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Service systems such as call centers and hospitals typically have strongly time-varying arrivals. A natural model for such
an arrival process is a nonhomogeneous Poisson process (NHPP), but that should be tested by applying appropriate sta-
tistical tests to arrival data. Assuming that the NHPP has a rate that can be regarded as approximately piecewise-constant,
a Kolmogorov-Smirnov (KS) statistical test of a Poisson process (PP) can be applied to test for a NHPP, by combining
data from separate subintervals, exploiting the classical conditional-uniform property. In this paper we apply KS tests
to banking call center and hospital emergency department arrival data and show that they are consistent with the NHPP
property, but only if that data is analyzed carefully. Initial testing rejected the NHPP null hypothesis, because it failed to
take account of three common features of arrival data: (i) data rounding, e.g., to seconds, (ii) choosing subintervals over
which the rate varies too much, and (iii) over-dispersion caused by combining data from fixed hours on a fixed day of the
week over multiple weeks that do not have the same arrival rate. In this paper we investigate how to address each of these
three problems.
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1. Introduction
Significant effort is being made to apply operations management approaches to improve the performance
of service systems such as call centers and hospitals (Aksin et al. 2007, Armony et al. 2011). Since call
centers and hospitals typically have strongly time-varying arrivals, when analyzing the performance to
allocate resources (e.g., staffing), it is natural to model the arrival process as a nonhomogeneous Poisson
process (NHPP). We usually expect these arrival processes to be well modeled by NHPP’s, because the
arrivals typically arise from the independent decisions of many different people, each of whom uses the
service system infrequently. Mathematical support is provided by the Poisson superposition theorem; e.g.,
see Barbour et al. (1992), §11.2 of Daley and Vere-Jones (2008) and §9.8 of Whitt (2002).

Nevertheless, there are phenomena that can prevent the Poisson property from occurring. For example,
scheduled appointments as at a doctor’s office and enforced separation in airplane landings at airports tend
to make the arrival processes less variable or less bursty than Poisson. On the other hand, arrival processes
tend to be more variable or more bursty than Poisson if they involve overflows from other finite-capacity
systems, as occur in hospitals (Asaduzzaman et al. 2010, Litvak et al. 2008) and in requests for reservations
at hotels, because the overflows tend to occur in clumps during those intervals when the first system is full.
Indeed, there is a long history studying overflow systems in teletraffic engineering (Cooper 1982, Wilkinson
1956). Bursty arrival processes also occur if the arrivals directly occur in batches, as in arrivals to hospitals
from accidents. In restaurants arrivals occur in groups, but the group usually can be regarded as a single
customer. In contrast, in hospitals batch arrivals typically use resources as individuals. From the extensive
experience in teletraffic engineering, it is known that departures from the Poisson property can have a
strong impact upon performance; that is supported by recent work in Li and Whitt (2013), Pang and Whitt
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(2012). We emphasize this key point by showing the results of simulation experiments in §3 of the online
supplement.

1.1. Exploiting the Conditional Uniform Property
Hence, to study the performance of any given service system, it is appropriate to look closely at arrival data
and see if an NHPP is appropriate. A statistical test of an NHPP was suggested by Brown et al. (2005).
Assuming that the arrival rate can be regarded as approximately piecewise-constant (PC), they proposed
applying the classical conditional uniform (CU) property over each interval where the rate is approximately
constant. For a Poisson process (PP), the CU property states that, conditional on the number n of arrivals in
any interval [0, T ], the n ordered arrival times, each divided by T , are distributed as the order statistics of n
independent and identically distributed (i.i.d.) random variables, each uniformly distributed on the interval
[0,1]. Thus, under the NHPP hypothesis, if we condition in that way, the arrival data over several intervals of
each day and over multiple days can all be combined into one collection of i.i.d. random variables uniformly
distributed over [0,1].

Brown et al. (2005) suggested applying the Kolmogorov-Smirnov (KS) statistical test to see if the result-
ing data is consistent with an i.i.d. sequence of uniform random variables. To test for n i.i.d. random vari-
ables Xj with cumulative distribution function (cdf) F , the KS statistic is the uniform distance between the
empirical cdf (ecdf)

F̄n(t)≡ 1

n

n∑
j=1

1{(Xj/T )≤t}, 0≤ t≤ 1, (1)

and the cdf F , i.e., the KS test statistic is

Dn ≡ sup
0≤t≤1

|F̄n(t)−F (t)|. (2)

We call the KS test of a PP directly after applying the CU property to a PC NHPP the CU KS test; it uses (2)
with the uniform cdf F (t) = t. The KS test compares the observed value ofDn to the critical value, δ(n,α);
the PP null hypothesis H0 is rejected at significance level α if Dn > δ(n,α) where P (Dn > δ(n,α)|H0) =
α. In this paper, we always take α to be 0.05, in which case it is known that δ(n,α)≈ 1.36/

√
n for n> 35;

see Simard and L’Ecuyer (2011) and references therein.

1.2. The Possibility of a Random Rate Function
It is significant that the CU property eliminates all nuisance parameters; the final representation is indepen-
dent of the rate of the PP on each subinterval. That helps for testing a PC NHPP, because it allows us to
combine data from separate intervals with different rates on each interval. The CU KS test is thus the same
as if it were for a PP. However, it is important to recognize that the constant rate on each subinterval could
be random; a good test result does not support any candidate rate or imply that the rate on each subinterval
is deterministic. Thus those issues remain to be addressed. For dynamic time-varying estimation needed
for staffing, that can present a challenging forecasting problem, as reviewed in Ibrahim et al. (2012) and
references therein.

By applying the CU transformation to different days separately, as well as to different subintervals within
each day as needed to warrant the PC rate approximation, this method accommodates the commonly occur-
ring phenomenon of day-to-day variation, in which the rate of the Poisson process randomly varies over
different days; see, e.g., Avramidis et al. (2004), Ibrahim et al. (2012), Jongbloed and Koole (2001). Indeed,
if the the CU transformation is applied in that way (by combining the data over multiple days treated sepa-
rately), then the statistical test should be regarded as a test of a Cox process, i.e., for a doubly stochastic PP,
where the rate is random over the days, but is constant over each subinterval over which the CU transfor-
mation is applied.

Indeed, even though we will not address that issue here, there is statistical evidence that the rate function
often should be regarded as random over successive days, even for the same day of the week. It is important
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to note that, where these more complex models with random rate function are used, as in Bassamboo and
Zeevi (2009) and Ibrahim et al. (2012), it invariably is assumed that the arrival process is a Cox process, i.e.,
that it has the Poisson property with time-varying stochastic rate function. The statistical tests we consider
can be used to test if that assumed model is appropriate.

1.3. An Additional Data Transformation
In fact, Brown et al. (2005) did not actually apply the CU KS test. Instead, they suggested applying the
KS test based on the CU property after performing an additional logarithmic data transformation. Kim and
Whitt (2014) investigated why an additional data transformation is needed and what form it should take.
They showed through large-sample asymptotic analysis and extensive simulation experiments that the CU
KS test of a PP has remarkably little power against alternative processes with non-exponential interarrival-
time distributions. They showed that low power occurs because the CU property focuses on the arrival times
instead of the interarrival times; i.e., it converts the arrival times into i.i.d. uniform random variables.

The experiments in Kim and Whitt (2014) showed that the KS test used by Brown et al. (2005) has much
greater power against alternative processes with non-exponential interarrival-time distributions. Kim and
Whitt (2014) also found that Lewis (1965) had discovered a different data transformation due to Durbin
(1961) to use after the CU transformation, and that the Lewis KS test consistently has more power than the
log KS test from Brown et al. (2005) (although the difference is small compared to the improvement over
the CU KS test). Evidently the Lewis test is effective because it brings the focus back to the interarrival
times. Indeed, the first step of the Durbin (1961) transformation is to re-order the interarrival times of the
uniform random variables in ascending order. We display the full transformation in the online supplement.

Kim and Whitt (2014) also found that the CU KS test of a PP should not be dismissed out of hand.
Even though the CU KS test of a PP has remarkably little power against alternative processes with non-
exponential interarrival-time distributions, the simulation experiments show that the CU KS test of a PP
turns out to be relatively more effective against alternatives with dependent exponential interarrival times.
The data transformations evidently make the other methods less effective in detecting dependence, because
the re-ordering of the interarrival times weakens the dependence. Hence, here we concentrate on the Lewis
and CU KS tests. For applications, we recommend applying both of these KS tests.

1.4. Remaining Issues in Applications
Unfortunately, it does not suffice to simply perform these KS tests to arrival data, because there are other
complications with the data. Indeed, when we first applied the Lewis KS test to call center and hospital
arrival data, we found that the Lewis KS test inappropriately rejected the NHPP property. In this paper we
address three further problems associated with applying the CU KS test and the Lewis refinement from Kim
and Whitt (2014) to service system arrival data. After applying these additional steps, we conclude that
the arrival data we looked at are consistent with the NHPP property, but we would not draw any blanket
conclusions. We think that it is appropriate to conduct statistical tests in each setting. Our analysis shows
that this should be done with care.

