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We establish heavy-traffic stochastic-process limits for queue-length, waiting-time and overflow stochastic pro-
cesses in a class of G/GI/n/m queueing models with n servers and m extra waiting spaces. We let the arrival
process be general, only requiring that it satisfy a functional central limit theorem. To capture the impact of the
service-time distribution beyond its mean within a Markovian framework, we consider a special class of service-
time distributions, denoted by H ∗

2 , which are mixtures of an exponential distribution with probability p and a unit
point mass at 0 with probability 1− p. These service-time distributions exhibit relatively high variability, having
squared coefficients of variation greater than or equal to one. As in Halfin and Whitt (1981, Heavy-traffic limits
for queues with many exponential servers, Oper. Res. 29 567–588), Puhalskii and Reiman (2000, The multiclass
GI/PH/N queue in the Halfin-Whitt regime. Adv. Appl. Probab. 32 564–595), and Garnett, Mandelbaum, and
Reiman (2002. Designing a call center with impatient customers. Manufacturing Service Oper. Management, 4
208–227), we consider a sequence of queueing models indexed by the number of servers, n, and let n tend to
infinity along with the traffic intensities 
n so that

√
n�1− 
n� → 
 for −� < 
 < �. To treat finite waiting

rooms, we let mn/
√

n → � for 0< � ≤�. With the special H ∗
2 service-time distribution, the limit processes are

one-dimensional Markov processes, behaving like diffusion processes with different drift and diffusion functions
in two different regions, above and below zero. We also establish a limit for the G/M/n/m+M model, having
exponential customer abandonments.
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1. Introduction. Our goal in this paper is to establish new heavy-traffic stochastic-
process limits for multiserver queues in which the number of servers is allowed to increase
along with the traffic intensity. Such limits were established for the GI/M/n/� queueing
model (with renewal arrival process, exponential service times, n servers, unlimited waiting
room, and first-come first-served service discipline) by Halfin and Whitt [7], for the more
general GI/PH/n/� model (with phase-type service times) by Puhalskii and Reiman [17],
for the GI/D/n/� queueing model by Jelenković et al. [8], and for the M/M/n/�+M
model with exponential customer abandonment by Garnett et al. [5]. They considered a
sequence of models indexed by the number of servers, n, and let n →� with the traffic
intensities 
n converging to 1, the critical value for stability. Interesting nondegenerate limits
occur when √

n�1−
n�→ 
 for −�< 
 <�� (1.1)

(The systems without customer abandonment are stable with proper steady-state distribu-
tions only when 
 > 0.)
We obtain more general results by allowing a nonrenewal arrival process and a finite

waiting room, but we only consider a special class of GI service-time distributions: The
nonexponential service-time distribution we consider is the mixture of an exponential dis-
tribution with probability p and a unit point mass at 0 with probability 1− p. This spe-
cial service-time distribution is mathematically appealing because, just like the exponential
service-time distribution, it makes appropriate queue-length processes Markov processes in
the renewal-arrival case, and because it leads to a one-dimensional limiting Markov process
in the stochastic-process limit. Interestingly, the limit process is not directly a diffusion
process, because of anomalous behavior at an interior boundary point, but it is a convex
piecewise-linear function of a diffusion process, which is quite tractable.
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We want to analyze the G/GI/n/m model with the special H∗
2 service-time distribution

because, even though the service-time distribution is special, it may provide insight into
the way performance depends on the service-time distribution beyond its mean. Indeed, we
exploit the heavy-traffic stochastic-process limits here in a companion paper Whitt [27], to
support a heuristic approximation for the queue-length process and its steady-state distri-
bution in the more general G/GI/n/m model with general service-time distribution. That
approximation is asymptotically correct in the regime (1.1) for the G/H∗

2 /n/m special case.
Whitt [27] examines the quality of approximations for basic steady-state performance mea-
sures, using results from simulations and numerical algorithms.
Because the special service-time distribution is an extremal distribution among the class

of hyperexponential (H2, mixtures of two exponentials) distributions (see Whitt [24]), we
denote this class by H∗

2 . Whitt [23] observed that H∗
2 service-time distributions are con-

venient for developing explicit closed-form expressions for performance measures in the
M/GI/n/� model. For example, he showed that the steady-state delay probability with
the H∗

2 service-time distribution is independent of the parameter p, provided that the mean
service time is held fixed.
Puhalskii and Reiman [17] already established many-server heavy-traffic limits for the

GI/PH/n/� model with phase-type service-time distributions, but the limit process there
is a complicated multidimensional diffusion process, whose steady-state distribution remains
to be determined. The standard H2 distributions are a subclass of the PH distributions, and
so are covered by the results in Puhalskii and Reiman [17], but the case H∗

2 is not covered,
because their analysis makes use of the fact that the component exponential distributions
have positive mean (and thus finite rate). Indeed, going from H2 to H∗

2 lowers the dimension
of the limiting Markov process from two-dimensional to one-dimensional.
To treat a finite waiting room in the heavy-traffic regime (1.1), it is necessary to let

mn →� as n→� so that

mn/
√

n→ � for 0< �≤�� (1.2)

The case of a finite waiting room is not discussed in Halfin and Whitt [7]. Even for
GI/M/n/m, a different proof is required for the heavy-traffic limit, because the finite waiting
room introduces a reflecting upper barrier in the diffusion process, which cannot be repre-
sented simply as a reflection map applied to an unreflected free process. For the M/M/n/m
model, related heavy-traffic limits have been established by Massey and Wallace [14].
Motivated by Garnett et al. [5] and Ward and Glynn [21], in this paper we also establish a

stochastic-process limit for the G/M/n/m model with exponential customer abandonment
(the G/M/n/m + M model): each customer that must wait in queue before beginning
service abandons after an exponential time with mean �−1 if service has not begun by that
time. (The extension to H∗

2 service times remains an open problem.) The stochastic-process
limit is similar to the previous G/M/n/m limit: The exponential customer abandonment
only changes the drift for x > 0 from constant to linear.
The rest of this paper is organized as follows: We state the stochastic-process limits for

the G/H∗
2 /n/m model in §2 and the extension to allow exponential customer abandonment

in §3. We provide proofs in §§4–6.

2. The stochastic-process limit with H∗
2 service times. In this section, we formu-

late the heavy-traffic stochastic-process limits for the G/H∗
2 /n/m model. We construct a

sequence of these G/H∗
2 /n/m models indexed by the number of servers, n, and let n→�.

We let the associated sequence of traffic intensities �
n� n≥ 1� approach 1 and the associated
sequence of waiting-room sizes �mn� n≥ 1� approach infinity so that (1.1) and (1.2) hold.
We start with a rate-1 arrival counting process C ≡ �C�t�� t ≥ 0� with associated interar-

rival times �Uk� k ≥ 1�. Our key assumption about C is that it satisfies a functional central
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limit theorem (FCLT). To state the assumed limit, let ⇒ denote convergence in distribution
and let D ≡D��0������ be the function space of right-continuous real-valued functions on
the positive halfline with left limits, endowed with the customary Skorohod (J1) topology;
see Billingsley [1] and Whitt [25].
Let Cn be the random element of D defined by

Cn�t�≡ �C�nt�− nt /
√

n� t ≥ 0� (2.1)

We assume that
Cn ⇒C≡√

c2aB in �D� J1� (2.2)

for some nonnegative scaling constant c2a, where B is standard (zero drift, unit diffusion
coefficient) Brownian motion. When the arrival process is a renewal process, the limit (2.2)
holds with c2a being the squared coefficient of variation (SCV, variance divided by the square
of the mean) of an interarrival time (then assumed to be finite), but the limit (2.2) holds
much more generally; see [25, Corollary 7.3.1].
When the number of servers is n, we scale time in the arrival process, letting the arrival

process be
Cn�t�≡C�#nt�� t ≥ 0� (2.3)

where #n is the arrival rate in model n (with n servers). Equivalently, the interarrival times
in model n are Un�k ≡ Uk/#n. As a consequence, assuming that #n/n$ → 1, we have the
associated limit

C′
n ⇒C′ ≡√

$c2aB in �D� J1�� (2.4)

where

C′
n�t�≡

Cn�t�−#nt√
n

� t ≥ 0� (2.5)

Let the H∗
2 service-time distribution be independent of n. With probability p, it is an

exponential with mean %−1; with probability 1−p it is 0. It has mean $−1 = p%−1, so that
the traffic intensity as a function of n is 
n = #n/$n. The second moment of a service
time is thus 2p%−2, so that the SCV is c2s = �2/p�− 1. Equivalently, p−1 = �c2s + 1�/2. The
SCV c2s ranges from 1 to � as p decreases from 1 to 0. Hence, the variability of the H2

distribution is greater than or equal to that of an exponential distribution.
Let Qn�t� be the queue length at time t, by which we mean the number in system,

including both waiting and in service. We assume that the stochastic process Qn almost
surely has sample paths in the function space D; in particular, the process Qn provides no
record of an arrival with zero service time that can enter service upon arrival and depart
immediately. Let Qa

n�k� be the queue length just before the kth (potential) arrival, including
all arrivals up to number k− 1 if there are batch arrivals. The arrival is a potential arrival,
because it may leave immediately upon arrival if it has a zero service time and there is a
free server or if the system has finite capacity and is full at that arrival epoch, in which
case the customer is blocked and lost (without affecting future arrivals). Customers with
zero service times are all counted by the discrete-time process Qa

n.
For the stochastic-process limit, we construct scaled random elements of D by letting

Qn�t�≡ �Qn�t�− n /
√

n�

Qa
n�t�≡ �Qa

n��nt��− n /
√

n� t ≥ 0� (2.6)

There is no time scaling for Qn in (2.6) because the arrival rate #n is allowed to grow
directly.
We also must specify the initial conditions, which could be complicated because of the

general arrival process. In standard heavy-traffic limits for the G/GI/n/� model with
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a fixed number of servers, it is common to start the system empty. However, with the
scaling in (2.6), where n→�, it is convenient to let Qn�0�= n. Alternatively, we could let
Qn�0�= �n+x

√
n�∨ 0 for some real number x, where �x� is the greatest integer less than

or equal to x and x ∨ 0 = max�0� x�. More generally, we let Qn�0� be an integer-valued
random variable with

0≤Qn�0�≤ n+mn (2.7)

that is independent of the arrival process �Cn�t�� t ≥ 0� and we assume that
Qn�0�⇒Q�0� as n→�� (2.8)

where Q�0� is a proper random variable and

Qn�0�≡ �Qn�0�− n /
√

n� (2.9)

We also let Qa
n�0� = Qn�0� and Qa

n�0� = Qn�0�. Moreover, we assume that the
min�n�Qn�0�� customers initially in service have exponential service times with mean %−1,
while the �Qn�0�− n + customers initially waiting in queue have the H∗

2 cdf. (That is, we
assume that customers with zero service times would already have left if they could be in
service.) Finally, given that specification, we assume that all service times are independent
of the initial state Qn�0� and the arrival process.
Let D2 ≡D×D be the product space with the associated product topology. As indicated

above, we use the standard J1 topology on each coordinate, but the specific Skorohod
topology (e.g., J1 or M1) does not matter because the limit process has continuous sample
paths. Indeed, the topology could be the J1 or M1 topology on D��0�����2�; see [25, §§3.3
and 11.5 and Chapter 12]. Let e be the identity function in D, i.e., e�t�= t, t ≥ 0. Let � be
the composition map, defined by �x � y��t�≡ x�y�t��; see [25, §13.2].

