
Statistics and Probability Letters 109 (2016) 202–207

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Efficient simulation of non-Poisson non-stationary point
processes to study queueing approximations
Ni Ma, Ward Whitt ∗
Industrial Engineering and Operations Research, Columbia University, USA

a r t i c l e i n f o

Article history:
Received 3 August 2015
Accepted 14 November 2015
Available online 30 November 2015

Keywords:
Simulation
Nonstationary point process
Time-varying arrival rate
Inverse function
Queues with time-varying arrival rates
Service system

a b s t r a c t

A nonstationary point process can be efficiently simulated by exploiting a representation
as the composition of a rate-one process and the cumulative arrival rate function, provided
that an efficient algorithm is available for generating the rate-one process, as is the
case for stationary renewal processes, Markov modulated Poisson processes and many
other processes. Overall efficiency can be achieved by constructing a table of the inverse
cumulative arrival rate function when it is not explicitly available.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since service systems typically have arrival rates that vary strongly by time of day, e.g., see Figs. 1, 8 and 9 in Green et al.
(2007), there is interest in developing stochastic models with time-varying arrival rates. The most common arrival process
model for this purpose is the nonhomogeneous Poisson process (NHPP), but there also is evidence from arrival data that an
appropriate arrival processmodel with time-varying rates often should not be an NHPP; see Avramidis et al. (2004), Ibrahim
et al. (2012), Jongbloed and Koole (2001), Kim andWhitt (2014), Kim et al. (2015), Zhang et al. (2014) and references therein.

Thus we want to create non-Poisson nonstationary arrival process models and study the performance of associated
queueing models with those arrival processes. Recent work developing non-Poisson nonstationary arrival process models
and staffing algorithms to stabilize the performance in an associated queueing model with that arrival process is contained
in He et al. (2015) and Whitt (2015). An important part of that work was conducting simulation experiments to evaluate
how successful the proposed algorithms are in stabilizing performance at the designated targets. The purpose of the present
note is to communicate how these simulations can be efficiently conducted.

In this line of research, it has been accepted practice to use stylized arrival rate functions that capture essential features
of arrival rate functions that can be estimated from data. In particular, it has been standard to use the sinusoidal arrival rate
function

λ(t) ≡ λ(t; λ̄, β, γ) ≡ λ̄(1+ β sin(γ t)) for 0 < β < 1 and γ > 0, (1)

where λ̄ is the average arrival rate (the spatial scale), β is the relative amplitude and γ is the time scaling factor, determining
the associated cycle length T = 2π/γ . (We also typically assume that the mean service time is 1 in the queueing model,
which just fixes the time units.)

∗ Correspondence to: MailCode 4704, S. W. Mudd Building, 500 West 120th Street, New York, NY 10027-6699, USA.
E-mail addresses: nm2692@columbia.edu (N. Ma), ww2040@columbia.edu (W. Whitt).

http://dx.doi.org/10.1016/j.spl.2015.11.018
0167-7152/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.spl.2015.11.018
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2015.11.018&domain=pdf
mailto:nm2692@columbia.edu
mailto:ww2040@columbia.edu
http://dx.doi.org/10.1016/j.spl.2015.11.018

N. Ma, W. Whitt / Statistics and Probability Letters 109 (2016) 202–207 203

To understand how a staffing algorithm performs, we need to consider a range of the parameters for spatial scale λ̄
and temporal scale γ in (1). (These same parameters can be part of any periodic arrival rate function.) Moreover, we need to
consider a range of nonstationary arrival processeswith such an arrival rate function. Herewe show that these requirements
can be achieved with remarkable efficiency with an appropriate approach.

We first note that extending the arrival process beyond an NHPP presents a challenge for the simulation. The standard
way to simulate an NHPP is to apply time-dependent thinning of a homogeneous Poisson process (PP), as in §2.4 of Ross
(1996) and Lewis and Shedler (1979). Thinning can be applied to a large class of renewal processes using hazard rate
stochastic ordering, as in §9.3 of Ross (1996) and §2.3 of Gerhardt andNelson (2009), but extension to non-renewal processes
requires additional work.

