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Abstract. Motivated by the desire to appropriately account for complex features of network traffic revealed
in traffic measurements, such as heavy-tail probability distributions, long-range dependence, self similarity
and nonstationarity, we propose a nonstationary offered-load model. Connections of multiple types arrive
according to independent nonhomogeneous Poisson processes, and general bandwidth stochastic processes
(not necessarily Markovian) describe the individual user bandwidth requirements at multiple links of a
communication network during their connections. We obtain expressions for the moment generating func-
tion, mean and variance of the total required bandwidth of all customers on each link at any designated
time. We justify (Gaussian approximations by establishing a ceniral limit theorem for the offered-load
process. We also obtain a Gaussian approximation for the time-dependent buffer-content distribution in an
infinite-capacity buffer with constant processing rate. The offered-load model can be used for predicting
future bandwidth requirements; we then advocate exploiting information about the history of connections
in progress.
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1. Introduction

In the design and control of packet networks, it is important to appropriately account
for complex features of network traffic revealed by traffic measurements. Traffic mea-
surements have revealed heavy-tailed probability distributions, long-range dependence
and self similarity; e.g., see Pawlita [37], Caceres et al. [8], Leland et al. [27], Paxson
and Floyd [38] and Willinger et al. [41]. Also very important in the longer time scale of
connection times is nonstationarity. As in the past, current network traffic measurements
reveal a strong time-of-day effect.

In this paper, we propose a framework to capture all these features. In particu-
lar, we propose a nonstationary offered-load model. It is intended to describe the total
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bandwidth needed by all customers as a function of time, given a specification of the
individual customer behavior. The offered load is the total required bandwidth that cus-
tomers would use if there were no constraints, i.e., if there were always enough available
bandwidth. We focus on the offered load unaltered by constraints because it is consider-
ably more tractable than the required bandwidth after it has been modified by congestion,
e.g., by loss, delay and congestion control algorithms such as TCP. We also focus on the
offered load because we believe it can be very useful for network design and control.

We address traffic complexity in two ways. First, we allow the arrival rate of con-
nection requests to be time dependent, in order to be able to capture potentially important
time-of-day effects. Second, we allow very general “bandwidth” stochastic processes to
represent user bandwidth requirements during their connections. Our model allows a
rich class of bandwidth processes for active connections, including on—off models with
general (possibly heavy-tail) on-time and off-time distributions, and hierarchical models
with multiple sessions, each containing multiple flows, each containing multiple packets.
Moreover, our analysis shows that much can be done with a limited partial characteri-
zation of these bandwidth processes. In particular, much can be done with only means,
variances, and covariances.

Both in the long run (for design) and in the short run (for control), the offered-
load models can help take measures to ensure that supply is adequate to meet demand.
The general idea is to make decisions based on the probability that the instantaneous
demand will exceed supply, or will exceed some other target level, at the time of interest.
(Using the probability that demand exceeds supply is tantamount to focusing on the time-
dependent loss probability in a bufferless queune.) We also develop an approximation for
the time-dependent buffer-content distribution when this input comes to a queue with an
infinite-capacity buffer and a constant output rate,

A key assumption here is that customers (users or connections) arrive according to
a nonhomogeneous Poisson process. The Poisson process structure greatly helps achieve
tractability and, at the same time, is realistic. It is important to note here that the Pois-
son property is not being assumed for packets, flows (collections of packets) or even
sessions (collections of flows), but only for connections (which may include multiple
sessions and flows). Traffic measurements show that it is reasonable to model the ar-
rival process of connections as a Poisson process, e.g., see Paxson and Floyd [38], and
Feldman et al. [19]. Indeed, as is well known in telephony, it is natural to regard user
connection requests as a Poisson process, because the connection-request process is the
superposition of independent processes associated with individual users, where each user
process tends to contribute only one point or only a few widely spaced points. For an
overview of the theoretical basis for Poisson process models, see Cinlar [12]. The theo-
rems that suggest why modelling connection level traffic by a nonhomogeneous Poisson
process is reasonable, also suggest why using these models for packet level traffic is not
reasonable. Extensive traffic measurements have demonstrated that a Poisson process is
not appropriate for individual or aggregate packet arrival processes.

The present paper is an extension of two previous lines of research. First, the
present paper extends the offered-load models for communication networks proposed
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by Duffield and Whitt [15-17] by considering nonstationary customer arrival processes.
In [15-17] it was shown how the offered-load models can be used for network design
and control. It was also shown how the conditional expected future bandwidth can be
used to approximately describe buffer content when a buffer is imposed with a specified
bandwidth. The nonstationarity introduced here can be an important addition to capture
the time-of-day variations in arrival rates. Many of the ideas in [15-17] apply directly
to the more general nonstationary setting considered here, once we show that the corre-
sponding descriptive quantities can be computed, which we do here. Thus we refer to
[15-17] for additional motivation.

Second, the present paper extends the nonstationary Poisson-arrival-location model
(PALM) for wireless networks investigated by Massey and Whitt [30,31] and Leung et
al. [28] to produce versions for high-speed wired networks. For wireless networks, the
PALM model captures customer mobility by allowing movement through space after
arrival, but assumes common unit bandwidth requirements for all customers. In con-
trast, for emerging high-speed wired networks, it seems important to capture the variable
bandwidth requirements, with variability applying to different customers and to what any
one customer needs over time. It is possible to consider both mobility and variable band-
width requirements for customers, but for wired networks it seems appropriate, at least
initially, to leave out the mobility. Hence we do not consider mobility here.

The nonstationary model for wired networks proposed here is also a generalization
of the queueing network with M; arrival processes considered in Massey and Whitt [30].
Instead of just customers, here we have customers with general evolving bandwidth
requirements. Nevertheless, the theory here is similar to the theory for more elementary
M, / G /oo models, for which there is a long history. For background, including a review
of previous literature, see [18,23,30].

A major reason for considering time-dependent arrival rates is to determine the
value and time of the peak offered load. It is significant that the time of the peak offered
load tends to lag behind (occur later than) the peak connection arrival rate. Moreover, the
value of the peak offered load often is significantly less than the stationary offered load
assuming a constant arrival rate equal to the peak value. For the M,/ G /oo model, these
phenomena have been studied in [32] and references therein. We provide a framework
here for investigating these same questions for packet networks.

