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 MULTIVARIATE MONOTONE LIKELIHOOD RATIO

 AND UNIFORM CONDITIONAL STOCHASTIC ORDER

 WARD WHITT,* Bell Laboratories

 Abstract

 Karlin and Rinott (1980) introduced and investigated concepts of multivariate
 total positivity (TP2) and multivariate monotone likelihood ratio (MLR) for
 probability measures on R ". These TP and MLR concepts are intimately related
 to supermodularity as discussed in Topkis (1968), (1978) and the FKG inequality
 of Fortuin, Kasteleyn and Ginibre (1971). This note points out connections
 between these concepts and uniform conditional stochastic order (ucso) as
 defined in Whitt (1980). ucso holds for two probability distributions if there is
 ordinary stochastic order for the corresponding conditional probability distribu-
 tions obtained by conditioning on subsets from a specified class. The approp-
 riate subsets to condition on for ucso appear to be the sublattices of R ". Then
 MLR implies ucso, with the two orderings being equivalent when at least one of
 the probability measures is TP2.

 STOCHASTIC ORDER; CONDITIONAL PROBABILITY; UNIFORM CONDITIONAL

 STOCHASTIC ORDER; TOTAL POSITIVITY; MONOTONE LIKELIHOOD RATIO; SUPER-

 MODULARITY; FKG INEQUALITY

 In Whitt (1980) we introduced and investigated the concept of uniform
 conditional stochastic order (ucso). One probability measure P is less than or
 equal to another Q in ucso if PA is stochastically less than or equal to QA for all
 subsets A in a designated class, where PA and QA are conditional measures, i.e.,
 PA (B) = P(A n B)/P(A), P(A) > 0 (Definition 5 below). A satisfactory theory
 was shown to be possible for probability measures on totally ordered spaces
 largely because in that setting ucso, conditioning on all subsets, is equivalent to
 monotone likelihood ratio (MLR) order. The purpose of this note is to show that
 similar connections exist for probability measures on partially ordered spaces if
 appropriate definitions are used.

 We do not discuss applications here, but it is clear that the two notions of
 stochastic order and conditioning can fruitfully be applied together. In some
 cases it will be useful to condition on all subsets; in others it will be useful to

 condition only on special subsets. For example, to compare stochastic processes,
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 696 WARD WHITT

 it is natural to condition on the histories; see Arjas (1981) and Whitt (1981). For
 measures on the real line, it is useful to condition on all semi-infinite subintervals

 of the form (- o, x] or [x, co) as well as on all intervals (which is equivalent to all
 subsets); see Keilson and Sumita (1983), Whitt (1981a) and references there. Of
 course, when the MLR property holds, there are many known applications; see
 Karlin and Rinott (1980) and references there. The MLR property was applied in
 Whitt (1979) to study the effect of a sample on the posterior distribution; also see

 Fahmy et al. (1982). For related work in economics, see Milgrom (1981) and
 Milgrom and Weber (1982).
 Here our goal is to make a connection between ucso and MLR for probability
 measures on partially ordered spaces. For simplicity, attention is restricted to R "

 with the usual partial order: x 5 y for x = (x, - -, x,x) and y = (y, - - -, y,) if

 x, = y, for each i. For ucso, it seems appropriate to condition on all sublattices of
 R "; for MLR, it seems appropriate to use the definition of multivariate MLR order
 recently introduced by Karlin and Rinott (1980), Definition 2 below, which is
 intimately related to the FKG inequality; see Fortuin, Kasteleyn and Ginibre
 (1971) and Kemperman (1977). In general, MLR is stronger than ucso with these
 definitions (Theorem 2), but these orderings are equivalent and the theory
 simplifies when at least one probability measure is totally positive (Theorem 3),
 also as defined by Karlin and Rinott (1980); see Definition 3 below. The results
 here follow quite easily from previous ones, but they seem important supple-
 ments to Whitt (1980). Additional properties of ucso (for probability measures
 on R) with many applications are contained in Keilson and Sumita (1983).
 Let P and Q be probability measures on R ". We begin with the monotone
 likelihood ratio (MLR) orderings, which involve comparisons between densities p
 and q of P and Q. We assume these densities are either with respect to Lebesgue
 measure or a counting measure on R", the latter making p and q probability
 mass functions. We start with the weaker form considered in Whitt (1980).
 For simplicity, we assume the probability measures P and Q have common
 support. When P and Q do not have common support, there is a natural extra
 condition to impose in the following MLR and ucso definitions in order for P to

 be less than or equal to Q. Let s(P) be the support of P and let A - B for sets A and B hold if a -b for all aE A, bE B. The natural extra condition is:
 s(Q)- s(P)= s(P) and s(Q)= s(P)- s(Q).