Our main idea for simulating non-Poisson nonstationary arrival processes is to exploit the inverse method, as often used
in generating non-uniform random numbers; see §II.2 and §III.2 of Devroye (1986) and §3.8 of L’Ecuyer (2012). The inverse
method can be used for NHPP’s, but it is even more appealing here because it allows us to efficiently simulate a large class
of non-Poisson nonstationary arrival processes, not just one.

The first step in this approach is to construct a large class of non-Poisson nonstationary arrival process models by using
the inverse Λ−1 of the cumulative arrival rate function Λ, which for the sinusoidal arrival rate function in (1) is

Λ(t) ≡
 t

0
λ(s) ds = λ̄[t + (β/γ)(1− cos(γ t))], t ≥ 0. (2)

The associated inverse function Λ−1 is well defined for (2) and any arrival rate function for which

0 < λL ≤ λ(t) ≤ λU <∞ for all 0 ≤ t ≤ T <∞; (3)

e.g., we could apply basic properties of inverse functions, as in §13.6 of Whitt (2002).
Exploiting a well known representation, as in §7 in Massey and Whitt (1994) and Gerhardt and Nelson (2009), He et al.

(2015), Liu et al. (2014), Nelson andGerhardt (2011), we define a nonstationary counting process A for any cumulative arrival
rate function Λ (such as in (2)) and any rate-1 counting process N that we are able to simulate by letting

A(t) ≡ N(Λ(t)), t ≥ 0. (4)

It is immediate that E[A(t)] = Λ(t), t ≥ 0, and the arrival times of A andN , denoted by Ak andNk respectively, are related by

Ak = Λ−1(Nk), k ≥ 1. (5)

Since the inverse function Λ−1 is often unavailable explicitly, we construct a suitably accurate approximation of it and
apply it by table lookup. In Section 2 we explain how the possibility of re-use provides remarkable efficiency; in Section 3
we develop an algorithm to efficiently construct the approximate inverse function with specified accuracy; and in Section 4
we discuss additional application issues.

2. The basis for efficiency through re-use

Amain advantage of the inverse function approach is the possibility of re-use. Since the inverse function satisfies a fixed
point equation, an alternative way to calculate the inverse is to solve the fixed point equation for each arrival time, perhaps
by search, exploiting themonotonicity. That is done in Chen and Schmeiser (1992). However, that search has to be performed
at each arrival time. The search has the advantage that there should usually be far fewer arrivals in a fixed interval [0, T] than
arguments in a tabled inverse function, but the inverse function has the advantage that it can be constructed once outside the
simulation and re-used. Moreover, the calculation from the table can be very fast, because it is possible to proceed forward
through the table only once.

2.1. One cycle for periodic arrival rate functions

The algorithm can be accelerated if the arrival rate function is periodic, as for the sinusoidal function in (1), because
it suffices to calculate the inverse only for a single cycle. For example, with the sinusoidal arrival rate function in (1),
Λ(2kπ/γ) = λ̄2kπ/γ for all integers k ≥ 0, so that Λ−1(2kλ̄π/γ) = 2kπ/γ for all integers k ≥ 0. Hence, it suffices
to construct the inverse for 0 ≤ t < 2π/γ . Overall, we get

Λ−1((2kλ̄π/γ)+ t) = (2kπ/γ)+Λ−1(t), 0 ≤ t ≤ 2λ̄π/γ , (6)

so that it suffices to calculate Λ−1 on the interval [0, 2λ̄π/γ].

2.2. Different scaling of time and space

We also can use one constructed inverse function Λ−1 to obtain inverse functions for scaled versions of the original
function Λ. This commonly occurs with sinusoidal arrival rate functions λ(t; λ̄, β, γ) in (1). We are often interested in

204 N. Ma, W. Whitt / Statistics and Probability Letters 109 (2016) 202–207

different spatial and temporal scale parameters λ̄ and γ . Since

Λ(t; λ̄, β, γ) = λ̄Λ(γ t; 1, β, 1)/γ , (7)

we can apply Lemma 13.6.6 of Whitt (2002) to express the inverse as

Λ−1(t; λ̄, β, γ) = Λ−1(γ t/λ̄; 1, β, 1)/γ . (8)

Hence, we can use the constructed inverse function Λ−1(t; 1, β, 1) for Λ(t; 1, β, 1) to construct the inverse function
Λ−1(t; λ̄, β, γ) for Λ(t; λ̄, β, γ); i.e., we can reduce the three parameters to just one.

