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1 Overview

We present supporting material in this online supplement to the main paper. In §2 we define the CU and

Lewis KS tests of an NHPP that we consider in the main paper. In §3, we illustrate how departures from

the Poisson property can have a strong impact upon performance via simulation experiments. In §?? we

give the results from addtional experiments on rounding and un-rounding. In §5 we provide an example

illustrating Theorem 6, which is a theory behind the asymptotic value of the CU KS test statistic applied

to an NHPP with linear arrival rate, and in §6 we present an asymptotic result paralleling Theorem 6 for a

piecewise-smooth arrival rate function. More material appears in an appendix available from the authors’

web pages.

2 The CU and Lewis KS Tests

In the main paper, we consider two statistical tests of an NHPP: the CU KS test and the Lewis KS test. This

section describes the two tests in detail.

Conditional-Uniform (CU) Test. This test exploits the basic conditioning property of a PP. Given an ar-

rival process over an interval [0, t], we observe the number n of arrival in this interval and their arrival

times Tj , 1 ≤ j ≤ n. Under the null PP hypothesis, these random variables are distributed as the

order statistics of i.i.d. random variables uniformly distributed over [0, t]. Thus, the random variables

Tj/t, 1 ≤ j ≤ n, are distributed as the order statistics of i.i.d. random variables uniformly distributed

over [0, 1]. Thus the ecdf can be computed via

Fn(x) ≡ n−1
n∑
k=1

1{Tk/t≤x}, 0 ≤ x ≤ 1,
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and the KS statistic can be computed as in (2) of the main paper with uniform cdf F (x) = x, 0 ≤ x ≤

1.

Lewis Test. Lewis [1965] proposed using a different modification of the CU test, exploiting a transforma-

tion due to Durbin [1961]. Following Durbin [1961], we start with a sample Uj , 1 ≤ j ≤ n, hypoth-

esized to be uniformly distributed on [0, 1]. Then let U(j) be the jth smallest of these, 1 ≤ j ≤ n, so

that U(1) < · · · < U(n). This is applied in Lewis [1965] with U(j) = Tj/t from the CU test. Next we

look at the successive intervals between these ordered observations:

C1 = U(1), Cj = U(j) − U(j−1) 2 ≤ j ≤ n, and Cn+1 = 1− U(n). (2.1)

Then let C(j) be the jth smallest of these intervals, 1 ≤ j ≤ n, so that 0 < C(1) < · · · < C(n+1) < 1.

Now let Zj be scaled versions of the intervals between these new variables, i.e.,

Zj = (n+ 2− j)(C(j) − C(j−1)), 1 ≤ j ≤ n+ 1, (with C(0) ≡ 0). (2.2)

Remarkably, Durbin [1961] showed in a simple direct argument (by giving explicit expressions for

the joint density functions, exploiting the transformation of random vectors by a function) that, under

the PP null hypothesis, the random vector (Z1, . . . , Zn) is distributed the same as the random vec-

tor (C1, . . . , Cn). Hence, again under the PP null hypothesis, the vector of associated partial sums

(S1, . . . , Sn), where

Sk ≡ Z1 + · · ·+ Zk, 1 ≤ k ≤ n, (2.3)

has the same distribution as the original random vector (U(1), . . . , U(n)) of ordered uniform random

variables. Hence, we can apply the KS test with the ecdf

Fn(x) ≡ n−1
n∑
k=1

1{Sk≤x}, 0 ≤ x ≤ 1,

for Sk in (2.3) and (2.2), comparing it to the uniform cdf F (x) ≡ x, 0 ≤ x ≤ 1.

3 Performance Impact of the Arrival Process

In this section, we show the results of a simulation experiment demonstrating the performance impact of

departures from the Poisson property in arrival processes. Table 1 compares the simulated performance of

two GI/M/s+M models where one has exponentially distributed interarrival times (hence, an NHPP with

a constant arrival rate) and the other has hyper-exponentially distributed (a mixture of two exponentials, and

hence more variable than exponential) interarrival times with squared coefficient of variation (scv, variance
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divided by the square of the mean) c2 = 2. The cdf of H2 is P (X ≤ x) ≡ 1 − p1e
−λ1x − p2e

−λ2x.

