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Effective approximations are developed for the blocking probability in a general stationary loss model with

dependence among successive service times as well as among successive interarrival times by exploiting

heavy-traffic limits for the steady-state number of busy servers in the associated infinite-server model with

the same arrival and service processes. In addition, a new heavy-traffic approximation is developed for the

long-run proportion of time that all servers are busy. These new approximations are then combined to develop

effective approximations for the separate blocking probabilities of individual arrival streams in multi-class

loss models.
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1. Introduction

In this paper we study stochastic loss models (finite-server queues with no waiting space) in which

arrivals finding all servers busy are blocked and lost. These models were first studied by Erlang

almost 100 years ago to set capacities in telephone systems, resulting in the classical Erlang loss

formula for the probability that an arrival is blocked when arrivals follow a Poisson process and

service times are independent and identically distributed (i.i.d.). Since then, loss models have

been used extensively in telecommunications, and the theory has been substantially developed by

mathematicians and engineers in that field. The applications are of course not limited to just one

area; recent applications include health care, e.g., to model ambulance deployment by Restrepo et

al. (2009) and hospital beds by de Bruin et al. (2010), and revenue management, e.g., to model

reusable resources such as hotel rooms and rental vehicles by Levi and Radonvanovic (2010).

In this paper, we study the very general non-Markovian stationary G/G/s/0 loss model, allowing
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non-exponential interarrival-time and service-time distributions and dependence among successive

interarrival times and among successive service times. Throughout we assume that the service

times are independent of the arrival process. We include an I if either the interarrival times or

service times are i.i.d. Since the steady-state distribution of the number of busy servers in the

MI/GI/s/0 loss model, having Poisson arrival process and i.i.d. service times (usually called

M/G/s/0, assuming the extra independence), is insensitive to the service-time distribution beyond

its mean, an extension to general service-time distributions alone is not needed. The GI/MI/s/0

loss model with non-Poisson renewal arrival process and i.i.d. exponential service times has also

been thoroughly analyzed, e.g, by Cohen (1957) and Takacs (1956), but any of the other model

generalizations tends to alter the performance and make exact analysis prohibitively difficult. In

particular, it is well known that a non-Poisson arrival process alters the blocking probabilities even

with i.i.d. exponential service times (for both the GI/MI/s/0 and M/MI/s/0 models). Similarly,

we will show that dependent service times alters the blocking probabilities even for the MI/M/s/0

model with a Poisson arrival process and exponential service times.

The first main contribution here is the inclusion of dependent service times in the loss model.

Dependence among service times can occur in a variety of settings. For example, response times

for a base of ambulances can be influenced by previous responses if an ambulance is sent directly

from one site to the next rather than returning to the base. Consider also the management of a

reusable resource like hotel rooms where multiple reservations may be for some major event located

near the hotel and are therefore similar in length. With dependent service times arising in many

situations, it is important to understand and be able to predict the impact of that dependence on

system performance.

There is a long history of studies developing approximations for the blocking probability in

loss models with general non-Poisson arrival processes, primarily motivated by the bursty arrival

processes arising when overflows from one or more loss systems are forwarded to receive service

at a secondary loss system; e.g., see Wilkinson (1956) and Cooper (1981). Such overflows received

considerable attention because they commonly occur in alternative routing schemes, in which traffic
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that finds no capacity on an initial path is allowed to seek capacity on a succession of alternative

paths, and because that was found to have a big impact on the blocking. Since the overflows only

occur when the initial system is full, they tend to occur in clumps, making the overflow process

more “bursty” than a Poisson process. An effective early approximation scheme is the equivalent

random method, described in Cooper (1981), which makes use of the specific structure of an

overflow process of a Poisson process to a secondary system with service times distributed the

same as in the initial system. It is evident that overflows will play a key role in new applications

as well. For example, hotel booking services suggest alternative hotels when a current selection is

unavailable.

We consider approximations for the blocking probability in the G/G/s/0 model and demon-

strate the accuracy of these approximations through simulation experiments. We also consider

the
∑

iGi/G/s/0 model with multiple independent arrival streams and approximate the separate

blocking probability of each stream, called the parcel blocking probability. As a basis for the par-

cel blocking approximation, and for its own sake, we also study the long-run proportion of time

that all servers are busy or, equivalently, the probability that all servers are busy at an arbitrary

time, often called the time congestion. The time congestion directly describes the system as seen

by an outside observer, and approximately describes the blocking experienced by a class of rare

arrivals that itself contributes negligibly to the overall system performance. By the celebrated Pois-

son Arrivals See Time Averages (PASTA) property in Wolff (1982), the time congestion coincides

with the call congestion (blocking probability) when the arrival process is Poisson, but it does not

more generally. Thus, the time congestion and parcel blocking require additional analysis and have

received considerable attention, but not yet for dependent service times, e.g., see Akimaru and

Takahashi (1983), Fredericks (1983), Kuczura (1973), Meier-Hellstern (1989) and Sanders and van

Doorn (1987).

Much of the work on many-server queues relies on the corresponding infinite-server (IS) models

with the same arrival and service processes, and this paper is no exception. Indeed, this paper

can viewed as a sequel to Pang and Whitt (2012a,b), which establish a heavy-traffic (HT) limit
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for IS models with dependent service times and study its consequences. That work extends a

long history of approximations based on the peakedness, the ratio of the variance to the mean of

the steady-state number of busy servers in the IS model; see Wilkinson (1956), Holtzman (1973),

Fredericks (1980, 1983), Eckberg (1983, 1985), Whitt (1984, 2004), Sanders and van Doorn (1987),

Jagerman and Melamed (1994) and references therein. We show that the HT limits for IS models

with dependent service times can be used to generate effective approximations for the peakedness,

and for the performance of loss models with dependent service times provided that the number of

servers is not too small. In particular, we find that both the normal approximation obtained from

the heavy-traffic limit for the IS model and the Hayward approximation continue to produce quite

accurate approximations for the blocking probability with dependent service times.

However, we also discover that an associated normal approximation for the time congestion in

Whitt (1984) performs badly in some circumstances, in particular for higher blocking probabilities

with higher peakedness, even with i.i.d. exponential service times. The second main contribution

here is to develop an alternative approximation for the time congestion based on an approximation

for the ratio of the call congestion to the time congestion, called the congestion ratio, which remedies

this problem. We also establish a heavy-traffic limit for the congestion ratio, which implies that

the unproved heavy-traffic limit theorem for the time congestion in the GI/MI/s/0 model stated

in Borovkov (1976) without proof and cited in Whitt (1984) is in fact incorrect. We apply the new

approximation for the time congestion to obtain corresponding good approximations for parcel

blocking as well.

Here is how the paper is organized: We begin in §2 with a review of infinite-server results that

we will use in our multi-server loss approximations, including the recent heavy-traffic result by

Pang and Whitt (2012a) and the peakedness properties of the general G/GI/∞ model developed

by Eckberg (1983). In §3 we introduce two models of dependent service times and use simulation

to evaluate the quality of HT approximations for the peakedness with such dependence. In §4, we

review two approximations for the blocking probability in loss models; then in §5 we use simulation

to evaluate their performance. In §6, we discuss the shortcomings of existing approximation for the
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time congestion and propose a significantly better approximation based on the congestion ratio.

Finally, in §7 we develop and and evaluate the approximation for the parcel blocking probabilities.

Conclusions are drawn in §8. Additional material appears in the e-companion.

2. Review of Infinite-Server Results

We will develop effective approximations for the steady-state blocking probability in the stationary

G/G/s/0 loss model, which has a sequence of stationary and possibly dependent service times,

each with mean µ−1, that is independent of a general stationary arrival process with arrival rate

λ. To do so, we will exploit the steady-state number of busy servers, N , in the corresponding

stationary G/G/∞ infinite-server (IS) model with the same arrival process and service times. By

Little’s law, E[N ] = α≡ λ/µ, the offered load. In addition to the steady-state mean E[N ], we will

exploit the steady-state variance V ar(N) via the ratio z ≡ zG/G ≡ V ar(N)/E[N ], which is called

the peakedness. The reference case is the MI/GI/∞ model, where N has a Poisson distribution

with mean, and thus variance, equal to α. Thus, the peakedness in the reference case is zMI/GI = 1.

Assuming i.i.d. service times, arrival processes with zG/GI > 1 such as overflow processes are called

“bursty,” while arrival processes with 0≤ zG/GI < 1 are called “smooth,” but more generally the

peakedness depends on both the arrival process and the service times. We will use the heavy-traffic

approximation for the peakedness, referred to simply as z, which we review in §2.1. In the special

case of i.i.d. service times, we will relate the HT peakedness to the exact peakedness, which we

refer to as ze and review in §2.2.

2.1. The Heavy-Traffic Peakedness

The heavy-traffic (HT) peakedness is simply the limit of the peakedness as the arrival rate λ is

allowed to increase or, equivalently, as the mean service time µ−1 or the offered load α is allowed

to increase. Let A(t) count the number of arrivals in the interval [0, t] and let S be a generic service

time. It is necessary to specify how the models change in such a limit; we assume that these changes

occur by simple scaling. In particular, starting with a rate-1 arrival process, denoted by A(1)(t) and

service times that have mean 1, denoted by S(1), we consider the associated scaled arrival process
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A(λ)(t) ≡ A(1)(λt), which has rate λ, and the associated scaled service times with S(µ) ≡ S(1)/µ,

which has mean 1/µ. In this setting, the HT approximation is obtained as λ ↑ ∞, as µ ↓ 0 or as

α ↑∞.