2.3. Multiple non-Poisson nonstationary arrival process models

In order to evaluate performance approximations and system controls such as staffing algorithms, we need to consider a
variety ofmodels to ensure that themethods are successful for a large class ofmodels. It is thus significant that a constructed
inverse function Λ−1 can be re-used with different rate-1 stochastic counting processes N . For any rate-1 counting process
N that we can simulate, we can generate the corresponding nonstationary arrival processwith the same arrival rate function
λ simply by applying the tabled inverse function to the arrival times of that rate-1 process, as in (5). Methods for simulating
stationary counting processes are well established.

2.4. Multiple replications to obtain accurate performance estimates

The tabled inverse function can be re-used in each replication when many replications are performed to obtain accurate
performance estimates. For example, we might use 104 or more i.i.d. replications.

3. Constructing the approximation of the inverse function

By (5), if we can simulate the arrival times Nk of the designated rate-1 process, then to simulate the desired arrival times
Ak of the nonstationary point process A, it only remains to compute Λ−1(Nk) for each k. This is straightforward if the inverse
function is available explicitly. If we use data to estimate the cumulative arrival rate function, then we can fit a convenient
invertible functionΛ. Indeed,with data there seems to be no reason not to use an invertible function. For example, it could be
a piecewise-linear function as in Gerhardt and Nelson (2009), Leemis (1991), Massey et al. (1996) and Nelson and Gerhardt
(2011).

However, startingwith an explicit non-invertible functionΛ, as in (2), wewant to efficiently construct an approximation
ofΛ−1 that is (i) easy to implement, (ii) fast in its implication and has (iii) suitably small specified accuracy.We could act just
as if we had data, and fit a convenient invertible function, but then it remains to substantiate that the three goals have been
met. To achieve these three goals, we contend that a good approach is to construct a piecewise-constant approximation.
Of course, this construction can yield multiple points when that is not possible in the counting process A, but that is
easily eliminated if it is deemed important; see Section 4.4. At some extra work, we could convert the piecewise-constant
approximation to a piecewise-linear approximation, paralleling Leemis (1991). For all these modifications, our error bound
still applies. For the queueing applications, this last refinement step should usually not be necessary.

We assume that a cumulative arrival rate functionΛ associated with an arrival rate function λ satisfying (3) is given over
a finite interval [0, T]. By (3), there exists a function r such that Λ−1(t) =

 t
0 r(s) ds, 0 ≤ t ≤ Λ(T), and

0 < 1/λU ≤ r(t) ≤ 1/λL <∞, 0 ≤ t ≤ Λ(T). (9)

Our goal is to efficiently construct an approximation J to the inverse function Λ−1 mapping the interval [0, Λ(T)] into
[0, T]with specified accuracy

∥J −Λ−1∥ ≡ sup
0≤t≤Λ(T)

{|J(t)−Λ−1(t)|} ≤ ϵ (10)

for some suitably small target ϵ > 0. This is a natural way to quantify the error, because ϵ specified the maximum error in
the arrival times.

Our general strategy is to partition the two intervals [0, T] and [0, Λ(T)] into nx and ny evenly spaced subintervals of
width η and δ, respectively, and then define J at iδ to be an appropriate jη, for each i, 0 ≤ i ≤ ny. We extend J to [0, Λ(T)]
by making J a right-continuous step function, assuming these constant values specified at iδ.

Key parameters for our algorithm are

ρ ≡ ρΛ ≡
λU

λL
, η =

ϵ

1+ ρ
and δ = λUη =

λUϵ

1+ ρ
, (11)

where λL and λU are the lower and upper bounds on the arrival rate function λ given in (3) and ϵ the desired error bound in
(10). Thus ρ is the slope ratio with 1 ≤ ρ <∞, while δ and η are spacings used to achieve the target error bound ϵ in (10).