Theorem 2.1. For the family of G/H∗
2 /n/m models specified above, where the rate-1

arrival process obeys the FCLT in (2.2), suppose that the arrival rate #n and the number
of waiting spaces mn change with n so that (1.1) and (1.2) hold with −� < 
 < � and
0 < � ≤ �. In addition, suppose that the initial conditions are as specified above with
(2.7)–(2.9). Then,

�Qn�Q
a
n�⇒ �Q�Qa� in �D� J1�

2 as n→�� (2.10)

where

Q�t�≡ g�Qp�t��� t ≥ 0� (2.11)

g�x�≡
{

x� x < 0�

x/p� 0≤ x ≤ p��
(2.12)

Qa ≡Q �$−1e� (2.13)

and Qp is a diffusion process starting at Qp�0�= g−1�Q�0�� with a reflecting upper barrier
at p� if � < � and an inaccessible upper boundary at infinity if � = �. The diffusion
process Qp has infinitesimal mean (drift function)

mQp �x�=
{−p$
� 0≤ x < p��

−p$�x+
�� x < 0�
(2.14)

and infinitesimal variance (diffusion function)

*2
Qp �x�= p2$�c2a + �2/p�− 1�= p2$�c2a + c2s �� −�< x < p�� (2.15)
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Remark 2.1. The superscript p. The limit process Qp in Theorem 2.1 has a natural
physical interpretation: It is the limit process for the scaled version of the queue-length
process �Qp�t�� t ≥ 0� containing only the customers with positive (nonzero) service times,
ignoring the customers with zero service times. When all servers are not busy, we can ignore
the customers with zero service times because they leave immediately upon arrival, and
Q�t� does not record their appearance. Except for the upper barrier at mn, the customers
with zero service times have no impact on other customers. To obtain the limit process Qp

directly in the case mn = � =�, we ignore the customers with zero service times, giving
us the stochastic process �Qp�t�� t ≥ 0�, which corresponds to the queue-length process
�Q�t�� t ≥ 0� in the G/M/n/� model where p = 1, but with different parameters. Thus, in
the special case of GI arrivals and unlimited waiting space, the limit for the scaled version
of �Qp�t�� t ≥ 0� is a consequence of Halfin and Whitt [7] and Puhalskii and Reiman [17].
For the limiting diffusion process Qp, the extension to a finite upper barrier � is obtained by
inserting a reflecting upper barrier at �; see Remark 2.5 for a discussion of the construction.
We do not actually prove that Qp

n →Qp in the finite-waiting-room case here; that remains
an open problem.
Remark 2.2. Q and Qa are not diffusion processes. Because the function g in (2.12)

is not differentiable at 0 (and has a discontinuous derivative using one-sided derivatives),
the limit processes Q and Qa are not diffusion processes with the common definitions;
e.g., see Rogers and Williams [18, p. 110] and Karlin and Taylor [9, p. 159]. The limit
processes Q and Qa are strong Markov processes with continuous sample paths, but the
infinitesimal mean and variance are not well defined in state 0. However, the function g is
a convex function, so that the limit processes Q and Qa can be characterized as stochastic
integrals, using a generalized Itô rule for convex functions based on Tanaka’s formula; e.g.,
see Rogers and Williams [18, §§43, 45, and 47]. Indeed, by Rogers and Williams [18,
Theorem 45.1], Q can be represented as the stochastic integral

Q�t� = g�Qp�t��

= g�Qp�0��+
∫ t

0
�1�−��0 �Q

p�s��+ �1/p�1�0� p� �Q
p�s�� dQp�s�

+ 1−p

2p
LQp �t�0�� (2.16)

where 1A�x� is the indicator function, with 1A�x� = 1 if x ∈ A and 1A�x� = 0 otherwise,
and LQp �t�0� is the local time in state 0 of the diffusion process Qp (with infinitesimal
parameters in (2.14) and (2.15)). In turn, by Rogers and Williams [18, Theorem 49.1],
the local time of the diffusion process Qp is a time change of the local time of standard
Brownian motion B, i.e.,

LQp �t�0�= LB�.�t��0� (2.17)

for appropriate time-change function .�t� fully specified there.
Remark 2.3. Tractability. It is evident that the limit processes Q and Qa are quite

tractable due to the representation in (2.11)–(2.13). First, it is easy to obtain the steady-state
distributions from the steady-state distribution of Qp. We do not give details here, because
the steady-state distribution is discussed extensively in Whitt [27]. It also follows that the
limit processes Q and Qa act like diffusion processes away from the origin. Away from the
origin, the process Q has infinitesimal mean (drift function)

mQ�x�=
{−$
� 0< x < ��

−p$�x+
�� x < 0�
(2.18)
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and infinitesimal variance (diffusion function)

*2
Q�x�=

{
$�c2a + �2/p�− 1�=$�c2a + c2s �� 0< x < ��

p2$�c2a + 2−p�= p2$�c2a + c2s �� x < 0�
(2.19)

However, the infinitesimal parameters are not well defined at 0. For example, in the
M/H∗

2 /n/m special case, from state n the process Qn�t� has a drift up of #n, but a drift
down of p$n. If we could regard the process Q as a diffusion process with the infinites-
imal parameters in (2.18) and (2.19), extended to 0, then the diffusion process would be
a piecewise-linear diffusion (like Qp) as in Browne and Whitt [3], and we could directly
write down the steady-state distribution. However, because Q is not actually a diffusion,
that alleged steady-state distribution for Q is not correct.
Remark 2.4. Different speeds in different regions. The infinitesimal variance *2

Q�x� in
(2.19) is discontinuous at x = 0 when p < 1: *2

Q�0−�= p2*2
Q�0+�, so that the limit process

Q “moves faster” when x > 0. That difference in the infinitesimal variances is evident from
plots of queue-length sample paths obtained from simulations. To demonstrate that property,
we plot sample paths of the queue-length process for 104 arrivals in the M/M/n/� and
M/H∗

2 /n/� models with #= 100, $= 1, p = 0�1 and several values of n in Figures 1 and 2.
For the M/H∗

2 /n/� model with p = 0�1, the infinitesimal variance of Q is *2
Q�x� = 2p$

for x < 0 and *2
Q�x� = 2$/p for x > 0. Hence, the ratio of the infinitesimal variances in

the two regions is p2 = 0�01. The difference is striking in the plots.
For the simulation, the same arrival process sample path is used for all plots, and the same

service-time realizations are used for different n in each separate queueing system. Consis-
tent with the steady-state distribution described in Whitt [27], the steady-state probability

Figure 1. Sample paths of the queue-length process for 104 arrivals in the M/M/n queue with arrival rate
# = 100, service rate $ = 1, and several values of n. A common realization of the arrival process and service
times is used for all n.
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Figure 2. Sample paths of the queue-length process for 104 arrivals in the M/H ∗
2 /n queue with arrival rate

#= 100, $= 1, and p = 0�1 (SCV c2s = 19) and several values of n. A common realization of the arrival process
and service times is used for all n.

that all servers are busy tends to be no greater for the more highly-variable H∗
2 service times

than for the exponential service times. Indeed, for n= 120 in these plots, no customers are
delayed for H∗

2 service times, whereas some are for exponential (M) service times.
Remark 2.5. Constructing Qp. The key limit process Qp in Theorem 2.1 is a diffusion

process on the interval �−�� p�� with reflection at the upper barrier when � <�. It is of
course important that this limiting diffusion process be well defined. Constructing this dif-
fusion process is somewhat complicated when � <�, because it cannot be regarded simply
as the image of an “unreflected free process” under a reflection map, as in [25, §§5.2, 9.3,
13.5, 14.8]. There are several ways to do the construction. One is to rely on an asymptotic
construction of the reflected process from an associated unreflected process on �−����
as in the proof of Srikant and Whitt [19, Theorem 4.1]. That construction characterizes
the probability law of the reflected process as the common limit (in distribution) of two
converging sequences of bounding processes. These bounding processes have small jumps
into the interior of the state space the instant the boundary is hit.
A second approach is to directly apply the standard reflection map in the neighborhood

of the upper barrier. That second approach is useful to construct an approximation for the
overflow process in the queueing model (recording arrivals turned away because the waiting
room is full), which we do in the next corollary. To do that construction, we can use the
following “alternating-renewal-process” construction: We let the reflected diffusion process
be distributed as the unreflected diffusion process until the first time the upper barrier is hit.
Because the diffusion process has constant drift for states in the interval �0� p��, we can then
let the reflected diffusion process be reflected Brownian motion (with one-sided reflection
down from the upper barrier) until a state b is next hit, with 0< b < p�, using the usual
construction involving the reflection map; see [25, Chapters 5 and 9]. The approximation
for the losses in the queueing model is determined by the upper-barrier regulator map
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associated with the reflection map in the random intervals during which the process acts as
reflected Brownian motion. After hitting the state b again, we repeat the construction above.
For further discussion about constructing diffusion processes, see Lions and Sznitman [11],
Stroock and Varadhan [20], and Rogers and Williams [18]. �

We now state some corollaries. Our first is for the loss processes when � < �. Let
Ln�t� be the number of customers lost (blocked) in the interval �0� t and let La

n�k� be the
number of customers lost among the first k arrivals. Paralleling (2.6), let the associated
scaled processes be

Ln�t�≡Ln�t�/
√

n�

La
n�t�≡La

n��nt��/√n� t ≥ 0� (2.20)

We construct the loss process associated with the limiting diffusion process in Theorem 2.1
by using the reflection map in the “alternating-renewal-process” framework specified in
Remark 2.5.

