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 MULTIPLE CHANNEL QUEUES IN HEAVY TRAFFIC. IIH:
 SEQUENCES, NETWORKS, AND BATCHES

 DONALD L. IGLEHART1, Stanford University
 WARD WHITT2, Yale University

 1. Introduction

 This paper is a sequel to [7], in which heavy traffic limit theorems were
 proved for various stochastic processes arising in a single queueing facility
 with r arrival channels and s service channels. Here we prove similar theorems

 for sequences of such queueing facilities. The same heavy traffic behavior
 prevails in many cases in this more general setting, but new heavy traffic
 behavior is observed when the sequence of traffic intensities associated with

 the sequence of queueing facilities approaches the critical value (p = 1) at
 appropriate rates.

 As a second feature, we do not require that the basic sequences of interarrival

 times and potential service times associated with each queueing facility contain

 independent or identically distributed random variables. Thus we can regard
 our facility as just one facility within a complex network; some of the input
 streams may be outputs from other facilities. We also consider arrivals and
 service in batches. We assume the reader is familiar with our previous paper

 [7], which in addition to queueing notation means the weak convergence
 theory associated with the function space D[0,1] as it appears in Billingsley
 (1968).

 We assume each queueing system in the sequence of queueing systems has
 the same structure, that is, the same network of facilities with the same channels

 at each facility, but in general the sequences of random variables (interarrival

 times and potential service times) which are the basic data vary from queueing

 system to queueing system. Although each queueing system may be a complex
 network of facilities, we restrict our attention for the most part to a single
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 DONALD L. IGLEHART AND WARD WHITT

 facility within that network. It is possible to obtain limit theorems jointly for
 several characteristics associated with several different facilities within a

 network, but the limits are usually quite complicated. We determine such joint
 limits in Section 4, but we do not evaluate the distributions of the limits in
 detail.

 For a specified facility in the nth system with r arrival channels and s service
 channels, let 2 denote the arrival rate in the ith arrival channel and ,u, the

 maximum possible service rate in the jth service channel. We assume that
 these rates do not depend on time or the state of the system. These rates are

 typically defined as the reciprocal of the mean interarrival time and the
 reciprocal of the mean service time. Somewhat more generally, they can be
 defined as the constants in the translation terms of appropriate random functions

 in D[0,1] necessary for weak convergence. In any case, A2= 2%=i 2 is the
 total arrival rate to the facility and Wn" = j= 1i#j is the maximum total service
 rate of the facility. As a measure of congestion for the facility in question in

 the nth system, we define the traffic intensity pn=A n/n.

 While in [7] we investigated single multiple-channel queueing facilities in
 which p ? 1, now we investigate sequences of such facilities (perhaps within a
 network) when the associated sequence of traffic intensities {pn} approaches a
 limit greater than or equal to one. (The limiting behavior actually depends on

 An _- an rather than 'i"/n", but these are equivalent as long as 2"n _ A and pn _- #,

 0 < i, t < oc.) When pr -> p > 1 as n -* oo, the limiting behavior is the same
 as for a single system with p > 1. When pn -- 1 as n -+ oo, there are different

 cases depending upon the rate Pfn - 1 as n - c. Under these various conditions,
 which we shall refer to as the various cases of heavy traffic, the systems are of

 course unstable (a proof of this fact is an easy by-product of our results).
 Our objective is to obtain functional central limit theorems (invariance prin-
 ciples) for the stochastic processes characterizing these systems after appropria-
 tely scaling and translating the processes. The entire discussion is carried out
 in the context of weak convergence of probability measures on the function

 space D[0, 1] (cf. [1]). These results provide useful descriptions of unstable
 queues and, perhaps, useful approximations of stable queues. Promising in
 this last regard is the limit obtained when Pn approaches one rather slowly from
 below.