N. Ma, W. Whitt / Statistics and Probability Letters 109 (2016) 202–207 205

To construct J , we first calculate Λ(x) for each of the nx + 1 points x in [0, T] by letting

a(j) ≡ Λ(kη), 0 ≤ j ≤ nx. (12)

Then we approximate the Λ−1(y) value of each of the ny+ 1 points y in [0, Λ(T)] by a suitable point within the nx points in
[0, T], i.e.,

b(i) ≡ inf{j ≥ 0 : a(j) ≥ iδ}, 0 ≤ i ≤ ny. (13)

Then J(iδ) = b(i)η for all i, 0 ≤ i ≤ ny. The simple vector representations in (12) and (13) are the basis for the
implementation efficiency.

Algorithm1 Constructing the approximation J of the inverse functionΛ−1 for given time T , functionΛ : [0, T] → [0, Λ(T)]
and error bound ϵ

1: Set ρ ← λU/λL, η← ϵ/(1+ ρ), δ← λUϵ/(1+ ρ), nx ← T (1+ ρ)/ϵ, ny ← Λ(T)/δ // (five constant parameters)
2: Set x← (0 : η : T), y← (0 : δ : Λ(T)) //(two equally spaced vectors of length nx + 1 and ny + 1)
3: Set a← Λ(x), b← [] //(two new vectors of length nx + 1 and ny + 1 with b zero vector)
4: Set i← 1, j← 1 //(initialize for nx + ny operations)
5: While j < nx + 1 && i < ny + 1 do
6: If y(i) > a(j) Then
7: j← j+ 1
8: Else
9: b(i)← j, i← i+ 1

10: End if
11: End While
12: //(For 0 ≤ i ≤ ny, J(iδ) = b(i)η; J extended to [0, Λ(T)] by right-continuity.)

We can finally get the value of J at any time y in [0, Λ(T)] by

J(y) = J(⌊y/δ⌋δ), 0 ≤ y ≤ Λ(T), (14)

where ⌊y⌋ is the floor function, yielding the greatest integer less than or equal to y. However, this extension is not used
directly because we start by changing Nk to ⌊Nk/δ⌋δ, so we only use J defined on the finite subset {iδ : 0 ≤ i ≤ ny}. The
function J is constructed to be one-to-one on the finite subset {iδ : 0 ≤ i ≤ ny}.

Theorem 3.1 (Error Bound and Computational Complexity). Algorithm 1 above constructs a nondecreasing function J on
[0, Λ(T)] approximating Λ−1 with the error upper bound ϵ prescribed in (10) using of order O(nx + ny) = O(2T (1 + ρ)/ϵ)
storage (two vectors each of size nx and ny) with computational complexity of order O(nx + ny) = O(2T (1+ ρ)/ϵ).

Proof. For any δ > 0 and η > 0, a bound on the error in J is

∥J −Λ−1∥ ≡ sup
0≤t≤Λ(T)

|J(t)−Λ−1(t)| = sup
0≤i≤ny

sup
t∈[iδ,(i+1)δ)

|J(iδ)−Λ−1(t)|

= sup
0≤i≤ny

sup
t∈[iδ,(i+1)δ)

|b(i)η −Λ−1(iδ)+Λ−1(iδ)−Λ−1(t)|

≤ sup
0≤i≤ny

(|b(i)η −Λ−1(iδ)| + |Λ−1(iδ)−Λ−1((i+ 1)δ)|)

≤ η + δ/λL, (15)

where the fourth line follows because the point Λ−1(iδ) lies in the interval (b(i)η, b(i+ 1)η].
Next observe that the function J will be one-to-one (have distinct values) on the set {iδ : 0 ≤ i ≤ ny} if δ ≥ λUη. Now

we choose δ such that

δ = λUη. (16)

Then J is one-to-one on {iδ : 0 ≤ i ≤ ny} and, by (15) and (16),

∥J −Λ−1∥ ≤ η + δ/λL ≤
ϵ

1+ ρ
+

ρϵ

1+ ρ
= ϵ. (17)

