply their refinement in their Section 4. That refinement is equivalent to
working directly with the Half-Whitt function, as we propose here.

4.2 TheMt/M/st + M Model with More and Less Patient Customers

We now return to the time-varying Erlang-A model (Mt/M/st + M ) considered in Section2, except we
change the patience parameter, i.e., the individual abandonment rateθ. We consider two new cases:θ = 0.2;
then customers arevery patient, since they are willing to wait, on average, five times the average service time;
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Figure 20:Delay probability summary for the Challenging example
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Figure 21:Implied service gradeβ summary
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andθ = 5.0; then customers arevery impatient, since they are willing to wait, on average, only one-fifth of
the average service time.

In both cases, the target delay probability was achieved quite accurately and the service gradeβ was stabilized,
just as in the previous graphs. We compare the staffing levels for these alternative environments, for the three
regimes QD (α = 0.1), QED (α = 0.5), and ED (α = 0.9) in Figure23below. We compare the time-dependent
abandonmentPt(Ab) in these two scenarios in Figure24.

We compare the empirical(α, β) pairs produced by ISA to the Garnett function in (2.12) for these two cases in
Figure25. We are no longer surprised to see that the fit is excellent.

From all our studies of ISA, we conclude that for the time-varying Erlang-A model we can always use the
square-root-staffing algorithm in (1.1), obtaining the required service gradeβ from the target delay probability
α by using the inverse of the Garnett function in (2.12), which reduces to the Half-Whitt function in (2.23)
whenθ = 0. To see how the Garnett functions look, we plot the Garnett function for several values of the ratio
r ≡ θ/µ in Figure26below.
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Figure 22:Comparison of empirical results with the Halfin-Whitt and Normal approximation
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Figure 23:Comparison of staffing levels forvery patient and very impatient environments
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4.3 Benefits of Taking Account of Abandonment Again

Following§2.4, we now expand our comparison of staffing levels for (im)patience distribution with parameters
θ = 0, 1, 5, 10. Clearly, the required staffing level decreases asθ increases, bringing additional savings. In
Figure 27 we show the comparison for delay probabilityα = 0.5, which we consider to be a reasonable
operational target.

Here, the labor savings is: 113.3 time units forθ = 1, 270 time units forθ = 5, and 386 time units forθ = 10.
The corresponding savings in workers per shift are about 5, 12 and 18 servers, forθ = 1, 5, 10, respectively.
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Figure 24:Abandon probability: (1) θ=5 (2)θ=0.2
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Figure 25:Comparison of the empirical results with the Garnett approximation
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4.4 A Practical Example

In this section we consider the practical case that was first described in Figure1. To make this example more
realistic than previous examples, we decrease the mean service time from1 hour to6 minutes. That is achieved
by lettingµ = 10. Corresponding to that, we letθ = 10, so that we haveθ = µ as in Section2.1. Results are
shown below.

At first, we are struck by the observation that the algorithm is not as successful as before, because the target
delay probability is not achieved accurately at the beginning and at the end of the day. Moreover, not all
performance measures are stable over the entire day. However, this bad behavior is quite clearly due to the
extremely low arrival rates that prevail at the beginning and the end of the day. When the load is small, the
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Figure 26:The Halfin-Whitt/ Garnett functions
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Figure 27:Staffing under various (im)patience parameters
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addition or removal of a single server while greatly affect the delay probability. On the positive side, note that
there is a clear time-interval - from 7 to 17, in which performance measures are very stable, and when operating
under reasonable service grade (up to delay probability of 0.5), performance measures are varying in quite a
small range, that would look appealing to most system designers.
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Figure 28:Delay probability summary for the practical example
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Figure 29:Implied service gradeβ summary for the practical example
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In Figures32, 33, 34 we describe the performance of ISA in the three regions: QD (α = 0.1), QED (α = 0.5)
and ED (α = 0.9). There are several important observations to make here: First, note that in all cases the
(infinite-server) offered loadmt falls almost directly on top of the PSA offered loadλ(t)/µ, showing that in
this case the square-root-staffing rule (1.1) will perform the same using the infinite-server offered load and the
PSA offered load.