First, we might inappropriately reject the NHPP hypothesis because of data rounding. Our experience
indicates that it is common for arrival data to be rounded, e.g., to the nearest second. This often produces
many 0-length interarrival times, which do not occur in an NHPP, and thus cause the Lewis KS test to
reject the PP hypothesis. As in Brown et al. (2005), we find that inappropriate rejection can be avoided by
un-rounding, which involves adding i.i.d. small uniform random variables to the rounded data. In §2 we
conduct simulation experiments showing that rounding a PP leads to rejecting the PP hypothesis, and that
un-rounding avoids it. We also conduct experiments to verify that un-rounding does not change a non-PP
into a PP, provided that the rounding is not too coarse. If the KS test rejects the PP hypothesis before the
rounding and un-rounding, and if the rounding is not too coarse, then we conclude that the same will be true
after the rounding and un-rounding.

Second, we might inappropriately reject the NHPP hypothesis because we use inappropriate subintervals
over which the arrival rate function is to be regarded as approximately constant. In §3, we study how to
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choose these subintervals. As a first step, we make the assumption that the arrival-rate function can be
reasonably well approximated by a piecewise-linear function. In service systems, non-constant linear arrival
rates are often realistic because they can capture a rapidly rising arrival rate at the beginning of the day
and a sharply decreasing arrival rate at the end of the day, as we illustrate in our call center examples. (It
is important to note that some fundamental smoothness in the arrival rate function is being assumed; see
§3.7 for more discussion.) Indeed, ways to fit linear arrival rate functions have been studied in Massey et al.
(1996). However, we do not make use of this estimated arrival rate function in our final statistical test; we
use it only as a means to construct an appropriate PC rate function to use in the KS test. We develop simple
practical guidelines for selecting the subintervals.

Third, we might inappropriately reject the NHPP hypothesis because, in an effort to obtain a larger sample
size, we might inappropriately combine data from multiple days. We might avoid the time-of-day effect
and the day-of-the-week effect by collecting data from multiple weeks, but only from the same time of day
on the same day of the week. Nevertheless, as discussed in §1.2, the arrival rate may vary substantially
over these time intervals over multiple weeks. We may fail to recognize that, even though we look at the
same time of day and the same day of the week, that data from multiple weeks may in fact have variable
arrival rate. That is, there may be over-dispersion in the arrival data. It is often not difficult to test for such
over-dispersion, using standard methods, provided that we remember to do so. Even better is to use more
elaborate methods, as in Ibrahim et al. (2012) and references therein. If these tests do indeed find that there
is such over-dispersion, then we should not simply reject the NHPP hypothesis. Instead, the data may be
consistent with i.i.d. samples of a Poisson process, but one for which the rate function should be regarded
as random over different days (and thus a stochastic process).

After investigating those three causes for inappropriately rejecting the NHPP hypothesis, in §5 and §6 we
illustrate these methods with call center and hospital emergency department arrival data. We draw conclu-
sions in §7. There is a short online supplement maintained by the journal and a longer appendix available
on the authors’ web pages.

2. Data Rounding
A common feature of arrival data is that arrival times are rounded to the nearest second or even the near-
est minute. For example, a customer who arrives at 11:15:25.04 and another customer who arrives at
11:15:25.55 may both be given the same arrival time stamp of 11:15:25 (rounding to seconds). That pro-
duces batch arrivals or, equivalently, interarrival times of length 0, which do not occur in an NHPP. If we
do not take account of this feature, the KS test may inappropriately reject the NHPP null hypothesis.

The rounding problem can be addressed by having accurate arrival data without rounding, but often that
is not possible, e.g., because the rounding is done in the the measurement process. Nevertheless, as observed
by Brown et al. (2005), it is not difficult to address the rounding problem in a reasonable practical way
by appropriately un-rounding the rounded data. If the data has been rounded by truncating, then we can
un-round by adding a random value to each observation. If the rounding truncated the fractional component
of a second, then we add a random value uniformly distributed on the interval [0,1] seconds. We let these
random values be i.i.d. It usually is straightforward to check if rounding has been done, and we would only
un-round to un-do the rounding that we see.

2.1. The Need for Un-Rouding
To study rounding and un-rounding, we conducted simulation experiments. We first simulated 1000 repli-
cations of an NHPP with constant rate λ= 1000 (an ordinary PP) on the interval [0,6], with time measured
in hours, so that a mean interarrival time is 3.6 seconds. We then apply the CU KS test and the Lewis KS
test, as described in Kim and Whitt (2014), to three versions of the simulated arrival data: (i) raw; as they
are, (2) rounded; rounded to the nearest second, and (3) un-rounded; in which we first round to the nearest
second and then afterwards un-round by adding uniform random variables on [0,1] divided by 3600 (since



Kim and Whitt: Are Call Center and Hospital Arrivals Well Modeled by NHPPs?
Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the mansucript number!) 5

the units are hours and the rounding is to the nearest second) to the arrival times from (2), as was suggested
in Brown et al. (2005).

Table 1 summarizes the results of the 1000 experiments. For each of the three forms of the data (raw,
rounded and un-rounded) and two KS tests (CU and Lewis), we display the number of the 1000 KS tests
that fail to reject the PP hypothesis at significance level α= 0.05 (#P), the average p-values (ave[p-value])
and the average percentage of 0 values (ave[% 0]). The Lewis test consistently rejects the PP null hypothesis
when the arrival data are rounded, but the CU KS test fails to do so. In fact, it is clearly appropriate to
reject the PP null hypothesis when the data are rounded, because the rounding produces too many 0-valued
interarrival times. Table 1 shows that the rounding turns 12.7% of the interarrival times into 0.

These test results illustrate the advantage of the Lewis KS test over the CU KS test. Since the Lewis test
looks at the ordered interarrival times, all these 0-valued interarrival times are grouped together at the left
end of the interval. As a consequence, the Lewis test strongly rejects the Poisson hypothesis when the data
are rounded. Since the CU test looks at the data in order of the initial arrival times, the 0 interarrival times
are spread out throughout the data and are not detected by the CU KS test. Fortunately, the problem of data
rounding is well addressed by un-rounding. After the rounding, the Lewis KS test of a PP fails to reject the
Poisson hypothesis when applied to a PP.

Table 1 Results of the two KS tests with rounding and un-rounding: Poisson data

CU Lewis
Type # P ave[p-value] ave[% 0] # P ave[p-value] ave[% 0]

Raw 944 0.50 0.0 955 0.50 0.0

Rounded 945 0.50 0.0 0 0.00 12.7

Un-rounded 945 0.50 0.0 961 0.50 0.0

Figure 1 Comparison of the average ecdf for a rate-1000 Poisson process. From top to bottom: CU, Lewis
test. From left to right: Raw, Rounded, Un-rounded.
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As in Kim and Whitt (2014), we find that plots of the empirical cdf’s used in the KS tests are very
revealing. Figure 1 compares the average ecdf based on 100 replications of a rate-1000 Poisson process
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on the time interval [0,6] with the cdf of the null hypothesis. We note that the average ecdf and its 95%
confidence interval overlap (if the manuscript is seen in color, this is better detected; the average ecdf is in
red and its 95% confidence interval is in green). From these plots, we clearly see that the Lewis test is very
effective, whereas the CU KS test fails to detect any problem at all.

Table 2 Results of the two KS tests with rounding and un-rounding: H2 interarrival times.

CU Lewis
Type # P ave[p-value] ave[% 0] # P ave[p-value] ave[% 0]

Raw 705 0.21 0.0 0 0.00 0.0

Rounded 706 0.21 0.0 0 0.00 16.2

Un-rounded 706 0.21 0.0 0 0.00 0.0

Figure 2 Comparison of the average ecdf of a rate-1000 arrival process with H2 interarrival times. From top
to bottom: CU, Lewis test. From left to right: Raw, Rounded, Un-rounded.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

2.2. The Possible Loss of Power
Evidently, the rounding and subsequent un-rounding makes an arrival process more like an NHPP than
it was before the rounding was performed. It is thus natural to wonder if the rounding and subsequent
un-rounding causes a serious loss of power. To examine that issue, we performed additional experiments.
First, we simulated 1000 replications of a renewal arrival process with constant rate λ = 1000 and i.i.d.
hyperexponential (H2; a mixture of two exponentials, and hence more variable than exponential) interarrival
times Xj with the squared coefficient of variation c2X = 2 on the interval [0,6]. The cdf of H2 is P (X ≤
x) ≡ 1− p1e−λ1x− p2e−λ2x. We further assume balanced means for (p1λ−11 = p2λ

−1
2 ) as in (3.7) of Whitt

(1982) so that pi = [1±
√

(c2X − 1)/(c2X + 1)]/2 and λi = 2pi. Table 1 of Kim and Whitt (2014) shows that
the Lewis test is usually able to detect this departure from the Poisson property and to reject the Poisson
hypothesis.
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Table 2 here shows the results of applying the CU test and the Lewis test to the renewal arrival process
with H2 interarrival times. We see that the Lewis KS test consistently rejects the Poisson hypothesis for
the raw data, as it should, but the CU KS test fails to reject in 70% of the cases. Moreover, we observe
that rounding and un-rounding does not eliminate the non-Poisson property. This non-Poisson property of
the H2 renewal process is detected by the Lewis test after the rounding and un-rounding. Figure 2 again
provides dramatic visual support as well.