Here is how the rest of this paper is organized: In section 2 we construct and
characterize the basic bandwidth stochastic processes, using the theory developed in
section 6. We give expressions for the mean, variance, higher cuamulants and covariances
of the total-required-bandwidth process in the offered load model for a single link. We
also show how we can model the cumulative packet arrival process for a single link
and extend the model to cover the case of multiple links in a communication network.
We characterize the finite-dimensional distributions of all these processes. In section 3
we establish a central limit theorem justifying a Gaussian process approximation, and
discuss its application. We also develop a useful Gaussian approximation for the buffer-
content distribution when the offered-load process is the input to an infinite-capacity
buffer with a deterministic, possibly time-dependent processing rate. Here we extend
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the lower bound developed for stationary models with Gaussian input by Addie and
Zukerman [3], Addie et al. [4], Choe and Shroff [10] and Norros [34,35].

In section 4 we give illustrative examples to highlight the insights that can be
gained from the nonstationary offered-load model. We show how the peak offered load
lags behind the peak connection arrival rate in two scenarios: first, with a quadratic
arrival rate (which approximates the behavior near the peak of general arrival-rate func-
tions) and, second, with a traffic surge (where the arrival rate has a constant higher
value above a stationary background rate in a subinterval). Moreover, we can see the
influence of the connection holding-time distribution (e.g., if it is heavy-tailed) upon the
offered load. The traffic surge example is similar to the traffic accident example in Leung
et al. [28].

In section 5 we show how the offered-load model can be used for predicting the
future bandwidth requirements given current state information. In order to exploit in-
formation contained in the history of connections in progress, we separately analyze the
bandwidth requirements for new arrivals and for previous arrivals still in the system, as
in Whitt [40].

We conclude in section 6 by giving proofs. We show that the various bandwidth
processes can all be characterized by considering stochastic integration over Poisson
processes with a special integrand.

2.  Constructing and characterizing the bandwidth processes

In this section we define and characterize the stochastic processes under study. We start
by defining a stochastic process {R(t) | —co < t < oo} describing the total required
bandwidth or rate on a single link of a communication network over time.

We have in mind multiple classes of customers each with their own time-dependent
arrival rates and stochastic characteristics. Assuming that these classes are mutually in-
dependent, the total required bandwidth will simply be the sum of the required band-
widths over all classes, and the means, variances and covariances will add. Hence in the
following discussion we restrict attention to a single customer class.

For the single class under consideration, we assume that customers arrive according
to a nonhomogeneous Poisson process that is defined by a Poisson random measure A,
where we let A(s, t] count the number of customer connections arriving in the interval
(s, t] for all s < z. To say that A is a Poisson random measure is equivalent to assuming
that the random number of arriving customer connections during disjoint time intervals
are mutually independent. We also assume that A has an intensity function «(¢). This is
a locally integrable function such that

E[As, ]] :f a(rydr < oo (2.1)
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for all s < t. From this it follows that
1
d n I3
P(A(s,t]1=n) = (fs_a(r')_r) exp(—f o(r) dr) (2.2)
n! s

for all positive integers n.

Let B(s, t) be the individual required bandwidth or rate at time ¢ for a customer
that arrives at time s, with the convention that B(s, ?) = 0 whenever s > . We think
of the collection {B(s, ) | ¢t = s} as being a collection of mutually independent ran-
dom processes indexed by real s with probability laws depending on s. Just as in [30,
p- 196], we can formally define these quantities in terms of an underlying countably infi-
nite sequence of independent random variables. That construction avoids measurability
problems associated with assuming an uncountably infinite collection of independent
random variables. See section 6 for more discussion.

Clearly, there are many possibilities for B(s, #). We could let the customer band-
width B(s, t) become 0O after a random connection time 7, with a distribution possibly
depending on s. Then we call T; the connection holding time. We could have B(s, 7)
be a fixed deterministic function of ¢, which could depend or not depend on s. Then the
total-required-bandwidth process is a classical (nonstationary) shot-noise process; e.g.,
see Rice [39], Kliippelberg and Mikosch [26] and references therein. We could have
B(s, t) be deterministic with a form depending upon the customer class, which could be
randomly selected. The bandwidth B(s, ¢) could be constant over time, but randomly
distributed.

A principal case for applications is the homogeneous case in which B(s, t) depends
on the pair (s, ) only through the difference ¢ — s, i.e,,

[Bs,t) 1225} 2 {BO,t—5)|t>s) 23)

for all (s, ¢) with s < ¢. Note however that the stochastic process {B(¢) | ¢ = 0} where
B(t) = B(0, t) need not be a stationary process. For example, B(¢) might be an on—off
process that always starts at the beginning of an on time.

It is significant that our framework also allows for ronhomogeneous individual
bandwidth processes. Traffic measurements indicate that, not only is the connection
arrival rate strongly time-dependent, but so also is the expected individual bandwidth
usage. This phenomenon is consistent with previous measurements of telephone calls.
Both the average holding times and the arrival rate have been observed to be time-
dependent, with average holding times tending to be longer in the evenings.

With the framework above, we can define the fotal-required-rate (or bandwidth)
process by stochastic integration with respect to the Poisson arrival process, just as in
{30,31]; see section 6 for more discussion. The total bandwidth (rate) required at time ¢
is then

R(t) = ft B(s, t}dA(s) = 11{11 /t B(s, t)dA(s), (2.4)

o]

g
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Figure 1. Typical realizations of individual bandwidth processes associated with A(#) active connections at
time ¢. Also displayed is R(r), the total required bandwidth at time 7.

where dA(s) = lim,; A(r, 5]. Figure 1 depicts a possible realization, with A(z) connec-
tions active at time ¢. Sample paths of three of the A(¢) individual-bandwidth processes,
with their appropriate start times, are displayed, displaced vertically, along with R(¢),
the total required bandwidth at time ¢. Since we focus on the individual bandwidth
processes, we only indicate the total required bandwidth at the single time z. The process
{R(t) | —o0 < t < oo} has a close connection to the network of infinite-server queues
and the more general Poisson Arrival Location Model (PALM) in [30,31]. With the
PALM, however, the customers moved through space after arrival according to a lo-
cation stochastic process. In contrast, here the customers do not move. Instead, the
bandwidth required by each customer at each location evolves over time as a stochastic
process. Otherwise, the supporting mathematics is essentially the same.