 As in [7], we investigate two different models: the standard system and the
 modified system. In both models the r + s channels associated with the specified
 facility are independent. In particular, this prohibits cyclic behavior in a
 network, that is, the output of the facility cannot become part of the input.
 Furthermore, arriving customers form a single queue and are served in the
 order of their arrival without defections. The two models differ in their modes

 of operation for the service channels.
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 Multiple channel queues in heavy traffic. II: sequences, networks, and batches

 In the standard system a waiting customer is assigned to the first available
 service channel and the servers (servers - service channels) are shut off when

 they are idle. Thus the classical GI /G /s system is a special case of our standard
 system. In the modified system a waiting customer is assigned to the service
 channel that can complete his service first and the servers are not shut off when

 they are idle. For further discussion, see [2] or [7]. While the modified system
 is of some interest in its own right, we have introduced it, following Borovkov

 (1965), primarily as an analytical tool. Heavy traffic theorems are much easier

 to prove for the modified system than the standard system. Corresponding
 theorems are obtained for the standard system by defining the two systems in
 terms of the same basic data and showing the difference between the respective

 queueing processes is negligible in heavy traffic (cf. [7], Theorem 3.1). The
 difference approaches 0 as n -o oo for all values of p as long as we normalize by

 n+. Moreover, the argument used in [7] applies to the more general situation
 discussed in this paper. Therefore, we shall only discuss the modified system
 and invoke the extension of Theorem 3.1 of [7] in order to obtain similar
 results for the standard system.

 This paper is organized as follows. In Section 2 we obtain functional central
 limit theorems for the queue length process and the departure process under
 all cases of heavy traffic when the arrival and potential service processes have
 weak limits. Section 3 is devoted to a number of examples for which the
 hypotheses of Section 2 hold. Joint limits for several facilities in a network are
 discussed in Section 4. Finally, in Section 5 a few remarks are made about
 future research in the area of heavy traffic.

 Limit theorems for sequences of queueing systems in heavy traffic were
 first proved by Kingman ((1961), (1965)). However, Prohorov (1963) was the
 first to consider all possible cases. Borovkov (1965) extended Prohorov's results

 to multiple channel queues with batches and Whitt (1968) extended Prohorov's
 results to weak convergence in D[0, 1]. This paper extends Borovkov's (1965)
 results to networks of multiple channel queues with batches and weak con-
 vergence in D[0, 1]. Also more processes are considered here and the proofs
 are simplified by applying the weak convergence theory associated with D[0, 1].
 For further background and discussion, see [16]. In addition to [7] and [16],
 recent related work appears in Borovkov (1967), Gaver (1968), Iglehart and
 Kennedy (1970), and Prabhu (1970).

 2. A sequence of modified queueing systems

 We repeat that we shall only investigate sequences of modified queueing
 systems because exactly the same argument as we used in Theorem 3.1 of [7]
 implies sequences of standard queueing systems exhibit the same limiting
 behavior in heavy traffic. Moreover, this is true for all values of p (even p < 1)
 as long as we normalize by n+.
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 DONALD L. IGLEHART AND WARD WHITT

 Thus, we consider a sequence of modified queueing facilities with r arrival
 channels and s service channels. The arrival channels may be departure channels
 or part of departure channels from other facilities, but all r + s channels
 associated with the facility in question are independent in each system.

 The modified system differs from the standard system in two respects. First,

 the servers are not shut off when they become idle. With each server (and not
 with each customer, as is usually done) we associate a sequence of potential
 service times (random variables). If a server faces continued demand for service,

 then the actual service times of his successive customers are just these potential
 service times; but if there is no demand during any potential service time,
 then that potential service time is ignored and there is no actual service and no

 departure. After a server has begun working in the absence of demand, then
 the next demand will in general occur in the middle of some potential service
 time. Let the remaining portion of that potential service time be that next
 customer's actual service time.

 The second difference in the modified system is that customers are served

 by the server who can complete the service first, which is not necessarily the
 first idle server. This means that customers will depart in the order they arrived.

 Moreover, every completion of a potential service time will generate an actual
 departure as long as there is a customer demanding service somewhere in the
 system. This property allows us to work directly with the net potential output
 process obtained by superimposing the potential outputs from the separate
 servers. This modified server system is of interest in its own right. For us,
 it is a device.

 In each system assume that customers arrive and depart one at a time in
 each channel; interarrival times or service times of 0 can be used to represent
 batch processing. Let arriving customers join a single queue in front of the s
 servers or, equivalently, each customer immediately upon arrival can be
 assigned to one of s separate queues in front of the s servers. In this case, we
 look ahead and assign the customer to the server who would eventually serve
 him anyway.