Turning to the computational complexity, we see that four vectors need to be stored: x, y, a and b, which is of total length
2(nx + ny + 2). To construct the table of J , the while loop in Algorithm 1 searches for b(i) for each 0 ≤ i ≤ ny, which checks
each of the (nx + ny) points only once and takes time O(nx + ny). Finally, by (11) again,

nx + ny =
T
δ
+

Λ(T)

η
=

T (1+ ρ)

ϵ
+

Λ(T)(1+ ρ)

λUϵ
≤

2T (1+ ρ)

ϵ
. � (18)

206 N. Ma, W. Whitt / Statistics and Probability Letters 109 (2016) 202–207

4. Application issues

4.1. Generating the arrival times

Given Algorithm 1, the algorithm to construct the actual arrival times Ak = Λ−1(Nk) given all the rate-1 arrival times Nk
can be very simple. If we apply the floor function and the inverse function in Algorithm 1 in a single vector operation to all
components of the vector of rate-1 arrival times, then the code can be expressed in a single line.

Algorithm 2 constructing the vector A ≡ {Ak} of arrival times in [0, T] given Algorithm 1 specified in terms of the triple
(δ, η, b) depending on the error bound ϵ in (10) and the associated nondecreasing vector of nonnegative rate-1 arrival times
N ≡ {Nk : 1 ≤ k ≤ n}with Nn ≤ Λ(T)

1: Set A← b(⌊N/δ⌋)η // (vector application of the floor function and Algorithm 1 term by term)

In the single line of Algorithm 2 we have used (14) and line 12 of Algorithm 1, i.e.,
J(⌊t/δ⌋δ) = b(⌊t/δ⌋)η or J(iδ) = b(i)η, 0 ≤ i ≤ ny. (19)

This is important for implementation efficiency, because wemake only one pass through the table to generate all the arrival
times Ak.

4.2. Partitioning into subintervals

For difficult arrival rate functions, it might be preferable tomodify the representation of the inverse function, e.g., moving
closer to a piecewise-linear approximation. In particular, if the slope ratio ρ in (11) is large, then it may be easy to accelerate
the algorithm by dividing the original interval [0, T] into subintervals. A simple example is a piecewise linear function with
two pieces, one having a flat slope and the other having a steep slope, so that the ratio ρ might be very large. If we divide
the interval into the two parts where Λ is linear, then ρ is reduced to 1 on each subinterval. Given that we divide [0, T] into
the two intervals [0, T1] and [T1, T], we can calculate Λ−1 separately on the two intervals [0, Λ(T1)] and [Λ(T1), Λ(T)].

4.3. Choosing the error bound

It is natural to ask how the error bound ϵ should be chosen in practice. We think it should usually be possible to choose
ϵ relatively small compared to an expected interarrival time of A, which has a time-varying value exceeding 1/λU for λU in
(3). However, for queueing applications that might be smaller than necessary, because the relevant time scale in a queueing
system is typically of order equal to amean service time,which depends on the units used tomeasure time. Suppose,without
loss of generality, we choose the time units so that the mean service time is 1. Then we think it usually should suffice to let
ϵ be small compared to the maximum of these, e.g., ϵ ≈ max{1, 1/λU }/100.

To illustrate, consider an example of a moderately large call center in which the mean service time is about 5 min, while
the arrival rate is 600 per hour or 1/6 per second, as in §3.1 of Kim and Whitt (2014), which makes λU = 600/12 = 50
in units of mean service times. The rough guideline above yields ϵ ≈ max{1, 0.02}/100 = 0.01 mean service times or
300/100 = 3 s, which seems reasonable.

Assuming that time is measured in mean service times and λU ≥ 1 in that scale, the computational complexity from
Theorem 3.1 becomes 2T (1 + ρ) × 102. In the call center example, if we let T = 24 × 12 = 288 corresponding to one
24-hour day measured in units of 5 min-calls, then the computational complexity of the algorithm to calculate the inverse
function is 57,600(1+ ρ).

4.4. Breaking ties: Ensuring an orderly point process

Wehave constructed the approximate inverse function J to be one-to-one in the finite subset {iδ : 0 ≤ i ≤ ny}. However,
that does not prevent multiple points in A, because all points from the rate-1 process N in the interval [iδ, (i + 1)δ) are
mapped into the same point b(i)η, for each i, 0 ≤ i ≤ ny − 1.