The HT peakedness can be obtained as a consequence of a more general stochastic HT limit

theorem. For the most general G/G/∞ model, we rely on recent results in Pang and Whitt (2012a),

where references can be found to previous results for the G/GI/∞ special case, the seminal one

being by Borovkov (1967). For the HT limit theorem, it suffices to assume only very general

regularity conditions. Very roughly, it suffices to assume that a functional central limit theorem is

valid for the arrival process and service times separately. For practical purposes, this means that

a normal approximation is valid for the arrival process over large intervals, i.e.,

A(λ)(t)−λt√
λc2at

≈N (0,1) for all sufficiently large t, (1)

where c2a is a constant characterizing the variability (in the limit), N (µ,σ2) is a normal random

variable with mean µ and variance σ2, and ≈ means approximately equal in distribution. For a

renewal arrival process, the variability parameter c2a is the squared coefficient of variation (SCV,

variance divided by the square of the mean) of an interarrival time. In general,

c2a = lim
t→∞

Var(A(t))

E[A(t)]
. (2)

Explicit formulas for c2a are available for a wide array of arrival process models; e.g., see §§7 and 9

of Whitt (2002).

The service times are assumed to be independent of the arrival process, but they are allowed

to be mutually dependent. However, the service times must be only weakly dependent, e.g., see

§4.4 of Whitt (2002), which is formally characterized by various mixing conditions; see Pang and

Whitt (2012a) and references therein. Let Hk(t1, t2)≡ P (Sj ≤ t1, Sj+k ≤ t2) be the joint (bivariate)

cdf of two service times separated by k indices, which is independent of j because of the assumed

stationarity. Let Jk ≡E[Sj ∧Sj+k]/E[Sj], with ∧ the minimum, and I1 ≡E[S1∧indep S2]/E[S] with

S1 ∧indep S2 being the minimum of two independent random variables distributed as S.
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Theorem 1. (HT peakedness from Pang and Whitt (2012a)) Under regularity conditions, as the

offered load α increases, the scaled steady-state number Nα of busy servers in the G/G/∞ model

becomes approximately normally distributed, i.e., (Nα − α)/
√
αz ≈N (0,1), where the constant z,

called the HT peakedness, has the explicit form

z ≡ zG/G(c2a,G,H) = 1 +µ(c2a− 1)

∫ ∞
0

[1−G(t)]2dt+ 2µ

∫ ∞
0

(
∞∑
k=1

(
Hk(t, t)−G(t)2

))
dt,

= 1 + (c2a− 1)I1 + 2
∞∑
k=1

(Jk− I1), (3)

with c2a being the arrival process variability parameter in (1), G being the cdf of a generic service

time with mean µ−1 and (Hk, I1, Jk), k≥ 1, defined above.

The third term in formula (3) for the HT peakedness characterizes the impact of the dependence

among the service times; it drops out if the service times are mutually independent, because then

Jk = I1 for all k ≥ 1. The second term captures the consequence of a non-Poisson arrival process;

it drops out if c2a = 1, which occurs for Poisson arrival processes. Thus, we obtain z = 1 for the

MI/GI/∞ model. For further discussion, see Pang and Whitt (2012b).

Note that the arrival process is characterized beyond its rate (which appears via the offered load)

by the single constant c2a, whereas the service times are characterized by the constant I1 and the

sequence {Jk : k ≥ 1}. Proposition 3 of Pang and Whitt (2012b) gives a simple approximation for

z that is exact in some instances, namely,

z ≈ 1 + (c2a− 1)I1 + 2(1− I1)Σρ, (4)

where Σρ is the sum of all correlations, i.e., Σρ ≡
∑∞

k=1Corr(Sj, Sj+k). The dependence parameter

Σρ is intimately connected to the asymptotic variability parameter c2s of the service times, defined

as in (1) and (2) or, equivalently, via the CLT for associated partial sums; see §7.3 of Whitt (2002).

In particular, Theorem 4.4.1 of Whitt (2002) implies that Σρ = [(c2s/c
2
s,rp)− 1]/2, where c2s,rp is the

SCV of a single service time and thus the asymptotic variability parameter in a renewal process

with interrenewal times distributed as a single service time. Since the common form of dependence
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is for the service times to be positively correlated, typically Σρ ≥ 0 and c2s/c
2
s,rp ≥ 1. Thus well

established ways to estimate c2s,rp and c2s from data yield estimates of Σρ. One way to estimate Σρ

is to estimate Corr(Sj, Sj+k) for a modest number of k and fit a single functional form, such as to

Corr(Sj, Sj+k)≈ ρk for some ρ with 0<ρ< 1. In that case, Σρ ≈ ρ/(1− ρ).

2.2. Exact Peakedness in the G/GI/∞ Model

An expression for the exact peakedness ze is not yet known for theG/G/∞ IS model with dependent

service times, but a nice account for the G/GI/∞ model with independent service times was

provided by Eckberg (1983). In many cases the exact peakedness of a general G/GI/∞ model can

be computed, but it often suffices to use asymptotic approximations, as shown in Tables 1, 2 and

4 of Pang and Whitt (2012b) and as we will show here. We introduce a refined second-order HT

approximation that can improve the HT approximation for smaller offered loads (and thus in loss

models with fewer servers). A first rough approximation for the number of servers needed in the

loss model is the offered load, because the offered load is the expected number of busy servers in

the IS model. (Little’s law implies that the expected number of busy servers in the loss model is

λ(1−B)/µ= (1−B)α, where B is the steady-state blocking formula. In order for B to be suitably

small, the actual number of servers must be roughly α+β
√
α by the HT limit in §2.1, which tends

to be not too much greater than α.)

In this section only, without loss of generality, we assume that the arrival rate is 1 and a generic

service time is S/µ where S is a mean-1 random variable with cdf G(x)≡ P (S ≤ x), so that the

offered load is α= λ/µ= 1/µ. Let U(x) be the expected number of arrivals in an interval of length x

after an arbitrary arrival in the rate-1 arrival process, which we refer to as the mean function. For a

renewal process, the mean function U(x) is the familiar renewal function, but we allow dependence

among successive interarrival times. Let Gc(x)≡ 1−G(x) be the complementary cdf (ccdf).

Theorem 2. (exact peakedness from Eckberg (1983)) For the G/GI/∞ model, the peakedness is

ze(µ)≡ zeG/GI(µ)≡ V ar(Nµ)

E[Nµ]
= 1 + 2

∫ ∞
0−

(∫ ∞
µx

Gc(u)Gc(u−µx)du

)
dU(x)−µ−1. (5)
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For the case of i.i.d. exponential service times, the peakedness takes a simple form because the

inner integral over u in (5) reduces to e−µx/2. Let Ûs(s) be the Laplace-Stieltjes transform of the

mean function U of the rate-1 arrival process, i.e.,

Ûs(s)≡
∫ ∞
0−

e−st dU(t). (6)

Corollary 1. (exact peakedness with MI service from Eckberg (1983)) For the G/MI/∞ model,

zeG/MI(µ)≡ 1 + Ûs(µ)−µ−1. (7)

By the same reasoning, we can obtain the corresponding result for mixtures of exponential

random variables, i.e, i.i.d. hyperexponential (HkI) service times, as we show for H2 in §EC.2.

For MI and H2I service, the peakedness can easily be computed for an arbitrary renewal arrival

process provided that we can compute the Laplace transform of an interarrival time pdf, as we

illustrate now for the MI case. Let f be the pdf of an interarrival time and let f̂(s) be its Laplace

transform, i.e.,

f̂(s)≡
∫ ∞
0

e−stf(t)dt. (8)

Corollary 2. (exact peakedness in the GI/MI/∞ model) For the GI/MI/∞ model having inter-

arrival time pdf f with mean 1 and i.i.d. exponential service times with mean 1/µ,

zeGI/MI(µ) =
f̂(µ)− 1 +µ

µ(1− f̂(µ))
. (9)

Proof. Since Ûs(s) = f̂(s)/(1− f̂(s)) for a renewal process with interarrival time pdf f , we can

apply Corollary 1.

We now develop a refined second-order HT approximation for the peakedness in the GI/MI/∞

model. Let mk be the kth moment of the interarrival-time pdf f , assuming that m1 = 1 as before.

Recall that a function h(µ) is o(µ) if h(µ)/µ→ 0 as µ ↓ 0.

Theorem 3. (refined second-order HT peakedness in the GI/MI/∞ model) For the GI/MI/∞

model, if the interarrival time pdf f has finite third moment, then the exact peakedness has the

asymptotic form

zeGI/MI(µ) = γ2 + (γ2
2 − γ3)µ+ o(µ) as µ ↓ 0, (10)
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where γ2 ≡ z =m2/2 = (c2a + 1)/2 and γ3 ≡m3/6 with m1 = 1.

Proof. Assuming that the first k moments mk are finite, the Laplace transform admits the Taylor

series expansion

f̂(s) =
k∑
j=0

(−1)j
mjs

j

j!
+ o(sk); (11)

e.g., see Ch. 6 of Chung (2001). Thus, we first obtain asymptotic expansions separately for the

numerator and denominator in (9):

f̂(µ)− 1 +µ = γ2µ
2− γ3µ3 + o(µ3) as µ ↓ 0,

µ(1− f̂(µ)) = µ2− γ2µ3 + γ3µ
4 + o(µ4) as µ ↓ 0, (12)

from which we immediately obtain (10) from the asymptotic expansion of the ratio of two series

expansions, exploiting the algebra of power series.

