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HEAVY-TRAFFIC LIMITS FOR NEARLY DETERMINISTIC QUEUES

KARL SIGMAN AND WARD WHITT,∗ Columbia University

Abstract

We establish heavy-traffic limits for nearly deterministic queues, such as the

G/D/n many-server queue. Since waiting times before starting service in the

G/D/n queue are equivalent to waiting times in an associated Gn/D/1 model,

where the Gn interarrival times are the sum of n consecutive interarrival times

in the original model, we focus on the Gn/D/1 model and the generalization

to Gn/Gn/1, where “cyclic thinning” is applied to both the arrival and service

processes. We establish different limits in two cases: (i) when (1− ρn)
√

n → β

as n → ∞ and (ii) (1 − ρn)n → β as n → ∞, where ρn is the traffic intensity

in model n. The nearly deterministic feature leads to interesting nonstandard

scaling.
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1. Introduction

A primary cause of congestion in a queueing system is stochastic fluctuations in the

arrival times and the service times. We say that a queueing system is nearly deter-

ministic if these stochastic fluctuations are low. At customary loads, the congestion

in a nearly deterministic queueing system will be negligible. However, if the system is

nearly deterministic, then it is natural to operate the system at higher loads. In this

paper we explore the interplay between low variability and high loads. In particular,

we establish heavy-traffic (HT) limits for some nearly deterministic queueing models.
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A classic example of a nearly deterministic queueing model is the GI/D/n mul-

tiserver queue when n is large. The GI/D/n model has n homogeneous servers

working in parallel, an unlimited waiting room, the first-come first-served (FCFS)

service discipline, identical deterministic service times and a renewal arrival process

with a general interarrival-time distribution. It is well known that waiting times (before

starting service) in this model can be identified with waiting times in the corresponding

GIn/D/1 model, where the GIn means that the arrival process is the renewal process

whose interarrival times are distributed as the sum of n interarrival times in the original

renewal arrival process; e.g., see Theorem 4.6.1 of [13]. That occurs because, without

loss of generality, the customers can be assigned to the servers in a round robin or cyclic

order. For large n, these GIn/D/1 models become nearly deterministic, approaching

the D/D/1 queue. Of course, the service times are completely deterministic from the

outset, but also the GIn interarrival times become nearly deterministic as n increases

by virtue of the law of large numbers. For example, if the original GI interarrival times

have squared coefficient of variation (scv, variance divided by the square of the mean)

c2
a, then the GIn interarrival times have scv c2

a/n, which converges to 0 as n →∞.

In applications, a Poisson arrival process is often a realistic assumption. The

reduction of M/D/n to En/D/1 for the waiting times is often mentioned in textbooks.

Otherwise, the renewal process assumption is not so realistic. Thus, it is important

that both the reduction of the GI/D/n model to the GIn/D/1 model and our HT

limits hold for more general “G” arrival processes. There are no algorithms available

to compute the steady-state waiting time distribution or even only its mean in the new

Gn/D/1 model. Thus, the simple approximations stemming from the HT limits we

establish here can be very useful. Consistent with the large body of HT literature,

we only assume that the general G arrival counting process or, equivalently, the

associated partial sums of consecutive interarrival times, satisfies a functional central

limit theorem (FCLT); see §4.4 of [14] for examples with dependence that are covered.

Motivated by the example above, we will consider the waiting time process in single-

server queues with the Gn/Gn/1 structure, where cyclic thinning is applied to both the

interarrival times and the service times. Our results cover the two models D/Gn/1

and Gn/D/1 as special cases, because Gn coincides with the original G when the G

is D; i.e., Dn = D. That is so, because the deterministic renewal process (D) is the
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unique fixed point among renewal processes of the operation mapping GI into GIn,

when we rescale to fix the mean. (Uniqueness follows immediately from the scv’s.)

When working with partial sums of interarrival times or service times, we let the new

sequence of Gn partial sums {Sn,k : k ≥ 1} be defined in terms of the sequence of

original G partial sums {S1,k : k ≥ 1} by letting Sn,k ≡ S1,kn/n, k ≥ 1; i.e., we scale

the index k in the original partial sums S1,k by n because we add n consecutive times,

but we also divide by n in order to keep the mean fixed in the identically distributed

case. It is easy to see that Dn = D with this construction.

If the traffic intensity ρn in the Gn/Gn/1 model (assumed well defined) is held

fixed at a stable value or, more generally, satisfies ρn → ρ < 1 as n → ∞, then the

Gn/Gn/1 model approaches the purely deterministic D/D/1 model, and the stationary

waiting time becomes asymptotically negligible. However, we let ρn ↑ 1 as n → ∞.

We thus obtain an interesting double limit, in which the models approach D/D/1,

while the traffic intensity increases. On the one hand, congestion should decrease,

because the models are becoming less variable, approaching D/D/1. On the other

hand, the congestion should increase because we let ρn ↑ 1. We let ρn approach 1 at

an appropriate rate so that we get revealing nondegenerate limits.

For the multiserver G/D/n model mentioned at the outset, the double limit coincides

with the familiar many-server HT limit, in which we let the traffic intensities ρn

approach 1 as the number of servers, n, increases, e.g., see [6, 10]. We consider

the so-called Halfin-Whitt or quality-and-efficiency-driven (QED) regime, in which

(1−ρn)
√

n → β, 0 < β < ∞. However, we also consider the case in which (1−ρn)n →
β, 0 < β < ∞. In that case, we obtain a nondegenerate limit for the un-normalized

waiting times.

The asymptotically-deterministic feature is critical for these new limits. For ex-

ample, the HT limits for the Gn/GI/1 model as n → ∞ with fixed service-time

distribution are significantly different in the two cases: (i) when the GI service-

time distribution is D and (ii) when the service-time distribution is not D (and

we do not perform the cyclic thinning on the service times, replacing GI by GIn).

When the service-time distribution is not deterministic, the Gn/GI/1 model is not

asymptotically deterministic as n → ∞. As a consequence, the HT limit agrees with

the conventional one for the corresponding D/GI/1 model, with the usual scaling,
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obtained by simply replacing the interarrival-time distribution in the Gn process by a

deterministic interarrival times with the same mean. In contrast, that is not the case

with the nearly deterministic Gn/D/1 model.

In many ways, the HT behavior of the Gn/Gn/1 models as n →∞ is different from

the conventional HT behavior of the GI/GI/1 model, discussed in Chapters 5 and 9

of [14]. Unlike the conventional HT theory for the GI/GI/1 model, for the Gn/Gn/1

models there need not be any spatial scaling. In the conventional HT limit, the queue-

length and waiting time processes have the same asymptotic behavior; both processes

behave like reflected Brownian motion, after the same scaling. In contrast, for the

Gn/Gn/1 models, the waiting-time and queue-length processes look very different.

To illustrate these differences, and to provide motivation for the results to follow,

we now plot sample paths of the waiting times (before starting service) of successive

arrivals and the continuous-time queue-length process from one simulation run of the

E100/D/1 queue with traffic intensity ρ = 0.99 and unit service times. Figure 1 shows

the waiting times at arrival epochs and the continuous-time queue length process,

starting empty, in the final subinterval of length 200 ending at t = 5 × 104 from a

single run over the time interval [0, 5× 104]. (The entire sample paths are displayed in

the appendix.)

First, all values of both processes over the full time interval of length 50, 000 fall in

the interval [0, 5] without any spatial scaling. The waiting times are comparable to the

unit service times, e.g., the average waiting time is about 0.5. Second the waiting-time

plots look continuous, like a plot of reflected Brownian motion, which we will show is

indeed its HT limit. In contrast, the queue-length process is integer-valued, making

frequent jumps of size 1. Evidently its limiting behavior is more complicated. We will

explain these plots in the rest of this paper.

2. Related literature and organization

Three motivating precedents. In doing this work, we were motivated by three

precedents in the literature: (i) the 1993 paper by Abate, Choudhury and Whitt [1],

(ii) the 1996 paper by Song and Zipkin [12] and (iii) the 2004 paper by Jelenkovic,

Mandelbaum and Momcilovic [7].
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Figure 1: Simulation plots of the waiting times at arrival epochs and queue lengths at

arbitrary times in the E100/D/1 model with ρ = 0.99, starting empty, for a time interval of

length 200 ending at t = 50, 000.

In [1], the authors developed an algorithm to compute the distribution and its

cumulants of the steady-state waiting-time distribution in general GI/GI/1 queues.