Corollary 2.1. If, in addition to the assumptions of Theorem 2.1, Ln�0�= La
n�0�= 0

w.p.1 and 0< � <�, then

�Ln�L
a
n�⇒ �L�La� in �D� J1�

2 (2.21)

jointly with (2.10), where Ln and La
n are as in (2.20), La =L �$−1e, and L is constructed

as indicated above in Remark 2.5.

We now state a corollary for the waiting time and virtual waiting time. Let Wn�k� be
the waiting time of the kth admitted customer (before beginning service) and let W v

n be
the virtual waiting time (the time required for all the customers in the queue at time t to
begin service) in model n. Because there are n servers, the waiting time Wn�k� tends to
be about �Qn�l�− n +/n$, where l is the index of the kth admitted customer. (In the limit
the proportion of admitted customers approaches 1, so the shift in index is asymptotically
negligible.) Thus, for the stochastic-process limit, we need to scale the waiting times by
multiplying by

√
n instead of dividing by

√
n as in (2.6).

Let

Wn�t�≡
√

nWn��nt���
Wv

n�t�≡
√

nW v
n �t�� t ≥ 0� (2.22)

For x ∈D, let x∨ 0 be the element of D defined by

�x∨ 0��t�≡ x�t�∨ 0≡max�x�t��0�� t ≥ 0� (2.23)

The following result is established very similarly to Puhalskii and Reiman [17, Corollary
2.3]; we give details in §4.

Corollary 2.2. Under the conditions of Theorem 2.1,

�Wn�W
v
n�⇒ �$−1Qa ∨ 0�$−1Q∨ 0� in �D� J1�

2 as n→�� (2.24)

where �Qa�Q� is as in Theorem 2.1.

3. Extension for customer abandonments. As in Garnett et al. [5], suppose that each
customer that joins the queue before receiving service abandons, independently of all other
events, after an exponential time with mean �−1 if service has not begun before that time.
We now extend Theorem 2.1 to this setting for the special case of exponential service times.
(The extension to H∗

2 service times remains an open problem.)
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Theorem 3.1. For the G/M/n/mn+M model with exponential customer abandonment
as specified above, under the conditions of Theorem 2.1, the conclusions of Theorem 2.1
hold with two modifications: First, here p = 1; second, the infinitesimal mean for Q≡Qp

should be changed to

mQ�x�=
{−
$− �x� 0≤ x < ��

−
$−$x� x < 0�
(3.1)

4. Proof of Theorem 2.1

4.1. Outline of the proof. In this subsection, we give a high-level view. Our proof of
Theorem 2.1 has three steps:

Step 1. G/M/n/�. We first establish a stochastic-process limit under two extra restric-
tions: (i) We consider only the customers with positive service times, and (ii) we assume
an unlimited waiting room. We show that this first step is equivalent to establishing the
heavy-traffic stochastic-process limit for the G/M/n/� model, which then requires only a
slight generalization of the results by Halfin and Whitt [7] and Puhalskii and Reiman [17]
(restricted to the special case of exponential service times). The G/M/n/� result is only
more general because the arrival process need not be a renewal process, but that is a useful
generalization for applications.
We actually give two different proofs of the G/M/n/� result. Because the service times

are exponential in this step, the second proof extends to the G/M/n/mn +M model with
exponential abandonments and finite waiting room, thus yielding a proof of Theorem 3.1.
Proof 1. Piecewise Construction for G/M/n/mn Exploiting Previous Results.

Our first proof is a piecewise construction for G/M/n/mn, with finite waiting room,
exploiting established results for the more elementary G/M/� infinite-server and
G/M/1/mn single-server models. The G/M/� model applies below state n when not all
servers are busy, while the G/M/1/mn model applies above n when all servers are busy.
In each separate region we can apply previous results for these more elementary systems.
We recursively establish limits in the different regions, letting the end of the previous
excursion in the other region serve as the initial distribution for the next excursion in the
new region. Then we show that the pieces can be put together to imply convergence for the
entire process. The piecewise construction is interesting in part because it can be applied
in other contexts. Indeed, our proof in Step 3 uses a variant of the same argument.
Proof 2. Martingale Proof forM/M/n/mn +M Extended toGArrivals. In §5,

we also give a second proof for the G/M/n/� model. This second proof is a martingale
proof for the M/M/n/� model in the spirit of Puhalskii and Reiman [17], but is extended
to a general G arrival process. Because the service times are exponential, the model can
also have finite waiting room and exponential customer abandonments, so we obtain a proof
of Theorem 3.1 at the same time. The logic for the extension to G arrival processes also
applies to many other contexts. In particular, the same reasoning lets us extend the results
in Puhalskii and Reiman [17] from GI/PH/n/� to G/PH/n/�. For the general arrival
process, we assume only a FCLT, as in (2.2).

Open problems. We conjecture that the proof for the G/M/n/mn +M model (Proof 2
above) can be extended to yield corresponding direct proofs for the G/H∗

2 /n/mn model
(Theorem 2.1) and generalizations to, first, the G/H∗

2 /n/mn+M model and, more generally
the G/H∗

2 /n/mn +H∗
2 model. Those remain interesting open problems. Even if those direct

proofs can be done, we believe that the piecewise constructions are interesting.
Step 2. G/H∗

2 /n/�. We apply the G/M/n/� result in Step 1 (not considering the exten-
sions to finite waiting rooms and customer abandonment) to obtain the stochastic-process
limit for the more general G/H∗

2 /n/� model, having H∗
2 service times instead of M ser-

vice times, but still an unlimited waiting room. For the case of an unlimited waiting room,
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we show that the distance between Qn and Q
p
n is asymptotically negligible. Thus, for the

G/H∗
2 /n/� model we establish joint convergence of �Qn�Q

p
n�.

Step 3. G/H∗
2 /n/mn. Finally, we apply the result for the G/H∗

2 /n/� model in Step 2
to obtain the desired stochastic-process limit for the associated G/H∗

2 /n/mn model, having
finite waiting room. The finite-waiting-room proof is by no means a simple extension,
such as directly applying the continuous-mapping theorem with a reflection map. We use a
piecewise construction as in the first proof of Step 1. It requires the same rather complicated
recursive or inductive proof. To treat the finite waiting rooms, we consider two regions
with boundary above n. In the upper region, the system behaves like a G/MX/1/mn single-
server system with batch service, while in the lower region the system behaves like the
G/H∗

2 /n/� system treated in Step 2. We can apply the standard one-sided reflection map
associated with the upper barrier to treat each piece in the upper region, and we can apply
Step 2 to treat each piece in the lower region. Thus, in both Steps 2 and 3, we make strong
use of the result established in the previous step. (By our argument, it is not possible to
skip any steps.)

4.2. Positive customers and an unlimited waiting room. We start with the case of
an unlimited waiting room, which produces a limit process without an upper barrier. Estab-
lishing the desired limit with H∗

2 service times is complicated even with an infinite waiting
room because of different system behavior in two regions of the state space. If the servers
are not all busy, then customers with zero service times depart immediately upon arrival.
However, if all severs are busy, then customers with zero service times must join the queue.
Subsequently, upon any service completion, there is a random batch of departures, because
customers with zero service times that enter service at that time will also depart immediately.
Hence, there may be several simultaneous departures at each of these departure epochs.
With an infinite waiting room, the situation simplifies if we focus on the customers with

positive (nonzero) service times. With an infinite waiting room (but not with a finite waiting
room), the customers with zero service times have absolutely no impact on the customers with
positive service times. Thus, with an infinite waiting room, we can focus on the customers
with positive service times, by simply ignoring the customers with zero service times. We
initially establish a limit for the queue-length process consisting only of the customers with
positive service times. Afterwards, in Step 2, we use the limit for customers with positive
service times to establish the limit for all customers (in the setting with unlimited waiting
room).
When we look only at the customers with positive service times, the system behaves like

a G/M/n/� model with a new G arrival process and a new initial condition. To reduce our
problem to the G/M/n/� model, we need to show that the assumed FCLT for the arrival
process and the assumed initial conditions imply corresponding behavior for the positive
customers alone. We first show that the assumed FCLT for the full arrival process in (2.2)
implies a corresponding FCLT for the arrival process of customers with positive service
times.
Let Cp�t� count the number of arrivals in the interval �0� t that have positive service

times. We first observe that an analog of the FCLT assumed for the full arrival process C
in (2.2) holds for Cp under the assumption (2.2). Let Cp

n be the random element of D
defined by

Cp
n�t�≡ �Cp�nt�−pnt /

√
nc2p�a� (4.1)

where the new scaling parameter is

c2p�a ≡ pc2a +p�1−p�� (4.2)

Lemma 4.1. If the FCLT in (2.2) holds, then

Cp
n ⇒B in �D� J1�� (4.3)
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Proof. Recall that Cp�t� can be written as the random sum

Cp�t�=
C�t�∑
i=1

Yi�

where �Yi� i ≥ 1� is a sequence of iid Bernoulli random variables, independent of the
stochastic process C, with P�Yi = 1� = 1 − P�Yi = 0� = p, so that Yi has mean p and
variance p�1−p�. Hence,

�
√

c2aCn�SY �n�⇒ �
√

c2aB1�
√

p�1−p�B2� in �D� J1�
2� (4.4)

where Cn is given in (2.1), B1 and B2 are independent standard Brownian motions, and