As a quick check on Theorem 3, note that c2a = γ2 = γ3 = 1 for an exponential interarrival time,

so that zeMI/MI(µ) = 1 for all µ. Indeed, the steady-state distribution of Nµ in the MI/GI/∞

model is insensitivity to the service-time distribution beyond its mean, so that zeMI/GI(µ) = 1 for

all service-time distributions and all µ.

Example 1. (the H2I/MI/∞ model) To illustrate, we consider a renewal arrival process with a

hyperexponential (H2) interarrival-time pdf f . We let the H2 distribution have balanced means

as in (3.7) on p. 137 of Whitt (1982); we let the SCV be c2a = 5 and the mean interarrival time

be m1 = 1. This H2 density has the explicit form (EC.1) for p1 = 0.9082, λ1 = 1.8165, p2 = 0.0918,

λ2 = 0.1835. The associated parameters in Theorem 3 are γ2 ≡ z = (c2a + 1)/2 = 3 and γ3 ≡m3/6 =

15. Hence, formula (9) yields zeH2I/MI(µ) = 3− 6µ+ o(µ) as µ ↓ 0. Figure 1 compares the HT

peakedness zH2I/MI = 3 and the associated second-order HT approximation zH2I/MI,sec(µ)≡ γ2 +

(γ2
2 − γ3)µ = 3− 6µ to the exact peakedness zeH2I/MI(µ) in Corollary 1. Figure 1 shows that the

HT peakedness and the second-order approximation are accurate to within about 10% and 1%,

respectively, when the offered load α= 1/µ (and thus the staffing) exceeds 30. The second-order

approximation performs well for 10≤ α≤ 30, while the exact peakedness is needed for α≤ 10.
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Figure 1 A comparison of the heavy-traffic and the second-order heavy-traffic peakedness approximations to

the exact peakedness for the H2I/MI/∞ model where the hyperexponential interarrival times have

balanced means and SCV c2a = 5.

We can also easily analyze the case with deterministic service times, as we show in §EC.2. This

section should be viewed as illustrative of what is possible; e.g., explicit results as in Theorem EC.1

can also be obtained for many non-renewal processes, e.g., see Neuts (1979).

3. Models of Dependence

The HT peakedness approximation in §2.1 can be applied without directly modeling the depen-

dence, because we can estimate the HT peakedness from simulation or system data as was done in

§5.4 of Pang and Whitt (2012b), but in order to evaluate the performance of the approximations

using simulation we need concrete models of the dependent service times. Fortunately, there are

many several models in the literature. We will use two of these models here.

3.1. Two Models of Dependence

The first dependence model is the Randomly Repeated Service (RRS) process. In this model, we

start with a sequence {Bn, n≥ 1} of i.i.d. service times and a probability p of repeating the previous

service time. Letting {In, n ≥ 2} be a sequence of i.i.d. Bernoulli random variables with mean p
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and A1 =B1, the RRS process {An, n≥ 1} is defined by

An = InAn−1 + (1− In)Bn, n≥ 2. (13)

This RRS process has a simple asymptotic variability parameter, c2s = c2B

(
1 + 2p

1−p

)
, where c2B is

the SCV of B1. Proposition 4 of Pang and Whitt (2012b) implies that the simple HT peakedness

approximation in (4) is exact for the RRS process. That occurs primarily because the third term

in (3) has a simple analytic expression for RRS, i.e.

2µ

∫ ∞
0

(
∞∑
k=1

(
Hk(t, t)−G(t)2

))
dt=

2p

1− p

(
1−µ

∫ ∞
0

[1−G(t)]2dt

)
. (14)

The second dependence model is the Exponential Autoregressive-Moving Average (EARMA)

process introduced by Jacobs and Lewis (1977). The model is specified by three parameters: µ,

β, and ρ. To construct the process, we begin with three independent sequences of i.i.d. random

variables {Xn : n≥ 0}, {Un : n≥ 1}, and {Vn : n≥ 1}, with Xn exponentially distributed with rate

µ, and Un and Vn Bernoulli random variables with probabilities β and ρ of being equal to 0. The

EARMA process {Sn : n≥ 1} is then defined as

Sn = βXn +UnYn−1 and Yn = ρYn−1 +VnXn, n≥ 2. (15)

The EARMA process has an exponential marginal distribution with rate µ. Its correlation structure

is identical to the Autoregressive-Moving Average ARMA(1,1) model:

ρk ≡Corr(Sj, Sj+k) = γρk−1 and γ = β(1−β)(1− ρ) + (1−β)2ρ. (16)

Since we do not have an expression for the HT peakedness (3) for EARMA, we use simulation to

obtain a good estimate, as in §5.4 of Pang and Whitt (2012b).

3.2. The Peakedness Approximation with Dependent Service Times

We now use simulation to compare the HT peakedness from §2.1 to the exact peakedness when there

is dependence among the service times, which is not covered by §2.2. This section complements
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the experiments reported in §5 of Pang and Whitt (2012b). Table 1 shows results of a simulation

experiment comparing the actual peakedness to the HT peakedness for several IS models with

dependence in the arrival and service processes. The parameters of each dependent process are set

so that the cumulative correlations sum to one. For RRS that means p= 0.50; for EARMA, the

model parameters are (β,ρ) = (0.50,0.75). As in Pang and Whitt (2012b), multiple replications are

performed so that the 95% confidence intervals for the simulation estimates are consistently less

than 1%.

Table 1 Comparison of the heavy-traffic peakedness (Approx) with the estimated exact peakedness

(Simulation). Dependent arrival and service processes are set to have cumulative correlations sum to one. Offered

loads are chosen to show the boundary where the approximation breaks down.

Arrival Service α Simulation Approx Error
MI EARMA 3 1.379 1.526 10.7%

10 1.519 1.526 0.5%
MI RRS(M) 10 1.832 2.000 9.2%

100 1.976 2.000 1.2%
MI RRS(H2) 10 2.141 2.300 7.4%

100 2.274 2.300 1.1%
RRS(M) RRS(M) 10 2.579 3.000 16.3%

100 2.944 3.000 1.9%
RRS(M) RRS(H2) 10 2.623 3.000 14.4%

100 2.974 3.000 0.9%
RRS(H2) RRS(M) 100 5.580 6.150 10.2%

1000 6.085 6.150 1.1%
RRS(H2) RRS(H2) 100 6.876 7.500 9.1%

1000 7.417 7.500 1.1%

For each pair of processes, we display results from two offered loads to show when the heavy-

traffic peakedness breaks down as an approximation. We can see that for most of the models, an

offered load of 100 is enough to achieve an error around 1%, except for the systems with a RRS(H2)

arrival process that need an offered load of 1000 for the same accuracy. In general, we will be

able to use the heavy-traffic peakedness as a proxy for the actual peakedness in our multi-server

approximations when the system is large, but we will also see that approximations for smaller

multi-server systems still perform well even with more significant error in peakedness, because we

evaluate the approximations from the perspective of their impact upon staffing.
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4. Approximations for the Blocking Probability

In this section we review two approximations for the blocking probability based on peakedness,

which have been found to be quite accurate for the G/GI/s/0 model, without dependent service

times. We will be using these same approximations with dependent service times, using the HT

peakedness in Theorem 1.

4.1. The IS HT Approximation: A Normal Approximation Plus the Conditioning Heuristic

Let Yα be the steady-state number of busy servers G/G/s/0 model at an arbitrary time. Fol-

lowing Whitt (1984), we can use Theorem 1 plus a simple conditioning heuristic to generate the

approximation

P (Yα = r)≈ P (Nα = r)/P (Nα ≤ s) for 0≤ r≤ s. (17)

This relation is exact for the MI/GI/s/0 system. We then apply Little’s law with (17), Theorem

1 and the property E[N (0,1)|N (0,1)≤ c] = φ(c)/Φ(c), where φ(x) and Φ(x) are the pdf and cdf

of N (0,1), respectively, to obtain the approximation for the blocking probability, which we denote

BC (with subscript C for call congestion):

BC = 1− E[Yα]

α
≈
√
z

α

(
φ ((s−α)/

√
αz)

Φ((s−α)/
√
αz)

)
. (18)

From Theorem 1 and (17), we can also approximate the distribution of Yα. For example, we have

the following approximation for the time congestion, denoted BT :

BT ≡ P (Yα = s)≈ P (s− .5≤N (α,αz)≤ s+ .5)

P (N (α,αz)≤ s+ .5)
≈ φ ((s−α)/

√
αz)√

αzΦ((s−α+ .5)/
√
αz)

. (19)

The IS HT approximations (18) and (19) suggest that BT ≈BC/z. This is exactly true if the arrival

process is Poisson and service times are independent, for which z = 1, due to the familiar PASTA

property from Wolff (1982). However, we will see that this relation is not accurate in general, so

that we will need to develop an improved approximation for the time congestion.

An important theoretical reference point is an early heavy-traffic limit.
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Theorem 4. (HT limit from Borovkov (1976)) for the GI/MI/s/0 model, as α→∞ with (s−

α)/
√
α→ β for any constant β, −∞<β <+∞,

√
αBC→

√
zφ(β/

√
z)/Φ(β/

√
z), (20)

where z ≡ (c2a + 1)/2, the HT peakedness.