In order to demonstrate the power of this algorithm, examples of various models were

considered that should be challenging by other methods. Example 3.1 of [1] considers

the high-order Erlang model En/En/1. The algorithm was applied for n = 10k for

k = 1, . . . , 4. However, it was observed that the waiting time would become negligible

unless the traffic intensity ρn in model n were allowed to increase with n. Numerical

results in Table 1 of [1] show that the waiting time distribution converges to a mean-

1 exponential distribution as n → ∞ when (1 − ρn)n = 1 as n → ∞. Table 1 of

[1] show that the HT approximation is remarkably accurate for the En/En/1 model

with large n. At that time, this limiting result was confirmed mathematically using

the transform method for establishing HT limits due to Kingman [8]. Here we show

that result generalizes, first, to more general models, second, to transient as well as

steady-state waiting times and, third, to other related processes, such as the queue

length.
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In [12], the authors studied a basic (r, q) inventory model, in which the demand

forms a Poisson process at rate λ and the lead times are i.i.d. distributed as L. Every

qth demand from the Poisson process triggers an order requiring time L to arrive. Thus

there is a Eq/GI/∞ queue in the background. They were interested in the joint effect

upon performance of V ar(L) and the lot size q. Because the model is intractable,

they use a HT approximation. They first consider the case of deterministic lead times,

yielding the Ek/D/∞ queue. They then apply the standard HT limit for the GI/D/∞
queue, as in [5]. They then make the observation (on p. 1356) that the “interesting”

(e.g., optimal) value for q should be of O(
√

λ). That observation suggests considering

the joint HT limit in which λ → ∞ and q ≡ q(λ) → ∞ with q(λ) =
√

λ. However,

as in [5], in the G/D/∞ model the queue length (number of busy servers) at time t,

Q(t), can be expressed directly in terms of the arrival counting process N(t): with unit

service times Qq(t) = Nq(t)−Nq(t− 1). Thus, it is natural to ask about limits for the

counting process in which λ → ∞ and q ≡ q(λ) → ∞ with q(λ) =
√

λ. The counting

process {Nq(t) : t ≥ 0} itself is interesting, being a deterministic cyclic thinning of

a base counting process. We investigate these counting processes here in §5.We show

that a conventional HT limit does not exist, but unconventional ones do.

In [7], the authors establish a HT limit for the steady-state waiting time in the

GI/D/n model. They consider the conventional QED many-server regime in which

(1− ρn)
√

n → β, 0 < β < ∞. Under that scaling, they obtained a nondegnerate limit

for the scaled steady-state waiting time
√

nWn,∞ (which implies that Wn,∞ ⇒ 0).

This attracted our attention, because at first it seemed inconsistent with the previous

results in [1]. At first, we thought that one must be incorrect, but later we discovered

that was not so. We demonstrate that here, by obtaining HT limits in both regimes:

(1− ρn)
√

n → β and (1− ρn)n → β.

Organization. In §3 we review the framework for the conventional HT limit for

the waiting times in the single server queue. In §4 we establish the HT FCLT’s for

the waiting times in the Gn/Gn/1 model with the two different scalings by exploiting

§3. In §5 we establish limits for associated counting processes. These require further

unconventional scaling plus an unconventional space and topology. In §6 we obtain

heavy-traffic limits for associated continuous-time processes, such as the workload and
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queue length. In §7 we obtain a HT FCLT for the Gn/D/∞ model related to the

motivating inventory problem from [12].

We have also done related work. In [11] we obtain additional heavy-traffic limits for

the stationary distributions. In [9] we study the heavily loaded GI/D/n + GI many-

server queue with customer abandonment (the +GI). We show that the nearly deter-

ministic nature leads to nearly periodic behavior, which can be understood through a

careful study of the limiting deterministic fluid model.

3. Background for general single-server queues

The proofs of the HT limits for the Gn/Gn/1 models in §4 are shortened by making

connections to conventional HT limit for the G/G/1 model. Hence we review that

framework; for more, see Chapters 5 and 9 of [14].

3.1. The standard double-sequence framework

Consider a sequence of general single-server queues with unlimited waiting room

and the FCFS service discipline, indexed by n ≥ 1. For n ≥ 1, let the model be

specified by a sequence {(Un,k, Vn,k−1) : k ≥ 1} of ordered pairs of random variables,

with Un,k representing the interarrival time between customers k − 1 and k and Vn,k

representing the service time of customer k. Let a 0th customer arrive at time 0 and

experience an initial wait Wn,0. (That is due to customers initially in the system at

time 0. To describe the waiting times of new customers, we do not need to identify

these old customers and their service times.) Let Wn,k be the waiting time (before

beginning service) of customer k in model n, defined recursively by

Wn,k ≡ [Wn,k−1 + Vn,k−1 − Un,k]+, k ≥ 1, (3.1)

where [x]+ ≡ max {x, 0}. As a consequence, the waiting times can be expressed via

Wn,k = Wn,0 + Sn,k − min
0≤j≤k

{(Wn,0 + Sn,j) ∧ 0}, k ≥ 0, (3.2)

where a ∧ b ≡ min {a, b},

Sn,k ≡ Xn,1 + · · ·+ Xn,k for Xn,k ≡ Vn,k−1 − Un,k, k ≥ 1, (3.3)
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with Sn,0 ≡ 0, so that Sn,k = Sv
n,k − Su

n,k with

Su
n,k ≡ Un,1 + · · ·+ Un,k, Sv

n,k ≡ Vn,0 + · · ·+ Vn,k−1, k ≥ 1, (3.4)

Sv
n,0 ≡ 0 and Su

n,0 ≡ 0; see §9.2 of [14].

Formula (3.2) is a discrete reflection map, mapping the space R∞ of sequences

x ≡ {xk : k ≥ 0} into itself; i.e., Wn = φ̃(Wn,0 + Sn) for Wn ≡ {Wn,k : k ≥ 0},
Sn ≡ {Sn,k : k ≥ 0} and Wn,0 + Sn ≡ {Wn,0 + Sn,k : k ≥ 0}, where φ̃ : R∞ → R∞ is

defined by

φ̃(k) ≡ xk − min
0≤j≤k

{xj ∧ 0}, k ≥ 0. (3.5)

The standard HT limit is for a sequence of random elements in the function space

D ≡ D([0,∞),R) of all right-continuous real-valued functions on the positive half line

with limits from the left everywhere (except at 0), endowed with the standard Skorohod

(J1) topology; see [3, 14]. The HT limit involves scaling space and time. For a real

number t, let btc be the floor function, giving the greatest integer less than or equal to

t. Let random elements associated with the sequences above be defined by

Su
n(t) ≡

Su
n,bntc − bntc

√
n

, Sv
n(t) ≡

Sv
n,bntc − bntc

√
n

,

Sn(t) ≡ Sn,bntc√
n

and Wn(t) ≡ Wn,bntc√
n

. (3.6)

Let Dk ≡ D × · · · ×D be the k-fold product space of D with itself; let C and Ck

be the subsets of continuous functions in D and Dk, respectively, and let ⇒ denote

convergence in distribution. Let φ : D → D be the one-dimensional reflection map,

defined by

φ(x)(t) ≡ x(t)− inf
0≤s≤t

{x(s) ∧ 0}, t ≥ 0; (3.7)

see §§3.5 and 13.5 of [14]. The following result is now well known; see Chapter 9 of

[14], especially Theorems 9.3.1 and 9.3.3.

Theorem 3.1. (HT limit for the waiting times in G/G/1 models) If

(Wn(0),Su
n,Sv

n) ⇒ (W(0), Lu, Lv) in R×D2, (3.8)

where P ((Lu, Lv) ∈ C2) = 1, then

(Su
n,Sv

n,Sn,Wn) ⇒ (Lu, Lv, L,W) in D4 as n →∞, (3.9)

where L ≡ Lv − Lu, W ≡ φ(W(0) + L) and the limit is in C4 w.p.1.
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Proof. Apply the continuous mapping theorem with the addition and reflection

functions, because Wn(0) + Sn = Wn(0) + Sv
n − Su

n and Wn = φ(Wn(0) + Sn).

3.2. Scaling unit-rate processes

For simplicity, and without practical loss of generality, we can construct the se-

quence of sequences {{(Un,k, Vn,k−1) : k ≥ 1} : n ≥ 1} specifying the sequence of

queueing models starting from a single sequence of ordered pairs of random variables

{(Uk, Vk−1) : k ≥ 1}. This simplification is important for us, because we want to

simultaneously consider different scaling in a common framework.

Paralleling (3.4), let

Su
k ≡ U1 + · · ·+ Uk, and Sv

k ≡ V0 + · · ·+ Vk−1, k ≥ 1, (3.10)

Sv
0 ≡ 0 and Su

0 ≡ 0.