We also conducted other experiments of the same kind to show that the un-rounding does not inappro-
priately cause the Lewis KS test to fail to reject a non-PP, provided that the un-rounding is not done too
coarsely. Among the more interesting cases are two forms of batch Poisson processes. The first kind is a
rate-1000 renewal process, in which the interarrival times are 0 with probability p and an exponential ran-
dom variable with probability 1− p. The second is a modification of a PP in which every kth arrival occurs
in batches of size 2; the arrival rate is reduced to 1000k/(k + 1), so that the overall arrival rate is again
1000. Assuming that the rounding is done to the nearest seconds as in the PP and H2 examples above, the
un-rounding consistently detects the deviation from the PP when p is not too small (e.g., when p≥ 0.05) in
the renewal process example and when k is not too large (e.g., when k≤ 9) in the second modification of a
PP with batches. As long as the rounding is not too coarse, the story for these examples is just like the H2

renewal process we have already considered. The un-rounding removes all 0 interarrival times, but it still
leaves too many very short interarrival times, so that the PP hypothesis is still rejected. The details appear
in the online supplement.

On the other hand, if the rounding is too coarse, as in the batch-Poisson examples above when the round-
ing is to the nearest minute instead of the nearest second, then the unrounding can hide the non-PP character
of the original process, and thus reduce the power of the KS test. We also illustrate this phenomenon in the
online supplement. Overall, rounding should not matter, so that un-rounding is unnecessary, if the rounding
is very fine, e.g., to less than 0.01 mean service time, while there is a danger of a loss of power if the round-
ing is too coarse, e.g., to more than a mean service time. We recommend using simulation to investigate in
specific instances, as we have done here. See the online supplement and the appendix for more discussion.

3. Choosing Subintervals With Nearly Constant Rate
In order to exploit the CU property to conduct KS tests of an NHPP, we assume that the rate function is
approximately piecewise-constant (PC). Since the arrival rate evidently changes relatively slowly in appli-
cations, the PC assumption should be reasonable, provided that the subintervals are chosen appropriately.
However, some care is needed, as we show in this section. Before starting, we should note that there are
competing interests. Using shorter intervals makes the piecewise-constant approximation more likely to be
valid, but interarrival times are necessarily truncated at boundary points and any dependence in the process
from one interval to the next is lost when combining data from subintervals, so we would prefer longer
subintervals unless the piecewise-constant approximation ceases to be appropriate.

As a reasonable practical first step, we propose approximating any given arrival rate function by a
piecewise-linear arrival rate function with finitely many linear pieces. Ways to fit linear arrival rate functions
were studied in Massey et al. (1996), and that can be extended to piecewise-linear arrival rate functions
(e.g., by choosing roughly appropriate boundary times and applying the least-squares methods there over
each subinterval with the endpoint values constrained). However, it usually should not be necessary to have
a formal estimation procedure in order to obtain a suitable rough approximation. In particular, we do not
assume that we should necessarily consider the arrival rate function as fully known after this step; instead,
we assume it is sufficiently well known to determine how to construct an appropriate PC approximation.

In this section we develop theory to support choosing subintervals for any given linear arrival rate func-
tion, which we do take as fully known. This theory leads to simple practical guidelines for evaluating
whether (i) a constant approximation is appropriate for any given subinterval with linear rate and (ii) a
piecewise-constant approximation is appropriate for any candidate partition of such a subinterval into fur-
ther equally spaced subintervals; see §3.4 and §3.6, respectively. Equally spaced subintervals is only one
choice, but the constant length is convenient to roughly judge the dependence among successive intervals.
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3.1. A Call Center Example
We start by considering an example motivated by the banking call center data used in Kim and Whitt
(2013a,b). For one 17-hour day, represented as [6,23] in hours, they produced the fitted arrival rate function

λ(t) =


140(t− 6) on [6,10],
560 on [10,16],
560− 230(t− 16) on [16,18],
100− 20(t− 18) on [18,23],

(3)

as shown in Figure 3 (taken from Kim and Whitt (2013a,b)). This fitted arrival rate function is actually
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Figure 3 Fitted piecewise-linear arrival rate function for the arrivals at a banking call center.

constant in the subinterval [10,16], which of course presents no difficulty. However, as in many service
systems, the arrival rate is increasing at the beginning of the day, as in the subinterval [6,10], and decreasing
at the end of the day, as in the two intervals [16,18] and [18,23].

We start by considering an example motivated by Figure 3. The first interval [6,10] in Figure 3 with
linear increasing rate is evidently challenging. To capture the spirit of that case, we consider an NHPP with
linear arrival rate function λ(t) = 1000t/3 on the interval [0,6]. The expected total number of arrivals over
this interval is 6000. We apply simulation to study what happens when we divide the interval [0,6] into
6/L equally spaced disjoint subintervals, each of length L, apply the CU construction to each subinterval
separately and then afterwards combine all the data from the subintervals.

Table 3 and Figure 4 show the performance of the Lewis and CU KS tests as a function of the subinterval
length. As before, #P is the number of KS tests passed at significance level α= 0.05 out of 1000 replications.
It shows the average p-values under ave[p-value] and the average percentage of 0 values in the transformed
sequence under ave[% 0]. First, we see, just as in §2, that the Lewis test sees the rounding, but the CU
test misses it completely. Second, we conclude that both KS tests will consistently detect this strong non-
constant rate and reject the PP hypothesis with very high probability if we use L= 6 (the full interval [0,6])
or even if L= 1 or 0.5. However, the Lewis KS tests will tend not to reject the PP hypothesis if we divide
the interval into appropriately many equally spaced subintervals.

Since we are simulating an NHPP, the actual model differs from the PP null hypothesis only through
time dependence. Consistent with the observations in Kim and Whitt (2014), we see that the CU KS test
is actually more effective in detecting this non-constant rate than the Lewis test. The non-constant rate
produces a form of dependence, for which the CU test is relatively good. However, for our tests of the actual
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arrival data, we will wish to test departures from the NHPP assumption. Hence, we are primarily interested
in the Lewis KS test. The results in §§3.3-3.6 below indicate that we could use L= 0.5 for the Lewis test.

Table 3 Performance of the alternative KS test of an NHPP as a function of the subinterval length L.

CU Lewis
L Type # P ave[p-value] ave[% 0] # P ave[p-value] ave[% 0]

6 Raw 0 0.00 0.0 0 0.00 0.0

Rounded 0 0.00 0.0 0 0.00 16.2

Un-rounded 0 0.00 0.0 0 0.00 0.0

3 Raw 0 0.00 0.0 0 0.00 0.0

Rounded 0 0.00 0.0 0 0.00 16.2

Un-rounded 0 0.00 0.0 0 0.00 0.0

1 Raw 0 0.00 0.0 797 0.33 0.0

Rounded 0 0.00 0.0 0 0.00 16.2

Un-rounded 0 0.00 0.0 815 0.33 0.0

0.5 Raw 62 0.01 0.0 946 0.47 0.0

Rounded 69 0.01 0.1 0 0.00 16.2

Un-rounded 66 0.01 0.0 932 0.47 0.0

0.25 Raw 570 0.19 0.0 953 0.48 0.0

Rounded 578 0.19 0.1 0 0.00 16.3

Un-rounded 563 0.19 0.0 953 0.49 0.0

Figure 4 Comparison of the average ecdf of an NHPP with different subinterval lengths. From top to bottom:
CU, Lewis test. From left to right: L = 6, 3, 1, 0.5, 0.25.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

In the remainder of this section we develop theory that shows how to construct piecewise-constant
approximations of the rate function. We then derive explicit formulas for the conditional cdf in three cases:
(i) in general (which is complicated), (ii) when the arrival rate is linear (which is relatively simple) and
(iii) when the data is obtained by combining data from equally spaced subintervals of a single interval with
linear rate (which remains tractable). We then apply these results to determine when a piecewise-constant
approximation can be considered appropriate for KS tests.
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3.2. The Conditioning Property
We first observe that a generalization of the CU method applies to show that the scaled arrival times of a
general NHPP, conditional on the number observed within any interval, can be regarded as i.i.d. random
variables, but with a non-uniform cdf, which we call the conditional cdf, depending on the rate of the
NHPP over that interval. That conditional cdf then becomes the asymptotic value of the conditional-uniform
Kolmogorov-Smirnov test statistic applied to the arrival data as the sample size increases, where the sample
size increases by multiplying the arrival rate function by a constant.