SY �n�t�≡ n−1/2
�nt�∑
i=1

�Yi −p�� t ≥ 0�

Hence, we can apply the continuous mapping theorem with composition and addition to
obtain the desired conclusion; specifically, we can use [25, Theorem 9.5.1] with (4.4) to
obtain (4.3). �

In the same spirit, we need to show that the initial conditions specified for Qn�t� imply
corresponding initial conditions for Qp

n�t�. For that purpose, let

Qp
n�0�≡ �Qp

n�0�− n /
√

n�

Lemma 4.2. If

Qn�0�≡ �Qn�0�− n /
√

n⇒Q�0� in � as n→��

then
�Qp

n�0�− g−1�Qn�0���⇒ 0

so that
Qp

n�0�⇒ g−1�Q�0�� in � as n→��

Proof. Note that �Qp
n�0�− n + can be written as the random sum

�Qp
n�0�− n + =

�Qn�0�−n +∑
i=1

Yi�

where �Yi� i ≥ 1� is the sequence of iid Bernoulli random variables we introduced to prove
Lemma 4.1. Hence,

Qp
n�0�− g−1�Qn�0��= n−1/2

�Qn�0�−n +∑
i=1

�Yi −EYi��

We have Qp
n�0� − g−1�Qn�0�� = 0, where Qn�0� ≤ 0. Otherwise, Qp

n�0� − g−1�Qn�0�� is
asymptotically negligible. To see that, use the Skorohod representation theorem to replace
the convergence Qn�0� ⇒ Q�0� by convergence w.p.1. For the case Q�0� ≤ 0, we have
Qp

n�0� = Qn�0� → Q�0� ≤ 0. Henceforth, focus on the case Q�0� > 0. For that case, we
can write

n−1/2
�Qn�0�−n +∑

i=1
�Yi −EYi�=

�Qn�0�− n +√
n

∑�Qn�0�−n +
i=1 �Yi −EYi�

�Qn�0�− n +
�

and then apply the LLN together with the assumed limit for Qn�0�. That w.p.1 convergence
implies convergence in law for the original versions, which is equivalent to convergence in
probability because the limit is deterministic. �

Hence, establishing the limit for the customers with positive service times is actually
equivalent to proving Theorem 2.1 for the special case of the G/M/n/� model, i.e., with
an unlimited waiting room and exponential service times.
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4.3. Proof 1 in Step 1: The piecewise-construction proof. To complete Step 1, it suf-
fices to prove Theorem 2.1 for the special case with exponential (M) service and unlimited
waiting room (mn =�). However, given that we now consider exponential service times,
we are also able to treat finite waiting rooms. As mentioned earlier, we give two different
proofs for the G/M/n/mn result, because each is of some independent interest. The second
proof appears in §5. There we treat customer abandonments as well; there is no customer
abandonment here.
Our main result in this subsection is

Theorem 4.1. If, in addition to the conditions of Theorem 2.1, the service-time distri-
bution is exponential �p = 1�, then

Qn ⇒Q in �D� J1� as n→�� (4.5)

where Q is the diffusion process specified in Theorem 2.1 with p = 1, so that Q=Qp.

As a consequence, we obtain the desired result for the customers with positive service
times. To state it, let Qp

n�t� be the queue length of customers with positive service times at
time t in the nth model. Let Qp

n be the associated random element of D defined by

Qp
n�t�≡ �Qp

n�t�− n /
√

n� t ≥ 0�
Corollary 4.1. If, in addition to the conditions of Theorem 2.1, mn = � for all n,

then
Qp

n ⇒Qp in �D� J1� as n→��

where Qp is the diffusion process specified in Theorem 2.1 (with �=��.

The main ideas in the proof of Theorem 4.1. Our proof is based on the recognition
that the G/M/n/mn model and the limiting diffusion process have different character in
two regions, with the state-dependent rates being piecewise linear, as discussed in Halfin
and Whitt [7] and Browne and Whitt [3]. When Qn�t� < n, the system behaves like the
G/M/� model; when Qn�t�≥ n, the system behaves like the G/M/1/mn model. For both
those component models, limits have already been established. (For the G/M/� model,
we could employ a simplification (special case) of the second (martingale) proof in §5.)
Similarly, the limiting diffusion process acts like simple reflected Brownian motion (RBM)
above 0 and like the Ornstein-Uhlenbeck (OU) diffusion process below 0.
The idea, then, is to apply the previous limits in successive excursions above and below n.

Suppose that we start above n. Then, we use the known convergence for the G/M/1/mn

model during the excursion above n, until Qn�t� falls below n. Then, we switch over to the
other region, using the terminal distribution of the process in the upper region to serve as
the initial distribution for the excursion in the lower region. We apply induction to deduce
that the limits hold for all such excursions, and we use the continuous mapping theorem to
show that we can put all the pieces together to obtain the originally desired convergence
for the full process.
However, there is a complication in the piecewise argument as just described: As stated,

there are too many excursions, because the process changes back and forth quickly in the
neighborhood of the boundary n (which will become 0 for the limiting diffusion process).
(There will be no such difficulty in Step 3 later, because the switchover points are widely
separated.) To circumvent this difficulty here, we modify the original processes at the bound-
ary n. When we hit level n from above, we insert a jump down of size �7√n�; and when
we hit level n from below, we insert a jump up of size �7√n�. By inserting those jumps in
the original process, we ensure that the excursions above and below n asymptotically have
length of order O�1�. (Without inserting the jumps, the expected lengths of the excursions
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are of order O�1/
√

n�.) We then carry out the piecewise constructions for the processes with
these extra jumps. Afterwards, we obtain the desired result by letting 7 ↓ 0. Conceptually,
the argument is relatively simple (it should already be crystal clear), but there are several
technical details, which we will try to treat carefully.

Overview of the detailed proof of Theorem 4.1. Recall that we are now considering
the G/M/n/mn model. We will establish the desired convergence Qn ⇒ Q in (4.5) by
approximating the processes Qn by related processes that are easier to analyze. For each
7 > 0, we will define processes Q7

n such that for all t > 0 and n≥ 1,
�Qn −Q7

n�t ≤ 7� (4.6)

where
�x�t = sup

0≤s≤t

��x�s���
and for each 7 > 0,

Q7
n ⇒Q7 in �D� J1� as n→�� (4.7)

We form Q7
n by deliberately introducing jumps, so the limit processes Q

7 do not have
continuous sample paths, but they only have jumps of size 7.
Because the limit processes Q7 in (4.7) have jumps, we will need to use the nonuniform

J1 topology on D in the convergence. Given the nonuniform J1 convergence in (4.7), it is
useful to measure distance on D using a J1 metric over the interval �0� t , say dJ1

as in [25,
(3.2)]. Let 9 be the Prohorov metric on the space of all probability measures on �D� J1�
using the time interval �0� t and the metric dJ1

on D; see [25, (2.2)]. The main property
for our purposes is that it induces weak convergence. For random elements X1 and X2,
let 9�X1�X2� denote the Prohorov metric applied to the probability laws of the random
elements. We can apply the triangle inequality to deduce that

9�Qn�Q�≤9�Qn�Q
7
n�+9�Q7

n�Q
7�+9�Q7�Q�� (4.8)

Now we use the fact that

9�X1�X2� ≤ inf�c > 0� P�dJ1
�X1�X2� > c� < c�

≤ inf�c > 0� P��X1−X2�t > c� < c� (4.9)

for any random elements X1�X2 ∈D, by virtue of the Strassen representation theorem, [25,
Theorem 11.3.5]. As a consequence, (4.6) implies that

9�Qn�Q
7
n�≤ 7 for all n� (4.10)

Hence, we can apply (4.6) and (4.7) to treat the first two terms on the right in (4.8). We
complete the proof by showing that

Q7 ⇒Q as 7 ↓ 0� (4.11)

which is equivalent to 9�Q7�Q�→ 0.
Thus, we can apply (4.10) and (4.11) to first pick 7 to make the first and third terms on

the right in (4.8) small, uniformly in n. Then, by (4.7), given that 7, we can choose n to
make the second term arbitrarily small. In that way, we succeed in establishing the desired
convergence.

Verifying (4.6): Constructing the approximation with jumps. To establish (4.6), we
modify the unscaled process Qn by inserting a jump up of �7

√
n� whenever the sample

path reaches level n from below, and a jump down of �−7
√

n� whenever the sample path
reaches level n− 1 from above.
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Let the associated scaled processes be

Q7
n ≡ �Q7

n�t�− n /
√

n� t ≥ 0�
Clearly, the scaled processes have jumps of size 7, at least asymptotically as n→�.
We construct the unscaled processes Q7

n on the same sample space as Qn so that (4.6)
holds. First, we give all these processes the same sample path of arrivals. We cannot give
the processes the same sample paths of departures, because they are in different states with
different rates. However, we can exploit the special form of our exponential service-time
distribution to perform a stochastic coupling construction with the desired property, drawing
on Whitt [22]; see especially Theorem 10.
For simplicity, suppose we start at time 0 with an arrival from state n. Then, Q7

n imme-
diately has a jump up of �7√n�. It thus starts out �7√n� above Qn; i.e., initially we have
the relation

Q7
n�t�≥Qn�t�≥Q7

n�t�−�7√n�� (4.12)

Above the level n, the servers are all busy, so that the processes can be given identical
service completions, which occur in a Markovian manner. Specifically, the departure events
can be generated by a Poisson process with rate n$. At each departure event, there is a
single departure, which occurs in both processes as long as Qn�t�≥ n.
We have yet to account for the upper barrier at state n+mn. If both processes are equal,

then the common new arrivals will be lost in both processes. Otherwise, the higher process
may hit the upper barrier, while the lower process does not. That may cause losses to occur
in the higher process that are not matched in the lower process. But that causes no problem;
that just brings the two ordered sample paths closer together. Even with the upper barrier,
we maintain the relation (4.12) throughout the excursion in the upper region.
Now consider what happens when Qn first hits level n−1 from above. Because all servers

are no longer busy, its departure rate decreases. However, below level n− 1, the departure
process is a pure death process with rate k$ in level k. We can thus generate all departures
from the common Poisson process with rate n$ by thinning: If the queue-length process Qn

is at level k (<n) at a departure epoch, then the candidate departure event generated from
the Poisson process with rate n$ is an actual departure with probability k/n; otherwise the
candidate departure event has no effect. Because we construct the departures for the two
queue-length processes from a common Poisson process, whenever a departure occurs in Qn

a corresponding departure necessarily occurs in Q7
n, but there may be departures in Q7

n that
are not matched in Qn. Those departures may bring the two sample paths closer together,
but the relation (4.12) is necessarily maintained. Moreover, the construction gives each of
the two processes their correct probability law.
Now we come to the time that the process Q7

n first hits the level n − 1. As indicated
before, that process immediately is given a jump down of �7√n�. Because prior to that
jump the relation (4.12) held, after the jump the order of the processes is switched, i.e., we
have the relation

