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Abstract

In previous work we characterized Gaussian Markov processes with station-
ary increments and showed that they arise as asymptotic approximations for
stochastic point processes with a random rate such as Polya processes, which
can be useful to model over-dispersion and path-dependent behavior in ser-
vice system arrival processes. Here we provide additional insight into these
stochastic processes.
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1. Introduction

The net input processes of queueing systems - queueing networks as well
as individual queues - are often approximated by Brownian motion (BM),
leading to approximations of the content (workload or queue length) by re-
flected Brownian motion; e.g., see [1, 2]. The BM model tends to be relatively
tractable because it is a Gaussian Markov process with stationary and inde-
pendent increments. However, the property of independent increments fails
to capture positive correlations among increments of the arrival process over
nonoverlapping intervals, often referred to as over-dispersion, which are often
found in measurements; e.g., see [3, 4, 5].

The interest in modelling net input processes without independent incre-
ments led us to investigate Gaussian Markov processes without independent
increments and their applications to queues in [6, 7, 8, 9]. Significant contri-
butions for applications are: (i) a characterization of multidimensional Gaus-
sian Markov processes with stationary (but not independent) increments,
called ψ-GMPs (with ψ pronounced “SI” being a mnemonic “for stationary
increments”), (ii) expressions for the transient distribution of the workload
in a queue with a ψ-GMP input; see Theorems 5 and 6 of [6] and §5 of
[7] and (ii) heavy-traffic limits for queueing models with input modelled as
generalized Polya processes (GPPs) from [10]; see §3-§5 of [7]. The paper
[7] considers one-dimensional GPPs with stationary increments; the paper
[8] considers GPPs without stationary increments; the paper [9] considers
multidimensional GPPs with stationary increments and their applications to
queueing networks.

The purpose of this paper is to provide new insight into GMPs and GPPs.
In section §2 we obtain a new representation for a multivariate ψ-GMP with
parameter matrices (A,B); we show that it can be represented as a sum of
two independent processes, one a BM with covariance matrix A and the other
a constant t times a normal random vector with covariance matrix B. In §3
we show that the set of all univariate ψ-GPPs coincides with the set of all
Polya processes, which in turn can be characterized as Poisson processes with
a gamma distributed random rate; see Chapter 4 of [11]. In §4 we obtain
a new version of the one-dimensional FCLTs in §3-§4 of [7], where the limit
is expressed directly in the (one-dimensional version of the) ψ-GMP in §2
here. In §5 we also obtain a new supporting multivariate FCLT, yielding all
possible multivariate ψ-GMPs as limits.
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2. Stationary-Increment Gaussian Markov Processes

In this section we give a new simple representation for a stationary-
increment Gaussian Markov process (ψ − GMP ), which was studied in [6].
We first review the definition and some of its properties.

We work with column vectors, so that if U and V are two k-dimensional
random vectors in R

k, then the k × k covariance matrix is Cov[U, V ] ≡
E[V U t]−E[V ]E[U t]. Let Dk be the k-fold product of the space D ≡ D[0,∞)
with the usual Skorohod topology and the product topology, as in [2]. (The
limits will have continuous sample paths, so the topology will correspond to
the topology of uniform convergence over bounded intervals, but with the
usual sigma-field; see §11.5.3 of [2].)

Definition 1. A process X in Dk for k ≥ 1 is a ψ-GMP with parameter
matrices (A,B) and drift vector ω in R

k if X is a Gaussian process with
E[X(t)] = ωt and

Cov [X(s), X(t)] = s (A+Bt) , 0 ≤ s ≤ t <∞,

where A and B are (strictly) positive definite, symmetric matrices of k × k
real scalars.

In Definition 1 we have changed the sign of the matrix B from [6], but
kept the meaning unchanged. We also do not consider all cases studied in [6].
The definition of a ψ-GMP in [6] relaxes the positive definite property for
the matrix B, but to do so may require X be defined on a bounded interval
[0, T ] for T < ∞. The cases we consider always have positively correlated
increments by Proposition 2 of [6].

By Theorem 4 of [9], the k-dimensional ψ-GMP with drift satisfies the
following non-ergodic law of large numbers (LLN). We thus say that the
ψ-GMP is path-dependent.