We have not yet specified any specific stochastic properties. As a canonical case, we

have in mind the special case in which {Uk : k ≥ 1} and {Vk−1 : k ≥ 1} are independent

sequences of i.i.d. random variables with means E[Uk] = E[Vk] = 1. With that case

in mind (but not assumed), we define the usual sequence of random elements of D

associated with this sequence (Ŝu, Ŝv) ≡ {(Ŝu
k , Ŝv

k) : k ≥ 0} by

Ŝu
n(t) ≡

Su
bntc − bntc
√

n
, and Ŝv

n(t) ≡
Sv
bntc − bntc
√

n
, t ≥ 0. (3.11)

In this context, our basic assumption is that the sequence {(Ŝu
n, Ŝv

n) : n ≥ 1} converges,

i.e., the partial sums satisfy a joint FCLT.

To construct a sequence of G/G/1 models in which the arrival rate and, thus, the

traffic intensity are ρn in model n, where ρn ↑ 1 as n → ∞, we use the given service-

time sequence for all n and introduce extra scaling in the interarrival times; i.e., we

let

Vn,k ≡ Vk and Un,k ≡ Uk

ρn
for all n, k ≥ 1, (3.12)

with the understanding that 0 < ρn < 1 and that we intend to let ρn ↑ 1 as n → ∞.

We have thus defined a sequence of queueing models as in §3.1.

We are now ready to establish the HT limit theorem for the waiting times in this

context. For that purpose, let e be the identity function in D, i.e., e(t) = t, t ≥ 0, and

let d= mean equality in distribution (as a process). We will also describe the standard
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special case, which involves standard Brownian motion (BM), which has zero drift

and unit diffusion coefficient. Then the HT limit φ(L) for the waiting times becomes

reflected Brownian motion (RBM) with negative drift.

Theorem 3.2. (HT limit in the single sequence framework) Suppose that

(Wn(0), Ŝu
n, Ŝv

n) ⇒ (W(0), L̂u, L̂v) in R×D2 (3.13)

for (Ŝu
n, Ŝv

n) in (3.11), where P ((L̂u, L̂v) ∈ C2) = 1. If

(1− ρn)
√

n → β, 0 ≤ β < ∞, as n →∞, (3.14)

then the conditions and conclusions of Theorem 3.1 hold with

Lu = L̂u + βe and Lv = L̂v. (3.15)

If, in addition,

(L̂u, L̂v) = (σuBu, σvBv), (3.16)

where W(0), Bu and Bv are mutually independent, and Bu and Bv are standard BM’s,

then L ≡ Lv −Lu d= σB − βe, B is a standard BM and σ2 + σ2
u + σ2

v, so that the limit

(3.9) holds with Wn ⇒ W ≡ φ(W(0) + L) = φ(W(0) + σB− βe), which is RBM with

drift −β starting at an independent random initial state W(0). Furthermore, if (3.13)

also holds with W(0) exponentially distributed with mean σ2/2β, then the limit W is

a stationary RBM.

Proof. Under condition (3.14),

1
ρn

=
1

1− (β/
√

n) + o(1/
√

n)
= 1 + (β/

√
n) + o(1/

√
n) (3.17)

as n →∞. Hence

Su
n(t) = Ŝu

n(t) +
(

Su
bntc
n

)
(β + o(1)) (3.18)

as n →∞. The assumed FCLT implies a corresponding FWLLN, so that Ŝu
n/
√

n ⇒ 0e

as n → ∞. Hence, the second term on the right in (3.18) converges to βe, so that

the conditions of Theorem 3.1 are satisfied with (3.15). The RBM converges to an

exponential distribution with mean σ2/2β as t →∞.
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4. Two heavy-Traffic limits for Gn/Gn/1 models

In the setting of §3.1, involving a sequence of G/G/1 queueing models indexed by

n, we can obtain a sequence of nearly deterministic queueing models if we assume that

cyclic thinning is performed on both the interarrival times and the service times for

the nth queueing model, with the cycle length increasing as n → ∞. With “cyclic

thinning” of a point process of order n, we select every nth point; i.e., the kth point in

the thinned process is point kn of the original process. In this context, we call n the

cycle length. In this section we assume that the cycle length in model n is n, and refer

to the model as the Gn/Gn/1 model. In this way, we map an original “base” sequence

of G/G/1 models into a sequence of Gn/Gn/1 models.

In the framework of §3.1 above, we replace the partial sums Su
n,k and Sv

n,k with new

partial sums Sc,u
n,k and Sc,v

n,k defined by

Sc,u
n,k ≡ Su

n,kn/n and Sc,v
n,k ≡ Sv

n,kn/n for all n ≥ 1 and k ≥ 1. (4.19)

Then let the associated interarrival times and service times be defined in terms of the

increments by

U c
n,k ≡ Sc,u

n,k − Sc,u
n,k−1 and V c

n,k−1 ≡ Sc,v
n,k − Sc,v

n,k−1, (4.20)

From (4.19) and (4.20), we see that each new interarrival time is the sum of n of the

original interarrival times in model n, but we also divide the sums by n to leave the

means unchanged (in the case of identically distributed random variables).

We also must treat the initial conditions. We assume that does not get transformed

by cyclic thinning. Hence, we have Sc
n,0 ≡ Sn,0 ≡ Wn,0 for each n. We will assume

that the initial conditions scale differently. However, there would be no difference if

the systems start empty.

In this section we will show that HT limits for a base sequence of G/G/1 “base”

models translate into corresponding HT limits for the sequence of Gn/Gn/1 models.

We will show that this can be done in two different ways, depending upon the scaling.

We will get different limiting behavior in the two cases:

(i) (1− ρn)
√

n → β as n →∞, where 0 < β < ∞ and

(ii) (1− ρn)n → β as n →∞, where 0 < β < ∞. (4.21)
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Case (i) in (4.21) is the traditional scaling used in §3. However, because of the nearly

deterministic nature of the queueing models, we need to scale up the waiting times

by
√

n in order to get a nondegenerate limit in case (i). That is in stark contrast

with (3.5), where we had to scale down the waiting times by
√

n. For the first case,

the stationary waiting times were treated previously in [7] for the special case of the

GIn/D/1 model, which has the GI/D/1 base model. In case (ii), even with the more

rapid increase of ρn, we obtain a nondegenerate limit for the waiting times without

any spatial scaling.

4.1. Limits for scaled waiting times in case (i)

We will express the HT limit for case (i) in terms of random elements of R∞, using

the discrete reflection map φ̃ defined in (3.5). For that purpose, we introduce the

following random elements of R∞: let

S̃c,u
n (k) ≡ √

n(Sc,u
n,k − k), S̃c,v

n (k) ≡ √
n(Sc,v

n,k − k),

S̃c
n(k) ≡ √

nSc
n,k, and W̃ c

n(k) ≡ √
nW c

n,k, k ≥ 1, n ≥ 1, (4.22)

with S̃c
n(0) ≡ √

nSn,0 ≡
√

nWn,0, where (Sc,u
n,k, Sc,v

n,k) is defined in (4.19), Sc
n,k ≡ Sc,v

n,k −
Sc,u

n,k and W c
n,k is defined in terms of {Sc

n,k : k ≥ 0} as in (3.1). The scaling in which

we multiply by
√

n converts the HT problem into a model continuity problem. When

we consider HT limits for the stationary waiting times in [11], we apply the model

continuity results in §X.6 of [2] and Chapter 4 of [4].

Theorem 4.1. (HT limit for the scaled waiting times in the Gn/Gn/1 models) Con-

sider a sequence of Gn/Gn/1 models associated with a base sequence of G/G/1 models

satisfying

(
√

nWn,0,Su
n,Sv

n) ⇒ (W̃ (0), Lu, Lv) in R×D2, (4.23)

where P ((Lu, Lv) ∈ C2) = 1, as in Theorem 3.1, but the scaling of the initial conditions

is changed. Then

(W̃ c
n(0), S̃c,u

n , S̃c,v
n , S̃c

n, W̃ c
n) ⇒ (W̃ c(0), L̃u, L̃v, L̃, W̃ ) in R× (R∞)3, (4.24)

where W̃ ≡ φ̃(W̃ (0) + L̃) for φ̃ defined in (3.5), L̃ ≡ L̃v − L̃u, L̃u(k) ≡ Lu(k) and

L̃v(k) ≡ Lv(k), k ≥ 1, with (Lu, Lv) from (3.8).
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Proof. By (4.19) and (4.22), (W̃ c
n(0), S̃c,u

n (k), S̃c,v
n (k)) = (

√
nWn,0,Su

n(k),Sv
n(k)) for

k ≥ 1, where (Su
n,Sv

n) is the random element of D2 defined in (3.6). By (4.23),

(
√

nWn,0,Su
n,Sv

n) ⇒ (W̃ (0), Lu, Lv). Applying the continuous mapping theorem with

the projection map for the last two components, π1,2,...,k : R × D2 → R × (R2)k ≡
R2k+1, defined by π1,2,...,k(a, x) ≡ (a, x(1), x(2), . . . x(k)), we deduce convergence on

the initial segments, which implies convergence of the first three components of (4.24)

in R × (R∞)2. We apply the continuous mapping theorem again with addition and

discrete reflection to treat the final two components.

