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Abstract

We show that sufficient conditions in terms of moments for cumulative processes (additive
functionals of regenerative processes) to satisfy the central limit theorem and the weak law of
large numbers established in Glynn and Whitt (Stochastic Process. Appl. 47 (1993) 299-314)
are also necessary, as previously conjectured. (€} 2001 Elsevier Science B.V. All rights reserved.

MSC: primary 60F05, 60J99; secondary 60K05

Keywords: Central limit theorem; Markov chains; Regenerative processes; Cumulative processes;
Random sums; Law of large numbers

1. Introduction .

Let X = (X,: n = 0) be an irreducible positive-recurrent discrete-time Markov chain
'(DTMC) taking values in a finite or countably infinite state space S. Given a real-valued
function f:S8 — R, our primary concern in this paper is on the identification of neces-
sary and sufficient (N&S) moment-type conditions under which there exist (determin-
istic finite) constants y and ¢ such that

n—1

2S5 —my | = aN(0,1) (1.1)
=0
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as n — co, where N(0,1) denotes a standard (mean 0, variance 1) normal random
variable and = denotes convergence in distribution. The above central limit theo-
rem (CLT) arises in many different application settings, providing approximations for:
cumulative-reward distributions, confidence intervals for statistical estimators, and effi-
ciency criteria for simulation algerithms. Our main result shows that the classic suffi-
cient condition for the DTMC CLT given in Chung (1967, Section 16), originally due
to Doeblin (1937, 1938)—see Lindvall (1991), is in fact necessary.

Following Glynn and Whitt (1993}, we study this problem in the more general con-
text of a positive-recurrent (classically) regenerative stochastic process. In addition to
the above class of DTMC’s, this family of stochastic processes includes continuous-time
Markov chains (CTMC’s), one-dimensional recurrent diffusions and certain Harris-
recurrent Markov processes on a general state space. Thus, the results we develop
here automatically cover these other classes of processes, as well as DTMC’s.

Our results in this paper solve open problems in Glynn and Whitt (1993). In our
previous paper, we found N&S conditions for both ordinary and functional strong laws
of large numbers (SLLNs) and laws of the iterated logaritbms (LILs) for additive
functionals of regenerative processes (also known as cumulative processes). We also
found N&S conditions for a functional weak law of large numbers (FWLLN) and a
functional central Hmit theorem (FCLT), but we only obtained sufficient conditions
for the ordinary weak law of large numbers (WLLN) and the ordinary CLT. We
conjectured that the established sufficient conditions for the WLLN and CLT were
actually N&S. In this paper, we prove that those earlier conjectures are indeed correct.

The key to obtaining such N&S conditions is to use the regenerative structure to
reduce the problem to one involving random sums of independent and identically dis-
tributed (iid) random variables. For the sufficiency with random sums, we can apply the
CLT for random sums of iid random variables, e.g., see Gut (1988, p. 15): Suppose that
(Z,: n 2 1) is a sequence of iid real-valued random variables and N = (N(z): ¢ = 0)
is a stochastic process satisfying

TIN@Y=> 1 ast— oo, 0<l<oo, (1.2)
where J is a constant. If, in addition, EZ, =0 and EZ? = % < oo, then
0
V23" 7, = AM2BN(0,1) ast — oo. (1.3)

i=1
Our key step is to show the necessity of these moment conditions. We do so when
N is a renewal process. In our context, with N being a renewal process, we show that
the limit in (1.3) holds if and only if
LAz
7123 "7, = 12BN (0,1) ast— oo, (1.4)
i=1 _
which in turn is known to hold if and only if EZ,=0 and EZ2=p8? < co; see p. 181 of
Gnedenko and Kolmogorov (1968). It remains an open problem to determine whether
limits (1.2) and (1.3) imply (}.4) more generally, when N is not a renewal process. We
will exploit the renewal-process structure (or, equivalently, the regenerative structure)
in our proof.
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2. The results

Let X = (X (#): t = 0) be an S-valued stochastic process. (Note that a discrete-time
sequence (X,: n > 0) can be embedded in continuous time by setting X(¢) =X, for
t = 0.) Given a nonnegative nondecreasing sequence (7'(n): n = 0) with T'(n) — oo
as., set 7(—1)=0, 1, =T@E —T(i—1), and

XTE—-1D+r), 0t <1,

A, t=1;

(2.1)

for t = 0, where 4 ¢ S. We require that X' be classically regenerative with respect to
(T(n): n = 0). In other words, we demand that ((#;(¢): ¢ = 0): i = 1) be a sequence of
iid random elements independent of (Wy(¢): ¢t = 0). We assume throughout this paper
that X be positive recurrent in the sense that