ISA does not differ much from PSA. However, for the time-varying Erlang-A model, staffing using PSA is
actually not routine.

The three regimes of operation are clearly revealed by the average waiting time: In theQD regime the average
waiting time is relatively negligible; in theQED regime average waiting time is in seconds; and in theED it
is in minutes. Figure33 shows, once again, that the staffing falls right on top of the offered load in the QED
regime. Figure35 shows that the excellent matching between the Garnett function and the empirical results is
preserved also in this example.
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Figure 30:Abandon probability summary for the practical example
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Figure 31:Utilization summary for the practical example

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Target Alpha=0.1 Target Alpha=0.2 Target Alpha=0.3 Target Alpha=0.4 Target Alpha=0.5
Target Alpha=0.6 Target Alpha=0.7 Target Alpha=0.8 Target Alpha=0.9

4.5 Non-Exponential Service Times

In addition to the time-varying Erlang-C and Erlang-A examples, we also ran experiments with different
service-time distributions, such as deterministic and log-normal. The ISA was successful in achieving the
desired target delay probability, and results showed time-stable performance, compatible with stationary the-
ory, similar to here. For the case of deterministic service times, theory was taken from Jelenkovic, Mandelbaum
and Momcilovic (2004).

5 Algorithm Dynamics

In this section we discuss the dynamics of the iterative-staffing algorithm for theMt/M/st+M model. We first
relate an empirical observation about the way the algorithm converges to the limiting staffing functions∞(·)
and then afterwards we give a theoretical explanation.
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Figure 32: Target α=0.1: (1) Staffing level, offered load and arrival function, (2) average queue and
average waiting time (in average service time)
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Figure 33: Target α=0.5: (1) Staffing level, offered load and arrival function, (2) average queue and
average waiting time (in average service time)
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Figure 34: Target α=0.9: (1) Staffing level, offered load and arrival function, (2) average queue and
average waiting time (in average service time)
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In particular, we observed that the way the staffing functions converge to the limit depends on the ratior ≡ θ/µ.
Whenever the (im)patience rate is less than the service rate (r < 1), we encounteroscillating dynamicsof the
staffing level during the algorithm; whenever the (im)patience rate is greater than the service rate (r > 1), we
encountermonotone dynamicsof the staffing level during the algorithm.
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Figure 35:Comparison of empirical results with the Garnett approximation
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With monotone dynamics, when starting withs0(t) ≡ ∞, sn(t) is monotone decreasing inn for all t, i.e. the
following prevails:

sn(t) ≤ sm(t) for all m < n . (5.29)

An example of the monotone dynamics is shown in Figure36, where staffing levels are shown for the first three
iterations of the algorithm for the case of arrival functionλ(t) = 100 + 20 · sin(t), service times exponential
having mean 1, and impatience times that are exponential having mean 0.1 (r = 10).

Figure 36:Staffing levels in the1st, 2nd and last iterations. µ=1,θ=10.Target Alpha=0.5
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In contrast, withoscillating dynamics, sn(t) is oscillating for allt; i.e. there exist 2 subsequences{sk(t)}∞k=2n

and{sl(t)}∞l=2n+1, such thats2n(t) ↓ s∞(t) ands2n+1(t) ↑ s∞(t). Within the oscillating framework, there
is monotonicity. An example of the oscillating dynamics can be viewed in Figure37, where staffing levels are
shown for the first three iterations for the same case except there is no abandonment (θ = 0 andr = 0).