The scaling in Theorem 4 produces the familiar Quality-and-Efficiency-Driven (QED) many-

server heavy-traffic regime. Thus, we expect the IS HT approximation to perform better in the

QED regime than in the ED regime, where (s−α)/
√
α→−∞ or, for practical purposes β <−2

√
z,

or the QD regime, where (s−α)/
√
α→+∞ or, for practical purposes β > 2

√
z. Borovkov (1976)

also gives a theorem without proof, cited by Whitt (1984), stating that (19) is also asymptotically

correct in the QED regime, but we will present a new theorem in §6 showing that must be incorrect.

4.2. The Hayward Approximation

Our second approximation for the blocking probability is attributed to Walter Hayward of Bell

Laboratories, and given a heuristic explanation by Fredericks (1980). The approximation makes use

of the well-known Erlang loss formula, B(s,α) = (αs/s!)/(
∑s

i=0(α
i/i!). Hayward’s approximation

for G/G/s/0 systems uses the peakedness z to scale both s and α, yielding

BC ≡BC(s,α, z)≈B (s/z,α/z) . (21)

Since the heuristic development in Fredericks (1980) provides helpful intuition, we briefly review

it here. Consider a loss system with constant service times each of size 1/µ, a batch Poisson arrival

process with total arrival rate αµ, so that the offered load is α, where the batches sizes are all z,

assumed to be an integer, and s servers with s a multiple of z. Thus the s servers can be split

into z groups with each group handling one arrival from each batch. Since the service times are

deterministic, the groups are always identical. Hence, each group behaves as an MI/D/(s/z)/0

model with arrival rate αµ/z and offered load α/z, so that the blocking probability of each group,

which equals the total blocking probability, is given by the Erlang loss formula with parameters s/z
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and α/z, exactly as in (21). (Recall the insensitivity of the blocking to the service time distribution

beyond its mean in the MI/GI/s/0 model.)

Now let us consider the associated IS model. The infinitely many servers can also be divided into

z groups. The steady-state number in each group is distributed exactly as Poisson with mean α/z

and thus distributed approximately as N (α/z,α/z). Hence, the steady state number of customers

in the entire IS system is distributed as zN (α/z,α/z), which is distributed the same as N (α,zα),

implying that the exact peakedness is z.

A rough generalization of this idea is that the servers in a loss system facing bursty traffic (z > 1)

can be divided into groups, and the arrivals can be allocated in such a way that each group has

approximately the same number of busy servers, the same blocking probability, and peakedness

one. Equation (21) is then approximately correct for each group, and the total blocking probability

is approximately that of the groups. Loss systems facing smooth traffic (z < 1) are treated similarly,

but the original system is viewed as the result of splitting a larger system as before.

Unlike the IS HT approximation, which gives an approximate blocking probability of the exact

system, the Hayward approximation uses the exact blocking probability of an approximate system.

However, the two very different approximations are tightly linked, and thus each provides support

for the other. As a consequence of the asympotic behavior of the Erlang loss function from Jagerman

(1974) or the HT limit by Borovkov (1976), we have the following result.

Theorem 5. (asymptotic equivalence of the two approximations) Suppose that the assumptions on

the arrival and service processes are as in Theorem 1. If α→∞ with (s − α)/
√
α→ β, −∞ <

β <∞, then the Hayward and IS HT approximations for the scaled blocking probability
√
αBC in

the G/G/s/0 with either the HT peakedness or the exact peakedness both converge to the same

nondegenerate limit
√
zφ(β/

√
z)/Φ(β/

√
z), and so their difference is asymptotically negligible.

Proof. First, by Theorem 1 the exact peakedness converges to the HT peakedness under the

assumptions. Then observe that both approximations for the blocking probability remain the same

if we divide all components of the vector (s,α, z) by z, yielding (s/z,α/z,1). For the Hayward
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approximation, we apply asymptotics for the MI/GI/∞ model or the Erlang loss formula.

In practice, the parameter s/z will often not be an integer, so the Erlang loss formula cannot be

used directly, but the continuous extension in Jagerman (1974), based on the integral representation

of B(α,s)−1, has been found to be very effective. We use

B (s,α) =

[
Γ(s+ 1)

e−ααs
−
∞∑
k=1

αk

(s+ 1) · · · (s+ k)

]−1
, (22)

with Γ denoting the gamma function, from Theorem 5 of Jagerman (1974). For very large argu-

ments, we can use asymptotic expansions, which essentially means the IS HT approximation.

5. Evaluating the Extension to Dependent Service Times

We apply both the IS HT approximation and the Hayward approximation above with dependent

service times, using the HT peakedness in Theorem 1. We evaluate those approximations in this

section. We find that the blocking approximations (call congestion) consistently performs well, but

the associated IS time congestion approximation in (19) does not, even with i.i.d. service times. In

§6 we explain the difficulty with the time congestion and develop a new approximation for it.

5.1. Results of Simulation Experiments

We test the accuracy of these approximations using simulation to estimate the true values. The

obvious method is to fully specify a system, including the number of servers, and compare the

simulated blocking probability to the approximation. However, in practice we are primarily inter-

ested in staffing under a constraint on the blocking probability, so we adopt that view; i.e., we

select a target blocking probability and find the minimum number of servers such that the blocking

probability (simulated or approximate) is below the target.

Besides being practical, this method of evaluating the approximations has an additional advan-

tage over simply comparing blocking probabilities. Since the number of servers can only take

discrete integer values, the blocking probabilities can only take finitely many values, which tend

to differ greatly with few servers. As a consequence, a direct comparison of blocking probabilities

will often be overly pessimistic, whereas the staffing approach does not have that problem.
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The previous evaluations of the blocking probability approximations in Whitt (1984) were per-

formed with analytic results rather than simulation and are limited to GI/MI/s/0 models. For

those cases, those experiments showed that both the IS HT and Hayward approximations are accu-

rate for the blocking probability. Here we expand upon those experiments using simulation. Besides

the usual exponential distribution for interarrival and service times, we will use the Erlang (Ek)

and hyperexponential (Hk) distributions. The Ek distribution is less variable than the exponential,

with SCV = 1/k; we use E4. The Hk distribution is more variable than exponential and admits any

SCV > 1. As before, we use H2 with balanced means as on p. 137 of Whitt (1982) and SCV = 4.

Table 2 Comparison of the blocking probability and time congestion approximations to simulated values for a

Poisson arrival process. Shown are the minimum number of servers required to achieve the given target.

System α Target Sim Block IS Block Hayward Sim Time IS Time Ratio Time
MI/GI 10 0.001 21 20 21 21 20 20
z = 1 0.01 18 18 18 18 18 18

0.1 13 13 13 13 13 13
50 0.001 71 71 71 71 71 71

0.01 64 64 64 64 64 64
0.1 51 52 51 51 51 52

100 0.001 128 128 128 128 128 128
0.01 117 117 117 117 117 117
0.1 97 97 97 97 97 97

MI/RRS(M) 10 0.001 26 25 27 26 24 25
z = 2 0.01 21 21 22 21 20 21
p= .5 0.1 14 16 15 14 13 16

50 0.001 81 80 82 81 78 80
0.01 70 71 71 70 67 71
0.1 54 56 55 54 47 56

100 0.001 141 141 142 141 137 141
0.01 126 127 127 126 122 127
0.1 100 103 101 100 87 103

MI/EARMA 10 0.001 24 23 25 24 22 23
z ≈ 1.526 0.01 20 20 20 20 19 20

(β,ρ) = (.5, .75) 0.1 14 15 14 14 13 15
50 0.001 76 76 77 76 75 76

0.01 67 68 68 67 66 68
0.1 52 54 53 52 49 54

100 0.001 135 135 136 135 133 135
0.01 121 123 123 121 120 123
0.1 98 100 99 98 92 100
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Table 3 Comparison of various approximations for the blocking probability and time congestion to simulated

values. Values indicate the minimum number of servers required to achieve a blocking probability/time congestion

below the given target. All H2 distributions have balanced means and SCV = 4.

System α Target Sim Block IS Block Hayward Sim Time IS Time Ratio Time
E4I/E4I 10 0.001 17 17 17 18 17 17
z = 0.46 0.01 15 15 15 16 16 15

0.1 12 12 12 13 13 13
50 0.001 64 63 64 65 65 64

0.01 59 58 58 60 60 60
0.1 49 49 48 51 53 51

100 0.001 119 118 118 120 120 119
0.01 111 110 110 113 113 112
0.1 94 94 94 99 101 98

E4I/MI 10 0.001 18 18 19 19 18 19
z = 0.63 0.01 16 16 16 17 16 17

0.1 12 12 12 13 13 13
50 0.001 66 66 66 67 67 67

0.01 60 60 60 61 62 62
0.1 49 50 49 52 52 52

100 0.001 121 121 121 123 123 123
0.01 113 113 113 115 115 115
0.1 95 95 95 99 100 99

E4I/H2I 10 0.001 19 19 20 20 19 19
z = 0.74 0.01 16 16 17 17 17 17

0.1 12 13 12 13 13 14
50 0.001 67 67 68 69 68 68

0.01 61 61 61 62 62 63
0.1 49 50 50 52 52 53

100 0.001 123 123 123 125 124 125
0.01 114 114 114 116 116 116
0.1 95 96 95 99 99 100

E4I/EARMA 10 0.001 22 21 22 22 21 22
z ≈ 1.151 0.01 18 18 19 19 18 19

(β,ρ) = (.5, .75) 0.1 13 14 13 14 13 15
50 0.001 72 72 73 73 72 74

0.01 64 65 65 65 64 67
0.1 50 52 52 53 50 55

100 0.001 129 130 131 131 129 132
0.01 117 119 119 119 118 122
0.1 96 98 98 100 95 103

Tables 2-5 show results of our simulation experiments for a number of systems using the staffing

approach. Errors are emphasized. A difference of 1 server is not considered an error. An error of

2 or 3 servers is indicated by showing the value in italics, while an error of more than 3 servers

is indicated by boldface values. Most of the serious errors occur in the time congestion, which we
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Table 4 Comparison of various approximations for the blocking probability and time congestion to simulated

values. Values indicate the minimum number of servers required to achieve a blocking probability/time congestion

below the given target. All H2 distributions have balanced means and SCV = 4.