Proposition 2.1. (Theorem 4 of [9]) If X is a ψ-GMP in Dk with parameter
matrices (A,B) and drift vector ω, then

n−1X(n) ⇒ N(ω,B) in R
k as n→ ∞, (1)

where N(m,Σ) denotes a normal or Gaussian random vector with mean vec-
tor m and covariance matrix Σ.
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By Theorem 3 of [6], X has a representation as a solution to the linear
stochastic differential equation (SDE), which is a well known way to generate
GMPs; see §5.6 of [12]. In particular, the ψ-GMP can be expressed as

X(t) = ωt+ Y (t), t ≥ 0, (2)

where Y (t) is characterized as the solution of the stochastic differential equa-
tion

dY (t) = B(A+Bt)−1Y (t) dt+
√
AdW (t), t ≥ 0, (3)

with Y (0) ≡ 0, W is standard k-dimensional Brownian motion (BM) or
Wiener process (with mean 0 and covariance matrix the identity matrix I).

It follows that a ψ-GMP has almost surely continuous sample paths.
When A and B have the assumed properties, A1/2 exists, and (A+Bt)−1

always exists because A + Bt is positive definite for all t ≥ 0. If we relax
the positive definite assumption for B and assume that B = 0, then X is
a multivariate Brownian motion with drift ω and Cov [X(s), X(t)] = sA for
0 ≤ s ≤ t <∞.

We now show that there is a simple alternative representation for a ψ-
GMP.

Theorem 2.1. (alternative representation for a ψ-GMP). An equivalent
representative for the ψ-GMP in (2) and (3) above with parameter matrices
(A,B) and drift vector ω is

X(t) = N(ω,B)t+
√
AW (t), t ≥ 0, (4)

where W is again standard multivariate BM that is independent of a normal
random vector N(ω,B) with mean vector ω and covariance matrix B.

Proof. Clearly the two representations are both for Gaussian processes with
drift. To show equivalence, it suffices to show that the mean vectors and
covariance matrices coincide. Clearly the processes have the same mean
vectors. When (4) holds,

E[X(t)X(t)t] = E[E[X(t)X(t)t|N(0, B)]

= At + E[N(0, B)N(0, B)t]t2 = At +Bt2 + ωωtt2, (5)

so that
V ar[X(t)] = Cov[X(t), X(t)] = At+Bt2, t ≥ 0. (6)
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It follows from (4) that X(t − s)
d
= X(t) − X(s) and Cov[X(s), X(t)] =

Cov[X(t), X(s)]. Therefore,

V ar[X(t− s)] = V ar[X(t)−X(s)] (7)

= V ar[X(t)] + V ar[X(s)]− 2Cov[X(s), X(t)], 0 ≤ s ≤ t,

so that we conclude that

Cov[X(s), X(t)] = s(A+Bt), 0 ≤ s ≤ t. (8)

3. Polya Point Processes

In our previous work [7, 8], we viewed Polya processes (PPs) as special
cases of stationary generalized Polya processes (ψ − GPPs), drawing on
the paper by Cha [10] that introduced GPP s. In this approach, a GPP
with parameter triple (κ(t), γ, β) is defined as a Markov point process with
intensity function (defined in terms of the internal histories Ht; e.g., see §1.8
of [13]) by

λ∗(t) ≡ λ∗(t|Ht) ≡ lim
h↓0

E[N(t + h)−N(t)|Ht]

h
≡ (γN(t−) + β)κ(t), (9)

where N(0) = 0, γ and β are positive constants, κ(t) is a positive integrable
real-valued function and ≡ denotes equality by definition. As observed by
[10], the special case of (9) with

κ(t) =
1

γt + 1
, t ≥ 0, (10)

is a Polya point process. Theorem 1 of [7] shows that the GPP with κ in
(10) is stationary. We refer to one such ψ-GPP as an γ, β ψ-GPP. We now
show that the set of all ψ −GPP ’s coincides with the set of PPs.

Theorem 3.1. (ψ-GPP representation theorem) A GPP has stationary in-
crements if and only if it is a Polya process as defined by (9) and (10).

Proof. We apply our results for GPP s, in particular, Theorem 1 and Corol-
lary 3 of [8], which constructs a ψ−GPP in terms of its instantaneous mean
function. Corollary 3 to Theorem 1 of [8] and the following Remark 2 there

5



show that any ψ−GPP has a constant instantaneous mean function, defined
as

λ(t) ≡ lim
h↓0

E[N(t + h)−N(t)]

h
(11)

where N(0) = 0. Note that the instantaneous mean function λ(t) differs
from the intensity λ∗(t) in (9) by not conditioning on the internal histories
Ht. Suppose that a GPP with parameter triple (κ(t), γ, β) has instantaneous
mean function λ(t) = c, and so is a ψ−GPP . Apply (2.10) in Theorem 1 of
[8] to show that the associated function κ(t) in that GPP is

κ(t) =
c

β + γct
. (12)

Thus the associated intensity function is

λ∗(t) ≡ λ∗(t|Ht) ≡ (γN(t−) + β)κ(t) =
cγN(t−) + cβ

γct + β
. (13)

Now divide the numerator and denominator by β to obtain an expression for
a new GPP with parameter triple (κ̂(t), γ̂, β̂), where

κ̂(t) ≡ 1/(γ̂t + 1), γ̂ ≡ cγ/β and β̂ ≡ c. (14)

However, this ψ − GPP is of the form of a PP as defined in (9) and (10)
above, following (2) of [7], drawing on Theorem 1 there.