Let N ≡ {N(t) : t≥ 0} be an NHPP with arrival rate function λ over a time interval [0, T ]. We assume
that λ is integrable over the finite interval of interest and strictly positive except at finitely many points. Let
Λ be the associated cumulative arrival rate function, defined by

Λ(t)≡
∫ t

0

λ(s)ds, 0≤ t≤ T. (4)

We will exploit a basic conditioning property of the NHPP, which follows by the same reasoning as for the
homogeneous special case. It is significant that this conditioning property is independent of scale, i.e., it is
unchanged if the arrival rate function λ is multiplied by a constant. We thus later consider asymptotics in
which the sample size increases in that way.

THEOREM 1. (NHPP conditioning property) LetN be an NHPP with arrival rate function cλ, where c is
an arbitrary positive constant. Conditional upon N(T ) = n for the NHPP N with arrival rate function cλ,
the n ordered arrival times Xj , 1≤ j ≤ n, when each is divided by the interval length T , are distributed as
the order statistics associated with n i.i.d. random variables on the unit interval [0,1], each with cumulative
distribution function (cdf) F and probability density function (pdf) f , where

F (t)≡Λ(tT )/Λ(T ) and f(t)≡ Tλ(tT )/Λ(T ), 0≤ t≤ 1. (5)

In particular, the cdf F is independent of c.

We call the cdf F in (5) the conditional cdf associated with N ≡N(cλ,T ). Let Xj be the jth ordered
arrival time in N over [0, T ], 1≤ j ≤ n, assuming that we have observed n≥ 1 points in the interval [0, T ].
Let F̄n(x) be the empirical cdf (ecdf) after scaling by dividing by T, defined by

F̄n(t)≡ 1

n

n∑
k=1

1{(Xj/T )≤t}, 0≤ t≤ 1. (6)

We naturally are more likely to obtain larger and larger values of n if we increase the scaling constant c.
Observe that the ecdf {F̄n(t) : 0≤ t≤ 1} is a stochastic process with

E[F̄n(t)] = F (t) for all t, 0≤ t≤ 1, (7)

where F is the conditional cdf in (5). As a consequence of Lemma 1 below and the Glivenko-Cantelli
theorem, we immediately obtain the following asymptotic result.

THEOREM 2. (limit for empirical cdf) Assuming a NHPP with arrival rate function cλ, where c is a scal-
ing constant, the empirical cdf of the scaled order statistics in (6), obtained after conditioning on observing
n points in the interval [0, T ] and dividing by T , converges uniformly w.p.1 as n→∞ (which may be
obtained from increasing the scaling constant c) to the conditional cdf F in (5), i.e.,

sup
0≤t≤1

|F̄n(t)−F (t)| → 0 as n→∞. (8)
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We will usually omit the scaling constant in our discussion, but with the understanding that it always can
be introduced. Since we want to see how the NHPP fares in a KS test of a PP, it is natural to measure the
degree of nonhomogeneity in the NHPP by

ν(NHPP )≡ ν(λ,T ) =D≡ sup
0≤t≤1

|F (t)− t|, (9)

where F is the conditional cdf in (5). The degree of nonhomogeneity is closely related to the CU KS test
statistic for the test of a PP, which is the absolute difference between the ecdf and the uniform cdf, i.e.,

Dn ≡ sup
0≤t≤1

|F̄n(t)− t|; (10)

see Marsaglia et al. (2003), Massey (1951), Miller (1956), Simard and L’Ecuyer (2011).
As a consequence of Theorem 2, we can describe the behavior of the conditional-uniform (CU) KS test

of a Poisson process applied to a NHPP with general arrival rate function λ.

THEOREM 3. (limit of the KS test of a Poisson process applied to an NHPP) As n→∞ in a NHPP with
rate function λ over [0, T ],

Dn→D≡ sup
0≤t≤1

|F (t)− t|, (11)

where Dn is the CU KS test statistic in (10) and D is the degree of nonhomogeneity in (9) involving the the
conditional cdf F in (5).

COROLLARY 1. (asymptotic rejection of the Poisson process hypothesis if NHPP is not a Poisson
process) The probability that an NHPP with rate function nλ will be rejected by the CU KS test for a PP
converges to 1 as the scaling parameter n→∞ if and only if the λ is not constant w.p.1, i.e., if and only if
the NHPP is not actually a PP.

Proof. It is easy to see that the cdf F in (5) coincides with the uniform cdf t if and only if λ(t) is constant.

Corollary 1 suggests that a piecewise-constant approximation of a non-PP NHPP never makes sense with
enough data, but we develop a positive result exploiting appropriate subintervals, where the number of
subintervals grows with the sample size n; see Theorem 6.

3.3. An NHPP with Linear Arrival Rate Function
We now consider the special case of an NHPP with linear arrival rate function

λ(t) = a+ bt, 0≤ t≤ T, (12)

The analysis is essentially the same for increasing and decreasing arrival rate functions, so that we will
assume that the arrival rate function is increasing, i.e., b≥ 0. There are two cases: a> 0 and a= 0; we shall
consider them both. If a> 0, then cumulative arrival rate function can be expressed as

Λ(t)≡
∫ t

0

λ(s)ds= at+
bt2

2
= a

(
t+

rt2

2

)
(13)

where r≡ b/a is the relative slope. If a= 0, then Λ(t) = bt2/2.

THEOREM 4. (aymptotic maximum absolute difference in the linear case) Consider an NHPP with lin-
ear arrival rate function in (12) observed over the interval [0, T ]. If a > 0, then the conditional cdf in (5)
assumes the form

F (t) =
tT + (r(tT )2/2)

T + (rT 2/2)
, 0≤ t≤ 1; (14)



Kim and Whitt: Are Call Center and Hospital Arrivals Well Modeled by NHPPs?
12 Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the mansucript number!)

if a= 0, then

F (t) = t2, 0≤ t≤ 1. (15)

Thus, if a> 0, then the degree of nonhomogeneity of the NHPP can be expressed explicitly as

D≡D(rT )≡ sup
0≤t≤1

{|F (t)− t|}= |F (1/2)− 1/2|= 1

2
−

(
T
2

+ rT2

8

)
(
T + rT2

2

) =
rT

8 + 4rT
. (16)

If a= 0, then D= 1/4 (which agrees with (16) when r=∞).

Proof. For (16), observe that |F (t)−t| is maximized where f(t) = 1, so that it is maximized at t= 1/2.

3.4. Practical Guidelines for a Single Interval
We can apply formula (16) in Theorem 4 to judge whether an NHPP with linear rate over an interval should
be close enough to a PP with constant rate. (We see that should never be the case for a single interval with
a= 0 because then D = 1/4.) In particular, the rate function can be regarded as approximately constant if
the ratio D/δ(n,α) is sufficiently small, where D is the degree of homogeneity in (16) and δ(n,α) is the
critical value of the KS test statistic Dn with sample size n and significance level α, which we always take
to be α= 0.05. Before looking at data, we can estimate n by the expected total number of arrivals over the
interval.

We have conducted simulation experiments to determine when the ratio D/δ(n,α) is sufficiently small
that the KS test of a PP applied to an NHPP with that rate function consistently rejects the PP null hypothesis
with probability approximately α = 0.05. Our simulation experiments indicate that a ratio of 0.10 (0.50)
should be sufficiently small for the CU (Lewis) KS test with a significance level of α= 0.05.

Table 4 illustrates by showing the values of D, δ(n,α) and D/δ(n,α) along with the test results for
selected subintervals of the initial example with λ(t) = 1000t/3 on the time interval [0,6]. (The full table
with all intervals and other examples appear in the appendix.)

3.5. Subintervals for an NHPP with Linear Arrival Rate
In this section we see the consequence of dividing the interval [0, T ] into k equal subintervals when the
arrival rate function is linear over [0, T ] as in §3.3. As in the CU KS test discussed in Kim and Whitt (2014),
we treat each interval separately and combine all the data. An important initial observations is that the final
cdf F can be expressed in terms of the cdf’s Fj associated with the k subintervals. In particular, we have
the following lemma.