If we impose all the additional conditions in Theorem 3.2, then we obtain a reflected

Gaussian random walk as a limit; we treat the stationary distributions in [11].

Corollary 4.1. (HT limit for the scaled waiting times in standard Gn/Gn/1 models)

Consider a sequence of Gn/Gn/1 models associated with a base sequence of G/G/1

models satisfying

(
√

nWn,0, Ŝu
n, Ŝv

n) ⇒ (W̃ (0), L̂u, L̂v) in R×D2 (4.25)

for (Ŝu
n, Ŝv

n) in (3.11), where P ((L̂u, L̂v) ∈ C2) = 1. If (1−ρn)
√

n → β, 0 < β < ∞ as

n →∞, as in (3.14). then the limit in (4.24) holds with Lu = L̂u+βe and Lv = L̂v.

If, in addition, condition (3.16) of Theorem 3.2 holds, then L = σB−βe, where B is a

standard BM and e is the identity map in D, so that W̃ becomes a reflected Gaussian

random walk with negative drift, starting at the independent initial state W̃ (0), in

particular,

W̃ ≡ {W̃ (k) : k ≥ 0} = {φ̃(W̃ (0) + σB − βe)(k) : k ≥ 1} in R∞. (4.26)

4.2. Limits for unscaled waiting times in case (ii)

We now obtain a different limit in case (ii) of (4.21). Here it will be convenient to

exploit the single-sequence framework of §3. In this case, we express the HT limit in



14 Karl Sigman and Ward Whitt

terms of random elements of D. For that purpose, let

Sc,u
n (t) ≡ Sc,u

n,bntc − bntc =
Su

nbntc
ρnn

− bntc,

Sc,v
n (t) ≡ Sc,v

n,bntc − bntc =
Sv

n,nbntc − nbntc
n

=
Sv

nbntc − nbntc
n

,

Sc
n(t) ≡ Sc

n,bntc =
Sv

n,nbntc
n

−
Su

n,nbntc
ρnn

= (Sc,v
n − Sc,u

n )(t),

Wc
n(t) ≡ W c

n,bntc =
Wn,nbntc

n
= φ(Wc

n(0) + Sc
n)(t). (4.27)

Theorem 4.2. (HT limit for the unscaled waiting times in the Gn/Gn/1 models)

Consider a sequence of Gn/Gn/1 models associated with a single base G/G/1 model

satisfying

(Wn,0, Ŝu
n, Ŝv

n) ⇒ (Wc(0), L̂u, L̂v) in R×D2 (4.28)

for (Ŝu
n, Ŝv

n) in (3.11), where P ((L̂u, L̂v) ∈ C2) = 1 (just as in (3.13) except for the

initial conditions). Instead of condition (3.14) of Theorem 3.2, assume that

(1− ρn)n → β, 0 < β < ∞, as n →∞, (4.29)

as in case (ii) of (4.21). Then, as n →∞,

(Sc
n(0),Sc,u

n ,Sc,v
n ,Sc

n,Wc
n) ⇒ (Wc(0), L̂u + βe, L̂v, L,Wc) in R×D4, (4.30)

where Wc ≡ φ(Wc(0) + L), φ is given in (3.7), L ≡ L̂v − L̂u− βe and (L̂u, L̂v) comes

from (3.13). If, in addition condition (3.16) of Theorem 3.2 holds, then L
d= σB − βe,

where B is a standard BM and σ2 = σ2
u + σ2

v.

Proof. We are exploiting the single-sequence framework in §3.2, because the final

expressions in the first two rows in (4.27) above involve only the single sequence. We

will relate our processes (Sc,u
n ,Sc,v

n ) directly to these. From the formulas in (4.27), we

see that Sc,v
n (t) = Ŝv

n2(t) for t = k/n for all nonnegative integers n and k, while Sc,v
n

is constant in all intervals [k/n, (k + 1)/n). Now let ‖ · ‖t be the uniform norm for

Rk-valued functions on the interval [0, t], using the maximum norm | · | in Rk, and let

the modulus of continuity be defined for any x ∈ D by

wx(δ, t) ≡ sup {|x(t1)− x(t2)| : 0 ≤ t1 < t2 ≤ t, |t2 − t1| < δ}. (4.31)
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Hence,

‖Sc,v
n − Sv

n2‖t ≤ wSv
n2

(1/n, t) for each n ≥ 1 and t > 0. (4.32)

By (3.13) and the fact that P (L̂v ∈ C2) = 1, we have wŜv
n2

(1/n, t) ⇒ 0 as n → ∞,

which with (4.32) implies that

‖Sc,v
n − Ŝv

n2‖t → 0 as n →∞. (4.33)

A minor modification of the same reasoning applies to Sc,u
n (t). We need to be more

careful because of the extra scaling by ρn. For that purpose, we introduce the fluid

scaled process

S̄u
n(t) ≡

Su
bntc
n

, t ≥ 0. (4.34)

Given the assumed limit in (3.13), we have the extension (Ŝu
n, S̄u

n, Ŝv
n) ⇒ (L̂u, e, L̂v) in

D3. Now, using the reasoning in (3.17) and (3.18), we observe that

Sc,u
n (t) = Zn2(t) ≡ Ŝu

n2(t) + (β + o(1))S̄u
n2(t) (4.35)

for t = k/n for all integers k ≥ 0 and n ≥ 1, while Sc,u
n remains constant in each

interval [k/n, (k + 1)/n). Hence, reasoning as for Sc,v
n above, we have

‖Sc,u
n − Zn2‖t ≤ wZn2 (1/n, t) for each n ≥ 1 and t > 0. (4.36)

Since Zn ⇒ L̂u + βe, where P (L̂u + βe ∈ C) = 1, we have wZn2 (1/n, t) ⇒ 0 as n →∞
for all t > 0. Combining the results above, we have

‖(Wn,0,Sc,u
n ,Sc,v

n )− (Wn,0, Zn2 ,Sv
n2)‖ ⇒ 0. (4.37)

That in turn, with the “convergence-together theorem,” Theorem 11.4.7 of [14], implies

convergence for the first three terms in (4.30). Finally, we apply the continuous

mapping theorem with subtraction and reflection to get the full limit in (4.30).

Remark 4.1. (practical significance of the scaling) We want to emphasize the practical

significance of the scaling of space and time in Theorem 4.2. To do so, it is helpful to

focus on a single system with traffic intensity ρ, which we can relate to n by replacing

the assumed growth condition by an equality. For the original G/G/1 model, with

(1− ρ)
√

n → β, we have n−1/2Wn,bntc ⇒ φ(L)(t). Hence, letting (1− ρ)
√

n = β = 1,
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we see that, for higher values of ρ, W ρ
k should be of order O(1/(1−ρ)), while significant

changes occur over time intervals of length O(1/(1− ρ2)).

In contrast, with cyclic thinning, we have the alternative growth condition (1−ρ)n →
β in (4.29), under which W c

n,bntc ⇒ φ(L)(t). Now we can let (1 − ρn)n = β = 1 and

obtain n = 1/(1 − ρ). With cyclic thinning, we have W c,ρ
k being of order O(1), while

significant changes occur over a time scale of O(1/(1− ρ)).

The time scaling by n with cyclic thinning can be better understood by considering

the approximating D/D/1 model with the given traffic intensity. For example, suppose

that the service times are all 1 and the interarrival times are all n/(n − 1) for some

large positive integer n, corresponding to (1 − ρn)n = 1. Suppose that the system is

initialized by an arrival at time 0 who finds k customers in the queue and one more in

service at the beginning of a service time. Because of the deterministic service times,

that initial customer at time 0 has a waiting time of exactly k + 1. In general, if

there are k customers in queue upon arrival the waiting time is bounded below by k

and bounded above by k + 1. Thus, in the D/D/1 model, the waiting time is tightly

linked to the queue length. For the specified initial conditions, it takes time n for

the queue length to decrease by 1; the queue will first become empty, leaving one

customer in service just beginning his service time, at time kn. Thus the waiting time

of a new arrival at time jn will be about k + 1 − j. Thus we see that in the D/D/1

model with alternative initial conditions the waiting times change over time periods of

order n. Theorem 4.2 is showing that remains true in the HT limit for the Gn/Gn/1

model. Finally, the extra variability in the Gn/Gn/1 model produces the stochastic

limit without spatial scaling in Theorem 4.2.