We now give formulas for the characteristic function, mean, variance and higher
cumulants of the total bandwidth (for this one customer class). Recall that the charac-
teristic function of a random variable X (or its probability distribution) is E[e®%] for
real # where i = +/—1. The characteristic function uniquely characterizes the distrib-
ution of X. For a non-negative random variable, the characteristic function is complex
analytic (has a convergent power series expansion) at zero if and only if E[e?*] < oo for
some strictly positive §. Moreover, E[e?X] is the moment generating function (mgf) for
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X as well as the analytic continuation of the characteristic function for X when 6 is pure
imaginary instead of real. Since the mgf is analytic in an open neighborhood of zero
where its value is 1, it follows that log E[e?X] is also analytic at zero and has a unique
convergent power series too. We can then define the cumulants or cumulant moments of
X to be C™[X] for all positive integers n, where

o0

log E[exp(6X)] = Y %C(’” [X], (2.5)

n=1

for some sufficiently small but positive 8.
From (2.5) it follows that cumulants have the property that if X and ¥ are any two
independent random variables and A is any real number, then

CO[X +Y]=C"[X]+C™[¥] and CW[LX]=Ar"C™[X]. (2.6)
The first two cumulants are the mean and variance or
cV[X]1=E[X] and C@[X]= Var[X]. (2.7)

The covariance of X and Y can be written in terms of second order cumulants as
1
Cov[X, Y] = 5(c:<2>[X + Y] — CPX] - cOryy). (2.8)

Finally, a Poisson distribution is uniquely characterized as a distribution whose cumu-
lants are all equal to its mean, while a Gaussian distribution is uniquely characterized as
a distribution whose cumulants of order 3 and greater are all equal to zero.

In section 6, we prove a fundamental theorem for a special class of stochastic
integrals that provide the key result for our packet-network offered-load model. We use
this result to characterize the finite-dimensional distributions of the stochastic process
{R(t) | —oco < t < oo}

Theorem 2.1. Let#; < £, < --+ < # be k increasing time points and 6y, ..., 6 be k
arbitrary real numbers. If we have
1
f E[B(s, tj)]a:(s) ds < o0 2.9)
—co
for all j = 1,...,k, then the characteristic function for the joint distribution of

R, ..., R(t) 1s
k [/ k
E[exp(iZHjR(tj))} = exp(/ E|:exp (iEBjB(s, tj)) — 1:|o:(s) d.s'). (2.10)
j=1 —eo j=1

Now, assuming that the mgf exists as well, we can also obtain the associated cu-
mulants.
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Theorem 2.2, If, in addition to the hypothesis of theorem 2.1, we have

IE k l
f E[exp( 8;B(s, z,-)) - l]a(s) ds < 00 (2.11)
o 1

j:

for some positive @], - @;, then
k 4 k n
C(n)[ZGjR(tj)] =f E[(ZE{;B(&', I_,-)) :lav(s)d_g (2.12)
J=1 —oo j=1

for all positive integers n and all real 8y, ..., 6.

As simple consequences, we obtain formulas for the cumulants of R(z¢) and the
covariance between R(#;) and R(fz), in terms of the moments of B(s, ¢) and the arrival-
rate function ¢« (2).

Corollary 2.3. The rth cumulant of R(¢) in (2.4) is

!

c?[R(®)] = f E[B(s, )" [a(s) ds, (2.13)

-0
from which we get

t t

E[R®)] = f E[B(s,t)]a(s)ds,  Var[R(®)]= f E[B(s, t)*]a(s)ds, (2.14)

—o0 —~00
and, for all ; < #,,

f

Cov[R(11), R(2)] = f E[B(s, t1) B(s, n)]a(s) ds. (2.15)

—0Q

Given the values of the expectations in the integrands of (2.13)—(2.15), we can
compute the displayed quantities by performing numerical integration, e.g., see Davis
and Rabinowitz [13]. For that purpose, it is natural to simplify matters by requiring that
a(s) = O for s < tp for some #g, so that all integrals are over the finite interval [#, ¢].

We can also use the stochastic calculus to construct the tfotal cumulative input
process I(¢, t') for the interval (¢, ¢') with ¢ < ¢/, which equals

t v
I(t,t) = f R(s)ds = f Cy(t, ') dA(s), (2.16)
t —00
where

Cilt, 1) = f B(s, 7) dr. 2.17)
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This makes C,(z, t') equal to the individual cumulative input process for a connection
arriving at time s during the interval (¢, t'). Closely paralleling the stationary setting, see
Kelly [24], we define an effective-bandwidth function by

Bo(t,1') = log Eexp(6 - 1(z,1'))]. 2.18)

1
g-(t'—1
The effective-bandwidth function is additive for superpositions of independent sources
and, in the stationary setting, gives a value between the peak and average rate. See Chang
[9] for further discussion of the nonstationary case.

Now we characterize the finite-dimensional distributions of the total cumulative
input process {{(¢,t) | —00 < t < oo} and the effective bandwidth function.

Theorem 2.4. Let (¢,,1)), ..., (&, %) and 6y, ..., 6 be k time intervals and k arbitrary
real numbers respectively. If we have

i
f E[Cs(tj, t})]a(s)ds < 00 (2.19)
-0
for all j = 1,...,k, then the characteristic function for the joint distribution of
I, 1), ..., It 1) s
k * k
E[exp(izejl(tj, t}))] = exp(] El:exp (i ZiBjCS(tj, r})) — l}a(s) ds),
j=1 e j=1
(2.20)
where * = max(z{, ..., ).

Theorem 2.5. If, in addition to the hypothesis of theorem 2.4,
r* ko
f El:exp (Z 0,C(t;, :;.)) - 1]a(s) ds < o0 2.21)
oo o

for some positive @:, . @};, then

k o~ k n
C(ﬂ)lizejlr(tj,f}):! =f E[(ZQJ-CS(IJ-,L‘})) }a(s)ds (2.22)
j=l 00 ji=l1

for all real &1, ..., 6.
A simple consequence of this theorem is

Corollary 2.6. For all intervals (z;, ¢/) and (¢;, ),

H o
rmn(r,.,tj)

Cov[I(ti, 1)), I{t;. 1})] = f E[Cs{t:, ) Cs (2, 7) Ja(s) ds. (2.23)

—0Q0
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We can also model the total rate at each link of a multi-link packet network by
defining a vector-valued stochastic process {R(z) | —00 < ¢ < oo}, where