LEMMA 1. (combining data from equally spaced subintervals) If we start with a general arrival rate
function and divide the interval [0, T ] into k subintervals of length T/k, then we obtain i.i.d. random
variables with a conditional cdf that is a convex combination of the conditional cdf’s for the individual
intervals, i.e.,

F (t) =
k∑
j=1

pjFj(t), 0≤ t≤ 1, where

Fj(t) =
Λj(tT/k)

Λj(T/k)
, 0≤ t≤ 1, 1≤ j ≤ k,

Λj(t) = Λ(((j− 1)T/k) + t)−Λ((j− 1)T/k), 0≤ t≤ T/k, 1≤ j ≤ k,
pj =

Λ(jT/k)−Λ((j− 1)T/k)

Λ(T )
, 1≤ j ≤ k. (17)
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Table 4 Judging when the rate is approximately constant: the ratio D/δ(n,α) for single subintervals with
α= 0.05

CU Lewis
L Interval ave[n] r D ave[δ(n,α)] D/ave[δ(n,α)] # P ave[p-value] # P ave[p-value]

6 [0,6] 5997.3 ∞ 0.250 0.018 14.28 0 0.00 0 0.00

3 [0,3] 1498.8 ∞ 0.250 0.035 7.15 0 0.00 0 0.00

[3,6] 4498.5 0.33 0.083 0.020 4.12 0 0.00 481 0.15

1 [0,1] 166.8 ∞ 0.250 0.104 2.40 0 0.00 46 0.01

[1,2] 499.7 1.00 0.083 0.060 1.38 22 0.01 896 0.43

[2,3] 832.4 0.50 0.050 0.047 1.07 145 0.03 928 0.48

[3,4] 1166.9 0.33 0.036 0.040 0.90 300 0.08 931 0.49

[4,5] 1501.0 0.25 0.028 0.035 0.79 358 0.09 949 0.49

[5,6] 1830.6 0.20 0.023 0.032 0.72 453 0.13 948 0.49

0.5 [0,0.5] 42.0 ∞ 0.250 0.207 1.21 46 0.01 562 0.18

[0.5,1] 124.8 2.00 0.083 0.121 0.69 479 0.14 918 0.48

[1.5,2] 292.0 0.67 0.036 0.079 0.45 766 0.29 945 0.50

[2.5,3] 456.9 0.40 0.023 0.063 0.36 833 0.35 960 0.51

[3.5,4] 623.3 0.29 0.017 0.054 0.31 865 0.38 938 0.51

[4.5,5] 792.1 0.22 0.013 0.048 0.27 882 0.41 936 0.50

[5.5,6] 956.6 0.18 0.011 0.044 0.25 893 0.42 951 0.50

0.25 [0,0.25] 10.4 ∞ 0.250 0.418 0.60 588 0.17 888 0.42

[0.25,0.5] 31.6 4.00 0.083 0.239 0.35 841 0.37 946 0.49

[0.5,0.75] 51.8 2.00 0.050 0.187 0.27 885 0.41 943 0.49

[0.75,1] 73.0 1.33 0.036 0.157 0.23 907 0.44 947 0.50

[1.75,2] 156.5 0.57 0.017 0.108 0.15 924 0.48 940 0.49

[2.75,3] 238.7 0.36 0.011 0.087 0.12 931 0.48 956 0.50

[3.75,4] 322.0 0.27 0.008 0.075 0.11 941 0.47 946 0.50

[4.75,5] 406.7 0.21 0.006 0.067 0.10 937 0.48 953 0.50

[5.75,6] 489.2 0.17 0.005 0.061 0.09 941 0.50 943 0.50

For the special case of a linear arrival rate function as in (12) with a> 0,

Λj(t) =
at(k(2 + rt) + 2(j− 1)rT )

2k
, 0≤ t≤ T/k, 1≤ j ≤ k,

Fj(t) =
t(2k+ (2j− 2 + t)rT )

2k+ (2j− 1)rT )
, 0≤ t≤ 1, 1≤ j ≤ k,

pj =
2k+ (2j− 1)rT

k2(2 + rT )
and rj =

b

λ((j− 1)T/k)
=

bk

a(k+ (j− 1)rT )
. (18)

For the special case of a linear arrival rate function as in (12) with a= 0,

Λj(t) =
bt(kt+ 2(j− 1)T )

2k
, 0≤ t≤ T/k, 1≤ j ≤ k,

Fj(t) =
t(2j− 2 + t)

2j− 1
, 0≤ t≤ 1, 1≤ j ≤ k,

pj =
2j− 1

k2
and rj =

k

(j− 1)T
, 1≤ j ≤ k. (19)

We now apply Lemma 1 to obtain a simple characterization of the maximum difference from the uniform
cdf when we combine the data from all the equally spaced subintervals.
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THEOREM 5. (combining data from equally spaced subintervals) If we start with the linear arrival rate
function in (12) and divide the interval [0, T ] into k subintervals of length T/k, and combine all the data,
then we obtain

D ≡ sup
0≤t≤1

{|F (t)− t|}=
k∑
j=1

pjDj =
k∑
j=1

pj sup
0≤t≤1

{|Fj(t)− t|}. (20)

If a> 0, then

D=
k∑
j=1

pjrjT/k

8 + 4rjT/k
≤C/k for all k≥ 1 (21)

for a constant C. If a= 0, then

D =
p1
4

+
k∑
j=2

pj/(j− 1)

8 + 4/(j− 1)
≤C/k for all k≥ 1 (22)

for a constant C.

Proof. By Theorem 4, by virtue of the linearity, for each j ≥ 1, |Fj(t) − t| is maximized at t = 1/2.
Hence, the same is true for |F (t)− t|, where F (t) =

∑k

j=1 pjFj(t), which gives us (20). For the final bound
in (21), use rj ≤ 1 + (T/ka) for all j. For the final bound in (22), use rj = (j/(j − 1))2 ≤ 4 for all j ≥ 2
with p1 = 1/k2.

3.6. Practical Guidelines for Dividing an Interval into Equal Subintervals
Paralleling §3.4, if the rate is strictly positive on the interval (or instead if it is 0 at one endpoint), then we
can apply formula (21) (respectively, (22)) in Theorem 5 to judge whether the partition of a given interval
with linear rate into equally spaced subintervals produces an appropriate PC approximation. As before,
we look at the ratio D/δ(n,α), requiring that it be less than 0.10 (0.50) for the CU (Lewis) KS test with
significance level α= 0.05, where now D is given by (21) or (22) and δ(n,α) is again the critical value to
the KS test, but now applied to all the data, combining the data after the CU transformation is applied in
each subinterval. In particular, n should be the total observed sample size or the total expected number of
arrivals, adding over all subintervals.

We illustrate in Table 5 by showing the values of D and D/δ(n,α) along with the test results for each
subinterval of the initial example with λ(t) = 1000t/3 on the time interval [0,6], just as in Table 3. In all
cases, ave[n] is 5997.33, and hence the ave[δ(n,α)] values are the same and are approximately 0.0175.
(Again, more examples appear in the appendix.)

In summary, we present the following algorithm for choosing an appropriate subinterval length in order
for a PC approximation of a linear arrival rate over some interval.

1. Given an interval T whose fitted arrival rate function is linear (λ(t) = a+ bt), let n be the number of
arrivals in that interval.

2. Compute the critical value of KS test, δ(n,α). It can be approximated as δ(n,α)≈ 1.36/
√
n if n> 35

and when we choose α= 0.05 (see Simard and L’Ecuyer (2011) and references therein for other values of
n and α).

3. Start with subinterval length L= T/2. Given L, compute the degree of nonhomogeneity of the NHPP
D using (21) if a> 0 and using (22) if a= 0.

4. Compute D/δ(n,α). Use bisection method to find the value of L that gives the ratio D/δ(n,α) less
than 0.10 (0.50) for the CU (Lewis) KS test.
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Table 5 Judging if a PC approximation is good for an interval divided into equal subintervals: the ratio
D/ave[δ(n,α)]

CU Lewis
L D D/ave[δ(n,α)] # P ave[p-value] # P ave[p-value]

6 0.2500 14.278 0 0.00 0 0.00

3 0.1250 7.139 0 0.00 0 0.00

1 0.0417 2.380 0 0.00 797 0.33

0.5 0.0208 1.190 62 0.01 946 0.47

0.25 0.0104 0.595 570 0.19 953 0.48

0.1 0.0042 0.238 896 0.43 955 0.48

0.09 0.0038 0.214 902 0.43 954 0.48

0.08 0.0033 0.190 914 0.45 948 0.48

0.07 0.0029 0.167 923 0.47 960 0.49

0.06 0.0025 0.143 927 0.47 941 0.49

0.05 0.0021 0.119 941 0.50 958 0.49

0.01 0.0004 0.024 953 0.50 948 0.48

0.005 0.0002 0.012 944 0.49 943 0.48

0.001 0.00004 0.002 952 0.50 959 0.49

3.7. Asymptotic Justification of Piecewise-Constant Approximation
We now present a limit theorem that provides useful insight into the performance of the CU KS test of
a NHPP with linear rate. We start with a non-constant linear arrival rate function λ as in (12) and then
scale it by multiplying it by n and letting n→∞. We show that as the scale increases, with the number of
subintervals increasing as the scale increases appropriately, the KS test results will behave the same as if
the NHPP had constant rate. We will reject if it should and fail to reject otherwise (with probability equal
to the significance level). In particular, it suffices to use kn equally spaced subintervals, where

kn√
n
→∞ as n→∞. (23)

In order to have the sample size in each interval also grow without bound, we also require that

n

kn
→∞ as n→∞. (24)

For example, kn = np satisfies both (23) and (24) if 1/2< p< 1.