 Our basic data for each system are r + s independent sequences of non-
 negative random variables. (We make no i.i.d. assumptions for each sequence
 until the examples in Section 3.) Let u(i,j,k) [i = 1,2,...; j = 1,2,...;
 k = 1, ..., r] be the interarrival time between the (i- 1)th and ith customer
 in the kth arrival channel of the jth queueing system. Let v(i,j, k) [l = 1,2,---;
 j = 1,2,...; k= 1, -.., s] be the ith potential service time in the kth service
 channel in the jth queueing system. Let all these random variables be defined
 on a common probability space (Q, X, P). We define counting processes associa-
 ted with each channel in each system. Let
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 Multiple channel queues in heavy traffic. II: sequences, networks, and batches

 Ak(t) _ max{m: u(1,j,k) + - + u(m,j,k) < t}, u(i,j,k) < t
 A (t)= =

 [0, u(1,j, k) > t

 for t > 0, 1 <k<r, j 1, and

 Skj(t) = rmax{m: v(l,j, k) + * * + v(m,j, k) < t}, v(1,j, k) < t

 10, v(l,j,k)> t

 for t > 0, 1 < k < s, j _ 1. These processes represent the total number of
 arrivals or potential service times in the time interval [0, t] in the appropriate
 channel and system. Because of the service discipline in the modified system,

 it is particularly easy to express the queue length process, Q'(t), in terms of
 these basic counting processes. Throughout this paper all queue length processes

 count the customers being served as well as those waiting. We also place no
 upper bound on the number of waiting customers. Barriers corresponding to

 finite waiting rooms could be introduced here (cf. [16], page 111), but we
 shall not. For each co el, t > 0, and j > 1,

 Q'i(t) = Xi(t) - inf{Xi(s), 0 s < t},

 where

 AJ(t) = Aj(t) + + ArJ(t),

 and Si(t) = SIi(t) + + SSJ(t),
 Xj(t) = A(t) - S(t).

 Now define the (single) sequences of random functions in D[0, 1] induced
 by these stochastic processes

 An - [A"(nt) - A7nt] /n+, (1 < k < r),

 An - [An(nt) - nt] /n,

 SJ -= [Sj'(nt) - nt] /n (1 j < s),

 Sn -- [Sn(nt) - nt] /ni

 Xn - [X(nt)O- (2n -# )nt]/n*,

 Yn = Xn(nt)/n,

 and Qn Q'(nt) /n,
 Qn't= - [Q'"(nt)- ('n- _n)nt] /n+.

 The constants A" and #, are to be chosen so that the random functions
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 DONALD L. IGLEHART AND WARD WHITT

 A' and Si converge weakly in D[0, 1] as n -x oo. When the sequences {u(i,j, k),
 i> 1} and {v(i,j,k), i > 1) are i.i.d. with finite expectation,

 An = 1/Eu(l, n, i)

 and = 1/Ev(l, n,j).

 We have normalized all our random functions by the usual normalizing constant

 n+, but Lemma 1 and our main result, Theorem 1, hold for any normalizing
 constant yielding weak convergence.

 Lemma 1. If A'=>.A' (1 < i < r) and S => Si (1 <j < s), then X, =>X,
 where X = A - S, A = ,= iA', and S = = 1iS .

 Proof. This is a simple generalization of Lemma 2.1 of [7]. Recall that the
 r + s channels are independent in each system.

 To proceed now to our functional central limit theorems for Q'"(t), we

 introduce the continuous mapping J: D -> D which corresponds to an im-
 penetrable barrier at the origin. For x eD, f is defined by f(x)(t)=

 x(t)- info,< tx(s), 0 < t < 1. Let M be the constant linear function in D: M(t)
 = ct, 0 < t < 1. Let M. be the normalized translation term in X,,, that is,
 M,(t)= (kA'- #)nft, 0 < t < 1. Notice that we make no explicit i.i.d. assump-
 tions for each of the sequences {u(ij,k), i > 1} and {v(i,j,k), i > 1}.

 Our principal result is

 Theorem 1. Suppose Al => A' (1 < i < r) and S J=> SJ (1 < j s) in D.

 (a) If (n _ pn)n -> c, -oo < c < + oo, then Q, =>f(X + M).
 (b) If (A2" - u)n4- + oo, then Q => X.
 (c) If (A - )n - - oo and Pr{X e C} = 1, then Q => 0.

 Proof. (a) Theorems 4.4 and 5.1 of [1] imply that Y =>X + M since
 X=>X and M, => M. However, Q' =f(Yn) so we can apply Theorem 5.1 of
 [1] again.