System α Target Sim Block IS Block Hayward Sim Time IS Time Ratio Time
H2I/E4I 10 0.001 27 29 33 26 27 28
z = 3.18 0.01 23 25 26 22 22 24

0.1 16 18 17 14 12 17
50 0.001 86 89 92 85 84 87

0.01 75 78 78 73 70 75
0.1 57 60 58 53 41 55

100 0.001 150 153 155 147 145 150
0.01 133 136 136 130 124 133
0.1 104 108 106 97 75 100

H2I/MI 10 0.001 26 27(26) 30(28) 25 25(24) 26(25)
z = 2.5 0.01 22 23(22) 24(23) 21 21(20) 22(21)

0.1 15 17(16) 16(16) 14 13(13) 15(15)
50 0.001 83 84(83) 86(86) 81 80(80) 83(82)

0.01 73 74(74) 75(74) 71 69(69) 72(72)
0.1 56 57(57) 56(56) 51 44(45) 53(53)

100 0.001 145 146(146) 148(148) 143 141(140) 144(144)
0.01 130 131(131) 131(131) 126 123(123) 128(128)
0.1 103 105(105) 103(103) 96 82(82) 98(98)

H2I/H2I 10 0.001 25 25(24) 27(26) 24 24 (23) 25 (23)
z = 2.05 0.01 21 21(21) 22(21) 20 20 (19) 21 (20)

0.1 15 16(15) 15(15) 14 13 (13) 15 (14)
50 0.001 80 81(80) 82(82) 79 78 (78) 79 (79)

0.01 71 71(71) 72(71) 69 68 (67) 69 (69)
0.1 55 56(56) 55(55) 51 46 (47) 52 (52)

100 0.001 141 141(141) 143(142) 139 137(137) 139 (139)
0.01 127 127(127) 128(127) 124 122(122) 125 (124)
0.1 102 103(103) 102(101) 95 86(87) 96 (96)

H2I/RRS(H2) 10 0.001 31 30 33 30 27 29
z = 3.35 0.01 25 25 27 24 22 24
p= .5 0.1 16 18 18 15 12 17

50 0.001 91 90 93 89 84 88
0.01 78 79 79 75 70 76
0.1 58 60 59 54 40 56

100 0.001 155 154 157 152 146 152
0.01 136 137 138 133 125 134
0.1 105 108 106 99 73 101

H2I/EARMA 10 0.001 29 29 32 28 27 28
z ≈ 3.026 0.01 23 24 26 22 22 23

(β,ρ) = (.5, .75) 0.1 16 18 17 14 13 16
50 0.001 87 88 91 85 83 86

0.01 75 77 78 73 70 75
0.1 56 59 58 52 42 55

100 0.001 149 151 154 147 144 149
0.01 133 135 135 129 124 132
0.1 104 107 105 97 77 100
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Table 5 Comparison of various approximations for the blocking probability and time congestion to simulated

values. Values indicate the minimum number of servers required to achieve a blocking probability/time congestion

below the given target. All H2 distributions have balanced means and SCV = 4.

System α Target Sim Block IS Block Hayward Sim Time IS Time Ratio Time
RRS(M)/E4I 10 0.001 28 27 29 27 25 26
z = 2.453 0.01 22 23 24 21 21 22
p= .5 0.1 15 17 16 14 13 16

50 0.001 84 84 86 82 80 83
0.01 72 74 74 70 69 72
0.1 55 57 56 51 45 55

100 0.001 145 146 148 142 140 144
0.01 129 131 131 126 123 129
0.1 101 105 103 96 82 100

RRS(M)/MI 10 0.001 27 25 27 25 24 25
z = 2 0.01 21 21 22 20 20 21
p= .5 0.1 15 16 15 13 13 15

50 0.001 81 80 82 79 78 79
0.01 70 71 71 68 67 70
0.1 54 56 55 51 47 53

100 0.001 141 141 142 139 137 139
0.01 126 127 127 123 122 125
0.1 101 103 101 96 87 99

RRS(M)/H2I 10 0.001 26 24 25 24 23 23
z = 1.7 0.01 21 20 21 19 19 20
p= .5 0.1 14 15 15 13 13 14

50 0.001 79 78 79 77 76 77
0.01 69 69 69 67 66 68
0.1 53 55 54 50 48 52

100 0.001 138 137 138 136 135 136
0.01 124 124 124 121 121 123
0.1 100 101 100 95 90 97

RRS(M)/EARMA 10 0.001 29 30 27 27 25 26
z ≈ 2.526 0.01 23 24 23 21 21 22
p= .5 0.1 15 16 17 14 13 16

(β,ρ) = (.5, .75) 50 0.001 84 87 84 83 81 83
0.01 73 75 74 71 69 73
0.1 55 56 58 51 44 55

100 0.001 146 148 146 143 141 145
0.01 129 132 131 126 123 129
0.1 101 103 105 96 82 101

discuss in the next section. The quality of the approximations depends on the case. The quality

tends to deteriorate as the peakedness increases, with the peakedness increasing in the arrival

process variability and the dependence (with positive correlations in our dependence models), but

decreasing in the service time SCV.
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First, Table 2 shows that there is no error (> 1 server) in the staffing by the IS HT approximation

for the MI/GI model, In this case, the HT peakedness coincides with the exact peakedness z = 1

and the Hayward approximation is exact. For the MI/RRS(M) model, Table 2 shows that the

dependence significantly increases the required staffing. Using the simple MI/GI model would

result in unacceptable errors in all cases. Table 2 shows that the Hayward approximation has no

error, while the IS HT approximation overemphasizes the required staffing with the high blocking

target of 0.1. At least the IS HT approximation is conservative in its staffing recommendation.

Second, Table 3 shows excellent performance with the smooth E4I arrival process. Again the

departure from the basic MI/GI model leads to significantly different staffing, but with the smooth

E4I arrival process, the required staffing is less than with a Poisson arrival process.

Next, Table 4 shows that the bursty H2I arrival process leads to significantly different staffing

than for MI arrivals, but now much greater staffing, consistent with the higher peakedness.

Notice that the case H2I/E4I is especially difficult, combining a bursty arrival process with a

low-variability service distribution, which makes even higher peakedness. However, on the positive

side, note that the IS HT staffing is consistently high by from 2− 4 servers across all offered loads

and performance targets, showing that a simple correction can be consistently applied. In general,

Table 4 shows that the bursty H2I arrival process is the most difficult. However, in general, because

of our staffing perspective, the approximations perform quite consistently across all three offered

loads, Thus, in practice, one could use some rule-of-thumb adjustment to the approximations that

depends only on the variability of the arrival process and service distribution.

The H2I/MI/s/0 case in Table 4 has extra data in parentheses that represents values if actual

peakedness is calculated from Corollary 2 and used instead of the heavy-traffic peakedness. Consis-

tent with Figure 1, we see no change at all for α≥ 50, but we do for α= 10. The tables show that

the HT peakedness is reasonable for the approximations, but some improvement can be expected

by using the exact peakedness for lower offered loads. For the performance of the even smaller

offered loads of α= 1 and 5, see §EC.5.1.
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Finally, Table 5 shows corresponding results with the non-renewal RRS(M) arrival process. We

see that the approximations continue to behave as before in this more bursty setting, with one

exception. A significant error is seen in the IS HT approximation for high peakedness with the

high offered load α= 100 and low quality-of-service (QoS) target 0.1. This might seem inconsistent

with the HT limit in Theorem 4, but it actually is not, because the scaled blocking probability

√
αBC tends to converge to a proper limit in the QED HT regime. As a consequence, for the high

offered load α= 100 and the low QoS target 0.1, the system tends to be in the ED many-server

heavy-traffic regime, where BC→ 1−ρ−1 as α→∞ with α/s= ρ> 1 held fixed, independent of z;

for partial support, see §6.3 of Whitt (1984).

6. Time Congestion

In this section, we study the time congestion. We begin in §6.1 by analyzing the performance

of the infinite-server time congestion approximation (19). Then in §6.2 we present an improved

approximation based on the ratio of the blocking probability to the time congestion, called the

congestion ratio.