First, we can easily identify multiple points by looking for the zeros in the vector B, where Bk ≡ Ak − Ak−1. Then we can
easily remove them if we want. Suppose that Ak−1 < Ak = Ak+j < Ak+j+1 for some k ≥ 1 and j ≥ 1. Then replace Ak+i by
Ak + iϵ/(j+ 1), 1 ≤ i ≤ j. We could further randomize by using Ak + (i+ Uk+i)ϵ/(j+ 1)+, 1 ≤ i ≤ j, where {Uk : k ≥ 1}
is a sequence of i.i.d. uniform random variables on [0, 1]. However, these adjustments should not be required for queueing
applications if we are satisfied with the ‘‘measurement error’’ of ϵ, as discussed in Section 4.3.

4.5. Selecting the rate-one stochastic process N

In applications, a key remaining problem is actually identifying an appropriate non-Poisson nonstationary arrival process.
Assuming that ample data are available to estimate the cumulative arrival rate function, the question about choosing A is
roughly equivalent to the question about choosing the rate-1 process N for given cumulative arrival rate function Λ.

N. Ma, W. Whitt / Statistics and Probability Letters 109 (2016) 202–207 207

As discussed in Massey and Whitt (1994), He et al. (2015), it is natural to specify the functional central limit theorem
behavior of N , by the asymptotic index of dispersion for the arrival process A, i.e., we use measurements of A to estimate

c2A ≡ lim
t→∞

Var(A(t))
E[A(t)]

= lim
t→∞

Var(N(t))
E[N(t)]

. (20)

It is then easy to choose stationary renewal processes N with this c2A Whitt (1982). However, while this should yield an
appropriate c2A , this does not nearly specify the processes N and A fully. However, heavy-traffic limit theorems indicate that
this may be sufficient; see §4 of He et al. (2015).

4.6. Random-rate arrival processes

As discussed in Whitt (1999), Kim et al. (2015) and references therein, it may be desirable to represent the arrival rate
over each day as random. For example, the model of the arrival process on one day of length T might be

A(t) = N(XΛ(t)), 0 ≤ t ≤ T , (21)
where N is a rate-1 stochastic processes, perhaps Poisson, while Λ is a deterministic cumulative arrival rate function and X
is a positive random variable. The overall cumulative arrival rate of A is

E[A(t)] = E[N(XΛ(t))] = E[X]Λ(t), 0 ≤ t ≤ T . (22)
With this structure, we can exploit the scaling properties in Section 2.2 to accelerate simulations. In particular, the

representation (22) can be viewed as a variant of our model in which the cumulative arrival rate function is the random
function Λ̃(t) ≡ XΛ(t). Fortunately, the inverse of Λ̃ can be expressed directly in terms of the inverse Λ−1 and the random
variable X by

Λ̃−1(t) = Λ−1(t/X), 0 ≤ t ≤ XΛ(T). (23)
For any single realization of the random variable X above, we can simulate the stochastic process A in the manner

described in previous sections. However, to assess the system performance, we would need to consider the values of X
over successive days, but these random variables Xk over successive days k are likely to be dependent with distributions
depending on the day of the week and the week of the year. Nevertheless, the inverse in (23) can be efficiently calculated
for each of these days using the single inverse function Λ−1. However, by sampling sufficiently many days, we may capture
the impact of this random variable X .

Acknowledgment

Support was received from NSF grant CMMI 1265070.

References

Avramidis, A.N., Deslauriers, A., L’Ecuyer, P., 2004. Modeling daily arrivals to a telephone call center. Manage. Sci. 50, 896–908.
Chen, H., Schmeiser, B.W., 1992. Simulation of Poisson processes with trigonometric rate. In: Proceedings of the 1992Winter Simulation Conference. ACM,

pp. 609–617.
Devroye, L., 1986. Non-Uniform Random Variate Generation. Springer, New York.
Gerhardt, I., Nelson, B.L., 2009. Transforming renewal processes for simulation of nonstationary arrival processes. INFORMS J. Comput. 21, 630–640.
Green, L.V., Kolesar, P.J., Whitt, W., 2007. Coping with time-varying demand when setting staffing requirements for a service system. Prod. Oper. Manage.