Remark 3.1. (alternate proof based on the MPP representation) An alterna-
tive proof of Theorem 3.1 above can be based on Grandell [11], which in turn
is based on the seminal book Lundberg [14], where a Polya process is defined
as a mixed Poisson process (MPP) with a gamma structure distribution; i.e.,
if Π(t) is a standard Poisson process with rate 1, then the Polya process is
defined as

N(t) ≡ Π(tΛ), t ≥ 0, (15)

where Λ is a random variable independent of Π with a gamma distribution,
i.e., with probability density function (pdf)

f(x; δ, ν) ≡ νe−νx(νx)δ−1

Γ(δ)
, x ≥ 0, (16)

where Γ is the gamma function with Γ(n) = (n − 1)! for n integer, while
ν is called the rate and δ is called the shape. With (16), the mean of the
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gamma distribution with pdf in (16) is δ/ν and the variance is δ/ν2. With
this notation, the intensity function given in Example 4.1 of [11] is

λ∗(t) =
N(t−) + δ

t+ ν
. (17)

In fact, three equivalent variants of this definition are given on pages 62-66
of [11].

Note that (17) above coincides with (9) in §3 for new parameters. To
see this, first divide the numerator and denominator of (17) by ν. then let
(γ, β) ≡ (1/ν, δ/ν).

We can also obtain the stationary increments property from the estab-
lished stationarity of the MPP representation, drawing on McFadden’s the-
orem, Theorem 6.2 on p. 110 of [11] or Nawrotzki’s theorem, Theorem 6.3
on p. 113 of [11].

4. A Connecting Limit Theorem

In this section we establish an alternative version of Theorem 4 of [7],
the FCLT for a one-dimensional PP that yields a ψ-GMP limit. Now we
establish a version that directly yields the one-dimensional version of the
new representation of the ψ −GMP in §2.

4.1. The Two Gamma Parameters

Let Π(t) be a standard Poisson process with rate 1 and Λ be an indepen-
dent random variable with a gamma distribution as in (16).

We match the first two moments of the Polya process (PP) in Theorem
1 of [7] to a gamma mixture of Poisson processes to obtain the first two
moments of the gamma distribution that serves as the mixing distribution
applied to the parameter λ in the mixed Poisson process (MPP) representa-
tion of the Polya process in (15).

Proposition 4.1. The mixing random variable Λ in the MPP representation
of the PP in (15) with mean βt and variance βt(1+γt) has first two moments

E[Λ] = β and E[Λ2] = β(γ + β) (18)

and thus variance V ar[Λ] = βγ.
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Proof. For the mean, we have the equality

βt = E[N(t)] =

∫ ∞

0

(λt)dPΛ(λ) = E[Λ]t, (19)

from which we deduce that the mean of the random Poisson parameter Λ
must be E[Λ] = β as in (18).

For higher moments, we use the well known property that the kth moment
of a mixture is the mixture of the underlying kth moments. To apply this
property with higher moments, it is convenient to work with factorial mo-
ments. Recall that the rth factorial moment of a nonnegative-integer-valued
random variable Y is Y(r) = E[Y (Y − 1) . . . (Y − r + 1)]. It is easy to see
that the kth factorial moment of a mixture is the mixture of the underlying
kth factorial moments.

In particular, for a Poisson process with parameter λ, the second factorial
moment is

E[(N(t))2] ≡ E[N(t)(N(t) − 1)] = E[N(t)2]−E[N(t)]

= λt+ (λt)2 − λt = (λt)2. (20)

To obtain the second factorial moment of the PP, we use Theorem 1 of
[7], which concludes for the Polya process that

V ar(N(t)) = βt(1 + γt) = βt+ βγt2. (21)

As a consequence, the second factorial moment of the Polya process is

β(β + γ)t2 = E[(N(t)2)] =

∫ ∞

0

(λt)2dPΛ(λ) = E[Λ2]t2. (22)

Hence, the second moment of the mixing distribution must be E[Λ2] = β(β+
γ) as in (18), so that the variance is