R(t) = (RD@), ..., RP()) (2.24)

and RO (r) describes the total required bandwidth at link £ at time ¢. Each link £ is
intended to represent a resource in the communication network. Since communication
may involve multiple resources, bandwidth may be required at more than one link. The
links might be part of a communication path; then the required bandwidth would usually
be the same on all links. Qur general framework allowing arbitrary subsets of all links

encompasses multicast communication.
Using the stochastic calculus, we can define the overall bandwidth process to be

R(t) = f B(s, t)dA(s), (2.25)

where
B(s,t) = (B, 1), ..., BH(s, 1)) (2.26)

and B®(s, t) is the random bandwidth required at time ¢ and link £ for a customer that
arrives at time s with ¢ > s. The total bandwidth required at time ¢ and link £ is then the
same as for the single link case:

RY(y = f B® (s, 1) dA(s). (2.27)

~00

In general, for every different set of time-link pairs (¢, £), the R (¢)’s are depen-
dent; i.e., R®V(z) and R (z) are in general dependent, as are R (¢;) and R©)(1,). Now
-we characterize all the finite dimensional distributions for the vector bandwidth process
[(R() | —oo < t < oo}, which show the interactions of the bandwidth process across
different links and points in time. Applying theorem 6.1, we obtain

Théorem 277, Lett; <t < ++- < ft be k time points and 84, ..., 8, be k arbitrary
L-dimensional vectors. If we have
t
j E[BO (s, ;) ]or(s) ds < o0 (2.28)

forall j = 1,...,kand £ = 1,..., L, then the characteristic function for the joint
distribution of R(zy), ..., R{t) is

k f k
E[exp(iz:()j -R(tj))] = exp(f E[exp(iZBj:B(s, rj)) — 1]&(3)(19).
j=1 — j=1

(2.29)
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Theorem 2.8. If, in addition to the hypothesis of theorem 2.7,

I
f E| exp
-0
for some strictly positive L-dimensional vectors 5;, - ,ﬁk, then we have

k t & ?
o l:z 0}_ . R(tj):l = f E[(Z 0]- -B(s, [j)) :|C£(S) ds (2.31)
i=l s j=1

for all L-dimensional vectors 6, ..., 8;.

k
4, -B(s, t,.)) - l}a(s) ds < oo (2.30)
1

i=

Corollary 2.9. For all links £, and £, and all times #; < f,, we have

Cov[R¥ (1), R® (1)) = f 1 E[B® (s, 1) B (s, 1) Jex(s) ds. (2.32)

—00

3.  Gaussian approximations

In many applications there will be a large number of customers, with the bandwidth
requirement of each being small compared to the total. Then it is natural to approximate
the stochastic processes {R(2) | —oco < t < oo}, {(t,#) | —oc0 <t <t < o0} and
{R(f) | —oo < t < oo} by Gaussian stochastic processes, by virtue of the central limit
theorem (CLT). To illustrate, we give a version of the CLT for {R(?) | —co < t < oo}.
We prove this in section 6.

Theorem 3.1. Consider a family of models indexed by n > 0, with common bandwidth
processes, where the arrival rate in model has the form

a’(t) = na @) + @ (®) + o(/7) 3.1

as 5 — oo for all ¢, where

lim [ E[B(s, *](«®@) + |aP(s)]) ds < o0 (3.2)
=00 f_ oo
and

lim [ E[B(s, )]

n—~00 f_

a(s) — naO(s)
NG

forall fand k = 1,2,3. If {RO(1) | —00 < ¢ < oo} is a total required bandwidth
process with a Poisson intensity function @, then the finite-dimensional distributions
of the process {X7(#) | —oc < t < oo} given by
R7(t) — nE[RO(z
X7() = () — nE[R™ )] (3.4)
Nl :

aP(s)|ds =0 (3.3)
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converge in distribution as 7 — oo to a Gaussian process with the drift given by
f_‘m E[¢(Z, s)jeV(s) ds and the same covariances as formulas for {RO () | —o0 <
t < oo} in (2.15).

The form of a” in (3.1) follows Mandelbaum et al. [29]. If instead we simply have
a" = na'® for n a positive integer, then {R"(t) | —co < t < oo} is the sum of 5 i.i.d.
processes, each distributed as {R'(z) | —co < ¢ < oo} and the classical CLT applies
directly, yielding a zero-mean Gaussian limit after scaling.

Note that corresponding CLTs hold for normalized versions of the stochastic
process I(¢,¢") and R(¢) by the same argument. Given the Gaussian approximation,
we can compute the probability that demand exceeds the critical level, namely

eefL=m\ _ 1 o0 (x —m)?

where m = E[R(¢)], o2 = Var[R(t)], ®° is defined to be the associated complementary
distribution function for the standard (mean 0, variance 1) Gaussian distribution. If the
level L in (3.5) is the instantaneous output rate, then P(R(#) > L) is the time-dependent
loss probability in a bufferless model. Such a normal approximation for connection
admission control was proposed by Guerin et al. [22] in a refinement to their “‘equivalent
capacity” scheme (in a stationary setting). With highly bursty traffic, we think that it
may be appropriate to use only (3.5).

In the setting of a bufferless model, we might also be interested in the expected
quantity lost

E[(R() ~ L)' ] =E[R(®) — L | R®) > LIP(R@®) > L). (3.6)
To give a normal approximation for the conditional expectation, let ¢ be the density of
® and let m = E[R(z)] and 62 = Var[R(z)]. Then
E[R@®) — L | R() > L}~E[N{(m — L,0?) | N(m — L, %) > 0]
=m—L+0E[N(0,1) | N0, 1) > (L —m)/o]
PUL —m)/o)
Pe((L ~m)/o)

We can also apply the method to treat multiple priority classes. Suppose that there
are k classes with the lower indices having higher priority. When we consider class j,
we can consider the total input rate for the first j classes; i.e., if R;(¢) is the total rate for
priority class j, then we obtain k constraints

PR +---+Ri(1)>L;) <e;, 1<j<k (3.8)

=m-—L+oc

€N

where the level L ; and target probability ¢; will depend on the class j. Indeed, a variant
of this procedure is used in IBM’s Network Broadband Services (NBBS) admission con-
trol algorithm; see Ahmadi et al. [5, pp. 608—609]. We contribute by providing a model
leading to formulas for the required means and variances in a nonstationary setting.
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R()
- W(t) H clt) —
y

cumulative workioad or  deterministic
input rate buffer content  output rate

Figure 2. The fluid quene with infinite capacity buffer and a time-dependent deterministic output rate.