 (b) It suffices to show d(Q,' Xj)=O0 and apply Theorem 4.1 of [1]. Observe that

 d(Q,; X) p(Q',X,) = - inf {Xn(nt) /n-}.
 O<t<l

 For any to, 0 < to < 1,

 - inf {X"(nt) /n+} < - inf {[X"(nt) - (AX - u)nt] /n+}
 O-t<to OS t < to

 and

 - inf {X"(nt) /n+} < - inf {[X"(nt) - ( '- ")nt] /n}
 to<t<1 to_t< 1

 - (rn_ pf)nto/n+
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 Multiple channel queues in heavy traffic. II: sequences, networks, and batches

 for n > n1, where nI is chosen so that ,n> pn for n> n1. Suppose positive eand
 rj are given. Using Lemma 1 of [1], page 110 and the fact that Pr{X(0) = 0} = 1,
 choose to sufficiently small so that

 Pr{- inf X(t)>e/2} < /4.
 <O<to

 Next select m and n2 so large that for n > n2

 Pr( - inf [Xn(nt) - (n- )nt]/n] >E /2)
 O t<tto

 < Pr{- inf [X(t)] >/2} + /4,
 O0t?to

 and

 Pr( - inf {[X(nt) - (on_- u)nt] /n} - (i- u)n4to > /2 }

 < Pr (- inf X(t) > m )-71/2.
 to_<t <

 Then, for n > nl V n2,

 Pr(- inf X"(nt)/ni>e) <r.

 Since

 - inf X"(nt) /n> O,

 the proof is complete.

 (c) Recall that Q'n=f(Y) and note that

 sup {[X'(nt) - inf X (ns)] /n} ?< Wxn() > 0
 O<t 1 t-6-_s_t

 as n -+ oo and 3 -+ 0. We use the fact that Pr{X e C} = 1 to get C-tightness
 for {X,}. Also for any positive e and 6,

 inf {Xn(ns) /n} ? inf {[X"(ns) - (2n- u')ns] /n} + ( _- u)n(t - 3)
 O<s<t-6 Os<t-6

 > X"(nt) /n

 for all t, 6 < t < 1, with probability greater than 1 - s for sufficiently large n.
 Hence, Q, => 0 as claimed.

 In our model the queueing systems are empty at t = 0, but Theorem 1 holds

 for other initial conditions as well. This is easily verified by applying Theorem
 4.1 of [1].

 We now investigate the departure process from this same facility. Again the
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 DONALD L. IGLEHART AND WARD WHITT

 standard system exhibits the same limiting behavior as the modified system
 for all values of p when we normalize by n+ (cf. [7], Lemma 4.1).

 Let the sequence of departure processes for the sequence of modified systems

 be denoted by {{D' (t), t > 0},j > 1}. From the definition ot a departure
 process, D'J(t) = Aj(t) - Q'(t). From the definition of Q'J(t), we have

 D'j(t) = Ai(t) - {X(t) - inf Xj(s)}
 O _ s < t

 = Si(t) + inf {AJ(s) - S(s)}.
 O < s < t

 Now define the random functions D' and D" by

 Dn - [D'n(nt)- nn t] /ni

 and Dn = [D'n(nt) - I'nt] /n-, 0 < t ? 1.

 Also define the continuous function g: D x D x D -D by

 g(x, y,z)(t) = y(t) + inf {x(s) - y(s) + z(s)}, 0 < t < 1,

 for any (x,y,z) e D x D x D.

 Theorem 2. Suppose A'z=Ai (1 < i < r) and SJ => Si (1 <j _ s) in D.
 (a) If (A - nu")n-- C, - 0 < c < co, then D' => g(A, S, M).
 (b) If (Ain - ,)n - + oo, then D => S.

 (c) If (An _ n)n- -n oo and Pr{X e C} = 1, then Dn => A.
 We remark that (c) verifies a conjecture in [7].
 Proof. (a) Since Dn'= g(An, Sn,Mn), it only remains to apply the continuous

 mapping theorem ([1], Theorem 5.1).
 (b) From Theorem l(b), we know that d(Q',Xn) => 0. Hence d(Dn, S) => 0

 and we can apply ([1], Theorem 4.1).
 (c) From Theorem l(c), we know that Qn'=>0. Hence, d(Dn,An)=>0.
 All the results in Sections 5-9 of [7] also extend to the more general setting

 of this paper. Limit theorems when p is fixed at 1 extend to case (a),
 (An"-_ )n -+ c, - oo < c < oo. For example, in case (a), Q => (ui /).I(X + M),
 where pn -+ and n -+ pj as n -s oo. Our limits for first passage times in Section
 9 of [7] now would involve first passage times of Wiener processes with a
 drift. Since all the arguments are almost identical, we shall not discuss these
 topics further here.