Q7
n�t�≤Qn�t�≤Q7

n�t�+�7√n�� (4.13)

Going forward in time, the processes get no further apart, because we do the sample path
construction so that the higher process Qn has a departure whenever the lower process Q7

n

does. The lower process may fail to match departures with the upper process, either because
of hitting the lower barrier at 0 or, probabilistically, because of the difference in the service
rates. That could cause the processes to couple, after which the sample paths would be
identical until level n is first hit from below. In any case, relation (4.13) is maintained until
Q7

n again hits level n from below.
When Q7

n again hits level n from below, it experiences a jump up of �7√n�, causing
relation (4.13) to be replaced by relation (4.12), with the subsequent reasoning repeated
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(leading to a formal proof by induction on the successive hitting of level n from below and
level n− 1 from above). From the scaling in (2.6), we have thus established the inequality
in (4.6), which implies the inequality in (4.10) uniformly in n.

Verifying (4.7): Establishing convergence of the approximations. To establish the
convergence in (4.7), we focus on the successive intervals during which the unscaled pro-
cesses Q7

n spend above n and below n−1. Equivalently, we focus on the successive intervals
during which the scaled processes Q7

n spend above 0 and below 0. Because of the jumps of
size 7 > 0 at each crossing of 0 by the scaled processes, those intervals are asymptotically
of positive finite (but random) length. (Without the size-7 jumps, the average excursion
interval length would be of order 1/

√
n and would be harder to analyze.)

The convergence in each of the two regions follows easily from previous heavy-traffic
limits because the unscaled processes Q7

n behave like queue-length processes in previously
studied queueing systems in their excursions above and below level n. Above level n, the
queue-length process Q7

n behaves like the queue-length process in a G/M/1/mn queue;
below level n, the queue-length process Q7

n behaves like the queue-length process in a
G/M/� queue. The assumed FCLT for the arrival process in (2.2) implies associated
convergence over random subintervals.
One step of the proof is to treat the successive excursions between each successive

crossing. Another step is to show that we can put together all the pieces and establish
convergence of the overall process. We address that second step first.

Putting the pieces together. It should be apparent that convergence of all the pieces
implies convergence of the overall process. To demonstrate it, we apply the continuous
mapping theorem; see [25, §3.4]. We now define the function that puts together all the
converging pieces. Let t ≡ �tk� k ≥ 0� be a sequence of numbers with 0= t0 < t1 < · · · <
tk < tk+1 < · · · such that tk →� as k →�. Let : be the subset of such sequences in ��.
(The subset : is well defined, being an intersection of open subsets in ��: The subset A≡
�t� t0 = 0� tk ≤ tk+1 for all k� is a closed subset of ��. The subset Am ≡ �t� tk ≤m for all k�
is a closed subset, the subset Bm ≡ �t� tm = tm+1� is a closed subset, and : is the (countable)
intersection of the complements Ac

m and Bc
m within A. Thus, : is metrizable as a complete

separable metric space with the relative topology from ��; see [25, p. 371].)
We also consider a sequence of elements of D: let x≡ �xk� k ≥ 0� be an element of the

product space D� (with the product topology; see [25, §11.4]). Let h� D� ×: → �D� J1�
be the function defined by

h��x� t���s�≡ xk�s�� tk ≤ s < tk+1� k ≥ 0� (4.14)

Note that we need to restrict h to D� ×: (instead of just D� ×��) for h��x� t�� to be a
legitimate element of D. We use the following lemma.

Lemma 4.3. The function h� D� ×: → �D� J1� defined in (4.14) is continuous at all
�x� t� such that for all k, xk is continuous everywhere except possibly at the points t1� = = = � tk.

Proof. Suppose that �x� t�n ≡ �xn� tn�→ �x� t� as n→� in D�×: with the continuity
condition holding. We want to show that yn ≡ h��xn� tn�� → h��x� t�� ≡ y as n → � in
�D� J1�. Because of the discontinuities at the transition points tk, we need the J1 topology
on the range. It suffices to focus on bounded intervals �0� t , where t is not one of the limit
points tk. Suppose such a t is given. We fix k by also supposing that tk < t < tk+1. Hence,
it suffices to work with the first k+ 1 limits �xj�n� tj�n�→ �xj� tj�� 0≤ j ≤ k.
To treat the convergence in D with time domain �0� t , we make use of the J1 metric on

D��0� t ���; see [25, (3.2), p. 79]. We let #n� �0� t → �0� t be the strictly increasing time
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transformations used there (not to be confused with the arrival rate in the queue). We want
to construct time transformations #n such that

�#n − e�t → 0 as n→�� (4.15)

where e is the identity map and

�yn �#n − y�t → 0 as n→�� (4.16)

Note that the only difficulties (discontinuities of the functions in D) occur at the points tk.
(There is local uniform convergence elsewhere.) We thus construct #n by requiring that
#n�s� = s for s = 0, s = �tj−1 + tj �/2, 1 ≤ j ≤ k, and for s = t. We let #n be defined
on the subinterval �0� �t0 + t1�/2 as required to get the convergence x1� n → x1 for the
restrictions to �0� �t0 + t1�/2 . We let #n be defined on the subinterval ��tj−1 + tj �/2,
�tj + tj+1�/2 as required to get the convergence xj+1� n → xj+1 for the restrictions to
��tj−1+ tj �/2� �tj + tj+1�/2 . This continues up to the last component process xk�n and the
last interval, which is ��tk−1 + tk�/2� �tk + t�/2 . It is easy to see that this construction
produces the desired asymptotic behavior in (4.15) and (4.16). �

Analyzing the pieces. Now we construct the processes that let us analyze the different
pieces. We define a sequence of queue-length processes �Q7

n�k� k ≥ 0� and an associated
sequence of first passage times �T 7

n�k� k ≥ 0�. The process Q7
n�k is constructed to agree with

the process Q7
n up to the random time T 7

n�k.
As before, for simplicity, we assume that there is an initial jump up, so that the scaled

queue length starts off at +7. In particular, let

Q7
n�0�0�= 7 and T 7

n�0 = 0� (4.17)

(It is easy to modify this with some other initial condition as specified before Theorem 2.1.)
For t > 0, we let Q7

n�0�t� be the scaled queue-length process in the G/M/1/mn model
with arrival process Cn�#nt� and service rate $n. Hence, we can apply established heavy-
traffic limits for single-server queues in [25, Chapter 9], modified to treat the upper barrier
to deduce that

Q7
n�0 ⇒Q7

0 in �D� J1� as n→�� (4.18)

The assumption of exponential service times allows us to directly apply the continuous
mapping theorem with the one-sided reflection map to treat the upper barrier. Alternatively,
we could use the two-sided reflection map, as in [25, Chapter 5 and §14.8].
We now define the remaining random times and processes recursively. For k ≥ 1, let

T 7
n�2k−1 ≡ inf�t > T 7

n�2k−2� Q
7
n�2k−2�t�≤ 0��

Q7
n�2k−1�T

7
n�2k−1�≡−7�

Q7
n�2k−1�t�≡Q7

n�2k−2�t�� 0≤ t < T 7
n�2k−1�

T 7
n�2k ≡ inf�t > T 7

n�2k−1� Q
7
n�2k−1�t�≥ 0��

Q7
n�2k�T

7
n�2k�≡+7�

Q7
n�2k�t�≡Q7

n�2k−1�t�� 0≤ t < T 7
n�2k�

(4.19)

As part of the recursive definition, we also must define the scaled queue-length processes
Q7

n�k after the random time T 7
n�k. For t > T 7

n�2k−1, we let Q
7
n�2k−1�t� be the scaled queue-

length process associated with the G/M/� model with individual service rate $ and scaled
arrival process Cn�#nt� starting at level −7 at the random time T 7

n�2k−1. Just as for Q
7
n�0, for
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t > T 7
n�2k, we let Q

7
n�2k�t� be the scaled queue-length process in the G/M/1/mn model with

service rate $n and arrival process Cn�#nt�, starting at lever +7 at the random time T 7
n�2k.