Figure 37:Staffing levels in the1st, 2nd and last iterations. µ=1,θ=0
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For theMt/M/st + M model, the algorithm dynamics can be explained by stochastic-order relations for the
time-varying birth-and-death process{Lt : t ≥ 0}. For all systems, the arrival process is the same. However,
the death rates depend systematically on the number of serversst. Whenr > 1 (r < 1), then the death
rates at timet decrease (increase) asst increases. Hence, if we disregard statistical error, caused by having to
estimate the delay probabilities associated with each staffing function, we can actually prove that the algorithm
converges for theMt/M/st + M model. To do so, we use sample-path stochastic order, as in Whitt (1981).
We only need ordinary stochastic-order for each timet, but in order to get that, we need to properly address
what happens before timet as well.

Here is thekey stochastic-order propertyfor theMt/M/st +M model: Ifs1(t) ≤ s2(t) for all t, 0 ≤ t ≤ T ,
andr > 1, then

{L1(t) : 0 ≤ t ≤ T} ≤st {L2(t) : 0 ≤ t ≤ T} , (5.30)

where≤st denotessample-path stochastic order, i.e.,

E [f ({L1(t) : 0 ≤ t ≤ T})] ≤st E [f ({L2(t) : 0 ≤ t ≤ T})] (5.31)

for all nondecreasing real-valued functionsf on the space of sample paths. The ordering is reversed if instead
r < 1.

The ordering of the death rates in the two birth-and-death processes makes it possible to achieve the sample-
path ordering. Indeed, that can be accomplished (the relation (5.30) can be rigorously justified) by constructing
special versions of the two stochastic processes on the same underlying probability space so that the sample
paths are ordered with probability 1. As discussed in Whitt (1981), and proved by Kamae, Krengel and O’Brien
(1978), that special construction is actually equivalent to the sample-path stochastic ordering in (5.30).

The sample-path ordering obtained ensures that a departure occurs in the lower process whenever it occurs in
the upper process and the two sample paths are equal. As indicated above, the two processes are given identical
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arrival streams. Then we construct all departures (service completions or abandonments) from those of the
lower process at epochs when the two sample paths are equal. Suppose that at timet the sample paths are
equal:L1(t) = L2(t) = k. Then, at thatt, the death rates in the two birth and death processes are necessarily
ordered byδ1(k) ≥ δ2(k). We only let departures occur in process2 when they occur in process1, so the two
sample paths can never cross over. When a departure occurs in process1 with both sample paths in statek, we
let a departure also occur in process2 with probabilityδ2(k)/δ1(k), with no departure occurring in process2
otherwise. This keeps the sample paths ordered w.p. 1 for allt. At the same time, the two stochastic processes
individually have the correct finite-dimensional distributions. The construction is just like the thinning of a
Poisson process used in the simulation of a nonhomogeneous Poisson process.

As a consequence of the sample-path stochastic order, we get ordinary stochastic order

L1(t) ≤st L2(t) for all t , (5.32)

where now≤st denotes conventional stochastic order for real-valued random variables, just as in Chapter 1
of Ross (1996); also see M̈uller and Stoyan (2002). We only need the more elementary stochastic order in
(5.32), but we use the more sophisticated sample-path stochastic order in (5.30) to get it. The stochastic order
is equivalent to the tail probabilities being ordered; i.e., (5.32) is equivalent toP (L1(t) > x) ≤ P (L2(t) > x)
for all x, which implies the ordering for the staffing functions at timet. In particular, suppose that

P (L2(t) ≥ s2(t)) ≤ α < P (L2(t) ≥ s2(t)− 1) . (5.33)

Since
P (L1(t) ≥ s2(t)) ≤ P (L2(t) ≥ s2(t)) ≤ α , (5.34)

necessarilys1(t) ≤ s2(t).

Case 1: r > 1. For s0(t) = ∞, we necessarily start withs0(t) > s1(t) for all t, which produces first
L1(t) ≤st L0(t) and thens2(t) ≤ s1(t) for all t. Continuing, we getLn(t) stochastically decreasing inn and
sn(t) decreasing inn, again for allt. Since the staffing levels are integers, if we use only finitely many values
of t, as in our implementation, then we necessarily get convergence in finitely many steps.