 Definition 1 (weak MLR order). P 5, Q if there exist densities p and q such
 that

 (1) p(y)q(x) - p(x)q(y)
 whenever x -- y.

 Next we give the stronger definition in Karlin and Rinott (1980); see (1.18) and
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 Multivariate monotone likelihood ratio and uniform conditional stochastic order 697

 references there to the FKG inequality. Let v and A be the usual lattice operations

 on R", i.e., for x = (x,, ,xx) and y = (y,,. -, y,),

 X A y = (min{x,, y,}, , min{x,, y,})
 and

 x v y = (max{x,, yi},** , max{xn, y }).
 Definition 2 (strong MLR order). P 5;,, Q if there exist densities p and q such

 that

 (2) p(y)q(x)? p5(x A y)q(x v y)

 for all x, y.

 Obviously 5,,p is stronger than -r but equivalent for probability measures on R. The tp subscript is explained by the connection to multivariate total
 positivity; see (1.4) in Karlin and Rinott (1980).

 Definition 3 (multivariate total positivity). P is TP2 if P 5, RP.

 Definition 3 brings out the fact that, unlike -r, -,, is not reflexive in general.
 A probability density p on R" is TP2 if and only if log p is supermodular in the
 sense of Topkis (1968), (1978). As a consequence, Theorems 3.1 and 3.2 of
 Topkis (1978) imply that p is TP2 if and only if p(x + eu')/p(x) is non-decreasing

 in x, for each x E R " and i X j, where x = (x,, x ' , xn), u' is the ith unit vector in
 R" and e > 0. Also, if p is twice differentiable, then p is TP2 if and only if

 a2 log p (x)/Ixax - 0 for each x E R and i $j. Preservation theorems for supermodularity and, equivalently, multivariate total positivity are given by
 Topkis (1978) and Karlin and Rinott (1980). The arguments of Theorems 3.1 and
 3.2 in Topkis (1978) also easily apply to characterize ,,p order for two densities p
 and q in terms of comparisons involving only two variables at a time as follows.

 Theorem 1. The strong MLR ordering (2) for densities p and q holds if and
 only if

 (3) q(x + Eju') q(x + Eju' + E2u)
 p(x) = p(x + E2u)

 for all x E R", positive e, and e2, and i$ j, with p(x + E2u) > 0, where u' is the
 ith unit vector in R ".

 Now recall the following standard definition of stochastic order.

 Definition 4. P =s, Q if

 f. fdP f fdo
 for all non-decreasing measurable real-valued functions f on R ".
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 698 WARD WHITT

 We now introduce a version of uniform conditional stochastic order (ucso)
 considered in Whitt (1980). For this purpose, recall that a subset A of R" is a
 lattice if x A y, x v y EA whenever x, y EA. Let Y be the set of all lattice
 subsets of R ". For any subset A with P(A)> 0, let the conditional probability
 measure be PA, defined by

 PA(B) = P(A n B)/P(A), B E R".

 We refer to the following ordering as uniform conditional stochastic order with
 respect to sublattices (UCSOL).

 Definition 5 (UCSOL). P 5eQ if PA -st QA for all A E Y with P(A)> 0 and Q(A)> 0.

 Let the relations *, --, and ++ between orderings have the obvious
 interpretation, i.e., of equivalence, implication, and non-implication, respec-
 tively. From existing results, it is easy to establish the following relationships.

 Theorem 2. 5, ?t ~ _ .I

 Proof. The implication -e -r is covered by Theorem 1.3 (ii) of Whitt
 (1980). To have D(s1, e) U I(s2, E) E Y as required there, let the metric d on R "
 be the metric associated with the L" or supremum norm, defined by

 d(x, y)= max{Jx,- y, ..-,x, - y, J}
 for x = (x,.- ., x,) and y = (yi, . - ., y,).