We further assume balanced means for (p1λ−11 = p2λ
−1
2 ) as in (3.7) of Whitt [1982] so that pi = [1 ±√

(c2X − 1)/(c2X + 1)]/2 and λi = 2pi. The staffing level, s, is chosen using the square root staffing

formula assuming exponentially distributed interarrival times, s ≡ m+ β
√
m, where m is the offered load

λ/µ = 25. We consider three cases for the quality-of-service parameter β: 0.5, 1, and 2 (yielding s =28, 30,

and 35). The results are based on 100 replications of 103 + 105 customers (first 103 customers removed to

get rid of the initial effect). Associated 95% confidence intervals are also shown. The results show that if we

choose staffing levels assuming that interarrival times are exponentially distributed when they are actually

hyper-exponentially distributed with c2 = 2, then we would observe an average of 35% increase in the

percentage of the customers that wait (here we consider s = 30, but the increase is similar in other cases).

The impact on staffing is about 1 server in this example. We also note that this H2 arrival process is not

exceptionally far from a PP; other more variable processes have even greater impact on performance.

Table 1: Comparison of Simulated Performance of GI/M/s +M Models with Two Different Interarrival
Time CDFs.

Model s E[W |All] E[W |Served] E[W |Abandoned] %Wait %Abandon

M/M/s+M 28 0.0324± 0.0003 0.0348± 0.0003 0.1004± 0.0006 29.96± 0.15 3.49± 0.03

30 0.0168± 0.0002 0.0181± 0.0002 0.0878± 0.0006 18.23± 0.13 1.81± 0.02

35 0.0022± 0.0001 0.0024± 0.0001 0.0647± 0.0012 3.41± 0.06 0.24± 0.01

H2/M/s+M 28 0.0461± 0.0003 0.0496± 0.0004 0.1165± 0.0006 35.93± 0.16 4.96± 0.03

30 0.0272± 0.0003 0.0295± 0.0003 0.1031± 0.0006 24.75± 0.15 2.94± 0.03

35 0.0057± 0.0001 0.0061± 0.0001 0.0776± 0.0009 7.11± 0.09 0.61± 0.01

4 More on Un-Rounding

As indicated at the end of §2 of the main paper, this section provides additional experiment results to show

that the un-rounding does not inappropriately cause the Lewis KS test to fail to reject a non-PP (in §4.1),

provided that the un-rounding is not done too coarsely (in §4.2). Additional simulation results and discussion

appear in the appendix.

4.1 Batch Poisson Examples

We consider two forms of batch Poisson processes, and show that as long as the rounding is not too coarse

(as in the examples in the main paper, where the rounding and un-rounding are done in the units of seconds

when the mean interarrival time is 3.6 seconds), the un-rounding does not inappropriately cause the Lewis
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KS test to fail to reject a non-PP. The first batch Poisson process is a rate-1000 renewal process, in which the

interarrival times are 0 with probability p and an exponential random variable with probability 1− p. Table

2 shows that the un-rounding consistently detects the deviation from the PP when p is not too small (e.g.,

when p ≥ 0.05). Figure 1 compares the average ecdf based on 100 replications of the renewal process where

p = 0.05 with the cdf of the null hypothesis. We observe that the average ecdf plots for the Lewis KS test

look different for raw and un-rounded, because we start with mass at 0, but un-rounding moves the mass to

slightly larger values. Nevertheless, the test makes the right decision, because even though the un-rounding

removes all 0 interarrival times, it still leaves too many very short interarrival times.

Table 2: Test results of a rate-1000 renewal process on [0, 6], in which the interarrival times are 0 with
probability p and an exponential random variable with probability 1− p. Results over 10000 iterations.