To highlight Remark 4.1, we state a corollary for first passage times, obtained by

applying the continuous mapping theorem with the limit in (4.30). Let a and b be real

numbers with 0 < a < b < ∞. Consider x ∈ D with x(0) = c for c to be specified.

Then define the first passage functions

T+
a,b(x) ≡ inf {t ≥ 0 : x(t) > b|x(0) = a} (4.38)

and T−b,a(x) ≡ inf {t ≥ 0 : x(t) < a|x(0) = b}. We will be interested in

T+
a,b(W

c
n) = n−1 min {k ≥ 1 : W c

n,k > b|W c
n,0 = a} (4.39)
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and T−b,a(Wc
n) = n−1 min {k ≥ 1 : W c

n,k < a|W c
n,0 = b}.

For RBM and the M/M/1 queue, the distributions of the first passage times T0,x and

Tx,0 are described in §5.7.5 of [14]. There the limits are described in terms of canonical

BM and RBM with negative drift, having drift rate −1 and diffusion coefficient 1,

which is convenient, because there are no parameters. It is easy to transform BM and

RBM with general parameters to and from the canonical versions; see p. 174 of [14].

Corollary 4.2. (HT limit for first passage times in the Gn/Gn/1 models) Under the

assumptions of Theorem 4.2, including condition (3.16) of Theorem 3.2,

n−1 min {k ≥ 1 : W c
n,k > b|W c

n,0 = a} ⇒ T+
a,b(φ(σB − βe))

d= (σ2/β2)T+
βa/σ2,βb/σ2(φ(B − e)),

n−1 min {k ≥ 1 : W c
n,k < a|W c

n,0 = b} ⇒ T−b,a(φ(σB − βe)) d= T−b,a(σB − βe)

d= (σ2/β2)T−βb/σ2,βa/σ2(B − e). (4.40)

For example, since E[T−b,a(B − e)] = V ar(T−b,a(B − e) = b− a, we have

E[(σ2/β2)T−βb/σ2,βa/σ2(B − e)] =
(b− a)

β
,

V ar(σ2/β2)T−βb/σ2,βa/σ2(B − e) =
σ2(b− a)

β3
. (4.41)

5. Associated counting processes

Theorem 4.2 shows that the individual partial sums Sc,u
n,k and Sc,v

n,k in (4.19), as-

sociated with the arrival process and service processes obtained from cyclic thinning,

satisfy FCLT’s with appropriate scaling, because the sequence of random elements

{(Sc,u
n ,Sc,v

n ) : n ≥ 1} in (4.27) is asymptotically equivalent to the associated sequence

of random elements {(Ŝu
n2 + βS̄u

n2 , Ŝv
n2) : n ≥ 1} in (3.11) and (4.34) with the scaling

in (3.12) as n →∞, i.e., because of (4.35) and (4.37).

We would thus naturally expect that FCLT’s would hold for the associated counting

processes, by virtue of the continuous mapping theorem applied with the inverse

function, as in §§13.6-13.8 of [14]. However, that is not so. Upon closer examination,

we find that the asymptotically negligible differences between (Sc,u
n ,Sc,v

n ) and (Ŝu
n2 +

βS̄u
n2 , Ŝv

n2) significantly affect the associated counting processes. Nevertheless, we do

establish FCLT’s for the counting processes with different scaling.
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To treat the associated counting processes, let

Nu
n (t) ≡ max {k ≥ 0 : Su

n,k ≤ t}, Nv
n(t) ≡ max {k ≥ 0 : Sv

n,k ≤ t},
N c,u

n (t) ≡ max {k ≥ 0 : Sc,u
n,k ≤ t}, N c,v

n (t) ≡ max {k ≥ 0 : Sc,v
n,k ≤ t} (5.42)

for t ≥ 0. For simplicity, now assume in addition that P (Un,k > 0) = 1 and P (Vn,k >

0) = 1 for all n and k, so that all these counting processes increase by unit jumps. By

our initial conditions in §3.1, we have Nu
n (0) = 1 and Nv

n(0) = 0.

5.1. No time scaling

Before observing the technical problems with the counting processes with the scaling

in Theorem 4.2, we observe that the time scaling there by n plays a critical role in

obtaining interesting nondegenerate stochastic limits. In particular, we now show that,

if we do not scale time by n in the Gn/Gn/1 models as n → ∞ under the conditions

of Theorem 4.2, we simply get convergence of all these queueing processes to the

associated deterministic processes in the trivial D/D/1 model with traffic intensity 1

(and the specified initial conditions, having a 0th customer arrive at time 0 to find an

empty system). (The results in this subsection hold for both (1−ρn)n → β as in (4.29)

or (1− ρn)
√

n → β as in (3.14).)

We start by considering the counting processes. For the counting processes, when

we combine (5.42) with the basic definition in (4.19) and the initial conditions in §3.1,

we obtain the important relations

Nu
n (nt) = 1 + n(N c,u

n (t)− 1) + Jc,u
n (t) and Nv

n(nt) = nN c,v
n (t) + Jc,v

n (t),(5.43)

where Jc,u
n (t) counts the number of interarrival time phases completed in the interar-

rival time in progress at time t, while Jc,v
n (t) counts the number of service time phases

completed in the service time in progress at time t. By our assumed initial conditions,

Jc,u
n (0) = Jc,v

n (0) = 0 for all n ≥ 1. Clearly, 0 ≤ Jc,u
n (t) < n and 0 ≤ Jc,v

n (t) < n for

all t ≥ 0 and n ≥ 1. We can then rewrite the relations in (5.43) as

N c,u
n (t) = 1 +

Nu
n (nt)− 1

n
− Jc,u

n (t)
n

= 1 + b(Nu
n (nt)− 1)/nc and

N c,v
n (t) =

Nv
n(nt)
n

− Jc,v
n (t)
n

= bNv
n(nt)/nc, (5.44)

where btc is again the floor function, which is right continuous and thus an element of

D.
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Given the spatial scaling on the right in (5.44), we can obtain a FWLLN for

(N c,u
n , N c,v

n ), but only in the product space D2. We cannot obtain convergence in

D([0,∞),R2) with the usual J1 topology, because the limit functions have common

discontinuity points, and we require inconsistent time transformations in the two

components. Convergence of the components separately is easy, because all processes

are integer valued. Hence convergence in D is equivalent to convergence of the finite

dimensional distributions. To state the results, first introduce the FWLLN-scaled

processes associated with (3.11):

S̄u
n(t) ≡

Su
bntc
n

and S̄v
n(t) ≡

Sv
bntc
n

, t ≥ 0. (5.45)

Next define the following random elements in D:

N̄u
n(t) ≡ Nu

n (nt)
n

, N̄v
n(t) ≡ Nv

n(nt)
n

, J̄c,u
n ≡ Jc,u

n (t)
n

, J̄c,v
n ≡ Jc,v

n (t)
n

.(5.46)

In (5.46) and in Theorem 5.1 below, we have no time scaling by n for the processes

associated with the Gn/Gn/1 model, whereas we do for the associated G/G/1 base

model.

Theorem 5.1. (FWLLN for the counting processes with cyclic thinning) Consider a

sequence of Gn/Gn/1 models associated with a single base G/G/1 model satisfying

(S̄u
n, S̄v

n) ⇒ (e, e) in D2 (5.47)

for (S̄u
n, S̄v

n) in (5.45). If either (4.29) or (3.14) holds, then

(N̄u
n, J̄c,u

n , N c,u
n , N̄v

n, J̄c,v
n , N c,v

n ) ⇒ (e, J, 1 + bec, e, J, bec) in D6 as n →∞,

(5.48)

where e is the identity map in D, bec(t) ≡ btc and J = e− bec.

Proof. Assume (4.29); the reasoning is similar with (3.14). We get the limit for the

first and fourth terms by applying the continuous mapping theorem with the inverse

map, i.e., Theorem 13.6.1 of [?]. Moreover, by (5.44), we can write

N c,v
n = bN̄v

nc for all n and dt(N c,u
n , 1 + bN̄u

nc) ⇒ 0 (5.49)

as n → ∞ for all non-integer t > 0, where dt is a metric inducing the J1 topology on

D([0, t]). Hence, we also have (N c,u
n , N c,v

n ) ⇒ (1 + bec, bec) in D2. Finally, we also
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have (J̄c,u
n , J̄c,v

n ) ⇒ (J, J) in D2 as n →∞ from the above and (5.44). That completes

the proof.