6.1. The IS HT Time Congestion Approximation

We can see from Tables 2-5 that the IS HT time congestion approximation (19) performs well

except for bursty models with z > 1. Moreover, for z > 1, the IS HT approximation for BT tends to

perform worse as the offered load increases, raising doubts about the claimed HT limit. In fact, we

will prove that the claimed HT limit is in fact not correct. The IS HT approximation is especially

bad for high performance targets, being remarkably bad for the low QoS target 0.1.

We offer two heuristic explanations: first, in these difficult cases with z > 1, we have BC >BT ,

Hence, staffing to meet BT will require fewer agents, but that lower level of staffing will cause

additional blocking, and that additional blocking may in fact smooth the arrival process, making

it less bursty than it was originally. Second, the lower staffing may in fact push the system out of

the QED regime into the ED regime, where different asymptotic behavior occurs. However, in any

case, we will show that a different HT limit holds.
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That analysis suggests a relatively simple heuristic adjustment to the IS HT time congestion

approximation. Assuming that some traffic smoothing is taking place, we can replace the given

peakedness z > 1 with z ≈ 1 whenever the traffic intensity is above some threshold. We propose

to make this adjustment whenever the traffic intensity is greater than 1, i.e., when α > s. To see

that this is effective, note that the problem cases occurring when the target for BT is 0.1 and the

offered loads are 50 and 100 would all be staffed at 51 and 97, respectively, which gives an error of

at most three servers among all the systems.

6.2. The Congestion Ratio

The underlying idea of the new approximation for the time congestion is to find it indirectly

by leveraging the accurate approximation for the blocking probability. Specifically, we approxi-

mate the blocking probability BC and the ratio of the blocking probability to the time congestion

BR ≡ BC/BT , called the congestion ratio. If both values are accurate, then the ratio of the two

approximations should give a good approximation for BT . Here we use the IS HT approximation

(18) for BC .

The congestion ratio is not an especially intuitive performance measure, but it has been suc-

cessfully analyzed for GI/MI/s/0. We give a proof that suggests an approximation for the more

general G/G/s/0 model. Let Ûs(s) be the Laplace transform of the mean function U as in (6) and

let f be the interarrival time pdf with f̂(s) being its Laplace transform as in (8).

Theorem 6. (congestion ratio for GI/MI/s/0 from Takacs (1956) and Cohen (1957)) For

GI/MI/s/0 model with arrival rate 1 and individual service rate µ= 1/α,

BR ≡
BC
BT

=
sf̂(s/α)

α(1− f̂(s/α))
= (s/α)Ûs(s/α). (23)

We give an alternate proof, which is useful for generating an approximation more generally.

Proof. For the GI/MI/s/0 model, the instances that all servers become busy constitute regen-

eration times. Thus, there is an alternating renewal process of full times distributed as X and

non-full times distributed as Y . By the renewal reward theorem, we can write
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BT =
E[X]

E[X +Y ]
and BC =

E[A(X)]

E[A(X +Y )]
. (24)

Thus,

BR ≡
BC
BT

=

(
E[A(X)]

E[X]

)(
E[X +Y ]

E[A(X +Y )]

)
. (25)

Since X is exponential with mean α/s, E[X] = s/α. By the renewal reward theorem again, E[A(X+

Y )]/E[X +Y ] = λ= 1. Finally, the GI/MI/s/0 structure allows us to deduce that the number of

arrivals during a full period is geometrically distributed with parameter p=
∫∞
0
f(x)e−(s/α)x dx, so

that

E[A(X)] =
p

1− p
=

f̂(s/α)

1− f̂(s/α)
= Ûs(s/α). (26)

We can immediately apply Theorem 6 to obtain a many-server HT limit for the congestion ratio

BR

Corollary 3. (many-server HT limit for the congestion ratio) If α→∞ with α/s→ 1 in the

GI/MI/s/0 model, then

BR ≡BR(f, s,α)→B∗R ≡ Ûs(1) =
f̂(1)

1− f̂(1)
, (27)

for Ûs in (6) where U(x) is the renewal function.

As a consistency check, note that BR = 1 for all s and α when f is exponential. If the approx-

imation (19) were asymptotically correct as α→∞ with α/s→ 1, then we should have B∗R = z =

(c2a + 1)/2, but that does not hold. We can combine Theorem 4 and Corollary 3 to obtain the

following limit for the time congestion.

Corollary 4. (many-server HT limit for the time congestion) If α→∞ with (α− s)/
√
α→ β,

−∞<β <∞, in the GI/MI/s/0 model, then

√
αBT →

√
zφ(β/

√
z)

Ûs(1)Φ(β/
√
z)
. (28)

Remark 1. (the role of the arrival process) Corollaries 3 and 4 show that, unlike the HT peaked-

ness z and the associated approximation for the blocking probability, the congestion ratio and
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the time congestion depend on the arrival process through more than the arrival rate and the

asymptotic variability parameter c2a.

Example 2. (renewal processes with Hb
2 and E4 interrenewal times) For the Hb

2 distribution with

balanced means, mean 1, where necessarily c2a > 1, from p. 137 of Whitt (1982) we have

f̂(1) =
2c2a + 2

3c2a + 5
>

1

2
and B∗R(c2;Hb

2) =
2c2a + 2

c2a + 3
> 1, (29)

with f̂(1) = 1/2 and B∗R = 1 in the limiting exponential case when c2a = 1. We have B∗R = z ≡

(c2a + 1)/2 if and only if c2a = 1.

For the Ek distribution with mean 1, we have

f̂k(1) = (k/(k+ 1)k ≥ 1

2
and B∗R(Ek)< 1, (30)

with f̂(1) = 1/2 and B∗R = 1 in the limiting exponential case when k = 1. Since f̂k(1)/f̂k+1(1)> 1,

we see that f̂k(1) is decreasing in k approaching f̂∞(1) = f̂D(1) = e−1.

We base our proposed approximation for the congestion ratio in the more general G/G/s/0 loss

model on the following conjecture.

Conjecture 1. The first relation in Corollary 3 also holds for the more general G/G/s/0 loss

model, with U(x) more generally being the mean function when the arrival process is non-renewal.

Supporting reasoning. First, and most important, we can approximate the full time X by an

exponential random variable with mean α/s, exactly as in the GI/MI/s/0 case, by using the fact

that a superposition of mutually independent stationary point processes is asymptotically Poisson;

see Theorem 9.8.1 of Whitt (2002). That gives us E[X]≈ α/s as α→∞ with α/s→ 1. Second, we

can use ergodic theory associated with stationary processes satisfying suitable mixing conditions

instead of the renewal reward theorem to again obtain E[A(X + Y )]/E[X + Y ] = λ= 1. Finally,

paralleling (26), we use the approximation

E[A(X)]≈ Ûs(s/α). (31)
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Here we are assuming that the mean function at the beginning of a full period is approximately

the same as at an arbitrary arrival, which need not be the case.

When the arrival process is not renewal, we can estimate Ûs(x) for 0.5 < x < 3 to use with

the approximation. (See §EC.3.3 for our specific method.) The main approximation using the

exact Ûs(s/α) is referred to as “Ratio Time” in §5, where it is shown to be quite effective. This

approximation tends to perform worst for non-exponential service times under light loads, where

the exponential approximation for the full time is not well justified.

7. Parcel Blocking

The term parcel blocking comes from telecommunications, though the concept can apply to more

diverse settings. The general heterogeneous blocking problem is a loss system facing k mutually

independent individual arrival streams, each having the same service distributions, and the goal

is to find the blocking probability for each stream, called the parcel blocking probabilities. This

problem has been studied in the past, and there are exact results for certain special cases. For

example, the parcel blocking probabilities are given exactly for the GI +MI/MI/s/0 system in

Kuczura (1973), though the solution is inconvenient to compute. Approximations have also been

found that are at the same time accurate and easy to calculate, and it is these that we focus on.

We number the arrival streams from 1 to k, and for each arrival stream i, we denote the offered

load and peakedness in relation to the service distribution by αi and zi, respectively. We also let α

and z be the offered load and peakedness of the entire superposition arrival process; α is just the

sum of the αi’s, and the independence of the separate streams gives

z =

∑k

i=1αizi∑k

i=1αi
. (32)

The approximation we use here is simple and reasonably precise. Here it is presented in the form

given in Sanders and van Doorn (1987):

Bi ≈BT +
zi− 1

z− 1
(BC −BT ). (33)
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Note that this approximation requires the blocking probability and time congestion of the entire

system, but these can be approximated with our previous methods. We discuss the derivation of

(33) in §EC.4.