Eu; =217 < 0. (2.2)
Let f:5 — R be a measurable function for which '

1
f [ f(X(s))ds <00 as. fort =0, (2.3)
0
so that the corresponding cumulative process
, .
co= [ rae)ss >0, 24)
0 .

is well-defined for ¢ = 0. In this context, our primary goal is to develop a N&S moment
condition equivalent to the following:

A. There exist constants y and ¢ such that

t72(C(t) — y1) = aN(0,1) as t — oo. ' (2.5)

The key is to reduce the analysis of C(¢) to that of a corresponding random sum of
iid random variables. That is accomplished through the representation

N
Ct)y—yt=>_ Z{y) + R(1,Y), (2.6)
i=0
where
N@)=max{r = — 1: T(n) < t},
T
Zy)= Lf(X(s)) — 7]ds,
T(i—1) _
R(t,y)= Lf(X(s)) — 71ds. (2.7)
TN

The first step is to control the “remainder term” R(%, ). The following is a consequence
of Proposition 9 of Glynn and Whitt (1993).
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Proposition 1. For any constant vy, the family of random variables {R(t,7): t = 0} is
tight.

Note that Proposition 1 is valid universally, and requires no moment conditions
whatsoever (other than the blanket hypothesis that E7; < co). In view of Proposition
1, condition A is clearly equivalent to condition B below:

B. There exist constants y and ¢ such that
N(D)
123" Zi(y) = oN(0,1) ast— oo. (2.8)

i=1

Because of the classical regenerative structure of X, the sequence (Z(y):. i= 1) is
iid. Thus, B reduces the CLT problem to one involving a random sum of iid random
variables, as indicated in Section 1.

Recall that the strong law for renewal (counting) processes establishes that ¢t~ N(¢) —
A as. as t — oo, where A =1/Et;. This suggests the approximation

N L]

2N "2 = T2 Zy) (29)
i=1 i=1 .
and leads to the following condition.

C. There exist constants y and ¢ such that
L&)
12N Ziy) = oN(0,1) as t — oo (2.10)

i=1

The classical theory for sums of iid random variables (invblving a deterministic
number of summands) shows that C is equivalent to condition D below; see p. 181 of
Gnedenko and Kolmogorov (1968). '

D. There exist constants y and ¢ such that EZ;(y) =0 and var Z;(y) = A~ !¢

Condition D is, of course, the desired moment condition that we have been seeking.
Consequently, we have a N&S moment condition for the CLT in A, provided that we
can rigorously justify approximation (2.9). (We remark that this would be easy to do
if we had initially assumed a FCLT.) The justification of this “random time change”
is the key result underlying the validity of the following theorem.

Theorem 2.1. Conditions A, B, C, and D are all equivalent.

It turns out that Theorem 2.1 generalizes easily to nonstandard CLTs with different
scalings and stable-law limits. To do the space scaling in the nonstandard CLT, we use
slowly varying and regularly varying functions; see Bingham et al. (1989). A positive,
Lebesgue measurable real-valued function L (on some interval (b,c0) for b > 0) is



P.W. Glynn, W. Whitt| Stochastic Processes and their Applications 98 (2002} 199-209 203

slowly varying (at infinity) if

Lict)

L(t)

A positive, Lebesgue measurable, real-valued function i (on some interval (b,00)
for b > 0} is regularly varying of index « (at infinity), and we write € Z(a), if

lfb((it)) —c* ast—oo foralle>0. (2.12)

A regularly varying function of index 0 is slowly varying. Any regularly varying
function ¥ of index « can be represented as y(x) =x*L(x) for some slowly varying
function L.

— 1 ast— oo forallc>0. (2.11)

Theorem 2.2. The following four conditions are equivalent:
A. There exists a constant v, a proper random variable A, and a regularly varying
Junction  of index v < 0 for which

YN C@E)—v)=> A ast— oo, | (2.13)

B. There exists a constant y, a proper random variable A, and a regularly varying
Sfunction  of index v < 0 for which
N
WO Z() =4 ast— oo (2.14)
=1
C. There exists a constant y, a proper random variable A, and a regularly varying
Junction  of index v < 0 for which
LAe]
W)Y Zi(y) =>4 ast— oo (2.15)
i=1
D. There exists a constant y, a proper random variable A and a regularly varying
Junction  of index v < 0 for which
1)
W(1) D | Zi(y) = VA (2.16)

i=1

The equivalence of C and D in Theorem 2.2 follows immediately from (2.12). When
4 is a stable law, condition D can be reformulated in terms of a N&S condition in-
volving the tails of the r.v. Z;(y). To describe this classic condition, let S,(o, 8, 1) be a
stable random variable with index «, scale parameter ¢, skewness parameter f, and shift
parameter p; see Samorodnitsky and Tagqu (1994). Let Fy(x) = P(Zi(y) < x), Gy(x) =
P([Zi(y)] € x), Fy(x)=1—Fy(x) and G{(x) = 1—Gy(x). The following resuit is classi-
cal; see Gnedenko and Kolmogorov (1968), Feller (1971) and p. 50 of Samorodnitsky
and Taqqu (1994).