Case 2: r < 1. For s0(t) = ∞, we again necessarily start withs0(t) > s1(t) for all t. That produces first
L1(t) ≥st L0(t) and thens0(t) ≥ s2(t) ≥ s1(t) for all t. Afterwards, we getL1(t) ≥st L2(t) ≥st L0(t)
ands0(t) ≥ s2(t) ≥ s3(t) ≥ s1(t) for all t. Continuing, we getL2n(t) stochastically increasing inn, while
L2n+1(t) stochastically decreases inn, for all t. Similarly, s2n(t) decreases inn, while s2n+1(t) increases in
n, for all t. We thus have convergence, to possibly oscillating limits. Since the staffing levels are integers, if
we use only finitely many values oft, as in our implementation, then we necessarily get convergence in finitely
many steps.

We also observed that thetarget delay probability α strongly influenced the dynamics. In particular, higher
values ofα cause larger oscillations in the oscillating case, and slower convergence to the limit in all cases.
This phenomenon is illustrated in Figures38 and39. The staffing levels in the first two iterations, which form
the range of the oscillating dynamics, are plotted for both targetα = 0.1 (Figure38) andα = −0.5 (Figure39)
for the case of arrival functionλ(t) = 100 + 20 · sin(t), service times are exponential having mean 1, and no
abandonment.

Finally, we also observed atime-dependent behavior in the convergenceof sn(t). We observed a greater gap
as time increased. For example, let

It ≡ inf {j : si(t) = sj(t) for all i ≥ j} . (5.35)

We observed thatIt2 ≥ It1 for all t2 > t1. An illustration can be viewed in Figure40. This time-dependent
behavior is understandable, because the gap between two different staffing levels persists across time, so that
there is a gap in the death rates at eacht. Hence, ast gets larger, the two processes can get further apart. Thus
the gap can first decrease more at the left end of the time horizon. When it reaches the limit at the left, the gap
will still decrease more to the right.
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Figure 38:Range of staffing level for targetα=0.1
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Figure 39:Range of staffing level for targetα=0.5

Target Alpha=0.5
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Figure 40:Evolution of convergence during algorithm run-time
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6 Summary and Directions for Future Research

We have developed an algorithm (ISA) that generates staffing functions for which performance is stable in the
face of time-varying loads. The results have been found to be remarkably robust, covering the ED, QD and
QED operational regimes. Here are some natural “next-steps”:

1. As discussed in Section2.2, it remains to explore alternative staffing methods to achieve better time-stability
of abandonment probabilities and expected waiting times, especially under heavy loads.

2. A great advantage of ISA is its generality. However, it remains to explore the ISA for additional queueing
systems. We already have partial (successful) results for deterministic and log-normal service-time distribu-
tions. It remains to consider other service-time distributions for the same models; it remains to consider other
models. Some other models to analyze appear in Mandelbaum et al. (1998), e.g., queues with retrials and
priority classes.

3. We have seen that ISA usually converges quite quickly, but it remains to analyze convergence of the algorithm
more thoroughly. We have noted that the monotone and oscillating convergence, displayed in Section 7, can be
explained via stochastic-ordering, but that depends strongly on theMt/M/st + M model structure. Even for
that model, some of the phenomena have not yet been adequately explained.

4. For one special case in Section2.2, we have shown that our staffing methods are asymptotically correct
as the scale increases. It would be nice to do that much more generally. It is natural to do that within the
mathematical framework of service networks, as in Mandelbaum et. al.(1998). We would like to prove much
more generally that, under proper scaling, the actual time-dependent probability of delay indeed converges to
the specified target as scale increases.
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7 Appendix

In this appendix we present some additional material supplementing the theoretical motivation in Section 2.2.