5.2. Time-scaled counting processes

However, the story is different if we scale time by n, as we have already seen in

Theorem 4.2. In particular, the queue-length and workload processes in the Gn/Gn/1

model for large n will fluctuate randomly over time intervals of length O(n). We first

consider the FCLT refinement of the FWLLN in Theorem 5.1. We get the following

result, which is partly positive and partly negative. To state the result, in addition to

the processes in (5.55), we introduce the following random elements for each n ≥ 1:

Nc,u
n ≡ N c,u

n (nt)− nt, Nc,v
n ≡ N c,v

n (nt)− nt,

Jc,u
n ≡ Jc,u

n (nt)
n

and Jc,v
n ≡ Jc,v

n (nt)
n

, t ≥ 0. (5.50)

Paralleling (3.6) and (4.27), in (5.50) the processes in (Nu
n,Nu

n,Jc,u
n ,Jc,v

n ) have spatial

scaling, but the processes in (Nc,u
n ,Nc,u

n ) do not. To state the result, let ≤st denote

ordinary stochastic order for real-valued random variables; i.e., we write X1 ≤st X2

for real-valued random variables if P (X1 > t) ≤ P (X2 > t) for all t.

Theorem 5.2. (FCLT for the counting processes with cyclic thinning) Consider a

sequence of Gn/Gn/1 models associated with a single base G/G/1 model satisfying

(Ŝu
n, Ŝv

n) ⇒ (L̂u, L̂v) in D2 (5.51)

for (Ŝu
n, Ŝv

n) in (3.11), where P ((L̂u, L̂v) ∈ C2) = 1. Assume that either (4.29) or

(3.14) holds. Then

(Nc,u
n + Jc,u

n ,Nc,v
n + Jc,u

n ) ⇒ (1− L̂u − βe,−L̂v) in D2 as n →∞, (5.52)

where (L̂u, L̂v) comes from (3.13). However, the sequences {Jc,u
n : n ≥ 1}, {Jc,v

n : n ≥
1}, {Nc,u

n : n ≥ 1} and {Nc,v
n ) : n ≥ 1} in D are not tight and thus do not converge

in D. Nevertheless, for each t ≥ 0, the associated sequences of real-valued random

variables {Jc,u
n (t) : n ≥ 1}, {Jc,v

n (t) : n ≥ 1}, {Nc,u
n (t) : n ≥ 1} and {Nc,v

n )(t) : n ≥ 1}
are tight. Moreover, for any convergent subsequence, with limits denoted by Jc,u(t),
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Jc,v(t), Nc,u(t), and Nc,v(t), we have the following bounds

P (0 ≤ Jc,u(t) ≤ 1) = P (0 ≤ Jc,v(t) ≤ 1) = 1

−L̂u(t)− βt ≤st Nc,u(t) ≤st 1− L̂u(t)− βt

−L̂v(t)− 1 ≤st Nc,v(t) ≤st −L̂v(t). (5.53)

Proof. From the basic FCLT equivalence for partial sums and counting processes

expressed in Theorem 7.3.2 of [14], we get

(N̂u
n, N̂v

n) ⇒ (−L̂u,−L̂v) in D2 as n →∞, (5.54)

where

N̂u
n(t) ≡ Nu(nt)− nt√

n
and N̂v

n(t) ≡ Nv(nt)− nt√
n

, t ≥ 0. (5.55)

By (5.44) and (5.50), we have

Nc,v
n + Jc,v

n = Nv
n2 and ‖(Nc,u

n − 1 + Jc,u
n )−Nu

n2‖t =
1
n

(5.56)

for all n and t, so that we can apply (5.54), which follows from the conditions, and the

convergence-together theorem, Theorem 11.4.7 of [14], to obtain the positive result in

(5.52). We use index n2 instead of n.

We obtain the negative result by applying (5.56). We first observe that we have

the established convergence of (Nu
n2 ,Nv

n2) to a limit with continuous sample paths, as

indicated in (5.54), so that

lim
δ↓0

lim sup
n→∞

wNu
n2

(δ, t) = 0 and lim
δ↓0

lim sup
n→∞

wNv
n2

(δ, t) = 0 for all t > 0 (5.57)

from the associated tightness. On the other hand, we have extra time scaling by n to

go from (J̄c,u
n , J̄c,v

n ) in (5.46) to (Jc,u
n ,Jc,v

n ) in (5.50). Since (J̄c,u
n , J̄c,v

n ) converges to a

nondegenerate limit with oscillations of size 1 over intervals of length 1 by Theorem 5.1,

the oscillations will necessarily occur too rapidly as n →∞ when we add the extra time

scaling by n. Hence we cannot have tightness in D for either Jc,u
n or Jc,v

n , and so also

for Nu
n2−Jc,u

n or Nv
n2−Jc,v

n , which is necessary for convergence. However, from (5.56),

we have stochastic bounds for each n, which does imply tightness of the associated

sequence of real-valued random variables. Moreover, these stochastic bounds must be

preserved under passing to the limit along any subsequence.
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Under additional regularity conditions, we will have Jc,u
n (t) and Jc,v

n (t) converge to

random variables with the uniform distribution on the interval [0, 1]. Then we will be

able to replace the bounds in (5.53) by convergence in distribution in R. We obtain

such stronger results in a stationary framework in [11].

We conclude this subsection by indicating a framework in which we can get a limit

for (Jc,u
n ,Jc,v

n ), but it is an unconventional one, even going beyond the spaces E and F

in Chapter 15 of [14]. We will make the underlying space a subset of the collection of

compact subsets of R2. We put the sample paths of the stochastic processes in D in this

space by (i) looking at the graphs of the sample paths in R2, including the left limits,

and (ii) by considering the restrictions of the domain [0,∞) to [0, t] for various t > 0.

As in the conventional spaces C and D, convergence will be characterized in terms of

restrictions to the bounded interval [0, t] for a sequence of time points t converging to

infinity. For background on this graph approach, see Chapters 12 and 15 of [14] and

references therein.

Instead of D([0, t],R), we use the space Ct of compact subsets of [0, t] × R in R2

using the Hausdorff metric, denoted by dH,t(A,B) and defined by

dH,t(A, B) ≡ max{ sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y) }, (5.58)

where A, B ∈ Ct and d is a metric on R2, for which it is convenient to take the

maximum metric: d(x, y) ≡ d((x1, x2), (y1, y2)) ≡ max {|x1 − y1, |x2 − y2|}; see p. 381

of [14] for background. For each t, (Ct, dH,t) is a compact metric space. Let C be

the subset of R2 for which all restrictions to [0, t] × R are compact, and let Ck be

the k-fold product space with the product topology. Define convergence in C to mean

convergence of the restrictions in Ct for all t > 0. In our context, the limit of Jc,u
n is

the deterministic set Υ ≡ [0,∞) × [0, 1] in C, which we call the unit blur. With this

framework, we can obtain the following result.

Theorem 5.3. (convergence to the unit blur) Under the assumptions of Theorem 5.1,

(Jc,u
n ,Jc,v

n ) ⇒ (Υu,Υv) in C2 as n →∞, (5.59)

where Υu and Υv are unit blurs, so that

(Nc,u
n ,Jc,u

n ,Nc,v
n ,Jc,u

n ) ⇒ (−L̂u − βe + Υu,Υu,−L̂v −Υv, Υv) in C4 as n →∞.

(5.60)
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Proof. The statement in (5.59) is equivalent to convergence of the components

separately, since the limit is deterministic, by Theorem 11.4.5 of [14]. First, for (5.59),

we can exploit the FWLLN, Theorem 5.1. By (5.48),

(J̄c,u
n , J̄c,v

n ) ⇒ (J, J) in D2 as n →∞, (5.61)

where J(t) ≡ t− btc, t ≥ 0. For x ∈ D and any constant b > 0, let (x ◦ be)(t) ≡ x(bt),

t ≥ 0. From (5.61), we get the associated limit

(J̄c,u
n ◦ be, J̄c,v

n ◦ be) ⇒ (J ◦ be, J ◦ be) in D2 as n →∞ (5.62)

for any b > 0. We now carry out the remaining analysis only for the arrival process;

the service process is treated in the same way.

First, we observe that, for any ε > 0, we can choose bε such that

dH,t(J ◦ be, Υu) < ε for all b > bε w.p.1. (5.63)

Next observe that

dH,t((Jc,u
n ,Υu) ≤ sup

b>n
dH,t(J̄c,u

n ◦ be, Υu), (5.64)

where

dH,t(J̄c,u
n ◦ be, Υu) ≤ dH,t(J̄c,u

n ◦ be, J ◦ be) + dH,t(J ◦ be, Υu). (5.65)

For any given ε > 0, by (5.63), we can make the second term on the right in (5.65) less

than ε/2 by choosing b large enough. For that b chosen, by (5.62), we can make the

first term on the right in (5.65) less than ε/2 by choosing n large enough.