Having established the convergence in (4.18), we next show that

T 7
n�1 ⇒ T 7

1 in � as n→�� (4.20)

jointly with the limit in (4.18), where T 7
1 is the first passage time to the origin for the

limiting diffusion process Q7
0, i.e.,

T 7
1 ≡ inf�t > T 7

0 = 0� Q7
0�t�≤ 0�� (4.21)

We obtain the convergence in (4.20) by applying the continuous mapping theorem with the
first-passage-time function; see [25, §13.6.3]. We use the fact that the first-passage-time
function is measurable and continuous almost surely with respect to the limit process. The
almost sure continuity follows because the limiting diffusion process is almost surely not
flat on any interval. That property for general diffusions can be reduced to the familiar
property of Brownian motion because the diffusion process can be expressed as a time and
space transformation of Brownian motion involving strictly increasing functions; see Rogers
and Williams [18, Chapter 7].
We next turn to Q7

n�1. As indicated above, the process is defined after random time T 7
n�1 by

treating it as the queue-length process in a G/M/� model with the scaled arrival process
starting after T 7

n�1. The previous results imply that the initial conditions satisfy the conditions
needed for a stochastic-process limit after the random times T 7

n�1. (It is perhaps helpful to
think of the processes as having domain �0���, shifting time in the nth process by T 7

n�1

and shifting time in the limit process by T 7
1 . Afterwards, we can shift time back to obtain

the desired construction.)
Just as in Srikant and Whitt [19], we can thus apply a previous FCLT for the G/M/�

system, specifically Borovkov [2, Theorem 1, p. 103]. An especially transparent argument to
show that the limit should apply to G arrival processes only under the FCLT condition (2.2)
is given in Glynn and Whitt [6] for G/GI/� queues for the special case of discrete service-
time distributions having only finitely many point masses; see [25, §10.3]. An alternative
direct proof is provided in Proof 2 in §5 below; the G/M/� result is an easier special
case. Also see Krichagina and Puhalskii [10], which treats the more difficult case of general
service times, but again with infinite waiting room. Here, the established G/M/� FCLT
applies to each “below 0” interval, yielding convergence to the Ornstein-Uhlenbeck diffusion
process starting each such random interval in state −7.
To obtain the desired convergence, we use the established convergence of Q7

n�1 before
time T 7

n�1. To obtain the joint convergence of all random quantities considered, we exploit
the map h1� D×C ×�→D×D×� defined by

h1�x� y� t��s�≡
{

�x�s�� x�s�� t�� 0≤ s < t�

�x�s�� y�s�� t�� s ≥ t�

This map h1 is continuous at all �x� y� t� ∈ D × C × � such that x is continuous at t
(our case).
We thus obtain the joint convergence

�Q7
n�0�Q

7
n�1� T

7
n�1�⇒ �Q7

0�Q
7
1� T

7
1 � (4.22)

in �D� J1�
2×� as n→�, where Q7

1 is an OU process after the random time T 7
1 . Because

T 7
1 is obtained as a first passage time relative to Q

7
0, it is a stopping time relative to Q

7
0.

Hence, the limit process Q7
1 is a (Markov) diffusion process.
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Paralleling (4.19) and (4.21), we recursively define the other limit processes by

T 7
2k−1 ≡ inf�t > T 7

2k−2� Q
7
2k−2�t�≤ 0��

Q7
2k−1�T

7
2k−1�≡−7�

Q7
2k−1�t�≡Q7

2k−2�t�� 0≤ t < T 7
2k−1�

T 7
2k ≡ inf�t > T 7

2k−1� Q
7
2k−1�t�≥ 0��

Q7
2k�T

7
2k�≡+7�

Q7
2k�t�≡Q7

2k−1�t�� 0≤ t < T 7
2k�

(4.23)

As before, we also need to define the processes Q7
k after the random times T 7

k ; we let
the process evolve after T 7

k according to the appropriate diffusion process, depending on
whether we are above zero or below zero. As before, because T 7

k is a first passage time, T
7
k

is a stopping time relative to Q7
k−1 for each k, so that Q7

k is a diffusion process for all k.
Moreover, �T 7

2k−1− T 7
2k−2� k ≥ 1� and �T 7

2k − T 7
2k−1� k ≥ 1� are independent sequences of iid

positive random variables.
We then apply the arguments above to recursively establish the limits

T 7
n�2k−1 ⇒ T 7

2k−1 in ��

Q7
n�2k−1 ⇒Q7

2k−1 in �D� J1��

T 7
n�2k ⇒ T 7

2k in ��

Q7
n�2k ⇒Q7

2k in �D� J1�

(4.24)

for all k ≥ 1, where the convergence is joint. To get the joint convergence, we need to
modify the map h1 above as k increases. In particular, for each k, we construct an analogous
map hk� �D×��k−1×C ×�→ �D×��k and apply induction to obtain joint convergence
for all k. That joint convergence for all k then implies convergence of the entire sequence
in the product space �D×���.
Finally, we apply the continuous map h in (4.14) to establish the overall desired conver-

gence stated in Theorem 4.1. We can apply Lemma 4.3 because

Q7
n = h���Q7

n�k� k ≥ 0�� �T 7
n�k� k ≥ 0��� (4.25)

and
Q7 = h���Q7

k� k ≥ 0�� �T 7
k � k ≥ 0���� (4.26)

We use the fact that �T 7
2k−1 − T 7

2k−2� k ≥ 1� and �T 7
2k − T 7

2k−1� k ≥ 1� are independent
sequences of iid positive random variables to deduce that the single sequence �T 7

k � k ≥ 0�
almost surely belongs to :: By the strong law of large numbers, the averages converge to
the positive means, which implies that T 7

k →� w.p.1.

Verifying (4.11): Q7 ⇒Q. We now complete the proof of Theorem 4.1 by establishing
(4.11), i.e., by showing that Q7 ⇒Q as 7 ↓ 0. We give two different proofs.
The first proof exploits previously established limits for the special GI/M/n/� model

in Halfin and Whitt [7] or Puhalskii and Reiman [17], where the arrival process is assumed
to be renewal. The previous results imply, first, that Qn ⇒Q and, second, as a consequence
of that, Q7

n ⇒ Q7 as n → � for each 7 > 0. Then, by doing the special construction to
establish (4.6), we obtain 9�Q7

n�Qn�≤ 7 for all n and 7 > 0. As a consequence, we obtain
9�Q7�Q�≤ 7 for each 7 > 0, which implies the desired conclusion.
The second proof works directly with the limiting diffusion processes Q7 and Q. As in

comparison theorems for diffusion processes, such as in Rogers and Williams [18, Theo-
rem 43.1] we construct the two diffusions on the same sample space by using a common



Whitt: Heavy-Traffic Limits for the G/H ∗
2 /n/m Queue

Mathematics of Operations Research 30(1), pp. 1–27, © 2005 INFORMS 19

Brownian motion in the definition of the stochastic differential equations. In this way, we
show that analogs of the two relations (4.12) and (4.13) hold for the processes Q7 and Q
over excursions above and below 0.
First, suppose that we start with a jump up to 7 in Q7. We then construct the two processes

on the same space using the stochastic integrals

Q�t�=Q�0�+
∫ t

0
*2
Q dB�s�+

∫ t

0
m�Q�s��ds�

Q7�t�= 7+
∫ t

0
*2
Q dB�s�+

∫ t

0
m�Q7�s��ds�

(4.27)

where *2
Q is the constant diffusion coefficient of Q in (2.15), 0≤Q�0� ≤ 7 w.p.1, and we

use a common standard Brownian motion B in both cases. Because the diffusion coefficient
is constant, we can simplify the component stochastic integrals with respect to Brownian
motion to obtain *2

QB�t�. This construction remains valid until Q7 next hits zero, after
which there is a jump down to −7.
Referring to the two stochastic integrals in (4.27), we see that the drifts are identical

when Q�t� > 0, but the drift of Q is greater than the drift of Q7 whenever Q7�t� > 0>Q�t�.
As a consequence, with the special construction, the distance between the two stochastic
processes is a nonincreasing function until the two sample paths coincide, i.e., until they
couple. In particular,

Q7�t�−Q�t�= 7+
∫ t

0
�m�Q7�−m�Q�s���ds� (4.28)

Hence, we have the relation

Q7�t�≥Q�t�≥Q7�t�− 7

during each excursion of Q7 above 0. Essentially, the same argument works for excursions
of Q7 below 0, yielding the relation

Q7�t�≤Q�t�≤Q7�t�+ 7

during each excursion of Q7 below 0. From these constructions, we obtain �Q7 −Q�t ≤ 7
for the special processes on the same sample space. That in turn implies that 9�Q7�Q�≤ 7,
which implies the claimed convergence. �

4.4. Step 2: G/H∗
2 /n/�; relating Qn to Qp

n . We now return attention to the
G/H∗

2 /n/� model. We now show that the limit for Qp
n established in Corollary 4.1, the

corollary to Theorem 4.1, implies a corresponding limit for the primary processes of inter-
est Qn when there are H∗

2 service times, in the case of an unlimited waiting room. We do
this by establishing the following result, which goes beyond Theorem 2.1 to establish joint
convergence of Qn and Q

p
n (only in the case of unlimited waiting room). Let ĝ� D →D be

the function defined by
ĝ�x��t�= g�x�t�� for all t ≥ 0� (4.29)

where g� �→� is the function defined in (2.12). Clearly, ĝ is a continuous function.

Theorem 4.2. Consider the G/H∗
2 /n/� model under the assumptions of Theorem 2.1.

For each t > 0,
�Qn − ĝ�Qp

n��t ⇒ 0 as n→�� (4.30)

so that
�Qn�Q

p
n�⇒ �ĝ�Qp��Qp� in �D� J1�

2� (4.31)

where Qp is the limit process in Theorem 2.1 and ĝ is the mapping in (4.29) and (2.12).



Whitt: Heavy-Traffic Limits for the G/H ∗
2 /n/m Queue

20 Mathematics of Operations Research 30(1), pp. 1–27, © 2005 INFORMS

Proof. We exploit the infinite-waiting room assumption. Let Dp
n�t� be the number of

departures of customers with positive service times in the interval �0� t in the nth system.
Because there is unlimited waiting space, we have the basic relation

Qp
n�t�=Qp

n�0�+Cp
n �t�−Dp

n�t� for t ≥ 0� (4.32)

We now relate Qn to Qp
n , C

p
n , D

p
n and a single sequence of iid geometric random variables

�Xi� i ≥ 1�. The random variable Xi represents 1 (for the ith arrival with positive service
times) plus the number of customers with zero service times that arrive after the ith arrival
with positive service times but before the �i+ 1�st arrival with positive service times. For
example, X1 + · · · +Xk represents the total number of arrivals before the �k + 1�st arrival
with a positive service time.
First, if Qp

n�t� < n, then Qn�t�=Qp
n�t�. Next, if Qp

n�t�≥ n, then we have the bound

Qp�0�+C
p
n �t�−1∑

i=D
p
n�t�+n

Xi ≤Qn�t�≤
Qp�0�+C

p
n �t�∑

i=D
p
n�t�+n

Xi� (4.33)

The bound applies for all Qp
n�t� if we understand the sum to be zero whenever the lower

index exceeds the upper index. The upper bound includes all the possible arrivals with zero
service times that could occur following the �Cp

n �t��th arrival with positive service times,
while the lower bound omits the last batch, allowing for the possibility that some of those
customers have not arrived yet.
Hence, we can write

�Qn�t�−n�−g�Qp
n�t�−n�= 1�Q

p
n�t�≥n�

[
Q

p
n�0�+C

p
n �t�∑

i=D
p
n�t�+n

�Xi −p−1�+Rn�t�

]
for t ≥ 0� (4.34)

where EXi = p−1 and Rn�t� is a remainder term involving the last batch, as can be seen
from the bounds in (4.34). We obtain the desired convergence in (4.30) because both the
partial sums of the summands Xi − p−1 satisfy a FCLT and the random number of terms,
within 1 of �Qp

n�t�− n +, also satisfies a FCLT.
First, we apply Donsker’s theorem for the iid geometric random variables, i.e.,

Sn ⇒
√

�1−p�/p2B� (4.35)

where

Sn�t�= n−1/2
�nt�∑
i=1

�Xi −p−1�� (4.36)

As a first consequence of this FCLT, we can deduce that the remainder term Rn�t� in
(4.34) is asymptotically negligible after dividing by

√
n, uniformly over the interval �0� t .