V ar(Λ) = E[Λ2]− E[Λ]2 = β(β + γ)− β2 = βγ. (23)

Proposition 4.1 above is consistent with the analysis in Remark 3.1 above.
Given that the PP has mean βt and variance βγt, the underlying gamma
distribution in the MPP representation must be of the form (16) with (γ, β) ≡
(1/ν, δ/ν). We will let Λ(β, βγ) denote a random variable with mean β and
variance βγ as arises in the MPP representation.
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4.2. FCLT for a PP based on the MPP Representation

Let
Xn(t) ≡ n−1/2(Xn(t)− βnt), t ≥ 0, (24)

be the scaled GPP in (9) of [7] based on the superposition of n i.i.d. GPPs,
each with parameter triple (κ(t), β, γ) for κ(t) = 1/(γt + 1) as in (10). (We
have changed the notation from A in [7] to X to avoid confusion with the
ψ-GMP parameters in Definition (1) here.) Recall that Xn is an (nβ, γ)
ψ−GPP by Proposition 3 of [7]. Let D be the function space D[0,∞) with
the usual Skorohod J1 topology, as in [2]. The following derives an alternative
representation for the limiting ψ −GMP in Theorem 4 of [7].

Theorem 4.1. (FCLT with new representation for the GMP) Under the
assumptions above (the same as in Theorem 4 of [7]),

Xn ⇒ X as n→ ∞, (25)

where Xn is defined in (24) and

X(t) = N(0, βγ)t+
√

βW (t) t ≥ 0, (26)

with W being a standard Brownian motion or Wiener process that is inde-
pendent of a Gaussian random variable N(0, βγ) with mean 0 and variance
βγ.

Proof. By §3, we have the representation

Xn(t) = Π(tΛ(nβ, nβγ)), t ≥ 0, (27)

where Λ(m, v) is a gamma random variable with mean m and variance v that
is independent of a rate-1 Poisson process Π ≡ {Π(t) : t ≥ 0}. We apply the
well known FCLT for the Poisson process, yielding

n−1/2(Π(nt)− nt) ⇒ W (t) in D as n→ ∞ (28)

and the well known CLT and LLN for the gamma distribution, e.g., see §II.2
and §VI.3 of [15], yielding

Λ(nβ, nβγ)− nβ√
n

⇒ N(0, βγ) in R (29)
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and
Λ(nβ, nβγ)

n
⇒ β in R (30)

as n→ ∞.
Because the gamma random variable is independent of the Poisson process

and the LLN has a deterministic limit, we can apply Theorems 11.4.4 and
11.4.5 of [2] to obtain the joint convergence

(

n−1/2(Π(nt)− nt), n−1/2(Λ(nβ, nβγ)− nβ), n−1Λ(nβ, nβγ)
)

⇒ (W (t), N(0, βγ), β) in D × R
2 as n→ ∞. (31)

Apply the continuous mapping theorem with the function φ : D×R×R →
D taking (x(t), y, z) into x(zt) + yt. (Use Theorem 3.4.3 of [2] and the fact
that W has continuous paths w.p1.) By direct application of this function,
we get

n−1/2(Π(tΛ(nβ, nβγ))− tΛ(nβ, nβγ)) + n−1/2(tΛ(nβ, nβγ)− ntβ)

= n−1/2(Π(tΛ(nβ, nβγ))− ntβ) = An(t), t ≥ 0.

⇒ W (βt) + tN(0, βγ) (32)

as claimed.
By a minor modification of the same argument and the argument used in

Corollary 3 of [7], we obtain the alternative representation of the limit with
a drift term. As assumed in (14) of [7], assume that

µn → 1 and
√
n(µn − 1) → µ as n→ ∞. (33)

Let the modified scaled process be defined as in (15) of [7], i.e.,

Xd
n(t) ≡ n−1/2(Xn(µnt− βnt), t ≥ 0. (34)

Corollary 4.1. If (33) holds in addition to the assumptions of Theorem 4.1,
then

Xd
n(t) ⇒W (βt) +N(βµ, βγ)t in D as n→ ∞. (35)

for Xd
n defined in (34).