Finally, to establish (5.60), we use the fact that the convergence of (Nc,u
n +Jc,u

n ,Nc,v
n +

Jc,u
n ) established in D2 implies the corresponding weaker convergence in C2 to the limit,

which has single-valued projections at t for all t. Since one of the limits has a single-

valued projection, subtraction is continuous. The first component on the right in (5.60)

is initially 1− L̂u − βe−Υ, but 1−Υ = Υ.

Remark 5.1. (interpreting the blur limits) We note that we do not obtain the informa-

tion about the joint distribution of Υu and Υv. In particular, we cannot conclude that

(Υu, Υv) = [0,∞)× [0, 1]× [0, 1], because we do not know when each function assumes

the values in [0, 1]. In the framework above, Υu(t) = Υv(t) = [0, 1] for all t ≥ 0,
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where Υ(t) is the projection of Υ on t. However, if we make additional stationarity

and independence assumptions, we will have

(Jc,u
n (t),Jc,v

n )(t)) d= (Y u
n , Y v

n ) ⇒ (Y u, Y v) in R2, (5.66)

where Y u
n and Y v

n are independent random variables uniformly distributed on the finite

set{0, 1/n, . . . , (n−1)/n} while Y u and Y v are independent random variables uniformly

distributed on [0, 1]. Then we would have the limit at t for Jc,u
n (t) uniformly distributed

over [0, 1], but our framework does not provide that extra level of detail. On the other

hand, our framework has the virtue that it shows that, asymptotically as n →∞, for

any ε > 0, Jc,u
n (s) will be near every point in the interval [0, 1] for some s ∈ (t− ε, t+ ε)

for all n suitably large. In other words, the unit blur captures the increasing rate

of fluctuations. In the present context, that is more important than knowing the

distribution for any one fixed t, because the value at t is not representative of the

values for any time points near t, like white noise. Here the limit should be distributed

something like uncountably many i.i.d. uniform random variables, which of course is

not directly well defined. We should hope to obtain stronger results about integrals

over finite intervals. Under additional regularity conditions, we should obtain the limit
∫ b

a
Jc,u

n (t) dt ⇒ (b− a)/2 as n →∞.

5.3. FCLT’s with stronger scaling

In this subsection we show that we can overcome the difficulties in Theorem 5.2

and obtain FCLT’s for the counting processes, provided that we introduce a stronger

scaling in the setting of §3.2. We will be brief and consider only the rate-1 processes

with cyclic thinning, Sc,v
k and N c,v(t). We introduce two new random elements in D2,

defined by

S̃c,v
n (t) ≡

Sc,v
n,bn2tc − bn2tc

√
n

=
Sv

nbn2tc − nbn2tc
n3/2

≈ Ŝv
n3(t),

Ñc,v
n (t) ≡ N c,v

n (n2t)− n2t√
n

=
Nv(n3t)− n3t− Jv

n(n3t)
n3/2

≈ N̂v
n3/2(t), (5.67)

for t ≥ 0, using (5.44), where Ŝv
n and N̂v

n are defined in (3.11) and (5.55), respectively.

From the relations in (5.67), we obtain the following FCLT.

Theorem 5.4. (FCLT for counting processes with cyclic thinning and stronger scaling)

If Ŝv
n ⇒ L̂v in D for Ŝv

n in (3.11), where P (L̂v ∈ C) = 1, as assumed in Theorem 5.1,
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then

(S̃c,v
n , Ñc,v

n ) ⇒ (L̂v,−L̂v) in D2 as n →∞, (5.68)

for (S̃c,v
n , Ñc,v

n ) in (5.67).

Proof. For S̃c,v
n , apply (5.67) plus the reasoning in the proof of Theorem 4.2. For

Ñc,v
n , first note that the Jv

n term is asymptotically negligible, because Jv
n(t) is bounded

by n, but it is divided by n3/2. Then apply (5.67) and then (5.54), which follows from

(5.51), as noted in the proof of Theorem 5.1.

6. Queue length and workload processes

As in Chapter 9 of [14], we can define other queueing processes. In the setting of

§3.1, in model n let Cn(t) be the cumulative input of work, Xn(t) the net input of

work, In(t) be the cumulative idle time, Bn(t) be the cumulative busy time, Dn(t) the

cumulative number of departures, all over the interval [0, t] for t ≥ 0. Let Qn(t) the

queue length (number in system) and Rn(t) the remaining work in the system (the

continuous-time workload), both at time t for t ≥ 0. These can be defined by

Cn(t) ≡ Sv
n,Nu

n (t), Xn(t) ≡ Cn(t)− t, In(t) ≡ − inf
0≤s≤t

{Xn(s)},
Bn(t) ≡ t− In(t), Dn(t) ≡ Nv

n(Bn(t)), Qn(t) ≡ Nu
n (t)−Dn(t),

Rn(t) ≡ ψ(Xn)(t) = Xn(t)− inf
0≤s≤t

{Xn(s)} = Xn(t) + In(t), t ≥ 0. (6.69)

We add a superscript c to indicate when these processes are associated with cyclic

thinning, i.e., when the nth system is the Gn/Gn/1 model.

6.1. No time scaling

In the setting of §5.1, we can establish limits for almost all the processes in (6.69).

In particular, we establish limits for all but the queue-length processes Qc
n. For the

queue-length process, we are only able to establish a strong bound. In particular, we

have the following result; we omit the proof for all but the queue length process, which

follows easily from the basic definitions (4.19), (4.20), the assumption in (4.29) and

the FWLLN following from (3.13).

Theorem 6.1. (HT limit in the Gn/Gn/1 models without time scaling) Assume (5.51),

again allowing either (4.29) or (3.14). Assume that W c
n,0 ⇒ W c

0 . the following limit
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for the processes without time scaling: As n →∞,

(Sc,u
n , Sc,v

n , Sc
n,W c

n, N c,u
n , N c,v

n , Cc
n, Xc

n, Ic
n, Bc

n, Rc
n, Dc

n)

⇒ (Sc,u, Sc,v, Sc,W c, N c,u, N c,v, Cc, Xc, Ic, Bc, Rc, Dc) (6.70)

in (R∞)4 ×D8, where

Sc,u
k ≡ k ≡ Sc,v

k and Sc
k ≡ W c

0 ≡ W c
k k ≥ 0, N c,u(t) ≡ 1 + btc,

N c,v(t) ≡ btc, Cc(t) ≡ W c
0 + 1 + btc, Xc(t) ≡ W c

0 + 1 + btc − t,

Ic(t) ≡ 0, Bc(t) ≡ t, Rc(t) ≡ Xc(t), Dc(t) ≡ btc. (6.71)

In addition, if W c
0 ≡ 0, then for all non-integer t, Qc

n(t) ⇒ 1 as n →∞ and

P (Qc
n(s) ∈ {0, 1, 2} for all s ∈ [0, t]) → 1 as n →∞ for all t > 0. (6.72)

Proof. We only have difficulty with Qc
n. For it, we avoid specifying the number of

customers in the system initially by assuming that W c
n,0 ⇒ 0. Still Qc

n remains difficult

because it involves subtraction of integer-valued functions with common discontinuity

points. We have Qc
n(t) ≡ N c,u

n (t) − Dc
n(t), where Dc

n(t) = N c,v
n (Bc

n(t)) ⇒ bec. The

limit for non-integer t is thus (1 + bec)(t) − (bec)(t) = 1. But there can be problems

at the integer points where both limits have discontinuities. But at each discontinuity

point the error can be at most 1. Hence we have (6.72).