Table 6 Comparison of approximate parcel blocking probabilities to simulated values. Staffing level is set

according to target BC , and BT and B1 are given as ratios to BC . Both arrival streams have equal rates, and the

H2I distribution has balanced means with SCV = 4. BC is approximated with the infinite-server approximation

(18), B1 is approximated with (33), and the BT approximation uses the congestion ratio (23)

System α Target Sim BC Approx Sim BT/BC Approx Sim B1/BC Approx
H2I +MI/MI 10 0.001 24 24 0.82 0.89 1.21 1.11

z = 1.75 0.01 20 20 0.82 0.89 1.19 1.11
z1 = 2.5 0.1 14 15 0.83 0.89 1.17 1.11
z2 = 1 50 0.001 77 78 0.82 0.89 1.18 1.11

0.01 68 69 0.83 0.89 1.18 1.11
0.1 53 55 0.84 0.89 1.16 1.11

100 0.001 137 138 0.82 0.89 1.18 1.11
0.01 124 125 0.83 0.89 1.17 1.11
0.1 100 101 0.84 0.89 1.16 1.11

E4I +MI/MI 10 0.001 20 19 1.26 1.24 0.75 0.76
z = .8125 0.01 17 17 1.23 1.22 0.78 0.78
z1 = .625 0.1 13 13 1.18 1.18 0.82 0.82
z2 = 1 50 0.001 69 68 1.19 1.19 0.81 0.81

0.01 62 62 1.18 1.18 0.83 0.82
0.1 50 51 1.15 1.15 0.85 0.85

100 0.001 125 125 1.17 1.18 0.83 0.82
0.01 115 115 1.17 1.17 0.84 0.83
0.1 96 96 1.14 1.15 0.86 0.85

H2I +MI/H2I 10 0.001 23 23 0.81 0.89 1.19 1.11
z = 1.525 0.01 19 20 0.82 0.89 1.18 1.11
z1 = 2.05 0.1 14 15 0.83 0.89 1.17 1.11
z2 = 1 50 0.001 76 76 0.82 0.89 1.18 1.11

0.01 67 68 0.83 0.89 1.18 1.11
0.1 53 54 0.84 0.89 1.16 1.11

100 0.001 135 135 0.82 0.89 1.18 1.11
0.01 122 123 0.83 0.89 1.17 1.11
0.1 99 100 0.84 0.89 1.16 1.11

H2I +MI/RRS(M) 10 0.001 28 28 0.82 0.89 1.17 1.05
p= .5 0.01 22 23 0.83 0.89 1.17 1.05
z = 2.75 0.1 15 17 0.85 0.89 1.15 1.05
z1 = 3.5 50 0.001 85 86 0.84 0.89 1.16 1.05
z2 = 2 0.01 74 75 0.85 0.89 1.16 1.05

0.1 55 58 0.86 0.89 1.14 1.05
100 0.001 148 149 0.85 0.89 1.15 1.05

0.01 131 133 0.85 0.89 1.15 1.05
0.1 102 106 0.87 0.89 1.13 1.05
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Table 6 shows the results of some experiments with a variety of systems with two independent

arrival streams. Just as in Tables 2-5, we staff according to a target overall blocking probability.

However, we then measure the other probabilities directly at this staffing level and present them as

ratios of the blocking probability to show the differences and the accuracy of the approximations

more directly. Further simulation data for these systems can be found in §EC.5.2. The total blocking

probability is approximated with the infinite-server approximation (18), and the time congestion

is approximated with the congestion ratio (23). Table 6 shows that the parcel blocking probability

can be significantly different from the total blocking probability and that the approximation (33)

works well for different systems including those with dependent service times. It should be noted

that, just as the performance of a loss system with Poisson arrivals is the same for any independent

sequence of service times, the first three systems in Table 6 are not affected if the arrivals from the

Poisson stream face a different independent service process.

8. Conclusions

We have applied simulation to show that the truncated-normal and Hayward approximations in (18)

and (21) for the blocking probability in the general G/G/s/0 stationary loss model remain effective

when there is dependence among successive service times as well as among successive interarrival

times, and non-exponential distributions, when the dependence is captured by the heavy-traffic

(HT) peakedness z in (3), provided that the offered load is not too small. (The approximations

may also be useful for low offered loads as well, as illustrated by Table EC.1.) We have shown in

Theorem 5 that these two approximations are asymptotically equivalent in the QED many-server

heavy-traffic regime. In §2.2 we have also reviewed the exact peakedness for the G/GI/s/0 model

from Eckberg (1983) and shown how it is related to the HT peakedness, in part via the refined

second-order heavy-traffic approximate peakedness with i.i.d. exponential service times in Theorem

3.

In §6 we have shown that the corresponding normal approximation for the time congestion from

Borovkov (1976) and Whitt (1984) is not accurate and developed a new HT approximation based
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on the congestion ratio, which we showed is effective. Significantly, the new approximation for the

time congestion depends on the arrival process beyond its rate and asymptotic variability parameter

c2a in (1) and (2). We then applied this new approximation for the time congestion to develop a

new approximation for the parcel blocking in multiclass loss models in §7, which we showed is also

effective.

Among the many directions for future research, (i) it remains to exhibit the exact peakedness

for the G/G/s/0 model considered here, and (ii) it remains to extend Theorem 1 and the approx-

imations here to cover dependence between the service times and the arrival process.
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E-Companion

EC.1. Overview

In this e-companion we present additional material supplementing the main paper. First, in §EC.2

we supplement §2.2 by giving additional results about the exact peakedness for hyperexponential

(H2) and deterministic (D) service times. Next, in §EC.3 we describe our simulation procedure

in more detail. In §EC.4 we review one derivation for the parcel blocking approximation in (33).

Finally, in §EC.5 we present additional results of the simulation experiments.

EC.2. More on the Exact Peakedness

We now supplement §2.2 with a few additional results about the exact peakedness for the G/GI/∞

model. We first give the exact peakedness for H2 service times; i.e., let the mean-1 random variable

S have probability density function (pdf)

f(t) = p1λ1e
−λ1t + p2λ2e

−λ2t, t≥ 0, (EC.1)

with E[S] = (p1/λ1) + (p2/λ2) = 1. We apply Theorem 2 to obtain the following corollary.

Corollary EC.1. (exact peakedness with H2I service) For the G/H2I/∞ model with service pdf

in (EC.1),

zeG/H2I
(µ)≡ 1 +

(
p21
λ1

+
2p1p2
λ1 +λ2

)
Ûs(λ1µ) +

(
p22
λ2

+
2p1p2
λ1 +λ2

)
Ûs(λ2µ)−µ−1. (EC.2)

where Ûs(s) is the Laplace-Stieltjes transform of the rate-1 arrival process mean function in (6).

We can also easily analyze the case with deterministic service times. Recall that the arrival

counting process A is assumed to be a stationary point process (with stationary increments), which

is the equilibrium renewal process if the interarrival times are i.i.d. (which is a delayed renewal

process associated with the given renewal arrival process in which the first renewal is distributed

according to the interarrival-time stationary-excess distribution) if the interarrival times are i.i.d.
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Theorem EC.1. (exact and second-order HT peakedness with D service) For the G/D/∞ model,

zeG/D(µ) = µV ar(A(µ−1)). For the special case of a renewal arrival process with interarrival time

pdf f having finite third moment,

zeGI/D(µ) = µV ar(A(µ−1)) = c2a + 2(γ2
2 − γ3)µ+ o(µ) as µ ↓ 0, (EC.3)

where γ2 =m2/2 = (c2a + 1)/2 and γ3 =m3/6 with m1 = 1.

Proof. We exploit the fact that Nµ coincides with A(t)−A(t−µ−1) when the service times are

all deterministic taking the value 1/µ. Hence, zeG/D(µ) = µV ar(A(µ−1)), as stated above. Then, for

GI arrivals, µV ar(A(µ−1)) satisfies (EC.3) by (18) on p. 58 of Cox (1962).

As a quick check on Theorem EC.1, note that c2a = γ2 = γ3 = 1 for an exponential interarrival

time, so that zeMI/D(µ) = 1 for all µ, which again is consistent with the fact that zeMI/GI(µ) = 1 for

all service-time distributions and all µ.

Example EC.1. (the E2I/D/∞ model) For an explicit example, consider a renewal arrival pro-

cess with interarrival times that are Erlang E2 with mean 1. For the E2I/D/∞ model the exact

peakedness is

zeE2I/D
(µ) = µV ar(A(µ−1)) =

1

2
+
µ

8
− µe

−4µ−1

8
=

1

2
+
µ

8
+ o
(
e−4µ

−1
)

as µ ↓ 0; (EC.4)

see p. 57 of Cox (1962). In this case, m1 = 1, m2 = 3/2 and m3 = 3, so that γ2 = 3/4 and γ3 =

1/2, from which we see that (EC.4) is consistent with (EC.3), with the error in the second-order

approximation decreasing exponentially.

EC.3. Description of Simulation Procedures in §5.1 and §7

Here we give a more detailed description of the procedures used in our loss model simulation

experiments, the results of which are found in Tables 2-5 of §5.1 and Table 6 of §7.

EC.3.1. Individual Replications

In all cases (each defined by an arrival process, a service process, and the number of servers), a

single replication starts with an empty system and runs for 150/µ units of time, where 1/µ is the
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mean service time. To ensure that performance is measured in steady state, data is only taken

in the time interval [50/µ,150/µ]; we have verified for each case that 50/µ units of time is long

enough to reach steady state by plotting the estimated mean and variance of the system size over

time in for 1000 simulated runs and ensuring that these variables appear constant graphically.

The estimated blocking probability in a replication is the number of blocked arrivals over total

arrivals, and when there are multiple arrival streams as in the parcel blocking experiment in §7,

separate blocking probabilities are estimated for each stream in the same way. The time congestion

is estimated by the time the system spends full divided by the total observation time (100/µ).