16, 13–29.
He, B., Liu, Y., Whitt, W., 2015. Staffing a service system with non-Poisson nonstationary arrivals, working paper. Department of Industrial and Systems

Engineering, North Carolina State University.
Ibrahim, R., L’Ecuyer, P., Regnard, N., Shen, H., 2012. On the modeling and forecasting of call center arrivals. In: Proceedings of the 2012Winter Simulation

Conference 2012. pp. 256–267.
Jongbloed, G., Koole, G., 2001. Managing uncertainty in call centers using Poisson mixtures. Appl. Stoch. Models Bus. Ind. 17, 307–318.
Kim, S.-H., Vel, P.,Whitt,W., Cha,W.C., 2015. Poisson and non-Poisson properties of appointment-generated arrival processes: The case of an endocrinology

clinic. Oper. Res. Lett. 43, 247–253.
Kim, S.-H., Whitt, W., 2014. Are call center and hospital arrivals well modeled by nonhomogeneous Poisson processes? Manuf. Serv. Oper. Manage. 16 (3),

464–480.
L’Ecuyer, P., 2012. Random number generation. In: Gentle, J.E., Hardle, J.K., Mori, Y. (Eds.), Handbook of Computational Statistics. Springer, New York,

pp. 35–71. (Chapter 3).
Leemis, L.M., 1991. Nonparametric estimation of the cumulative intensity function for a nonhomogeneous Poisson process. Manage. Sci. 37, 886–900.
Lewis, P.A.W., Shedler, G.S., 1979. Simulation of nonhomogeneous Poisson processes by thinning. Naval Res. Logist. Q. 26 (1), 403–413.
Liu, R., Kuhl, M.E., Liu, Y., Wilson, J.R., 2014. Modeling and simulation of nonstationary non-Poisson arrival processes, working paper. North Carolina State

University, Raleigh, NC.
Massey, W.A., Parker, G.A., Whitt, W., 1996. Estimating the parameters of a nonhomogeneous Poisson process with linear rate. Telecommun. Syst. 5,

361–388.
Massey, W.A., Whitt, W., 1994. Unstable asymptotics for nonstationary queues. Math. Oper. Res. 19, 267–291.
Nelson, B.L., Gerhardt, I., 2011. Modeling and simulating renewal nonstationary arrival processes to facilitate analysis. J. Simul. 5, 3–8.
Ross, S.M., 1996. Stochastic Processes, second ed. Wiley, New York.
Whitt, W., 1982. Approximating a point process by a renewal process: two basic methods. Oper. Res. 30, 125–147.
Whitt, W., 1999. Dynamic staffing in a telephone call center aiming to immediately answer all calls. Oper. Res. Lett. 24, 205–212.
Whitt, W., 2002. Stochastic-Process Limits. Springer, New York.
Whitt, W., 2015. Stabilizing performance in a single-server queue with time-varying arrival rate. Queueing Syst. 81, 341–378.
Zhang, X., Hong, L.J., Glynn, P.W., 2014. Timescales in modeling call center arrivals, working paper. Department of Industrial Engineering and Logistics

Management. The Hong Kong University of Science and Technology.

http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref1
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref2
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref3
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref4
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref5
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref8
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref9
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref10
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref11
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref12
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref13
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref15
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref16
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref17
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref18
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref19
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref20
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref21
http://refhub.elsevier.com/S0167-7152(15)30007-9/sbref22

	Efficient simulation of non-Poisson non-stationary point processes to study queueing approximations
	Introduction
	The basis for efficiency through re-use
	One cycle for periodic arrival rate functions
	Different scaling of time and space
	Multiple non-Poisson nonstationary arrival process models
	Multiple replications to obtain accurate performance estimates

	Constructing the approximation of the inverse function
	Application issues
	Generating the arrival times
	Partitioning into subintervals
	Choosing the error bound
	Breaking ties: Ensuring an orderly point process
	Selecting the rate-one stochastic process N
	Random-rate arrival processes

	Acknowledgment
	References