(We first obtain the related FCLT for the random sum of �Xi − p−1� up to Cp
n �t�, [25,

Corollary 13.3.2], and then we apply the continuous mapping theorem with the maximum
jump functional; [25, p. 119].) To state that result, let Rn�t� = n−1/2Rn�t�, t ≥ 0; we are
concluding that �Rn�t ⇒ 0.
As a second consequence of the limit in (4.35), we can apply Prohorov’s theorem to

obtain tightness, so that we have an associated bound on the oscillations of Sn: For each
u > 0, 7 > 0, and B > 0, there exists a C with 0< C < 1 and an n0 such that

P�w�Sn� C�u� > 7�≤ B for all n≥ n0� (4.37)

where w�x�C�u� is the modulus of continuity of x over the interval �0� u , i.e.,

w�x�C�u�≡ sup��x�s�− x�t��� 0≤ s ≤ u� 0≤ t ≤ u� �s − t�< C�E (4.38)

see [25, §11.6].
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As a consequence of the continuous mapping theorem and Corollary 4.1, for each t > 0,

�Qp
n�t ≡ sup

0≤s≤t

��Qp
n�s���⇒ sup

0≤s≤t

��Qp�s���≡ �Qp�t � (4.39)

Finally, combining (4.34), (4.37), and (4.39), we obtain (4.30), which together with
Corollary 4.1 implies the desired limit (4.31), using the convergence-together theorem, [25,
Theorem 11.4.7]. In particular, defining events

An�7 ≡ ��Qn − ĝ�Qp
n��t > 7��

Bn�7 ≡ �w�Sn� C� t� > 7/2��

Cn�7 ≡ ��Rn�t > 7/2��

Dn ≡ ��Qp
n�t > B��

we have, for any B > 0 and then all sufficiently large n, that

An�7 ⊆ Bn�7 ∪Cn�7 ∪Dn�

so that
P�An�7�≤ P�Bn�7�+P�Cn�7�+P�Dn��

For each 7 > 0 and B > 0, each of the terms on the right converges to 0 as n→�, and the
result is established. �

We have now completed the proof of Theorem 2.1 for the stochastic process Qn in the
case of an unlimited waiting room. We treat the stochastic process Qa

n later.

4.5. Step 3: G/H∗
2 /n/mn; piecewise construction for a finite waiting room. We now

apply the previous results, in particular, Corollary 4.1 and Theorem 4.2, to establish the
desired limit for Qn in the G/H∗

2 /n/mn model; i.e., we now treat Qn in the case of a finite
waiting room. Our proof here is recursive or inductive, exploiting a piecewise construction,
just as in the first proof of Step 1 above. In particular, our proof here is like the verification
of (4.7) previously. By that, we mean that we use a similar piecewise construction. The
overall argument now is much easier than Proof 1 of Step 1, however, because (i) we
now make no special distinction between the customers with positive service times and the
customers with zero service times, and (ii) we do not need to introduce any approximating
processes, such as we did before by adding the jumps away from the boundary. Now we are
able to construct the necessary pieces directly. However, the proof now closely follows part
of Proof 1 of Step 1. In particular, the specific construction here is an obvious modification
of (4.17)–(4.26), so we will be brief here.
We break up the construction of the processes and the justification of convergence into

pieces, just like we did for Q7
n in the verification of (4.7). Here we consider two levels a

and b with 0 < a < b < �. Assuming that the scaled queue-length (number in system)
process starts below level b, we first consider the scaled queue-length process until it first
hits or passes level b. Up to that time, we use the result for an infinite waiting room
established in Step 2 above. That obviously is reasonable, because whenever the scaled
number in system is below level b, the actual finite waiting room plays no role.
After the process hits level b from below, we switch over to another process, in particular,

to a reflected version of the scaled queue-length process, using the standard reflection map
with a reflecting upper barrier at �. It is natural for arrivals to occur one at a time, so
that the scaled process will indeed pass the level b at a well-defined time. However, our
assumptions permit batch arrivals. In that event, the batch sizes necessarily are of order
O�1� before scaling, and become asymptotically negligible after scaling. So, without loss
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of generality, it suffices to assume that the scaled process is asymptotically at level b when
the switch occurs.
New treatment is required for the pieces starting when level b is first hit or passed from

below. In each of these “upper” pieces, starting at a hitting time of b from below, the queue-
length process behaves like the queue-length process in a single-server G/H∗

2 /1/mn model
and a finite waiting room, which in turn is equivalent to a G/MX/1/mn model with batch
service (a geometric batch at exponential intervals) as long as all servers remain busy. To
make this equivalence clear, we elaborate on two points.
First note that, without loss of generality, we can let customer service times be determined

the moment that a customer starts service. Thus, the identification of customers—specifying
whether they have positive service time or zero service time—can be determined by inde-
pendent Bernoulli random variables, with each customer having a positive service time with
probability p, independent of the system history prior to the instant the customer enters
service. (That construction is not actually required, but it can help understanding. It is then
easy to see that there is no dependence between the number in system and the type of the
customers waiting in queue.)
Second, we should explain what we mean by the batch service. As usual, in the batch-

service queue we have in mind, there is a batch of potential service times, with the number
of potential service times being geometrically distributed. At a service epoch, service is
simultaneously performed on that many (the batch size) customers if that many customers
are in the system; otherwise, all available customers are served. Thus, the number of poten-
tial customers served at a service epoch has a geometric distribution, but the actual number
of customers served at a service epoch does not have a geometric distribution. The M
in MX means that the intervals between successive service epochs are exponentially dis-
tributed, provided there are customers to be served. Because all servers are busy in the
G/H∗

2 /n/mn model when the scaled process is above level a, that will always (asymptoti-
cally) be the case.
The upper pieces start when they hit or pass level b from below, and they end when

they hit or pass level a from above. Because 0 < a < b < �, the length of these pieces
is asymptotically of order O�1�. Moreover, all servers are always busy when we are con-
sidering the upper pieces. We can analyze each piece starting after hitting or passing b
from below and ending when the lower level a is hit or passed from above by applying
the continuous-mapping theorem together with the one-sided reflection map associated with
the upper barrier at � together with established limits for the G/MX/1/� queue; see [25,
§§5.2, 13.5]. Because the arrival process is exogenous and the service times are Markovian,
the construction for each of these pieces starting at level b is routine. That is, the reflection
map applies directly; no extra approximation step is needed. Expressed differently, we can
treat each upper piece starting at b and ending at a by applying known results for the
G/MX/1/mn model.
We use the reflection construction just specified until the scaled queue-length process

next hits or passes below level a from above. In general, the scaled queue-length process
will jump below level a because of batch services, but with the scaling, the batch sizes are
asymptotically negligible. The fact that the heavy-traffic limit for the G/MX/1/mn model is
RBM, which almost surely has continuous paths, allows us to prove the point by applying
the maximum jump functional; see [25, p. 119]. Thus, asymptotically, no servers in the
full G/H∗

2 /n/mn model will become idle at these transition epochs. Moreover, it suffices
to assume that the level a is actually hit at the transition points.
For an upper piece, after the scaled queue-length process hits or passes level a from

above, we transition to a lower piece; i.e., we revert back to the previous construction
involving the G/H∗

2 /n/� model without an upper barrier, discussed above. We use the
lower piece starting at a until the process next hits or passes level b again. We switch back
and forth between successive visits to b from below and a from above.
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Just as for (4.7), each successive piece requires a new construction. The overall construc-
tion and proof is inductive. The limit for each successive piece provides the convergence for
the initial conditions in the next piece. The initial weak convergence of the arrival process
implies weak convergence for the new arrival processes after the random times. Because the
switching times are specified as first passage times, they are again stopping times. As before,
that stopping time property implies that the overall limit process is a diffusion process.
The argument just sketched justifies the convergence, but how do we know that the limit

process has the properties stated in Theorem 2.1? We know that because the full diffusion
limit has the local character of the diffusion limits for the pieces. First, below level a,
the new limit must agree with the previously established limit for the G/H∗

2 /n/� model.
Necessarily, we have thus captured the difficult behavior at 0 without directly addressing
the issue again when there is a finite waiting room. (Indeed, it should be evident that the
addition of a finite waiting room cannot alter the behavior at 0.) At the same time, above
level b, the new limit must coincide with the RBM limit for the upper piece; and it is easy
to see that that is the case. In particular, the RBM limit for the upper piece determines
the reflection map applying at the upper barrier and the infinitesimal mean and variance of
the diffusion process, which we have displayed in (2.18) and (2.19). Finally, because the
switching levels a and b are arbitrary, they obviously play no role in the final result. �

4.6. Establishing convergence of �Qa
n�Qn�. We now show that the stochastic-process

limit established for Qn in (2.6) implies a corresponding stochastic-process limit for Q
a
n and

the joint convergence in (2.10). Just as in Halfin and Whitt [7], we apply a random-time-
change argument to connect the two limits; i.e., we apply the continuous mapping theorem
with the composition map.
Recall that Cn�t� counts the number of arrivals in the interval �0� t and form the scaled

process
�Cn�t�≡Cn�t�/n� t ≥ 0�

Because #n/n → $ as n →�, it is an elementary consequence of the assumed FCLT in
(2.2) that

�Cn ⇒$e in �D� J1� as n→��

Now let Tn�k� be the arrival time of the kth customer in model n and let �Tn be the scaled
random element of D defined by

�Tn ≡ Tn��nt��� t ≥ 0�
By the continuous mapping theorem with the inverse map (see [25, §13.6]),

�Tn ⇒$−1e in �D� J1� as n→��

Given that we have established Qn ⇒Q, we can invoke [25, Theorem 11.4.5] to obtain
the joint convergence

�Qn� �Tn�⇒ �Q�$−1e� in �D� J1�
2�

from which we deduce (by applying the continuous mapping theorem with the composition
map) that

Qn � �Tn ⇒Q �$−1e=Qa�

We now show that
�Qa

n −Qn � �Tn�t ⇒ 0 (4.40)

for each t > 0, which implies the desired conclusion. The limit in (4.40) follows because
the difference there is bounded by the maximum batch size among all arrivals up to time t
divided by

√
n. However, we can apply the assumed convergence in (2.2) to deduce that
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this scaled maximum batch size is asymptotically negligible. In particular, we can apply the
continuous mapping theorem with the maximum jump function, as on [25, p. 119], with the
limit in (2.2) to obtain (4.40). �

That finally completes the proof of Theorem 2.1. We now turn to the alternative proof of
Step 1 in our proof of Theorems 2.1 and 3.1.