Proposition 2. The following are equivalent:
(i) Condition D holds for v= —1/a,0 <o <2 and a#1, with 1'4 having the
distribution of the stable law S,(1, B,0);
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(i) There exists a constant y such that both G; € R(—a) for 0 <o <2 with a#1
and

lim Fi(x)/Gy(x)= -1—+—ﬁ (2.17)
X—00 2
If the conditions of Proposition 2(ii) hold, then we can identify the centering constant
y: For 0 <o < I, we can let y=0; for 1 < « < 2, y must be chosen so that EZ,(y)==0.
We may want to insist that the multiplicative scaling is done by a simple power.
Then we want to exploit classical results for a distribution to be in the normal dornain
of attraction of a stable law.

Proposition 3. The following are equivalent:

(i) Condition D holds with J(t)=ct™'* for some constants ¢ and o with 0 < o < 2,
a1, and A~V*A4 having the distribution of the stable law Si(1, B,0);

(ii) There exist constants y and C such that

xirgox“Gj(x) =C (2.18)
and
lim FE(x)/Gi(x) = (1 + )2 (2.19)

In the setting of Proposition 3, the centering constant again can be y=0for 0 <« < 1
and such that EZ)(y) =0 for 1 < & < 2. The constant ¢ in the multiplicative scaling
term (¢) = ¢t~/ should be

e =(C/C,y)~ =, (2.20)
where C is from (2.18) and
C,=(1 — a)/T(2 — a)cos(rn/2) ' (2.21)

where I' is the gamma function,
We can apply Theorem 2.2 to obtain a criterion for a cumulative process to obey a
WLLN.

Corollary 1. 4 WLLN holds for the cumulative process, i.e., condition A holds with
A=0 and Yy(tY=1t"", if and only if

PP(Yi|>t)—0 ast— o0 (2.22)
and
EY;nl<st)y—y ast— oo, : (2.23)
where
(@)
Y, = S(X(s))ds. (2.24)
T(i—1)

Proof. See p. 235 of Feller (1971). O
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3. Proof
We now prove Theorem 2.2. We will actually establish the following stronger result.

Theorem 3.1. If any one of conditions A, B, C or D hold, then

N(®) [ 4]
W(e) (C(z),zz,-(y),Zz,-m) = (4,4,4) in R’ 3.1

i=1 i=1
and all four of A, B, € D hold

First, Proposition 1 implies that 4 and B are equivalent and that either one implies
that

N(1)
W) (C(t),zz;(y)) = (4,4). (3.2)

i=1]

As noted above, (2.12) implies that C and D are equivalent. Next, the CLT limit in
C directly implies the FCLT generalization, as was shown by Skorokhod (1957). The
standard random-time-change argument then shows that C implies B and (3.1) holds;
e.g., see Sections 7.4 and 13.3 of Whitt (2002). It thus suffices to show that A implies
C. Consequently, in order to establish Theorem 3.1, it suffices to show that

L]
W(t) (C(t) =3z ] =0 (33)

i=1

assuming that A holds. Instead of (3.3) we will find a deterministic fanction (a;: ¢ > 0)
such that g, | 0 and

U‘(l-a.)J
vy lcor- > zm|=o (34)

i=1
However, given A, (3.4) implies (3.3). To see that, note that from A and (3.4) we
obtain

(A(1—ar)] :
W) > Z(y) =4 (3.5)
i=l

and

L4}
W) Zi(y) = 4. (36)

i=1
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However, given (3.6),

1] {(1—ar)] i={ ]
YO ND Zn - D Zy) | =W D Z)
i=1

i=1 i=|At(1—ay)j+1

LAt

L () > Z(y) =0, (3.7)

i=1

where < denotes equality in distribution. By the triangle inequality, (3.3) follows from
(3.4) and (3.7). Hence we work to establish (3.4). _
We establish (3.4) with the aid of three lemmas, the first of which is elementary.