THEOREM 6. (asymptotic justification of the piecewise-constant approximation of linear arrival rate
functions) Suppose that we consider a non-constant linear arrival rate function over the fixed interval [0, T ]
as above scaled by n. Suppose that we use the CU KS test with any specified significance level α based
on combining data over kn subintervals, each of width T/kn. If conditions (23) and (24) hold, then the
probability that the CU KS test of the hypothesis of a Poisson process will reject the NHPP converges to α
as n→∞. On the other hand, if

kn√
n
→ 0 as n→∞, (25)

then the probability that the CU KS test of a Poisson process will reject the NHPP converges to 1 as n→∞.

Proof. Recall that the critical value δ(n,α) of the CU KS test statisticDn has the form cα/
√
n as n→∞,

where n is the sample size (see Simard and L’Ecuyer (2011)), and here the sample size is Kn for all n,
where K is some constant. Let D(n) be D above as a function of the parameter n. Hence, we can compare
the asymptotic behavior of δ(n,α) to the asymptotic behavior of D(n), which has been determined above.



Kim and Whitt: Are Call Center and Hospital Arrivals Well Modeled by NHPPs?
16 Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the mansucript number!)

Theorem 5 shows that D(n) is asymptotically of the form C/kn. Hence, it suffices to compare kn to
√
n as

in (23) and (25).
In §5 of the online supplement we conduct a simulation experiment to illustrate Theorem 6. In §6 of the

online supplement we also obtain an asymptotic result paralleling Theorem 6 for a piecewise-continuous
arrival rate function where each piece is Lipschitz continuous.

4. Combining Data from Multiple Days: Possible Over-Dispersion
When the sample size is too small, it is natural to combine data from multiple days. For example, we may
have hospital emergency department arrival data and we want to test whether the arrivals from 9am to 10am
can be modeled as an NHPP. However, if there are only 10 arrivals in [9,10] on average, then data from one
day alone will not be sufficient to test the PP property. A common way to address this problem is to combine
data from multiple days; e.g., we can use all interarrival times in [9,10] from 20 weekdays, which will give
us a sample size of about 200 interarrival times. From Kim and Whitt (2014), we know that sample size is
sufficient.

In call centers, as in many other service systems, it is well known that there typically is significant
variation in the arrival rate over the hours of each day and even over different days of the week. It is thus
common to estimate the arrival rate for each hour of the day and day of the week by looking at arrival
data for specified hours and days of the week, using data from several successive weeks. The natural null
hypothesis is that those counts over successive weeks are i.i.d. Poisson random variables. However, that
null hypothesis should not be taken for granted. Indeed, experience indicates that there often is excessive
variability over successive weeks. When that is found, we say that there is over-dispersion in the arrival
data.

In some cases, over-dispersion can be explained by special holidays and/or seasonal trends in the arrival
rate. The seasonal trends often can be identified by applying time-series methods. However, it can be the
case that the observed over-dispersion is far greater than can be explained in those systematic ways, as we
will illustrate for the arrival data from a banking call center in §5.

4.1. Directly Testing for Over-Dispersion
In the spirit of the rest of this paper, we recommend directly testing whether or not there is over-dispersion
in arrival data. The null hypothesis is that the hourly arrival counts at fixed hours on fixed days of week over
a succession of weeks constitute independent Poisson random variables with the same mean. A commonly
used way to test if n observations x1, . . . , xn can be regarded as a sample from n i.i.d. Poisson random
variables is the dispersion test, involving the statistic

D̄ ≡ D̄n ≡
(n− 1)σ̄2

n

x̄n
=

∑n

i=1(xi− x̄n)2

x̄n
, where

σ̄2 ≡ σ̄2
n ≡

∑n

i=1(xi− x̄n)2

n− 1
and x̄≡ x̄n ≡

∑n

i=1 xi
n

; (26)

e.g., see Kathirgamatamby (1953). Since we are concerned with excessive variability, we consider the one-
sided test and reject if D̄n > δ(n,α) where P (D̄n > δ(n,α)|H0) = α, again using α= 0.05. Under the null
hypothesis, D̄n is distributed as χ2

n−1, a chi-squared random variable with n− 1 degrees of freedom, which
in turn is distributed as the sum of squares of n − 1 standard normal random variables. Thus, under the
null hypothesis, E[D̄n|H0] = n−1, V ar(D̄n|H0) = 2(n−1) and (χ2

n−n)/
√

2n converges to the standard
normal as n increases. Thus δ(n,0.05) = χ2

n−1,0.95, the 95th percentile of the χ2
n−1 distribution.

See Brown and Zhao (2002) for a discussion and comparison of several tests of the Poisson hypothesis.
The dispersion test above is called the conditional chi-squared test in §3.3 there; it is shown to perform well
along with a new test that they introduce, which is based on the statistic

D̄bz ≡ D̄bz
n ≡ 4

n∑
i=1

(yi− ȳn)2 where yi ≡
√
xi + (3/8), (27)
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with ȳn = n−1
∑n

i=1 yi. Under the null hypothesis, D̄(bz)
n is distributed as χ2

n−1 as well. We used both tests
for over-dispersion and found that the results were very similar, so we only discuss D̄n in (26); see the
appendix for details.

4.2. Avoiding Over-Dispersion and Testing for it with KS Tests
An attractive feature of the KS tests based on the CU property is that we can avoid the over-dispersion
problem while testing for an NHPP. We can avoid the over-dispersion problem by applying the CU property
separately to intervals from different days and then afterwards combining all the data. When the CU property
is applied in this way, the observations become i.i.d. uniform random variables, even if the rates of the
NHPP’s are different on different days, because the CU property is independent of the rate of each interval.
Of course, when we apply KS tests based on the CU property in that way and conclude that the data is
consistent with an NHPP, we have not yet ruled out different rates on different days, which might be modeled
as a random arrival rate over any given day.

One way to test for such over-dispersion is to conduct the KS test based on the CU property by combining
data from multiple days, by both (i) combining all the data before applying the CU property and (ii) applying
the CU property to each day separately and then combining the data afterwards. If the data are consistent
with an NHPP with fixed rate, then these two methods will give similar results. On the other hand, if there
is significant over-dispersion, then the KS test will reject the NHPP hypothesis if all the data is combined
before applying the CU property. By conducting both KS tests of a PP, we can distinguish among three
alternatives: (i) PP with fixed rate, (ii) PP with random rate and (iii) neither of those.

5. Banking Call Center Arrival Data
We now consider arrival data from service systems, first a banking call center and then, in the next section,
a hospital emergency department. We use the same call center data used in Kim and Whitt (2013a,b),
from a telephone call center of a medium-sized American bank from the data archive of Mandelbaum
(2012), collected from March 26, 2001 to October 26, 2003. This banking call center had sites in New
York, Pennsylvania, Rhode Island, and Massachusetts, which were integrated to form a single virtual call
center. The virtual call center had 900 - 1200 agent positions on weekdays and 200 - 500 agent positions
on weekends. The center processed about 300,000 calls per day during weekdays, with about 60,000 (20%)
handled by agents, with the rest being served by Voice Response Unit (VRU) technology. In this study, we
focus on arrival data during April 2001. There are 4 significant entry points to the system: through VRU
∼92%, Announcement ∼6%, Message ∼1% and Direct group (callers that directly connect to an agent) ∼1%;
there are a very small number of outgoing and internal calls, and we are not including them. Furthermore,
among the customers that arrive to the VRU, there are five customer types: Retail ∼91.4%, Premier ∼1.9%,
Business ∼4.4%, Customer Loan ∼0.3%, and Summit ∼2.0%.

5.1. Variation in the Arrival Rate Function
Figure 5 shows average hourly arrival rate as well as individual hourly arrival rate for each arrival type on
Mondays. As usual, Figure 5 shows strong within-day variation. The variation over days of the week and
over successive weeks in this call center data can be visualized by looking at four plots shown in Figure 6.
The first plot on the left shows the average hourly arrival rate (per minute) over 18 weekdays (solid line)
along with the daily average (horizontal dashed line). The average for each hour is the average of the arrival
counts over that hour divided by 60 to get the average arrival rate per minute. The first plot also shows 95%
confidence intervals about the hourly averages, which are quite wide in the middle of the day.

Part of the variability seen in the first plot can be attributed to the day-of-the-week effect. That is shown
by the second plot, which displays the hourly averages for the five weekdays. From this second plot, we
see that the arrival rates on Mondays are the highest, followed by Tuesdays and then the others. Finally,
the third and fourth plots focus directly on the over-dispersion by displaying the hourly average rates by
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Figure 5 Call center arrivals: average and hourly arrival rates for 5 Mondays.
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Figure 6 Average arrival rates. From left to right: Overall and hourly rates for 18 weekdays, arrival rates by
each day of week, arrival rates on Monday, and arrival rates on Wednesday.
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specific days of the week, in particular, for Mondays and Wednesdays. Even when restricting attention to a
single day of the week, we see considerable variation.