CU Log Lewis
p Type # P ave[p-value] # P ave[p-value] # P ave[p-value]

0.1 Raw 9015 0.41 0 0.00 0 0.00

Rounded 9015 0.41 0 0.00 0 0.00

Un-rounded 9018 0.41 0 0.00 0 0.00

0.05 Raw 9306 0.46 0 0.00 0 0.00

Rounded 9304 0.46 0 0.00 0 0.00

Un-rounded 9308 0.46 2 0.00 0 0.00

0.01 Raw 9453 0.49 8798 0.26 7879 0.22

Rounded 9454 0.49 0 0.00 0 0.00

Un-rounded 9453 0.49 8877 0.37 8175 0.32

The second batch Poisson process is a modification of a PP in which every kth arrival occurs in batches

of size 2; the arrival rate is reduced to 1000k/(k + 1), so that the overall arrival rate is again 1000. Table

3 shows that the un-rounding consistently detects the deviation from the PP when k is not too large (e.g.,

when k ≤ 9). Figure 2 compares the average ecdf based on 100 replications of the case where k = 6 with

the cdf of the null hypothesis. We make the same observations we did before in Figure 1.

4.2 Coarse Rounding and Un-rounding

In the main paper, all rounding was done to the nearest second, where the mean interarrival times was 3.6

seconds. It is possible to observe more coarse rounding in reality, such as to the nearest minute. In this

subsection, we show that if the rounding is too coarse (to the nearest minute instead of to the nearest second

in our batch-Poisson example), then the unrounding can hide the non-PP character of the original process.

The results in Table 4 for the H2 renewal arrival process show some loss in power when there is rounding to

the nearest minute and then un-rounding, but overall the KS test still has significant power. Evidently, the
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Figure 1: Comparison of the average ecdf of a rate-1000 renewal process on [0, 6], in which the interarrival
times are 0 with probability p = 0.05 and an exponential random variable with probability 1− p. From top
to bottom: CU, Lewis test. From left to right: Raw, Rounded, and Un-rounded.
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Table 3: Test results of batch Poisson processes on [0, 6] in which every kth point comes in pairs; the total
rate is kept the same. Results over 10000 iterations.

CU Log Lewis
Type # P ave[p-value] # P ave[p-value] # P ave[p-value]

k=1 Raw 6801 0.21 0 0.00 0 0.00

Rounded 6796 0.21 0 0.00 0 0.00

Un-rounded 6802 0.21 0 0.00 0 0.00

k=3 Raw 8671 0.36 0 0.00 0 0.00

Rounded 8669 0.36 0 0.00 0 0.00

Un-rounded 8670 0.36 0 0.00 0 0.00

k=6 Raw 9179 0.43 0 0.00 0 0.00

Rounded 9178 0.43 0 0.00 0 0.00

Un-rounded 9181 0.43 0 0.00 0 0.00

k=9 Raw 9196 0.45 0 0.00 0 0.00

Rounded 9194 0.45 0 0.00 0 0.00

Un-rounded 9195 0.45 0 0.00 0 0.00

exceptionally long interarrival times in the H2 process can still be detected. In contrast, the results in Table

5 for the batch-Poisson example show that the Lewis test consistently fails to reject when there is rounding

to the nearest minute and then un-rounding.
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Figure 2: Comparison of the average ecdf of a batch Poisson process on [0, 6] in which every 6th point
comes in pairs. From top to bottom: CU, Lewis test. From left to right: Raw, Rounded, and Un-rounded.
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Table 4: [Compare to Tables 1 and 2 of the Main Paper] Results of the two KS tests with rounding and
un-rounding

CU Lewis
Interarrival Times Type # P ave[p-value] ave[% 0] # P ave[p-value] ave[% 0]