7.1 A Uniform-Acceleration Perspective

We can create a rigorous framework for this square root rule by applying the asymptotic analysis of uniform
acceleration to multi-server queues with abandonment. The underlying intuition for optimal staffing is that for
large systems we staff exactly for the number of customers requesting service so as a first order effect, aban-
donment simply does not happen. Thus the associated fluid model should not be a function of any abandonment
parameters. The effects of abandonment appear as second order phenomena at best and are found in the asso-
ciated diffusion model. Moreover, we can show that for the special case ofθ = µ, our limiting diffusion gives
us exactly the square-root-staffing formula.

Let {Lη | η > 0 } by a family of multi-server queues with abandonment indexed byη, whereθη = θ and
µη = µ or the service and abandonment rates are independent ofη, but

λη
t = η · λt and sη

t = η · s(0)
t +

√
η · s(1)

t + o(
√

η ). (7.36)

Unlike the uniform acceleration scalings that lead to the pointwise stationary approximation, this one is inspired
by the scalings of Halfin and Whitt. Here we are scaling up the arrival rate (representing “demand” for our call
center service) and the number of service agents (representing “supply” for our call center service) by the same
parameterη. By limit theorems developed in Mandelbaum, Massey and Reiman, we know that such a family
of processes have fluid and diffusion approximations asη →∞. We want to restrict ourselves to a special type
of growth behavior for the number of servers.

Theorem 1 Consider the family of multiserver queues with abandonment having the growth conditions for its
parameters as defined above. If we set

sη
t = η ·mt +

√
η · s(1)

t + o(
√

η ) (7.37)

where
d

dt
mt = λt − µt ·mt, (7.38)

then
lim

η→∞
P (Lη(t) ≥ sη

t ) = P
(
L(1)(t) ≥ s

(1)
t

)
, (7.39)

where the diffusionL(1) =
{

L(1)(t) | t ≥ 0
}

is the unique sample path solution to the integral equation

L(1)(t) = L(1)(0) +
∫ t

0
(µu − θu) · (s(1)

u )−du

−
∫ t

0

(
θu · L(1)(u)+ − µu · L(1)(u)−

)
du + B

(∫ t

0
(λu + µu ·mu)du

)
(7.40)

and the process{B(t) | t ≥ 0 } is standard Brownian motion.

Thus we can reduce the analysis of the probability of delay (approximately) to the analysis of a one-dimensional
diffusion L(1). Notice that sinceλt andµt are given, then so ismt. Thus server staffing for this model can
only be controlled by the selection ofs(1). Also notice that the diffusionL(1) is independent ofs(1) as long as

θt = µt or s
(1)
t ≥ 0 for all time t ≥ 0.

For the special case ofµ = θ we can give a complete analysis of the delay probabilities that gives the server
staffing heuristic of Jennings, Mandelbaum, Massey and Whitt.
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Corollary 2 If θ = µ andsη
t = η ·mt + Φ−1(1− α) ·√ η ·mt , where

1√
2π

∫ ∞

Φ−1(1−α)
e−x2/2dx = α, (7.41)

then we have
lim

η→∞
P (Lη(t) ≥ sη

t ) = α (7.42)

for all t > 0.

Unfortunately,L(1) in general isnot a Gaussian process. This also means that the following set of differential
equations are not autonomous.

Corollary 3 The differential equation for the mean ofL(1) is

d

dt
E

[
L(1)(t)

]
= (µt − θt) · (s(1)

t )− − θt · E
[
L(1)(t)+

]
+ µt · E

[
L(1)(t)−

]
. (7.43)

SinceL(1)(t)+ · L(1)(t)− = 0, the differential equation for the variance ofL(1) equals

d

dt
Var

[
L(1)(t)

]
= −2θt · Var

[
L(1)(t)+

]
− 2µt · Var

[
L(1)(t)−

]
(7.44)

−2(θt + µt) · E
[
L(1)(t)+

]
· E

[
L(1)(t)−

]
+ λt + µt ·mt.