However, it remains to quantify the variation. When we applied the dispersion test to the call center data,
we found overwhelming evidence of over-dispersion. That is illustrated by the test results for 16 hours on
16 Fridays. Since the sample size for each hour was n= 16, E[D̄n|H0] = 15 and V ar(D̄n|H0) = 30. The
95th and 99th percentiles of the χ2

15 distribution are, respectively, 25.0 and 30.6. However, the 16 observed
values of D̄n corresponding to the 16 hours on these Fridays ranged from 163.4 to 1068.7, with an average
of 356. The average value of D̄n exceeds the 99th percentile of the chi-squared distribution by a factor of
10. Moreover, the sample sizes were not small; the average hourly counts ranged from 29 to 503.
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5.2. One Interval with Nearly Constant Arrival Rate
Figure 5 shows that the VRU - Summit arrival rate at the call center is nearly constant in the interval [14,15]
(i.e., from 2pm to 3pm). We want to test whether the arrival process in [14,15] can be regarded as a PP.
Consistent with the observations above, we see that there is a strong day-of-the-week effect. When we
applied the dispersion test to all 30 days, we obtained D̄n = 2320, whereas δ(30,0.05) = 43.8. When we
considered individual days of the week, we had 4 samples for each weekday and 5 for each weekend day.
For Saturday we had D̄n = 13.3, while δ(5,0.05) = 9.5 and δ(5,0.01) = 13.3, showing that the p-value is
0.01, but in the other cases the D̄n values ranged from 32.8 to 90.7, so that the arrival data for the time
interval [14,15] on a fixed day of the week exhibits strong over-dispersion.

Since the arrival rate is approximately constant over [14,15], we do not need to consider subintervals in
order to have a PC rate approximation. We can directly test for the PP, treating the data from separate days
separately (and thus avoiding the day-of-the-week effect and the over-dispersion over successive weeks).
First, we note that the arrival data were rounded to the nearest second. The results of the CU and Lewis KS
tests, with and without un-rounding, are shown in Table 6. Table 6 shows that the Lewis test fails to reject

Table 6 Results of KS Tests of PP for the interval [14,15]

Before un-rounding Un-rounded
Test Avg p-value # Pass Avg p-value # Pass
CU 0.54± 0.12 28 0.54± 0.12 28

Lewis 0.20± 0.08 19 0.49± 0.09 29

the PP hypothesis in 29 out of 30 cases after un-rounding, but in only 19 before un-rounding. Just as in
§2, the CU KS test fails to detect any problem caused by the rounding. Except for the over-dispersion, this
analysis supports the PP hypothesis for the arrival data in the single interval [14,15].

5.3. One Interval with Increasing Arrival Rate
Figure 5 shows that that the VRU - Summit arrival rate at the call center is nearly linear and increasing in
the interval [7,10]. We want to test whether the arrival process in [7,10] can be regarded as an NHPP.

Just as in the previous example, we see that there is a strong day-of-the-week effect. When we applied
to dispersion test to all 30 days, we obtained D̄n = 4257, whereas δ(30,0.05) = 43.8. When we considered
individual days of the week, we again had 4 samples for each weekday and 5 for each weekend day. For
Wednesday we had D̄n = 7.3, while δ(4,0.05) = 7.8 and δ(4,0.01) = 11.3, and the p-value is 0.06, but
for the other days of the week the D̄n values ranged from 64.5 to 418, so that the arrival data for the time
interval [7,10] on a fixed day of the week exhibits strong over-dispersion.

Since the arrival rate is nearly linear and increasing over [7,10], we need to use subintervals, as discussed
in §3. Table 7 shows the result of using different subinterval lengths, L = 3, 1.5, 1, and 0.5 hours. The
average number of arrivals over 30 days was 677.7 ± 111.1. We observe that more days pass the Lewis
test as we decrease the subinterval lengths (and hence make the piecewise-constant approximation more
appropriate in each subinterval). When we use L=0.5, all 30 days in April pass the Lewis test. We also see
the importance of un-rounding; with L=0.5, only 18 days instead of 30 days pass the Lewis test when the
arrival data are not un-rounded.

5.4. The KS Test of All the Call Center Arrival Data
We now consider all the call center arrival data. Table 8 shows the result of applying the Lewis test to all
the call center data by call type using subinterval length L equal to one hour to un-rounded arrival times
(detailed results as well as CU test results can be found in the appendix). We avoid the overdispersion by
applying the CU transformation to all hours separately and then combining the data. The average number
of observations, average p-value with associated 95% confidence intervals and the number of days (out of
30 days) that passed each test at significance level α= 0.05 are shown.



Kim and Whitt: Are Call Center and Hospital Arrivals Well Modeled by NHPPs?
20 Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the mansucript number!)

Table 7 Results of KS Tests of NHPP for the interval [7,10]

Before un-rounding Un-rounded
L (hours) Test Avg p-value # Pass Avg p-value # Pass
3 CU 0.00± 0.00 0 0.00± 0.00 0

Lewis 0.00± 0.01 1 0.04± 0.05 4

1.5 CU 0.02± 0.03 1 0.02± 0.03 1

Lewis 0.09± 0.08 7 0.26± 0.11 18

1 CU 0.08± 0.04 12 0.08± 0.04 12

Lewis 0.16± 0.08 15 0.48± 0.10 29

0.5 CU 0.23± 0.09 21 0.23± 0.10 21

Lewis 0.20± 0.09 18 0.51± 0.10 30

Table 8 Lewis KS test applied to the call center data by type with L= 1 and un-rounding.

Avg # Obs Avg p-value # Pass
VRU-Retail 1.4× 105± 1.5× 104 0.15± 0.09 11
VRU-Premier 2.9× 103± 2.6× 102 0.49± 0.10 30
VRU-Business 6.8× 103± 1.2× 103 0.49± 0.12 24
VRU-CL 4.3× 102± 5.7× 101 0.44± 0.12 25
VRU-Summit 3.3× 103± 5.7× 102 0.46± 0.10 28
Business 1.5× 103± 2.6× 102 0.44± 0.12 25
Announcement 9.7× 103± 1.4× 103 0.42± 0.13 22
Message 2.6× 103± 5.1× 102 0.50± 0.11 30
VRU-Retail [7,10] 3.5× 104± 4.6× 103 0.37± 0.12 22
VRU-Retail [10,13] 3.7× 104± 3.9× 103 0.15± 0.08 13
VRU-Retail [13,16] 2.8× 104± 3.3× 103 0.27± 0.11 20
VRU-Retail [16,19] 2.1× 104± 2.2× 103 0.45± 0.11 27
VRU-Retail [19,22] 1.4× 104± 1.2× 103 0.43± 0.11 27

The results of the tests lead us to conclude that the arrival data from all these groups of customers are
consistent with the NHPP hypothesis, with the possible exception of the VRU-Retail group. We conjecture
that the greater tendency to reject the NHPP hypothesis for the VRU-Retail group is due to its much larger
sample size. To test that conjecture, we reduce the sample size. We do so by further dividing the time
intervals into 3-hour long subintervals. Table 8 shows that we are much less likely to reject the NHPP null
hypothesis when we do this.

In conclusion, we find significant over-dispersion in the call center data, i.e., variation over successive
weeks in counts for the same hour on the same day of the week. Otherwise, we conclude that the arrival
data is consistent with the NHPP hypothesis. However, failure to reject the NHPP null hypothesis depends
critically on (i) un-rounding, (ii) properly choosing subintervals over which the rate can be regarded as
approximately constant and (iii) avoiding the over-dispersion by applying the CU transformation to different
hours separately.

6. Hospital Emergency Department Arrival Data
The emergency department (ED) arrival data are from one of the major teaching hospitals in South Korea,
collected from September 1, 2012 to November 15, 2012. We focus on 70 days, from September 1, 2012 to
November 9, 2012. There are two major entry groups, walk-ins and ambulance arrivals. On average, there
are 138.5 arrivals each day with ∼88% walk-ins and ∼12% ambulance arrivals. Figure 7 shows the average
hourly arrival rates for each arrival type on ten Mondays. We observe less within-day variation among the
ED arrivals than among the call center arrivals.
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Figure 7 Hospital ED arrivals: average and hourly arrival rates for 10 Mondays.
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We first apply the dispersion test to test the Poisson hypothesis for daily counts for all days (n = 70)
and all weekdays (n = 50), for all arrivals and by the two types. We can compare the dispersion statistic
D̄ values to χ2

n−1,1−α values: for each (n,α) pair: (70,0.05): 89.4, and (50,0.05): 66.3. The dispersion test
rejects the Poisson hypothesis for the walk-in arrivals and the daily totals, with 448 ≤ D̄n ≤ 520 in the 4
cases, while it does not reject for the ambulance arrivals, with D̄n = 79.8 for n = 70 (p-value 0.17) and
D̄n = 50.5 for n= 50 (p-value 0.42).

However, in the analysis above we have not yet considered the day-of-the-week effect. When we analyze
the walk-in arrivals by day of the week, we obtain n= 10 and χ2

n−1,1−α = 16.9 for (n,α) = (10,0.05). The
observed daily values of D̄n on the 7 days of the week, starting with Sunday, were 14.9, 9.4, 15.8, 10.7, 3.0,
25.3 and 14.4. Hence, we would reject the Poisson hypothesis only on the single day Friday. The associated
p-values were 0.09, 0.40, 0.07, 0.30, 0.97, 0.00 and 0.11. While we might want to examine Fridays more
closely, we tentatively conclude that there is no over-dispersion in the ED arrival data. We do not reject the
Poisson hypothesis for ambulance arrivals on all days and walk-in arrivals by day of the week.