M Raw 944 0.50 0.0 955 0.50 0.0

Rounded 927 0.40 0.1 0 0.00 94.0

Un-rounded 949 0.50 0.0 946 0.51 0.0

H2 Raw 705 0.21 0.0 0 0.00 0.0

Rounded 630 0.16 0.1 0 0.00 94.0

Un-rounded 704 0.22 0.0 42 0.01 0.0

4.3 Deciding When Un-Rounding is Needed and Will Be Effective

If the rounding is sufficiently fine (e.g., to the nearest millisecond in the examples above with a mean

interarrival time of 3.6 seconds), then un-rounding is unnecessary; on the other hand, if the rounding is

sufficiently coarse (e.g., to the nearest minute in the batch-Poisson renewal process example above), then it

can cause a loss in power. In applications, the rounding should be judged relative to the mean interarrival

time. Rounding to the nearest second was found to be important, and un-rounding was found to be effective,

when the mean interarrival time was 3.6 seconds. For alternative hypotheses that differ from a PP only
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Table 5: [Compare to Table 2: Rounding done to the nearest minutes] Test results of a rate-1000 renewal
process on [0, 6], in which the interarrival times are 0 with probability p and an exponential random variable
with probability 1− p. Results over 10000 iterations.

CU Log Lewis
p Type # P ave[p-value] # P ave[p-value] # P ave[p-value]

0.1 Raw 9015 0.41 0 0.00 0 0.00

Rounded 8580 0.32 0 0.00 0 0.00

Un-rounded 9019 0.41 9156 0.45 8774 0.40

0.05 Raw 9306 0.46 0 0.00 0 0.00

Rounded 8959 0.36 0 0.00 0 0.00

Un-rounded 9307 0.46 9421 0.49 9289 0.47

0.01 Raw 9453 0.49 8798 0.26 7879 0.22

Rounded 9178 0.40 0 0.00 0 0.00

Un-rounded 9451 0.49 9484 0.50 9480 0.50

through their local behavior, like the two batch-Poisson process examples above, rounding to the nearest

minute, which corresponds to 16.7 mean interarrival times, and then un-rounding, can virtually eliminate all

power. However, the un-rounding after rounding to the nearest minute is still effective for the H2 example

above, which also has more longer interarrival times than a PP. Overall, it is reasonable to expect that

rounding will not matter if it is very fine, e.g., to less than 0.01 mean service time, while there is a danger

of a loss of power if it is too coarse, e.g., to more than a mean service time. The different behavior for these

different examples show that it must be difficult to develop a simple criterion. Thus, we recommend using

simulation to investigate in specific instances, as we have done here.

5 An Example Illustrating Theorem 6

In this section, we illustrate Theorem 6 by considering the linear arrival rate function in (12) –λ(t) = a+bt–

of the main paper with a = 1, b = r = 10 and T = 10. We then scale by multiplying this arrival rate function

by n. Thus, the expected total number of arrivals is 510n. For each n, we divide the interval [0, 10] into kn

equally spaced subintervals. Table 6 shows the performance of the CU and Lewis KS tests as a function of

n for various choices of kn. #P is the number of KS tests passed at significance level α = 0.05 out of 1000

replications and ave[p-value] is the average p-values. We see that the conclusions of Theorem 6 are strongly

supported by these experimental results.
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Table 6: Performance of the CU and Lewis KS tests with different values of kn.

CU Lewis
kn n kn # P ave[p− value] # P ave[p− value]
bn1/4c 1 1 0 0.00 0 0.00

5 1 0 0.00 0 0.00

10 1 0 0.00 0 0.00

50 2 0 0.00 0 0.00

100 3 0 0.00 0 0.00

500 4 0 0.00 0 0.00

1000 5 0 0.00 0 0.00

bn1/2c 1 1 0 0.00 0 0.00

5 2 0 0.00 27 0.01

10 3 0 0.00 147 0.03

50 7 0 0.00 671 0.24

100 10 0 0.00 802 0.33

500 22 0 0.00 913 0.46

1000 31 0 0.00 919 0.47

bn3/4c 1 1 0 0.00 0 0.00

5 3 0 0.00 484 0.14

10 5 0 0.00 825 0.35

50 18 9 0.00 944 0.48

100 31 36 0.01 952 0.49

500 105 307 0.07 953 0.51

1000 177 443 0.12 957 0.51

n 1 1 0 0.00 0 0.00

5 5 0 0.00 872 0.38

10 10 32 0.01 941 0.49

50 50 612 0.21 941 0.50

100 100 795 0.32 944 0.50

500 500 927 0.47 946 0.50

1000 1000 940 0.48 945 0.49

6 More on Asymptotics of the CU KS Test

In this section we present an asymptotic result paralleling Theorem 6 of the main paper for a piecewise-