‘We now apply the Gaussian process approximation to the cumulative input process
{1(¢,1y | —o00 < t < ' < oo} to obtain a Gaussian approximation for the buffer-
content distribution in a fluid queue. Consider a single resource and assume that the
offered load represents the rate of fluid coming to a single-server fluid queue with infinite
buffer and time-dependent deterministic output rate (or channel capacity) c(¢). In the
typical application c¢(¢) will be constant, but the result extends to the tirne-dependent
case, which is of interest for example if part of the bandwidth is unavailable because of
other uses, perhaps due to advance reservation; see Greenberg et al. [21]. We develop an
approximation for the buffer-content distribution, which is necessarily time-dependent
because the input and output are nonstationary. In figure 2 we depict the fluid queue
model being considered.

Let W (¢) denote the total workload or buffer content at time . Since (2.9) holds or
f_r_oo E{B(s, t)]a(s)ds < co, R(t) is almost surely finite. Assuming that fim c(s)ds =
oo but f: c(s)ds < coforall T < ¢, we can deduce that W(z) is also almost surely finite
for all ¢ and

t
W) = sup(I (s,8) —[ cft) dt). 3.9
s&t K3
As in many previous studies of stationary models, we exploit the lower bound for
the tail probability,

P(W(t) > x) = sup P(I(s, £) —f e(r)dr > x) forallx > 0, (3.10)

st

as an approximation. For stationary models, this lower bound has been shown to be an
asymptotically accurate approximation, and is used as a key step in establishing large
deviation results; see Duffield and O’Connell [14] and Botvich and Duffield [7]. How-
ever, without resorting to simplifying asymptotics, even the lower bound in (3.10) is
very complicated. As noted by, e.g., Addie and Zukerman [3], Addie et al. [4], Choe
and Shroff [10] and Norros [34,35], the lower bound in (3.10) greatly simplifies if we
approximate the total cumulative input process I (s, t) by a Gaussian process, which is
often reasonable, because we can apply the CLT. Then the net cumulative input process
{I(s, 1) — f; c(r)dr | s < t} also becomes a time-reversed Gaussian process in s. We
can then find the maximizing s in the right side of (3.10) in terms of the time-dependent
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means and variances of (s, ). Recall that

E[IGs,0)] = f

—00

!

E[C:(s,)]a(z)dr and Var[l(s,t)]=f E[C: (s, 1)?a(r) dr.
e (3.11)

t

Now let

[(Sa t) - E[I (S, t)]
Z ] = 3 "~<~. ’ -
Go=1" E[I(s, )] + [, e(z) dz PR 12

where x come from the level specified in (3.10) and note that

{I(s,t)—_/.rc(r)dr>x} ={Z(s,t)> 1}. (3.13)

However, since Z(s,t) has mean 0 for all s < ¢, it suffices to consider only that s*
maximizing the variance of Z(s, ¢). Consequently,

f 1
supP{ I(s, ) —f c(r)dr >x) =supP(Z(s, 1) 2 1) = CI)C(———),
sgl? ( 5 sgls ( - ) JVarZ{s*, t)
(3.14)
where ®°(x) = P(N(0, 1) > x) is again the standard (mean O, variance 1) Gaussian
complementary cdf and s* maximizes
Var[l (s, )]

(x — ELI (s, D] + [} c(z) dr)?

Var[Z(s, )] = (3.15)

over all s < ¢. (We assume that the supermum over s in (3.15) is attained.)

In the stationary context, E[ (s, )] — fs ! c(t)dr is always —fB(t — s) for some
constant 8, where — 8 must be negative, in order to have model stability. Here, in the
nonstationary case, if we assume that c(¢t) = y for all ¢, than we can conclude that
ElI(s,0] ~ [l c(x)dr 2 —y - (t — 5) and that E[I(s,£)] — [} c(r)dr is eventually
negative for all s sufficiently small because the total input over (—oo, #] is finite.

It is worth noting that even in the stationary context (when {R(¢) |t = 0} is a
stationary stochastic process and {/(s,t) | s < ¢} has stationary increments), the sto-
chastic process {Z(s, f) | s < t} is not itself a stationary process. In the stationary case,
Choe and Shroff [10] have shown that the approximation (3.14) performs remarkably
well, even outside the large-deviations asymptotic regime. Hence, (3.14) is a promising
approximation in the nonstationary case as well.

By calculating (3.14) for a range of z, we can approximately determine how the tail
probability P(W(¢) > x) depends on ¢; e.g., we can identify the ¢* for which

P(W(*) > x) = supP(W() > x). (3.16)
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4. Physics: Time lags and space shifts

In this section we consider an example to illustrate the insights that can be gained from
the nonstationary offered-load model. The assumptions made here are general but ide-
alized, making it possible to do the analysis analytically. We intend to do more specific
modelling based on traffic data in the future. The discussion here parallels the analysis
of the M,/ G /oo queue in Eick et al. [18].

Let b be a deterministic, non-negative real-valued function with support on [0, co).

~

If s = A,, then we define
B(s, 1) = b{t — )iz, 515} (4.1

where T, is the holding time for the nth arriving connection, and {7, | » = 1} is a
sequence of i.i.d. non-negative random variables with finite mean. We call the determin-
istic function b the bandwidth profile. In practice b can be an effective bandwidth or an
upper envelope for the stochastic (unpredictable) behavior of a connection’s request for
bandwidth. In this example we show how the model can be used to predict how the peak
expected total required bandwidth will lag behind the peak connection arrival rate.

For the next theorem, let T denote a non-negative random variable with the same
distribution as one of the 7, and let 7, denote a non-negative random variable with the
stationary excess distribution of T, 1.e.,, forallt 2 0,

o <t)_f0’P(T>s)ds )
e = = E[T] . .
The next result shows that the cumulants C™ [ R (¢)] depend on the distribution T through
its mean E[T] and the distribution of T,.

Proposition 4.1. If B(s, ¢) is defined as above, then
C™[R()] = E[a(t — T.)b(T.)"] - E[T] 43)

for all positive integers n and real ¢.