Corollary 4.1 yields the one-dimensional version of the representation for
the ψ −GMP with drift in §2.
Remark 4.1. (non-Poisson mixture processes) Extensions of Theorem 4.1
to non-Poisson arrival processes that satisfy a FCLT with Brownian limit
follow by the same argument; e.g. see §4.4 of [2] for examples.
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5. A Multivariate Extension

We now show how to obtain the general k-dimension ψ-GMP from §2 as
the limit in a FCLT involving a mixed multivariate counting process. Suppose
that the stochastic process of interest can be given as a mixed representation
Xn(t) ≡ Π̃(tΛ(n1, nB)), where 1 is the vector (1, 1, . . . , 1)t in R

k and Π̃ is a
k-dimensional process with

Π̃(tν) ≡ (Π̃1(tν1), . . . , Π̃k(tνk)) (36)

for a k-dimensional vector ν ≡ (ν1, . . . , νk) with Π̃ satisfying the FCLT in Dk

n−1/2(Π̃(nt1)− nt1) ⇒
√
AW (t) in Dk as n→ ∞, (37)

where W (t) ≡ (W1(t), . . . ,Wk(t)) is k-dimensional BM and A is a symmetric
positive-definite real matrix, while {Λ(n1, nB) : n ≥ 1} is a sequence of
nonnegative random vectors in R

k with mean vectors n1 and k×k covariance
matrices nB which satisfies a CLT and LLN in R

k, i.e.,

n−1Λ(n1, nB) ⇒ 1 and

n−1/2(Λ(n1, nB)− n1) ⇒ N(0, B) in R
k (38)

as n→ ∞, where A and B are k×k positive definite symmetric real matrices.
Then let

Xn(t) ≡ Π̃(tΛ(n1, nB)) (39)

= (Π̃1(tΛ1(n1, nB)), . . . , Π̃k(tΛk(n1, nB))), t ≥ 0,

and

Xn ≡ n−1/2(Xn(t)− nt1) (40)

= n−1/2(Π̃1(tΛ1(n1, nB))− nt, . . . , Π̃k(tΛk(n1, nB)))− nt), t ≥ 0.

For example, it is natural for Π̃ to be a k-dimensional strictly stationary
stochastic point process that possesses appropriate mixing properties to jus-
tify the FCLT, as in §4.4 of [2] and references there. (Here mixing refers to
the dependence assumptions as opposed to a random rate.) It is also natural
for Λ(1, B) to have an infinitely divisible multivariate distribution, such as
the multivariate gamma distributions in [16] and references there.

11



Then, by a vector version of essentially the same argument used to prove
Theorem 4.1, we obtain the following multivariate extension and generaliza-
tion of Theorem 4.1. (Recall that the product space Dk is endowed with
the product topology, so that the one-dimensional argument applies in each
coordinate.)

Theorem 5.1. (multivariate FCLT) Under the conditions above,

Xn(t) ≡ n−1/2(Xn(t1)− 1nt) ⇒
√
AW (t) +N(0, B)t as n→ ∞ (41)

for Xn in (40) with Xn in (39), where the limit has the structure of (4) in
Theorem 2.1.

By this argument we get a ψ-GMP limit with parameter matrices (A,B),
just as in Definition 1. In summary, we obtain the matrix A from the FCLT
for Π̃ in (37) and we obtain the matrix B from the CLT for Λ(n1, nB) in
(38). In contrast, if we assume that (37) holds with the limit process having
independent marginals and try to obtain the full parameter pair (A,B) from
a version of (38), we see that we can only obtain matrices A that are diago-
nal matrices. In such a random-time representation, non-diagonal matrices
A must come from the FCLT for Π̃. In particular, the multivariate Polya
process constructed by Zocher [17, 18], which is based on a multivariate Pois-
son process with i.i.d. marginal one-dimensional processes, cannot be used
to yield all ψ-GMPs.

Remark 5.1. (connection to [9]) The restriction to diagonal matrices for A
is consistent with Lemma 1 of [9] in our limits for queueing networks, but
the linear maps M used in [9] to create the generalized Polya superposition
processes (GPSPs) apply to the entire process. The construction of an GPSP
leads to Π̃ with dependent coordinate processes in the above representation,
so that

√
A is not diagonal. Nevertheless, not all ψ-GMPs can be obtained

as limits of a ψ-GPSP. That is, the limit in [9] can be regarded as a special
case of Theorem 5.1.

To elaborate, we now prove that the framework here is more general
than the ψ-GPSP framework in [9]. For a ψ-GPSP, A = MUM t and B =
MVM t where U and V are diagonal matrices and the matrix M is common
to A and B. Any positive definite matrix has a decomposition of the form
MUM t, whereM is a matrix of its eigenvectors, while U is a diagonal matrix
of its eigenvalues. The decomposition is unique up to an ordering of the
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eigenvectors. Therefore, the vectors A = MUM t and B = MVM t have the
same eigenvectors, which implies that they must commute. That need not
be the case for general positive definite matrices.
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