EC.3.2. Multiple Replications and Confidence Intervals

To estimate a performance measure, we execute four independent sets of independent replications

and take the sample mean in each set. We then take the mean of these four independent estimates

for our final estimate, and a 95% confidence interval (CI) is calculated using the t-distribution with

three degrees of freedom (if σ̂2 is the sample variance, then the confidence interval has half-width

3.182σ̂/
√

4). For the staffing levels given in Tables 2-6, enough replications are executed so that

the CI lies entirely below the target at the given number of servers and entirely above the target

when one more server is included. Up to 5,000 replications for each of the four sets are performed

to achieve the necessary precision, and in the event that this is not enough replications, the lowest

staffing level that produces a CI containing the target is listed. When a performance measure is

directly estimated as in Table 6, 10,000 replications are done for each set so that there are at least

two significant digits.

EC.3.3. Estimation of the Mean Function

As shown in equation (31), an important component of our congestion ratio approximation is the

use of Ûs, the Laplace-Stieltjes transform in (6) of the mean function U(x) to estimate the expected

arrivals during a full period. For a renewal arrival process, this is easily calculated with the Laplace

transform of the interarrival time pdf, as shown in (26), but it presents difficulty for more general
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arrival processes. As mentioned in §6.2, our method throughout was to directly estimate the mean

function U(x) using simulation. To do this, we performed one million independent replications of

the rate-1 arrival process. Each replication was 10 time units long, and we measured the number of

arrivals every 0.01 time units so that each replication consisted of 1000 data points. We averaged

all of the replications to estimate U(x), and then we estimated the derivative U ′(x) linearly:

U ′(x)≈ (U(x+ .01)−U(x− .01))/.02. The final integral was approximated with rectangles.

EC.4. Derivation of the Parcel Blocking Approximation in (33)

The approximation (33) has been derived a number of ways, including a birth-death argument with

state dependent birth rates by Fredericks (1983). Akimaru and Takahashi (1983) also provide a

nice derivation that considers a special case where the relation is exact, which we now review. Let

there be k= 3 arrival streams. Arrival streams 1 and 2 are identical general processes, while arrival

stream 3 is a Poisson process. According to the PASTA property, B3 =BT , which is also given by

(33). It remains to find the parcel blocking probability B1 for stream 1, which is equal to B2, and

the blocking probability of the superposition of streams 2 and 3, which we denote B23. In general,

we must have the balance equation

2α1B1 +α3B3 = αBC , (EC.5)

which can be rearranged after BT is substituted for B3 to give

B1 =BT +
α

2α1

(BC −BT ). (EC.6)

This is in fact identical to (33), which can be seen by substituting (32) into (33). To find B23, we

use an additional balance equation:

α1B1 + (α2 +α3)B23 = αBC . (EC.7)

Combining (EC.6) and (EC.7), we get a formula similar to (EC.6),

B23 =BT +
α

2(α2 +α3)
(BC −BT ), (EC.8)

and this is also given by (33) when the system is viewed as having two arrival streams (stream 1

and the superposition of streams 2 and 3).
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EC.5. Additional Simulation Data

EC.5.1. Performance of the Approximations at Small Offered Loads

Table EC.1 Comparison of various approximations for the blocking probability and time congestion to

simulated values in the case of smaller offered loads, specifically for α= 1 and 5. Values indicate the minimum

number of servers required to achieve a blocking probability/time congestion below the given target. All H2

distributions have balanced means and SCV = 4.

System α Target Sim Block IS Block Hayward Sim Time IS Time Ratio Time
M/GI 1 0.001 6 5 6 6 5 5
z = 1 0.01 5 4 5 5 4 4

0.1 3 3 3 3 3 3
5 0.001 14 13 14 14 13 13

0.01 11 11 11 11 11 11
0.1 8 8 8 8 8 8

H2/M 1 0.001 7 7 (6) 10 (7) 7 7 (6) 7 (6)
z = 2.5 0.01 6 6 (5) 8 (6) 5 6 (5) 6 (5)

0.1 4 5 (4) 5 (4) 3 4 (3) 4 (3)
5 0.001 17 17 (16) 20 (18) 16 16 (15) 17 (16)

0.01 14 15 (14) 16 (14) 13 13 (13) 14 (13)
0.1 9 11 (10) 10 (10) 9 8 (8) 10 (9)

H2/H2 1 0.001 7 7 (5) 9 (7) 7 6 (5) 6 (5)
z = 2.05 0.01 6 6 (5) 7 (5) 5 5 (5) 5 (4)

0.1 4 4 (4) 4 (3) 3 4 (3) 4 (3)
5 0.001 16 16 (15) 18 (17) 16 15 (15) 16 (15)

0.01 13 14 (13) 15 (13) 13 13 (12) 13 (12)
0.1 9 10 (9) 10 (9) 8 8 (8) 9 (9)

Most of the approximations presented throughout are supported by heavy-traffic limits, and we

have shown that they are accurate for high offered loads (α= 100,500). We also used the case of

α = 10 to demonstrate that the approximations work well even for lower offered loads. Here we

consider even smaller offered loads to address the question of how far the approximations can be

pushed.

Table EC.1 is formatted identically to Tables 2-5 except the offered loads are α= 1,5. In addition,

for all three of the systems presented, the exact peakedness is known in addition to the heavy-

traffic peakedness, so we can isolate the effects of approximating the exact peakedness with the

heavy-traffic peakedness. It seems the approximation methods retain their accuracy in low traffic,

as the cases are off by at most three servers. It is not clear from the data which step is the bigger
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cause of error, and while the approximations are not well supported by heavy-traffic limits at these

smaller offered loads, the data suggest they may still be useful.

EC.5.2. Parcel Blocking Experiments extending §7

Table EC.2 is a complement to the data provided in Table 6 of §7 using the same pairs of arrival

and service processes. Unlike the previous experiments, performance measures are directly given

here rather than taking the staffing approach. Offered loads range from 10 to 500, and the number

of servers was chosen so that the performance measures would fall approximately in our range of

interest.

At the higher offered load of 500, all of the approximations perform well including the parcel

blocking approximation (33). The approximations are only slightly worse as the offered load drops

to 100, but they do not appear to be accurate at an offered load of 10. In fact, even the blocking

probability approximation (18) seems to perform poorly at this offered load, though experiments

in §5.1 suggested that this approximation produces accurate staffing levels at offered loads as low

as 10 for a variety of systems. This highlights the point made in §5.1 that direct comparison of

performance measures can be overly strict as a method of evaluating approximations, particularly

when staffing is the more common application.
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Table EC.2 Comparison of approximate parcel blocking probabilities to simulated values. Both arrival streams

have equal rates, and the H2I distribution has balanced means with SCV = 4. The total blocking probability is

approximated with the infinite-server approximation (18), the parcel blocking probabilities are approximated with

(33), and the time congestion approximation uses the congestion ratio (23)

.
System α s Sim Block Approx Sim Time Approx Sim Block1 Approx

H2I +MI/MI 500 450 0.12 0.12 0.10 0.11 0.14 0.14
z = 1.75 500 0.045 0.047 0.038 0.042 0.052 0.052
z1 = 2.5 550 0.0053 0.0059 0.0044 0.0053 0.0061 0.0066
z2 = 1 100 80 0.24 0.26 0.21 0.23 0.28 0.28

100 0.095 0.11 0.080 0.094 0.11 0.12
120 0.015 0.018 0.013 0.016 0.018 0.020

10 10 0.25 0.33 0.21 0.30 0.28 0.37
15 0.062 0.092 0.051 0.082 0.073 0.10
20 0.0067 0.0097 0.0055 0.0086 0.0080 0.011

E4I +MI/MI 500 450 0.11 0.11 0.13 0.13 0.10 0.097
z = .8125 500 0.031 0.032 0.036 0.037 0.027 0.027
z1 = .625 550 0.00078 0.00075 0.00090 0.00087 0.00066 0.00063
z2 = 1 100 80 0.22 0.23 0.25 0.26 0.20 0.20

100 0.069 0.072 0.079 0.083 0.059 0.061
120 0.0033 0.0031 0.0038 0.0036 0.0027 0.0026

10 10 0.20 0.23 0.22 0.26 0.17 0.19
15 0.025 0.025 0.030 0.031 0.020 0.020
20 0.00068 0.00024 0.00086 0.00030 0.00053 0.00018

H2I +MI/H2I 500 450 0.12 0.12 0.10 0.11 0.14 0.13
z = 1.525 500 0.044 0.044 0.037 0.039 0.050 0.049
z1 = 2.05 550 0.0045 0.0044 0.0037 0.0040 0.0052 0.0049
z2 = 1 100 80 0.24 0.25 0.21 0.23 0.27 0.28

100 0.092 0.099 0.077 0.088 0.11 0.11
120 0.013 0.014 0.011 0.013 0.015 0.016

10 10 0.24 0.31 0.21 0.28 0.27 0.34
15 0.055 0.076 0.046 0.068 0.065 0.085
20 0.0052 0.0059 0.0042 0.0052 0.0061 0.0066

H2I +MI/RRS(M) 500 450 0.13 0.13 0.11 0.12 0.14 0.14
p= .5 500 0.054 0.059 0.047 0.053 0.062 0.062
z = 2.75 550 0.012 0.013 0.010 0.012 0.013 0.014
z1 = 3.5 100 80 0.25 0.28 0.22 0.25 0.28 0.29
z2 = 2 100 0.11 0.13 0.10 0.12 0.13 0.14

120 0.029 0.036 0.024 0.032 0.033 0.038
10 10 0.26 0.42 0.23 0.37 0.29 0.44

15 0.086 0.16 0.073 0.14 0.10 0.17
20 0.019 0.035 0.016 0.031 0.022 0.037