Proof. -Substituting (4.1} into (2.13), we have

t

T
CW[RM] = E[ f a(s)b( —s)" dsj‘ = E[ ] a(t — $)b(s)" ds]. 4.4)
T 0

Now we use the identity established in Massey and Whitt [33] for all functions f con-
tinnously differentiable on [0, 00) and x = 0,
E[f(x+T)] - f(x)

E[T]
Applying (4.5) to (4.4) completes the proof. O

—E[f'x +T)]. 5)

For the next theorem, we introduce some notation. Let X and ¥ be any two non-
negative random variables. If f is any non-negative function such that both E[ f(X)]
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and E[Y f (X)] are finite and positive, then f induces a new probability measure or ex-
pectation Ef on Y such that

_EYFO0]
S = T

We also define Var[¥] = Ef[¥?] — Ef[Y]?, provided E[Y? f(X)] < oo.

We now consider the case of a quadratic arrival-rate function. We are especially
interested in the case in which the guadratic function has a finite maximum, because
then the quadratic function can serve as an approximation (e.g., Taylor series expansion)
for a more general arrival-rate function near its peak. As in Eick et al. [18], we apply
formula (4.3) directly even though «(¢) will typically be negative for times ¢ in the
past. In applications, we need to check that the simple formula so produced is indeed
a good approximation for the actual (non-negative) arrival-rate function. As discussed
in [18], experience indicates that it often is. The insight gained justifies the simplifying
assumption.

The next theorem shows how the cumulants of R(¢) depend on the stochastic dis-
tributions of T and the deterministic fluctuations of &(¢) in the case of a quadratic arrival
rate.

(4.6)

Theorem 4.2. If, in addition to (4.1), a(¢) = ag + a1t — a,t*, then for all integers n > 1

COR(N)] = (a(t — EplT.]) — axVar,[T.]} - E[b(T.)"] - E[T]. @4.7)

We now apply theorem 4.2 to describe the time lags and space shifts in the cumulants of
R(t) compared to the peak connection arrival rate.

Corollary 4.3. Under the hypothesis of theorem 4.2, if a; # 0, then « attains its unique
extremal value o* at 7 = a;/(2a,), there is a unique extremal value for CWIR(2)] at

ty =ty + Ep[T,] (4.8)
and-

COR(EN] = (o* — azVars[T.]) - E[B(T.)"] - ELT). (4.9)

When a; > 0, the extremal value C®™[R(#)] is a maximum. This corollary tells
us that there is always a non-negative time lag £, = Ep=[T,] between the time z; of the
extremal value o* for « and £}, the time for the extremal value of the nth cumulant of R.
Moreover, this time lag is the weighted average of T, and not T'. So even if E[T] is held
fixed, changing the second moment E[7%] will influence the time lags. Thus, in general,
holding times with heavy-tail distributions have the potential of inducing large time lags
between the time of the peak connection arrival rate and both the average peak load of
total bandwidth in use and its variance. Also note that the values of the parameters ao,
ay, and a; for the connection arrival rate o have no effect on these time lags.
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If ¢ (¢) equals the constant rate rate &*, then we have
CP[R®)] = o* - E[b(T.)"] - EIT] (4.10)

for all positive integers n and real t. When C(")[R(t:)] is a maximum, it is strictly
less than the pointwise stationary value (4.10); observe that 7, can never be a constant.
Hence, just as in [18], we have space shifts as well as time lags.

Corollary 4.4. Under the hypothesis of theorem 4.2, if b(x) = b - 14(x) where A is
some measurable subset of the positive reals such that P(7, € A) > 0, then
CW[R(®)] = (a(t—E[T. | T. € Al)—aVar[T, | T. € A])-b"P(T. € A)-E[T], (4.11)

and so R(t)/b has a Poisson distribution.

Observe that, for any constant c,
EiT. |T. 2cl2¢ and E[T,|T.<c]l<c, (4.12)

assuming respectively that P(T, 2 ¢) > 0 and P(7, < ¢) > 0. Thus the times when
a connection uses a non-zero amount of bandwidth during its “on” period can have an
enormous effect on the time lag.

In order to establish some further consequences of theorem 4.2, we need the fol-
lowing result.

Lemma 4.5, Let X be any non-negative random variable with a finite mean. If f and g
are two non-negative, bounded, measurable functions defined on the support of X, and
f = g, where ¢ is a nondecreasing function on the support of X, then

E;[X] 2 E.[X]. (4.13)
Similarly, if ¢ is a non-increasing function, then

E/[X] < E[X]. (4.14)

Proof. “The identity function I (x) = x is an increasing function. If ¢ is nondecreasing,
then the result follows immediately from the FKG inequality (see Fortuin et al. [20])
since

EglXp(X)] _ E;[XIE[¢(X)]
Eld(X)] ~ Elo(X)]

Since —1 is a decreasing function, the reverse inequality will hold when ¢ is a non-
increasing function. (I

Ef[X] = Egp[X] = =Xl (415

Corollary 4.6. Under the hypothesis of theorem 4.2, Let by and b, be two bandwidth
functions. If, in addition to the hypothesis of theorem 4.2, b; = ¢b,, where ¢ is a non-
negative, nondecreasing function on the support of 7, then the time lags £, due to b,
using the same « and T, are always larger than the ones due to &,. .
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This corollary yields yet another result of interest.

Corollary 4.7. If b is a nondecreasing function on the support of T, then the time lags
£, are ordered by

OSE[T]SL << << (4.16)
Similarly, if £ in non-increasing, then

O0<-- << 6L <4 <ETL (4.17)

These results say that if b is nondecreasing, o is quadratic, and a; > 0, then
tf < t; or the time of the peak average total required bandwidth will precede the time
of the peak variance for the total required bandwidth. Similarly, if b in non-increasing,
then the opposite holds or 23 < ¢].

Now, to model a traffic surge, instead of a quadratic arrival-rate function, we let

_Ja, for0<1 <y,
a(t)_{(), t <Oandt > &

The arrival-rate function in (4.18) represents the increment beyond a constant stationary
arrival rate. We neglect the stationary part because we can treat the two components
separately and add the resulting independent random variables.

In this setting we can apply proposition 4.1 to obtain the following result.

(4.18)

Corollary 4.8, Under {4.1) and (4.18),

CW[R®)] = aE[B(T)"; ¢ — 1o < T, < £] - E[T]. (4.19)
If, in addition, b(¢) = b, then
CP[R(®)] =ab"P(t — 1y < T, < t) - E[T]. (4.20)

Formula (4.20) is a minor variation of the M,/ G /oo result in section 5 of Eick et
al. {18].