Proof of Theorem1: Define the functionfη
t (·), where

fη
t (x) = η · λt − θt · (η · x− sη

t )
+ − µt · (η · x ∧ sη

t ). (7.45)

Now we have

fη
t (x) = η · λt − θt · (ηx− sη

t )
+ − µt · ((ηx) ∧ sη

t )
= η · λt − η · θt · x + (θt − µt) · ((η · x) ∧ sη

t ) .

However

(η · x) ∧ sη
t = (η · x) ∧

(
η ·mt +

√
η · s(1)

t + o(
√

η )
)

= 1{x<mt} · (η · x + o(
√

η )) + 1{x=mt} · (η ·mt −
√

η · (s(1)
t )− + o(

√
η ))

+1{x>mt} · (η ·mt −
√

η · s(1)
t + o(

√
η ))

= η · (x ∧mt) +
√

η ·
(
(s(1)

t )+1{x>mt} − (s(1)
t )−1{x≥mt}

)
+ o(

√
η )

combining these results gives us the asymptotic expansion

fη
t (x) = η ·

(
λt − θt · (x−mt)+ − µt · (x ∧mt)

)
+
√

η · (θt − µt)
(
(s(1)

t )+ · 1{x>mt} − (s(1)
t )− · 1{x≥mt}

)
+ o(

√
η )

asη →∞.

It follows thatfη
t = η · f (0)

t +
√

η · f (1)
t + o(

√
η ), where

f
(0)
t (x) = λt − θt · (x−mt)+ − µt · (x ∧mt) (7.46)
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and
f

(1)
t (x) = (θt − µt) ·

(
(s(1)

t )+ · 1{x>mt} − (s(1)
t )− · 1{x≥mt}

)
. (7.47)

Now
Λf

(0)
t (x; y) = (θt − µt) ·

(
y · 1{x<mt} − y− · 1{x=mt}

)
− θt · y, (7.48)

hence we have
Λf

(0)
t (mt; y) = µt · y− − θt · y+ and f

(1)
t (mt) = (µt − θt)(s

(1)
t )− (7.49)

whereΛg(x; y) = g′(x+)y+ − g′(x−)y− is thenon-smooth derivativeof any functiong that has left and right
derivatives.

Finally, we have

L(1)(t) = L(1)(0) +
∫ t

0

(
Λf

(0)
t

(
mu;L(1)(u)

)
+ f

(1)
t (mu)

)
du (7.50)

+B

(∫ t

0
(λu + µu ·mu)du

)
= L(1)(0)−

∫ t

0

(
θu · (L(1)(u)+ + (s(1)

u )−)− µu · (L(1)(u)− + (s(1)
u )−)

)
du (7.51)

+B

(∫ t

0
(λu + µu ·mu)du

)
.

7.2 Case 1:θt = µt

We then have

L(1)(t) = L(1)(0)−
∫ t

0
µu · L(1)(t)du + B

(∫ t

0
(λu + µu ·mu)du

)
. (7.52)

It follows thatL(1) is a zero mean Gaussian process (ifL(1)(0) = 0) and

d

dt
Var

[
L(1)(t)

]
= −2µt · Var

[
L(1)(t)

]
+ λt + µt ·mt. (7.53)

Moreover, ifm0 = Var
[
L(1)(0)

]
, thenVar

[
L(1)(t)

]
= mt for all t ≥ 0.

7.3 Case 2:θt = 0

We then have

L(1)(t) = L(1)(0) +
∫ t

0
µu ·

(
L(1)(u)− + (s(1)

u )−
)

du + B

(∫ t

0
(λu + µu ·mu)du

)
. (7.54)

with
d

dt
E

[
L(1)(t)

]
= µt ·

(
E

[
L(1)(t)−

]
+ (s(1)

t )−
)

(7.55)

and

d

dt
Var

[
L(1)(t)

]
= −2µt ·

(
Var

[
L(1)(t)−

]
+ E

[
L(1)(t)+

]
· E

[
L(1)(t)−

])
+ λt + µt ·mt. (7.56)
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