 3. Examples

 We now mention several specific situations in which the previous theorems

 apply. Our first example is a generalization of the model considered in [7].
 It contains sequences of GI /Gs queues as a special case.
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 Multiple channel queues in heavy traffic. II: sequences, networks, and batches

 (1) Sequences of i.i.d. random variables
 For each j > 1, let the r + s sequences {u(i,j, k), i > 1} (1 < k < r) and

 {v(i,j, k), i > 1} (1 k < s) be independent sequences of non-negative i.i.d.
 random variables. Furthermore, for all j and k, assume that

 0< Eu(1,j,k)< oo,

 0< Ev(1,j,k) < oo,

 0< a2[u(1,j,k)] < oo,

 0 < a2[v(1,j, k)] < oo,

 lim Eu(1,j, k) = Eu(k), 0 < Eu(k) < oo,
 j-' oo

 lim Ev(1,j, k) = Ev(k), 0 < Ev(k) < oo,
 j-+ o

 lim a2[u(l,j, k)] = a2[u(k)], 0 < a2[u(k)] < oo,
 and i

 lim a2[v(1,j, k)] = a2[v(k)], 0 < a2[v(k)] < oo.

 We also need to further control the distribution of u(i,j, k) and v(ij, k) as j

 varies. For this purpose, assume E{lu(1,j,k)l26} and E{Iv(1,j, k) 12+6}
 are uniformly bounded in j and k for some positive 6. It is easy to see that
 this last condition implies that

 lim f x2dFu(1,j,k)(x) = 0
 m- oo Jx\>m

 and

 lim f x2dFv(lj,k)() = 0
 m- oo lxj>m

 uniformly in j and k (cf. [16] Chapter 5; [14], page 200; or [11], page 220),
 which in turn implies the standard Lindeberg condition for the normalized
 random variables

 U(ij, k) = u(i,j, k) - Eu(i,j, k)

 and

 V(ij,k) - v(i,j, k) - Ev(i,j, k)
 V(i,j, k) = ^(j2 [v(i,j, k)])i

 that is,

 lim f x2dF(i,j,k)(x) =0
 j-oo i=l Jxl>m

 and J

 lim r x2dFv(,J.k)(X) = 0
 j-oo i=l Jx|>m
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 for all positive m.
 Now form the sequences of random functions {Xk, n > 1} (1 < k < r + s)

 in D[0, 1] induced by the partial sums:

 [ntl

 Xk(t) = n+ S [u(i, n, k)- Eu(1, n, k)], 0 < t < 1, (1 < k < r)
 i=1

 [nt]

 Xr+k(t) = n- S [v(i, n, k) - Ev(1, n, k)], 0 < t < 1, (1 < k < s).
 i=1

 Theorem 3.1 of Prohorov (1956) (cf. [11], page 220) implies that Xk =>f[u(k)]<k
 (l < k r) and X,+kz= a[v(k)]}'+k (1 k< s), where ~k (1<k<r +s)
 are r + s independent Wiener processes. We can now apply Theorem 1 of [8]
 to obtain corresponding limit theorems for the counting processes. For this
 purpose, let

 J = 1 /Eu(l,j, k) (1 < k < r), pi= 1/Ev(l,j, k) (1 < k < s), , = S A
 k=l

 /JtJ= (j32[u(1j k)]) = (k 3a2[v(1 ,j, k)])-,
 k =I

 r s

 ak = lim ak, k -= lim a7, and y2 = ak + S a.
 j-+oo j -oo k=l k=l

 With these assumptions, A,=> ixji (1 <i < r) and Si=> ajr+i(l < j < s)
 and Theorems 1 and 2 may be applied to obtain limits for the various sequences

 of queueing processes.
 Of particular interest as a possible approximation for stable queues is the case

 in which (,n -n )ni c, - oo < c < 0. Then Qn =>f(y~ + M) or
 Qn /y zf(~ + M/y). Notice that ~ + M/y is the ordinary Wiener process with
 drift c/y. The process f(Q + M /y) is a Wiener process with negative drift c/y
 together with an impenetrable barrier at the origin. This process is completely

 described by the density function f(t, y; yo) obtained by taking the partial
 derivative with respect to y of Pr{supo0s <t{M(s) - cs/y} < Y ( 40) = yo} (cf.
 Cox and Miller (1965), page 224):

 f(t,y; Yo) = (2it)t-{exp{ - (y - yo - ct/y)2/2t}

 + exp{[ - 4yoct /ly - (y + Yo + ct /y)] /2t}}

 + 2cyexp{2cy /y} {1- ([y + Yo + ct /y] /t)},

 where D is the standard normal distribution function. For further discussion

 of this example, see [2], [14], and [16], Chapter 5.
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 Multiple channel queues in heavy traffic. II: sequences, networks, and batches