5. Prediction given information

In this section we consider the problem of predicting the total required bandwidth at
some future time, given information available at the present time. We believe that it
will often be advantageous to appropriately exploit available information. As discussed
in Duffield and Whitt [15—-17], long-range dependence and heavy-tail distributions offer
opportunities to do prediction, because past events can have a longer impact. The present
information can take several forms. We initially assume that we know the full history,
i.e., the numbers of customers of each class, the elapsed connection holding time for each
customer and the history of each customer’s bandwidth stochastic process. However, it
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remains to determine the critical information in each context. Fortunately, the model
makes it possible to study the value of different kinds of information, as is illustrated by
[15-17].

We focus on a single customer class at a single link and assume that we can add
the results for different classes. As in Whitt [40], we divide the future requirements for
the designated customer class into two parts: (1) the requirements generated from new
arrivals and (2) the requirements generated from previous arrivals already in the systern.

Let the present time be O and let the future time of interest be ¢ > 0. Depending
on how close ¢ is to 0, the new or previous arrivals can dominate in the prediction. It
is significant that the calculations can reveal the contribution of each component to the
total future bandwidth requirements.

The prediction of the total bandwidth requirements of new arrivals is just as pre-
sented in section 2, except that now only arrivals in the interval [0, £] are considered.
Formulas (2.4), (2.14) and (2.15) all carry over once the integrals have been changed to
be over [0, t] instead of (—o0, t]. Equivalently, we can apply section 2 directly under
the extra assumption that a¢(s) = 0 for s < 0.

Now we turn to the future requirements due to previous arrivals, i.e., due to cus-
tomers already in the system. The information available at time O should include the
number of customers present, so that it is known. We assume that there are n customers
in the system at time 0. Conditional on the » previous arrival times, also assumed known,
the bandwidth processes and remaining holding times for different customers are mutu-
ally independent. We let (B;(¢) | 1;(0)) denote a random variable with the conditional
distribution of the required bandwidth for customer i at time ¢ given the information
(history) for customer i at time 0. In view of the conditional independence, the vari-
ances as well as the means add. The important point is that there is great potential for
the conditioning upon [; (0) to significantly improve our estimate of the future required
bandwidth for connection i.

Assuming that both the bandwidth process and the information can be represented
as random elements of complete separable metric spaces, the conditional probability
distribution can be expressed via a regular conditional probability measure, i.e., by a
kernel P(x, A) such that for each possible information state x, P(x, -} is a probability
measure, and, for any measurable set A, P(x, A) is a measurable function of x; see
Parthasarathy [36, chapter V}. In particular, assuming that the information [;(0} is ob-
served, (B;(¢t) | I;(0)) can be regarded as a bonafide random variable.

Now we can combine the new and old customers to obtain expressions for the
mean and variance of the total required bandwidth at time z. Let (R(¢} | 1(0)) be a
random variable representing the conditional total required bandwidth at time ¢ given all
available information at time 0. Then the mean and variance are

n

E[R@) 1 1(0)] = E[B:() | L(©)] + f E[B(s, £)]a(s) ds, (5.1)

0

i=1
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Var[R() | 1(O)] = Var[Bi(e) | L(O)] + f E[B(s, )’ ]a(s)ds.  (5.2)
i=1 0

Similarly, for the covariances at times #; and #;, we obtain the formula
Cov[R(11), R(#) | 1(0)]

= 3 Cov[Bi() Bi(t) | O] + fo E[BG, 1) B, ]V ds.  (53)
i=1

Following Duffield and Whitt [15,16] we propose as a first-order approximation
for the conditional total required bandwidth (R(¢} | I(0)) its expected value in (5.1)
and as a second-order approximation the normal distribution with mean and variance in
(5.1), (5.2). Instead of using the normal approximation, we can also calculate the dis-
tribution of the total required bandwidth by performing numerical transform inversion.
Calculations of the full distribution in several representative cases can reveal how well
the normal approximation and the more elementary deterministic mean-value approxi-
mation actually perform. If these approximations are adequate, then they can be used.
Otherwise, it is possible to use the inversion.

Numerical inversion is effective when the probability distribution is either discrete
or has a smooth probability density function. In the discrete case we can apply numerical
inversion of generating functions, as in Abate and Whitt [1]. In the case of a continuous
probability density function, we can apply numerical inversion of Laplace transforms,
as in Abate and Whitt [2]. Both approaches could be used, but it seems more natural to
work with generating functions. To work with generating functions, we assume that all
bandwidth values are integer multiples of some basic unit, which we take to be 1. Then
the random variables B(s, t), B;(¢) and R(¢) are all integer valued.

6. Fundamental theorems and proofs

Our offered-load model can be analyzed by considering stochastic integrals of a non-
homogenous Poisson process with integrands that have a special structure. We now
develop the theory for such integrals. As in section 2 of [30], let {Z, | n = 1,2,...}
be an i.i.d. sequence of random elements belonging to some complete separable met-
ric space  and distributed as Z. The idea is that ¥ can be the function space D of
right-continuous real-valued functions on (—oo, co) with left limits, endowed with an
appropriate topology, so that X contains the sample paths of an individual bandwidth
process {B(s,?) | —oo <t < oo}. We say that ¢: X x R — R is an integrand with
respect to A and Z if it is a bounded, measurable function. If the values of ¢ are non-
negative, then we call ¢ a non-negative integrand. If the values are equal O or 1, then we
call ¢ a binary integrand.

-5
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Given A, {Z,} and an integrand ¢, we define Z}(z) to be

{
230 = lim, [ 0(Zaeas) 446, 6.1)
where the last integral can be written as the random sum
t A(r,1]
[ #(Zacns) a0 = > #(2n i) 62)
T

where A, is the arrival epoch of the nth arrival, starting from the last arrival and counting
backwards in time. The random vanables (2., A ) in (6.2} are conditionally mutually
independent, given the arrival epochs Ann>=1

We now state our key result for such stochastic integrals.

Theorem 6.1. If for all non-negative integrands ¢ of A and Z, we have

f E[¢(Z,5)]a(s)ds < oo (6.3)

—CC

for all real ¢, then

t

E[¢?%®] = exp ( f E[¢®?%) — 1]a(s) ds) (6.4)
—Od

for all real ¢ and 6.