5. Proof of Theorem 3.1: martingale proof for G/M/n/mn + M . We now present
the proof of the limit with customer abandonments in Theorem 3.1. The special case with
an infinite waiting room and without customer abandonments yields the second proof of
Step 1 in the proof of Theorem 2.1.
In particular, here we prove the following result, which extends Theorem 3.1 by giving

an alternative characterization of the limit process (which is equivalent).

Theorem 5.1. Under the conditions of Theorem 3.1, Qn ⇒Q, where Q is a reflected
diffusion process, defined by

Q�t� = Q�0�+C′�t�−$
t − �
∫ t

0
�Q�s�∨ 0�ds

−$
∫ t

0
�Q�s�∧ 0�ds +√

$W�t�−F�t�� (5.1)

where C′ is the limit in (2.4), W is a Brownian motion independent of Q�0� and C′, and
F is the regulator process recording the time spent at the upper barrier �, i.e.,

F�t�=
∫ t

0
1�Q�s�= ��dF�s�� (5.2)

Proof. Much of the proof can follow Puhalskii and Reiman [17], so we will be brief.
We will start by indicating how we do the extension to G arrival processes. Given that the
martingale proof is the “standard modern” argument, the extension to G arrival processes
seems to be the most interesting part. The fact that the arrival process is exogenous allows
us to condition on it and then afterwards uncondition, and establish convergence.
As in Theorem 2.1, the arrival process is created from a single rate-one arrival process

by scaling according to (2.3). The scaled rate-one process in (2.1) satisfies the FCLT in
(2.2). Thus, we have the FCLT in (2.4). We now condition on possible realizations of
these processes. For that purpose, for each n, let cn be a possible realization of the scaled
stochastic process C′

n in (2.5), and let c be a possible realization of the limit process C
′. Let

Qcn
n be the conditional scaled queue-length stochastic process Qn in the G/M/n/mn +M

model given that C′
n = cn, and let Q

c be the conditional limit process Q given that C′ = c.
Technically, it is significant that these conditional probabilities can be regular conditional
probabilities; see Parthasarathy [15, Chapter 5]. The martingale proof below establishes that

Qcn
n ⇒Qc in D whenever cn → c in D� (5.3)

We establish the desired convergence Qn ⇒Q by showing that

E�f �Qn� →E�f �Q� as n→� (5.4)

for each continuous bounded real-valued function on D. For that purpose, observe that the
limit (5.3) can be restated as

hn�cn�≡E�f �Qcn
n � →E�f �Qc� ≡ h�c� as n→� (5.5)

for all such f . We obtain the desired limit in (5.4) by combining (2.4) and (5.5); i.e.,

E�f �Qn� =E�hn�C
′
n� →E�h�C′� =E�f �Q� as n→��

by virtue of the generalized continuous-mapping theorem, [25, Theorem 3.4.4].
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It remains to establish the limit in (5.3). For that purpose, it suffices to establish the limit
under the condition that C′

n converges to C
′ with probability one, and, for that, we use

the martingale proof, following the line of reasoning in Puhalskii and Reiman [17]. What
makes the simple global conditioning argument work is the fact that the arrival process is
exogenous in the queueing model.
Let Lk�t� and Nk�t� be mutually independent Poisson processes with rates � and $,

respectively, for each k, k ≥ 1. The unscaled number in system can be written as

Qn�t�=Qn�0�+An�t�−Dn�1�t�−Dn�2�t�� (5.6)

where
An�t�≡

∑
s� s≤t

�n+mn −Qn�s−��∧:Cn�s��

with the sum being over the jumps of the arrival process Cn, and

Dn�1�t� ≡
�∑

k=1

∫ t

0
1�Qn�s−�≥ k+ n�dLk�s��

Dn�2�t� ≡
n∑

k=1

∫ t

0
1�Qn�s−�≥ k�dNk�s��

Let

Fn�t� ≡
∑
s� s≤t

�:Cn�s�+Qn�s−�− n−mn�
+�

Mn�1�t� ≡ n−1/2
�∑

k=1

∫ t

0
1�Qn�s−�≥ k+ n�d�Lk�s�− �s��

Mn�2�t� ≡ n−1/2
n∑

k=1

∫ t

0
1�Qn�s−�≥ k�d�Nk�s�−$s��

Then, by (5.6), we have the following equation for the scaled process

Qn�t� = Qn�0�+C′
n�t�− �

∫ t

0
�Qn�s�∨ 0�ds −$

∫ t

0
�Qn�s�∧ 0�ds

−Mn�1�t�−Mn�2�t�−Fn�t�� (5.7)

where

Fn�t�=
∫ t

0
1�Qn�s�=mn + n�dFn�s�=

∫ t

0
1�Qn�s�=mn/

√
n�dFn�s�� (5.8)

To apply the martingale argument, we need to specify the filtration. Let the filtration Fn ≡
��n�t�� t ≥ 0� be defined by

�n�t�= *�Qn�0�ELk�s��0≤ s ≤ tENk�s��0≤ s ≤ tE k ≥ 1��
Then, the processes Mn�1 and Mn�2 are orthogonal Fn-locally-square-integrable martingales
with predictable quadratic variation processes

�Mn�1��t�= �
∫ t

0

(
Qn�s�

n
− 1

)+
ds (5.9)

and

�Mn�2��t�=$
∫ t

0

(
Qn�s�

n
∧ 1

)
ds� (5.10)
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We next deduce limits in the fluid scale (when dividing by n instead of
√

n). By (5.7),
the fact that Qn�0�/

√
n⇒ 0, (5.9), and (5.10), we deduce that Qn�t�/

√
n⇒ 0 uniformly in

t over bounded intervals. Hence, by (5.9) and (5.10),

�Mn�1��t�⇒ 0 and �Mn�2��t�⇒$t

uniformly in t over bounded intervals. Also, the jumps of Mn�1 and Mn�2 uniformly go
to 0. Thus, by the martingale central limit theorem (see Ethier and Kurtz [4] or Liptser and
Shiryaev [12]),

Mn�1 ⇒ 0
¯
and Mn�2 ⇒√

$W in D as n→��

where 0
¯
�t� ≡ 0, and t ≥ 0. Then, we can apply the continuous mapping theorem with the

reflection map in (5.7) and (5.8) to deduce the claimed limit. �

6. Proofs of the corollaries. We conclude by proving the two corollaries in §2.
Proof of Corollary 2.1. We exploit the alternating-renewal-process construction

used in the definition of the limit process L before the statement of Corollary 2.1 (with-
out requiring the independence in the converging processes) and used in the proof of
Theorem 2.1 in the case of a finite waiting room. With that explicit use of the reflect-
ing upper barrier, we obtain convergence of the upper-boundary regulator processes along
with convergence of the content processes Qn by an application of the continuous mapping
theorem; see [25, §§3.4, 5.2, 13.5]. The same argument can be used for Qa

n.
Proof of Corollary 2.2. We apply Puhalskii and Reiman [17, Lemma A.2] just as

they do to establish their [17, Corollary 2.3]. (In the statement of Lemma A.2, the condition
#N /N → # should be replaced by the stronger condition �#N −N#�/

√
N → 
, which holds

in our application.) Their Lemma A.2 draws upon Puhalskii [16]; see [25, Theorem 13.7.4]
and §5.4 of [26], the Internet supplement to [25].
By (2.3), Cn�t� counts the number of arrivals in the interval �0� t in model n. Let C

ad
n �t�

count the number of admitted customers in the interval �0� t in model n. Let

C1n ≡ �Cn�t�−#nt /
√

#nc
2
a�

Cad
n ≡ �Cad

n �t�−#nt /
√

#nc
2
a�

(6.1)

(We use the superscript in C1n to avoid confusion with Cn in (2.1).) By (2.2), C
1
n ⇒ B,

where B is standard Brownian motion. It is evidently possible, with some work, to extend
Theorem 2.1 and Corollary 2.1 to obtain the joint convergence

�C1n�Qn�Ln�⇒ �B�Q�L� in �D� J1�
3�

but it is not necessary to do that. Tightness for the sequence ��C1n�Qn�Ln�� n≥ 1� follows
from the convergence of the component processes; see [25, Theorems 11.6.1, 11.6.7]. By
Prohorov’s theorem, that tightness implies relative compactness: Any subsequence has a
convergent subsubsequence. Consider any convergent subsequence:

�C1nk
�Qnk

�Lnk
�⇒ �C1�Q�L� in �D� J1�

3�

Because Cad
n =C1n −Ln, we deduce that

�Cad
nk

�Qnk
�⇒ �C1−L�Q� in �D� J1�

2� (6.2)

We can apply Puhalskii and Reiman [17, Lemma A.2] to (6.2) to obtain the limit (2.24) for
that subsequence. Because the limit Q is independent of the subsequence chosen, we obtain
the full convergence in (2.24). �
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