 (2) Deterministic flows
 Suppose that in the nth system customers arrive in the ith channel deter-

 ministically one at a time at regular intervals of length 1 /,t. If A-= [Ai"(nt)
 - Ant] /n~, 0 < t < 1, then A, =:> A = 0 (the zero function), and the effect of
 this channel appears solely in the sequence of translation constants {2n}.

 (3) Exchangeable random variables
 The i.i.d. assumptions in Example 1 are by no means necessary. Heavy

 traffic limit theorems for sequences of queueing facilities having dependent
 sequences of interarrival times or potential service times are an immediate
 consequence of Theorems 1 and 2 here, Theorem 1 of [8], and Chapter 4 of [1].
 For further discussion, see [16], Section 4.4. We now give an example.

 Suppose that in the nth system exactly n - 1 customers arrive in the ith
 channel in the time interval [0, n]. Let the arrival times of these n - 1 customers

 be independent random variables uniformly distributed over the interval [0, n].
 The interarrival times in each system may be obtained by looking at the
 differences between successive order statistics. They are exchangeable
 (not independent) random variables with mean 1 and variance (n-1)/(n+ 1).

 Let {X&, n _ 1} be the sequence of random functions induced in D[0,1] by
 the partial sums

 [nt]

 Xn(t)=n- z (ui- 1), 0 t < 1.
 j=l

 Theorem 24.2 of [1] implies that X, => o?, where ?0 is the Brownian Bridge.
 Theorem 1 of [8] implies that A, => ' ? as well, where A' - [A "(nt) - nt] /n+,
 0 < t < 1. Other work on this queueing model has been done by Takacs ((1967),
 page 125).

 (4) Batches
 Suppose customers arrive and are served in batches. Let bJk be the

 ith batch size in the kth channel of the jth system. For each j > 1, assume the

 r + s sequences {b(k, i ? 1} are independent sequences of non-negative i.i.d.
 random variables with uniformly bounded (2 + 8)th moments. Furthermore,

 assume Eb- j1J -- fik > 0 and c'2[bik] > 0 as j - o. Let
 {Xk, n > 1} be the sequence of random functions induced by the double sequence
 of partial sums of the successive batch sizes in the kth channel, that is,

 [nt]

 Xn(t) = n Z (b , 0 < t < 1.
 i-=

 Theorem 3.1 of [13] implies that Xkn => akc, where ~ is the standard Wiener
 process.

 To be definite, suppose the kth channel is an arrival channel. Let NJk(t)
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 be the counting process in the jth system recording the number of batches that

 have arrived in the kth channel in [0, t]. Let Nk be the associated random
 functions in D and assume that Nk is independent of Xk for each n. In addition,

 assume that N~ N, where N e C; N k [Nnk(nt) - )Ant] /n, 0 < t < 1; and
 k -k, 0 < ,k < oo. Then

 An k2k + flkN,

 where ~ and N are independent and

 Nnk(nt) i

 A; ? bnk _Ainnnt /n, O < t < 1
 n i = 1

 (cf. [6]). In the i.i.d. case, N = (Tkk))', where Tk is the limit as j-- oo of
 the variances of the times between events in {Nik(t), t > 0}. Then Ak => Ak,
 where Ak= (kt + /2k'23)~.

 (5) Split channels

 Suppose an arrival channel splits up into several separate arrival channels
 going into different facilities. Let successive customers in the main channel

 independently select the arrival channel leading to a specified facility with
 probability pJ in system j, p -+ p, 0 < p < 1. Let A, - [A"(nt) - 'tnt]/ni,
 0 < t < 1, be the random functions induced by the counting processes associated

 with the main channel. Let Bn be the random functions induced by the counting
 processes associated with the tributary leading to the specified facility. Then

 -An(nt)

 B(t) = ? X-_ Awnpnt /nS 0_ t < 1,

 where x" = 1 if the ith customer in the main channel in the nth system selects

 the specified facility, and xZ = 0 otherwise.
 If A => A, Pr{A C} = 1, and An, -, )A> 0, then the double sequence ver-

 sion of the weak convergence theorem for random sums in [6] can be applied
 again to yield

 Bn - p(l - p)A + pA,

 where ~ is a Wiener process independent of A.