If instead of those initial conditions, we had the arrival at time 0 find k − 1 others

in the system at time 0, with one of those just beginning service, so that Qc(0) =

k, including the new arrival, we would have the alternative limits Qc(t) = k and

Rc(t) = k + btc− t, for all non-integer time points t > 0, so that k− 1 ≤ Rc(t) ≤ k and

k−1 ≤ Q(t) ≤ k+1 for all t ≥ 0. The practical implication is that the Gn/Gn/1 model

for large n behaves like the D/D/1 model with ρ = 1 over short time intervals. (Note

that, with deterministic unit service times, Q(t) = dW (t)e, where dte is the ceiling

function, giving the least integer greater than t.) Consequently, the queue-length and

workload processes in the Gn/Gn/1 model for large n will change negligibly over short

time intervals.
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6.2. Time scaling by n

We now show the implications of the results in §5.2 for the other queueing processes

introduced in (6.69). Define the following random elements of D:

Xc
n(t) ≡ Cc

n(t) ≡ Cc(nt)− nt = Xc(nt),

Rc
n(t) ≡ Rc

n(nt) = φ(Xc
n)(t),

Ic
n(t) ≡ Ic

n(nt) = nt−Bc
n(nt) ≡ −Bc

n(t),

Dc
n(t) ≡ Dc

n(nt)− nt = N c,v
n (Bc

n(nt))− nt,

Qc
n(t) ≡ Qc

n(nt) = N c,u
n (nt)−Dc

n(nt) = Nc,u
n (t)−Dc

n(t). (6.73)

Theorem 1. (HT limit for other processes in the Gn/Gn/1 model) Under the assump-

tions of Theorem 5.1,

(Wc
n,Xc

n,Rc
n,Bc

n, Ic
n,Dc

n,Qc
n) ⇒ (W c, Xc, Rc, Bc, Ic, Dc, Qc) in C7, (6.74)

where

W c ≡ φ(L), Xc ≡ L + Υu, Rc ≡ φ(L) + Υu, Bc = −Ic ≡ L− φ(L),

Dc ≡ −L̂v −Υv + L− φ(L) and Qc ≡ φ(L) + Υu + Υv, (6.75)

where L ≡ L̂v− L̂u−βe for (L̂u, L̂v) in (3.13), φ is the reflection map in (3.7) and Υu

and Υv are the unit blurs associated with N c,u
n and N c,v

n , respectively.

Proof. We first obtain Wc
n ⇒ W c ≡ φ(L) in D and thus in C from Theorem 4.2.

Jointly with that, we can obtain the following limits. Note that Xc
n = Sc,v

n ◦N̄c,u
n +Nc,u

n ,

where (Sc,v
n , N̄c,u

n ,Nc,u
n ) ⇒ (L̂v, e,−L̂u − βe + Υu). Hence, Xc

n ⇒ L + Υu as n → ∞.

Then Rc
n(t) ⇒ φ(L + Υu) = φ(L) + Υu and Ic

n = Xc
n − Rc

n ⇒ L − φ(L). Next for

Dc
n, first note that B̄c

n ⇒ e, where B̄c
n(t) ≡ Bc

n(nt)/n, because Bc
n converges to a

nondegenerate limit. Since Dc
n = Nc,v

n ◦ B̄c
n + Bc

n, Dc
n ⇒ −L̂v − Υv + L − φ(L) and

Qc
n = Nc,u

n −Dc
n ⇒ −L̂u − βe + Υu + L̂v + Υv − L + φ(L) = φ(L) + Υu + Υv.

Notice that as a special case of the limit in (6.74) above, we have the joint limit

(Wc
n,Rc

n,Qc
n) ⇒ (W c, Rc, Qc) ≡ (φ(L), φ(L)+Υu, φ(L)+Υu +Υv) in C3, (6.76)

from which we see that the limits are ordered, i.e.,

W c(t) ≤ Rc(t) ≤ W c(t) + 1 and Rc(t) ≤ Qc(t) ≤ Rc(t) + 1 for all t ≥ 0, (6.77)
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with strict inequality holding for most t. We will develop explicit approximations for

the associated steady-state quantities (W c
n,∞, Rc

n,∞, Qc
n,∞) in [11], which refine (6.76)

but are consistent with it.

6.3. Time scaling by n2

We now show the implications of Theorem 5.4 for the other queueing processes

introduced in (6.69); we omit the elementary proof. Define the following new random

elements of D by scaling time by n and dividing by
√

n in the previous random elements

in (6.73):

X̃c
n(t) ≡ C̃c

n(t) ≡ Xc
n(nt)/

√
n = Xc(n2t)/

√
n,

R̃c
n(t) ≡ Rc

n(nt)/
√

n = φ(X̃c
n)(t), Ĩc

n(t) ≡ Ic
n(nt)/

√
n,

D̃c
n(t) ≡ Dc

n(nt)/
√

n, Q̃c
n(t) ≡ Qc

n(nt)/
√

n = Ñc,u
n (t)− D̃c

n(t). (6.78)

Overall, time is now scaled by n2, e.g., Q̃c
n(t) = Qc

n(n2t)/
√

n, t ≥ 0.

Theorem 6.2. (HT limit for other processes in the Gn/Gn/1 model with stronger

scaling) Under the assumptions of Theorem 5.1,

(W̃c
n, X̃c

n, R̃c
n, B̃c

n, Ĩc
n, D̃c

n, Q̃c
n) ⇒ (W̃ c, X̃c, R̃c, B̃c, Ĩc, D̃c, Q̃c) in D7, (6.79)

where

W̃ c ≡ φ(L), X̃c ≡ L, R̃c ≡ φ(L), B̃c = −Ĩc ≡ L− φ(L),

D̃c ≡ −L̂v + L− φ(L) and Q̃c ≡ φ(L), (6.80)

where L ≡ L̂v − L̂u − βe for (L̂u, L̂v) in (3.13), φ is the reflection map in (3.7).

7. The motivating Gn/D/∞ infinite-server queue

We now apply the FCLT just established in §5.3 to obtain a HT FCLT for the

queue length (number of busy servers) in a Gn/D/∞ model, addressing the motivating

inventory problem from [12] mentioned in §2. We start with unit service times and

a rate-1 arrival process; let the counting process be {Nu(t) : t ≥ 0}. To achieve an

associated rate-λ process, we scale time by λ, i.e., by using the process {Nu(λt)}.
Starting with a base G/D/∞ queue with a rate-1 arrival process, we want to consider
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the associated Gn/D/∞ queue with an arrival rate of n2. We denote this arrival

process as {N c,u
n (t) : t ≥ 0} . (Motivated by [12], the arrival rate should grow as the

square of the cycle order n.)

Let the queue length at time t with arrival process N c,u
n and arrival rate n2 be

Q∞,c
n (t). As in [5],

Q∞,c
n (t) = N c,u

n (t)−N c,u
n (t− 1) for all t ≥ 1. (7.81)

Consequently, if the arrival process is time stationary, then Q∞,c
n (t) has a fixed (sta-

tionary) distribution for all t ≥ 1, regardless of the initial conditions. (It reaches steady

state at time 1.) In general, we can obtain a HT FCLT for the scaled queue-length

process

Q∞,c
n (t) ≡ Q∞,c

n (t)− n2

√
n

, t ≥ 0. (7.82)

Theorem 7.1. For the sequence of Gn/D/∞ queues with arrival rate n2 in model n

(with cyclic thinning of order n) just defined, if the base stationary arrival counting

process Nu satisfies a FCLT, i.e., if N̂u
n ⇒ σuB in D, where B is BM and Nu

n(t) ≡
(Nu(nt)− nt)/

√
n, then

Q∞,c
n ⇒ Q∞,c in D([1,∞),R), (7.83)

where Q∞,c
n is defined in (7.82) above and Q∞,c(t) ≡ σu(B(t)−B(t−1), t ≥ 1, so that

Q∞,c
n (t)− n2

√
n

⇒ N(0, σ2
u) in R as n →∞ for all t ≥ 1. (7.84)

Proof. Essentially, we are applying Theorem 5.4. Directly, by (7.81) and the fact

that Nu,c
n has rate n2,

Q∞,c
n (t) d= N c,u

n (t)−N c,u
n ((t− 1))

=
Nu(n3t)− Jc,u

n (n3t)−Nu(n3(t− 1)) + Jc,u
n (n3(t− 1))

n
. (7.85)

Hence, when we divide by
√

n in (7.85), as required for (7.82), the two Jc,u
n terms on

the right in (7.85) become asymptotically negligible. Ignoring them (using Theorems

11.4.5 and 11.4.7 of [14]), we have Q∞,c
n (t) d= Nu

n3(t) −Nu
n3((t − 1)). Hence the limit

in (7.83) follows from the assumed FCLT for Nu
n.
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Because of the cyclic thinning, in model n the translation term in (7.82) is n2, but

the spatial scaling is only by
√

n. Nevertheless, this is consistent with [5] (even though

it does not follow directly from [5]); e.g., for the Gk/D/∞ model, with arrival rate n2

but fixed cyclic thinning order k, from [5] we get the limit

Q∞,c,k
n (t)− n2

n
⇒ N(0, σ2

u/k) d= (1/
√

k)N(0, σ2
u) in R as n →∞, (7.86)

for each fixed k. If we multiply through by
√

k in (7.86) and then (formally) let n →∞
with k = n, we obtain (7.84).
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