Lemma 3.2. For any deterministic function ¢, such that c, | 0,

T(l () =22c)]) -
P(‘ (L 20e)] ) 1‘>c,)—>0 as t — oo. (3.8)

Proof. The regeneratlve structure and the moment condition (2.2) 1mply the SLLN
n~'T(n) — A~1 w.p.1, which implies that

T(Lss))
| Azs]

— 27 —>0 wpl ast— oo (3.9)

2-lgsgd
That in turn implies (3.8). O
Let fo(x)=f(x)—7.

Lemma 3.3. Let ¢, be a deterministic function such that ¢; | 0 and let d; = max{c,,
t~1}. Then, for any & > 0,
. )

P (ll/(t)
(X(s))ds‘ > s) P(T(| (1 — 2Ace)]) € du) + o(1)

-7 (w0
< sup {P (t!'(t)
uch,

where B, is the interval

LAe(1—22cr)]

| rxenas— 3z

i=1

f o fc(X(s))ds} > s)} +o(1), (3.10)
1]

By = [#(1 — 346, + o(d)), {1 — Ace + o(d))] @I
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> s} (3.12)

Proof. Let

C= {‘lf(t)

LAr(1—24c,))

| rxenas- 3z

i=1

and

D= { T (Lﬁii(ll__ziif’ﬁ” - ,1—1] > c,} : (3.13)
Then

P(C)=P(C.D]) + P(C.Dy), (3.14)
where

P(CD) < P(D))=0(1) ast— (3.15)

by Lemia 3.2. Also,
P(C,DfY = P(Cy; [ 211 — 22¢,)] (A" — <)
< T A1 = 22¢)}) < (A1 — 22e) | (A7 + )
= P(Cp;t — 3let + o(td,) < T(JAH(1 — 22¢)])
<t — Aot + o(td,)) (3.16)

for ¢ large enough. Hence,

P(C.DE)
- f P (w(r) / K (s)) ds — / ufc(X(S))dS' > & T(LAKL —24e,)) € du)
B, 0 0
(3.17)

for B, in (3.11), which equals the first expression on the right-hand side in (3.10)
because of the regenerative structure (7°(|f]|) is independent of fi‘".(-LrJ) J(X(s))ds).

The subsequent inequality in (3.10) is elementary. O

Lemma 3.4. If A holds, then the family
!
{gb(l + t)f fe(X(s))ds: t = 0} (3.18)
o
is tight.

Proof. We can apply Prohorov’s theorem in Section 5 of Billingsley (1999). To es-
tablish relative compactness, note that for any sequence {f,: n = 1} of nonnegative
numbers, there either exists a subsequence {1,.: k > 1} such that either #, — oo or
there exists a subsequence such that £, — ¢ < oco. First, by the assumed limit (2.13),

o1+ 1,) fo " LX) ds = 4 (3.19)



208 P.W. Glynn, W. Whitt! Stochastic Processes and their Applications 98 (2002} 199-209

for any sequence {#,: n > 1} with 4, — 00 as n — 0. On the other hand, for any
sequence {#,: n > 1} with ¢, — ¢ < co as n — co. For all n sufficiently large,

Y(l + 1)

fo "fc(X(s))dsl

< sup {1,[;(1 +u)

-/ fc(X(s)ds‘} <oo wpl (3.20)
D<u< 4+ 0

Since each probability measure on R is tight, so is the sequence on the left-hand side of
(3.20) indexed by ¢, with £, — f < co. By Prohorov’s theorem, there is a subsequence
of the sequence {t,} with £, — ¢ where there is convergence to a proper limit. Thus,
for any sequence {z,}, there is a subsequence where there is convergence to a proper
limit, so that the family in (3.18) is relatively compact. By Prohorov’s theorem, the
family is tight. O

We now return to the proof of (3.4) under the assumption of A. First note that

YO (1+1t)— 1 as t — oo by the regular variation of . By Lemma 3.3, it suffices
to show that, for any ¢ > 0,

sup {P (
uEB,

However,

sup {P ('w(r) / ) fc(X(S))dS1 > s)}
UGB, 1}

“ (1l +u)
[ rxonad > £50)

gb(t)/ot—u fc(X(s))ds} > s)} — 0 ast— oo (3.21)

< sup {P (l,lf(l + u)

15 3U(e+o(dr))

“ (1 +3A(c; + o(d,))
./0 JX (“))ds' > 0) )}

< sup {P (t,lt(l +u)

uz0

(3.22)

However, since ¢, | 0, we can apply the regular variation property to deduce that

W(1 + 32t(c; + o(d,)))
¥(2)

— 00 ast?— 00. (3.23)

Hence, the tightness established in Lemma 3.4 and (3.23) implies that the last term in
(3.22) must converge to 0 as £ — oo, implying (3.21).
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