Next, we apply the CU and Lewis KS tests of an NHPP to the ED arrival data. First, based on the
dispersion test results, we combine the data over the 10 weeks for each type and day of the week. We
consider two cases forL:L= 24 (the entire day) andL= 1 using single hours as subintervals. Table 9 shows
that, with un-rounding and subintervals of length L = 1, the Lewis test never rejects the PP hypothesis,
while the CU test rejects only once (Fridays). As before, using un-rounding and subintervals is critical to
these conclusions.

7. Conclusions
We examined call center and hospital arrival data and found that they are consistent with the NHPP hypoth-
esis, i.e., that the KS tests of an NHPP applied to the data fail to reject that hypothesis, except that significant
over-dispersion was found in the call center data. In particular: (i) variation in the arrival rate over the hours
of each day was very strong for the call center data and significant for the ED data, (ii) variation in the
arrival rate over the days of the week was significant for both the call center and ED data, except for ambu-
lance arrivals, and (iii) variation in the arrival rate over successive weeks for the same time of day and day
of week (over-dispersion) was significant for the call center data but not the ED data.

The analysis was not entirely straightforward. The majority of the paper was devoted to three issues that
need to be addressed and showing how to do so. §2 discussed data rounding, showing that its impact can
be successfully removed by un-rounding. Consistent with Kim and Whitt (2014), the Lewis test is highly
sensitive to the rounding, while the CU KS test is not. §3 discussed the problem of choosing subintervals so
that the PC rate function approximation is justified. Simple practical guidelines were given for (i) evaluating
any given subinterval in §3.4 and (ii) choosing an appropriate number of equally spaced subintervals in
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Table 9 KS tests of NHPP for the hospital ED data.

Before un-rounding Un-rounded
L= 24 L= 1 L= 24 L= 1

Type Day of Week n CU Lewis CU Lewis CU Lewis CU Lewis

Walk-In Mon 1599 0.00 0.00 0.34 0.00 0.00 0.00 0.97 0.62

Tues 1278 0.00 0.00 0.32 0.00 0.00 0.00 0.92 0.63

Wed 1085 0.00 0.00 0.15 0.00 0.00 0.04 0.13 0.94

Thurs 1063 0.00 0.00 0.58 0.00 0.00 0.02 0.68 0.36

Fri 1122 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.54

Sat 968 0.00 0.00 0.10 0.00 0.00 0.00 0.07 0.95

Sun 1298 0.00 0.00 0.26 0.00 0.00 0.00 0.90 0.93

Average 1201.9 0.00 0.00 0.25 0.00 0.00 0.01 0.53 0.71

# Pass (α= 0.05) 0/7 0/7 6/7 0/7 0/7 0/7 6/7 7/7

Ambulance Mon 160 0.94 0.00 0.16 0.00 0.94 0.34 0.34 0.24

Tues 162 0.08 0.00 0.19 0.00 0.08 0.69 0.16 0.88

Wed 152 0.01 0.00 0.85 0.00 0.01 0.93 0.95 0.32

Thurs 171 0.00 0.00 0.61 0.00 0.00 0.22 0.50 0.34

Fri 169 0.03 0.00 0.00 0.00 0.03 0.71 0.01 0.28

Sat 139 0.07 0.00 0.78 0.00 0.07 0.34 0.69 0.75

Sun 192 0.15 0.00 0.35 0.00 0.15 0.46 0.48 0.08

Average 163.6 0.18 0.00 0.42 0.00 0.18 0.53 0.45 0.41

# Pass (α= 0.05) 4/7 0/7 6/7 0/7 4/7 7/7 6/7 7/7

§3.6. Again consistent with Kim and Whitt (2014), the CU KS test is more sensitive to the deviation from a
constant rate function than the Lewis KS test. Finally, §4 discussed the problem of over-dispersion caused
by combining data from multiple days that do not have the same arrival rate. These three issues played an
important role for both sets of data.

References
Aksin, O. Z., M. Armony, V. Mehrotra. 2007. The modern call center: a multi-disciplinary perspective on operations

management research. Production Oper. Management 16 665–688.

Armony, M., S. Israelit, A. Mandelbaum, Y. Marmor, Y. Tseytlin, G. Yom-Tov. 2011. Patient flow in hospitals: a
data-based queueing-science perspective. New York University, http://www.stern.nyu.edu/om/faculty/armony/.

Asaduzzaman, M., T. J. Chaussalet, N. J. Tobertson. 2010. A loss network model with overflow for capacity planning
of a neonatal unit. Annals of Operations Research 178 67–76.

Avramidis, A. N., A. Deslauriers, P. L’Ecuyer. 2004. Modeling daily arrivals to a telephone call center. Management
Sci. 50 896–908.

Barbour, A. D., L. Holst, S. Janson. 1992. Poisson Approximation. Oxford University Press, Oxford, U. K.

Bassamboo, A., A. Zeevi. 2009. On a data-driven method for staffing large call centers. Operations Research 57(3)
714–726.

Brown, L., N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, L. Zhao. 2005. Statistical analysis of a telephone
call center: a queueing-science perspective. J. Amer. Stat. Assoc. 100 36–50.

Brown, L., L. H. Zhao. 2002. A test for the Poisson distribution. Sankhya: The Indian Journal of Statistics 64 611–625.

Cooper, R. B. 1982. Introduction to Queueing Theory. 2nd ed. North Holland, Amsterdam.

Daley, D. J., D. Vere-Jones. 2008. An Introduction to the Theory of Point Processes, vol. II. 2nd ed. Springer, Oxford,
U. K.

Durbin, J. 1961. Some methods for constructing exact tests. Biometrika 48(1) 41–55.



Kim and Whitt: Are Call Center and Hospital Arrivals Well Modeled by NHPPs?
Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the mansucript number!) 23

Ibrahim, R., P. L’Ecuyer, N. Regnard, H. Shen. 2012. On the modeling and forecasting of call center arrivals. Pro-
ceedings of the 2012 Winter Simulation Conference 2012 256–267.

Jongbloed, G., G. Koole. 2001. Managing uncertainty in call centers using Poisson mixtures. Applied Stochastic
Models in Business and Industry 17 307–318.

Kathirgamatamby, N. 1953. Note on the Poisson index of dispersion. Biometrika 40(1) 225–228.

Kim, S.-H., W. Whitt. 2013a. Statistical analysis with Little’s law. Operations Research 61(4) 1030–1045.

Kim, S.-H., W. Whitt. 2013b. Statistical analysis with Little’s law supplementary material: more on call center data.
Columbia University, http://www.columbia.edu/∼ww2040/allpapers.html.

Kim, S.-H., W. Whitt. 2014. Choosing arrival process models for service systems: Tests of a nonhomogeneous Poisson
process. Naval Research Logistics, Available at: http://www.columbia.edu/∼ww2040/allpapers.html.

Lewis, P. A. W. 1965. Some results on tests for Poisson processes. Biometrika 52(1) 67–77.

Li, A., W. Whitt. 2013. Approximate blocking probabilities for loss models with independence and distribution
assumptions relaxed. Performance Evaluation, Available online, August 13, 2013.

Litvak, N., M. van Rijsbergen, R. J. Boucherie, M. van Houdenhoven. 2008. Managing the overflow of intensive care
patients. European Journal of Operational Research 185 998–1010.

Mandelbaum, A. 2012. Service Engineering of Stochastic Networks web page: http://iew3.technion.ac.il/serveng/.

Marsaglia, G., W. W. Tsang, J. Wang. 2003. Evaluating Kolmogorov’s distribution. Journal of Statistical Software
8(18) 1–4.

Massey, F. J. 1951. The Kolmgorov-Smirnov test for goodness of fit. Journal of the American Statistical Association
461 68–78.

Massey, W. A., G. A. Parker, W. Whitt. 1996. Estimating the parameters of a nonhomogeneous Poisson process with
linear rate. Telecommunication Systems 5 361–388.

Miller, L. H. 1956. Table of percentage points of Kolmogorov statistics. Journal of the American Statistical Associa-
tion 51 111–121.

Pang, G., W. Whitt. 2012. The impact of dependent service times on large-scale service systems. Manufacturing and
Service Oper. Management 14(2) 262–278.

Simard, R., P. L’Ecuyer. 2011. Computing the two-sided Kolmogorov-Smirnov distribution. Journal of Statistical
Software 39(11) 1–18.

Whitt, W. 1982. Approximating a point process by a renewal process: two basic methods. Oper. Res. 30 125–147.

Whitt, W. 2002. Stochastic-Process Limits. Springer, New York.

Wilkinson, R. 1956. Theories of toll traffic engineering in the U.S.A. Bell System Technical Journal 35 421–514.