smooth arrival rate function. Table 7 shows the results for arrival rate function λ(t) = 100+20sin(t) on the

time interval [0, 10]. The results can be compared to those of Table 6. Together, they support that it is not

strictly necessary that the arrival rate function be piecewise-linear in order for the asymptotic correctness of

the piecewise-constant approximation.

We consider a piecewise-smooth arrival rate function λ on the interval [0, T ], by which we mean that

there are at most m < ∞ points ti with t0 ≡ 0 < t1 < · · · tm < T ≡ tm+1, such that the arrival rate
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function is right continuous on [tj−1, tj) with left limits at tj for each j and differentiable with derivative λ̇

on (tj−1, tj) for all j with

|λ̇(t)| ≤ K <∞ for tj−1 < t < tj , 1 ≤ j ≤ m+ 1. (6.1)

As a consequence, λ is Lipschitz continuous on each interval [tj−1, tj). We will also assume that λ is strictly

positive, by which we mean that it and its left limits at tj , 1 ≤ j ≤ m, are positive.

Theorem 6.1 (asymptotic justification of the piecewise-constant approximation of piecewise-smooth functions)

Suppose that we consider a strictly positive piecewise-smooth arrival rate function over the fixed interval

[0, T ] as above scaled by n. Let m be the number of discontinuity points, so that they partition the interval

intom+1 disjoint subintervals, closed on the left and open on the right (except at the right endpoint T ) over

which the arrival rate function is Lipshitz continuous. Suppose that we use the CU KS test with any specified

significance level α based on combining data over (m+ 1)kn subintervals, where each of the m+ 1 initial

subintervals determined by the discontinuity points is partitioned into kn equally spaced subintervals. If

condition (23) and (24) in the main paper hold, then the probability that the CU KS test of the hypothesis of

a Poisson process will reject the NHPP converges to α as n→∞.

Proof. The assumed strict positivity and Lipschitz continuity implies that the arrival rate function is

bounded below by a constant c > 0. By these properties, there is a constant K such that the function

oscillates by at most Kδ over every subinterval (between discontinuity points) that is of width δ. Hence, we

can apply essentially the same argument used for the proof of Theorem 3.6 of the main paper.
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Table 7: Performance of the CU and Lewis KS tests with different values of kn for a piecewise-smooth
arrival rate function.

CU Lewis
kn n kn # P ave[p− value] # P ave[p− value]
bn1/4c 1 1 488 0.10 924 0.47

5 1 0 0.00 855 0.37

10 1 0 0.00 762 0.30

50 2 0 0.00 527 0.16

100 3 29 0.01 860 0.37

500 4 0 0.00 180 0.04

1000 5 0 0.00 104 0.02

bn1/2c 1 1 522 0.10 926 0.47

5 2 209 0.04 840 0.36

10 3 875 0.30 928 0.48

50 7 891 0.41 925 0.45

100 10 837 0.38 940 0.46

500 22 906 0.43 954 0.50

1000 31 918 0.46 969 0.52

bn3/4c 1 1 522 0.10 926 0.47

5 3 880 0.37 947 0.50

10 5 894 0.44 929 0.46

50 18 944 0.51 942 0.50

100 31 931 0.50 951 0.49

500 105 940 0.49 957 0.50

1000 177 943 0.49 970 0.52

n 1 1 522 0.10 926 0.47

5 5 917 0.46 943 0.50

10 10 947 0.48 939 0.48

50 50 953 0.50 948 0.50

100 100 937 0.48 949 0.49

500 500 955 0.50 954 0.51

1000 1000 949 0.49 965 0.52
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