 A minor modification of Example 1.4 in Whitt (1980) shows that 5, ++ _s. On
 {(0, 0), (0, 1), (1,0), (1, 1)} let p,((0, 0)) = 0.1, p,((0, 1)) = p,((1, 0)) = p,((1, 1)) = 0.3
 and p2((0, 0)) = 0.01, p2((1,0)) = 0.09, P2((0, 1)) = p2((1, 1)) = 0.45. Then P1 5, P2,

 but P,(A) = P2(A) for A = {(0, 1), (1, 1)}.
 Next we show that 5,,p -- e. First, it is known that P s:, Q if P 5tp Q; see

 (1.19) of Karlin and Rinott (1980). Next, it is easy to see that P ,,p Q if and only
 if PA tp QA for all A E C with P(A) > 0 and Q(A) > 0 because such subsets A
 are sublattices and the relation (2) is preserved when p and q are multiplied by
 positive constants. Hence, PA :st QA when P 5,,p Q, as claimed. Finally, to see

 that the two orderings 5,, and _z are not equivalent, let P be any probability
 measure on R" that is not TP2. Then P -eP, but not P 5,, P.

 The theory greatly simplifies if all the probability measures are TP2 or even just
 one is.

 Theorem 3. If either P or Q is TP2, then for P and Q <, < <.

 Proof. It suffices to show that r,-~ -,,. For this purpose, suppose P is TP2
 and P -, Q. (The argument is similar when O is TP2.) Then there exist densities
 p,, P2, P3, and q such that
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 Multivariate monotone likelihood ratio and uniform conditional stochastic order 699

 (4) p,(x)p2(y) --5 p(x v y)p2(x A y)
 and

 (5) p3(x v y)q (x) q (xv y)p3(x),
 for all x, y. Now let p(x) = p1(x) for those x for which pl(x) = p2(x) = p3(x), and
 let p (x) = 0 elsewhere (a null set). Then (4) and (5) hold with p instead of pi, so
 that (4) and (5) can be combined to yield the desired relation (2).

 Suppose S is a countable sublattice in R ", 3 is the set of all ordered two-point

 subsets, and C is the set of all totally ordered subsets. Let -5 and -5 be ucso
 with respect to r and C, respectively. The following corollary is an immediate
 consequence of Theorem 1.2 in Whitt (1980) and Theorem 3 above.

 Corollary. Let P and Q be probability measures on the countable sublattice
 S. If either P or 0 is TP2, then

 ?tp - Y + r+ + T

 We conclude by exhibiting some lattice structure associated with the orderings

 =, and 5,,, and some algorithms for calculating the upper and lower bounds, for
 the case of finite lattices. Let S be a finite sublattice of R " with a least element so

 and a greatest element s1. Let N, be the subset of nearest lower neighbors of s in
 S, i.e.,

 N, = {x ES :x <s,x < y <s forno y E S}.

 Let Ns be the corresponding subset of nearest higher neighbors of s.
 For probability mass functions p and q with support on S, i.e., with p(s),

 q (s) > 0 for all s ES, define p v, q and p A, q recursively by

 (p vq)(s) [(p v,q)(x) p(s) q(s)} (p v, =q)(s) max max ,(P-r-') ax p-) 'x
 (p vrq)(so) xEN, (p v,q)(so) p(x)' q(x) '

 and

 (p A,q)(s) mn A, rq)(x) p(s) (s) (P Arq)(so) xEN, (p A,q)(so) tp(x)'q(x)j '

 with (p vq)(so) and (p Arq)(so) being normalization constants determined by
 the condition that p v, q and p A, q be probability mass functions. It is easy to
 check the following.

 Theorem 4. (i) The space H(S) of all probability mass functions with support

 on the finite lattice S is itself a lattice with the partial order _,, greatest lower bound A, and least upper bound v,.
 (ii) The subset of totally positive probability mass functions in H(S) is a

 sublattice in which <, > <t.
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 700 WARD WHITT

 For any probability mass function p E I(S), the set of all probability mass
 functions with p(s)> 0 for all s E S, let p. and p, be defined recursively by

 (s)max) P(Y) : xE Ns, yE N U s}, xv}vy =s
 p. (So) = ma (o) p (X A y)

 and

 P,(sl)miM {pM(sl)p(x vy): x ENs, y ENs UIs}, x A y = }
 p(s) P(x) p(y){s},xy=s ,

 with p. (so) and p,(s1) the normalizations so that the total probability is 1 in each
 case. Let

 p Vtp q = p. vr q and p Atp q = pi Arq.

 Finally, it is not difficult to establish the following result.

 Theorem 5. (i) pi and pu are TP2;

 (ii) p, t, p --, p.pu ;
 (iii) p ,tp q if and only if p. ,tp q,;
 (iv) H(S) with t-,, v,p and A,p is a lattice;
 (v) pu v,rq = (p v,q)u and pi A, q = (p Aq)i.
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