Proof. Lett < t. Since E[A(r, t]] = f: «a(r)dr < co, the Poisson process induced by

the Poisson random measure A has a finite number of jumps on the interval (z, z]. If f
is any real-valued bounded measurable function on R, we can express f (Zg (2)) as

FZg@0) =f(Z5@) + f [£(24() — £ (23 s-))] dAs)
=f(Z3@) + f [£(Z46=) + 0(Zaca 5)) — F(Z4(s-))] dAGs).

Observing that Zg (s—) and ¢(s, Z4(;5)) are independent random variables when s is
the time of a jump and letting £ (x) = €'**, we obtain

!
074 _ OZEE) | f [¢74 6 (e08(Zacas) — 1)] dA(s). 6.5)
T
Taking expectations of both sides, we get

E eiazg(r)] = E[6¥%®)] + fr E[c¥% ¢ DE[e9Z) — 1]a(s) ds, (6.6)

T
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invoking lemma 2.2 of [30], which shows that the characteristic function of Z;;‘(t) is
an absolutely continuous function of 7. It follows that it is the unique solution to the
differential equation

%E[ewzr?(')] = E[ewzﬁ(’)]E[e“"i’(z") - l]a(t), 6.7
whose solution is
- - r .
E[e‘92£(’)] = E[e‘nggm] exp (f E[e‘g‘ﬁ(z‘s) — I]a(s) ds). 6.8)
T
We are done once we show that
i E[eifZ4(] — _
rilinm [e ] 1 6.9)
and
t A t i
lim f E[e9%¢) — 1]a(s)ds = f E[eZ® —1Ja(s)ds.  (6.10)
Tl—00 T —0c
The first limit (6.9) follows from the fact that (6.3) implies
. A _
Jim E[Z5(r)] =0 (6.11)
and
|E[6°% ] — 1] < E[|e"% @ - 1]] < IBIE[Z4 ()] (6.12)
The second limit (6.10) follows from combining (6.3) with the bound
|E[e9#Z9] — 1| < IBIE[¢(Z, 5)] (6.13)
and applying dominated convergence. The proof is now complete. a

It is easy to apply theorem 6.1 to establish the theorems in section 2.

Proof of theorem 2.1.  The proof follows simply from the observation that B(s, ) =0
for all s > ¢ implies that for all ¢ > ¢; and so

4
R(t;) =f B(s, t;) dA(s), (6.14)
-0
where j = 1, ..., k. Asaresult, for all > #; we have
k : k
> iR = f ( 6;B(s, t,-)) dA(s). (6.15)
j=l —& N\ j=1

The rest follows from theorem 6.1. |
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While the distribution of Z;;*(t) is in general not Poisson, theorem 6.1 allows us
to characterize the distribution uniquely. The next theorem allows us to compute all its

cumulants in terms of «, ¢, and Z.

Theorem 6.2. For all non-negative integrands ¢ of A and Z, where

¢
/ E[*%* — 1]a(s)ds < o0 (6.16)
for some positive 8 and all real ¢, we have
4
c®[zi)] = f E[¢(Z. 5)"]ee(s) ds (6.17)
—00

for all postitive integers n.

Proof. Combining theorem 6.1 with (6.16), we can show that E[e!*#{?:9)] is an analytic
function of 8 when |6| is sufficiently small. We then have
t
log E[e?%®] = f E[e#Z5) _ 1]a(s) ds (6.18)
~00
and the rest follows from the definition of cumulants and a power series expansion of the
right hand term. O

We now establish a CLT implying theorem 3.1. The proof exploits the charac-
teristic function representation, just like classical proofs of CLTs for partial sums; see
section 6.4 of Chung [11]. We only state the CLT for one-dimensional distributions.
A corresponding limit holds for all finite-dimensional distributions by the same argu-
ment, applying the Cramer—Wold device, i.e., by considering the one-dimensional limits
for arbitrary linear combinations of the finite-dimensional distributions {6, p. 49].

Theorem 6.3. Let {A7 | > 0} be a family of Poisson random measures, where A" has
intensity function o”. Let ¢» be a non-negative integrand and let Zg () be the stochastic
integral ‘of ¢ with respect to A", as defined by (6.1). If o@ and ‘! are two locally
integrable functions on R such that @@ is non-negative and, for all real ¢,

f ' E[¢(Z, sY [« (s) + [«P ()]} ds < o0 (6.19)

0]

and
T

lim E[¢(Z, 5)*]

oo J_

fork =1, 2,3, then

lim Yﬂ(z)éN( f I E[¢(Z, 5)]aV(s) ds, f ' E[¢(z,s)2]a<°>(s)ds), (6.21)

n—>00

a™(s) —naD(s)

N

aP(s)fds =0 (6.20)

<R
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where the convergence is in distribution, and

Z)0) —n [* El$(Z, $)]a®(s) ds
N .

Proof.  Using theorem 6.1, we need only show that

Y(t) = (6.22)

lim | E[¢%@9VT — 1]a"(s)ds —i0./7 f E{#(Z, )]a(s) ds

=0 J_

H 2 f
= i@ [ E[qb(Z,s)]oz(”(s)ds—%- f E[¢(Z,5)]a@(s)ds.  (6.23)

—00

The limit (6.21) follows from
t f
/ E[e®*@9/VT — 1]a"(s) ds —i0./7 f E[¢(Z, 5)]a@(s) ds
—0Q —C
= [I E[efgﬂz's)/ﬁ— 1— iiqb(Z 5) + -9—2¢(z s)z:laf”(s)ds
oo NG 2n

f _ (0} 2 t
+i6f E[¢(Z,s)](aq(s) 1= (S))ds—e—f E[¢(Z, 5)2]a"(s) ds

o0 N 21 J-oo
- f_ ; E[ew(Z-s)/ﬁ —1- %4)(2, s) + %cp(z, s)z]a"(s) ds (6.24)
+i0 /_ ; E[¢(Z, 9] (“n(s) :/%O"w) ) _ ozm(s)) ds (6.25)
— %2 _; E[¢(Z, 5)?] (@ —a©@ (s)) ds (6.26)
+i6 f_ ; E[¢(Z, 5)]eV(s) ds — 9; f_ ;o E[¢(Z, 5)*]a®(s) ds. (6.27)

The terms (6.25) and (6.26) go to zero as n — oo given the condition (6.20). The first
term (6.24) also goes to zero since by the Taylor series remainder formula we have

3
< 4z 9. (6.28)

N
This completes the proof. O
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