 4. Joint limits for several facilities in a network

 We now show how to obtain heavy traffic limit theorems jointly for stochastic
 processes associated with several different facilities in the same network.

 For this purpose, consider a network of five facilities linked together as follows:
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 Figure 1

 Let A =- [A"(nt) - Annt] I/n, 0 < t < 1, be the random functions indu-
 ced by the net arrival processes into the ith facility, 1 - i = 3. Let S- =
 [Sn(nt) - p'nt] /ni, 0 < t < 1. be the random functions induced by the net poten-
 tial service processes of the jth facility, 1 < j < 5. These eight random functions
 are the basic data. Assume that (A', A2, A3, S, ,S5,) > (A', A2, A3, S', ..., S5)
 in the eight-fold product space of D[O,1] with itself.

 In order to determine heavy traffic limit theorems for [Q'l(t),...,Q'S(t],
 we need to know which cases of heavy traffic prevail at each facility. The
 behavior at facilities 4 and 5 naturally depends on the behavior at the first
 three facilities. Suppose that

 yn = (An - _l-)n cl, - 0 < cl < so

 fl = (Aw- n)n- + 00,

 yn = (; - )ni - ,
 = ( - )n 4, -00 < C4 < 00

 and y5 = (4 + 3 + 2 - c)n{ - <c, - oo < c5 < oo.

 Let M y-n t 0 < t 1, (1< i 5) and M =-ct, 0 < t < 1, (i=1,4,5) be
 the corresponding random functions. Furthermore, assume Pr{A3 - S3 E C} = 1
 Then, the continuous mapping theorem ([1], Theorem 5.1) implies that

 (Qn, Qn2, Qn,3 Qn4, Q5) => (f(Al - SI + M1), A2 - S2, 0,

 f[g(A,S',M1) - S4 + M4], f [S2 + A3 + g(g[Al, S,MI],S4,M4)-SS + M5]).

 Suppose that we are interested in the total number of customers in the
 network. The appropriate random functions are Qn = Q + Qn2 + Qn '3+ Qnn4
 + Q,5 . Note that Q,;3 = [Q'3(nt) - (A3 - A,)nt] /n+, 0 < t 1. The continuous
 mapping theorem applied again yields
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 Qn > f (Al - S1 + Ml) + A2 - S2

 + f[g(A1,SI,Ml) - S4 + M4]

 + f[S2 + A3 + g(g[A1, S,M], S4,M4) - S5+ M5].

 Such limits are easy to determine, but obviously hard to evaluate in detail.

 5. Future research

 In [16], [7], and this paper we have conducted a fairly extensive investigation

 of queues in heavy traffic. Many of the problems posed in Chapter 10 of [16]
 are now solved. However, many interesting problems remain.

 A major thrust of the heavy traffic research is the desire to find useful
 approximations for stable queues. The Wiener process with negative drift
 and an impenetrable barrier at the origin is a candidate obtained from our
 limit theorems (cf. Example 1 and [16], Sections 5.2 and 5.3). Further work is
 needed on rates of convergence (cf. [16], Section 4.3), and numerical comparisons

 (cf. Gaver (1968)).
 Similar theorems for other queueing models should be proved. Queue

 disciplines other than first-come-first-served ought to be considered as well as
 other rules for assigning a customer to one of the servers (cf. [17]). Also, the
 arrival rates and the service rates should be allowed to depend on time and the

 state of the system. We have treated networks of queueing facilities, but a more
 detailed evaluation of the limits is needed. Furthermore, it still remains to
 consider networks which exhibit cyclic behavior, that is, part of the output
 from a facility may reappear in the input.

 A significant feature of weak convergence in D[0, 1] is that we have limit
 theorems for many functionals of our processes as well as limit theorems for

 the processes themselves by virtue of [1] Theorem 5.1. We have indicated how
 such additional results can be obtained in [16] Chapter 9, and [7] Section 9,
 but this property of weak convergence ought to be further exploited to treat

 problems of optimization and control.
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