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This e-companion to the essay based on my 2012 MSOM Fellow Lecture briefly describes how the main ideas

have already been pushed forward. Hopefully this brief description of the current state of the art will help

researchers discover some of the exciting problems that remain.

It is natural to ask: What are the exciting research problems that remain? Our goal here is to

provide a partial answer by describing how the ideas in the main paper, Whitt (2013), have been

extended, thus revealing the current state of the art. We briefly discuss six extensions: (i) more

general arrival and service processes, (ii) the modified offered load approximation, (iii) a theoretical

explanation, (iv) more complex stochastic offered load models, (v) routing and scheduling and (vi)

alternative approaches with inflexible staffing.

1. More General Arrival and Service Processes

Offered load analysis extends to more general models than the Mt/GI/st + GI queueing model

discussed so far. First, the service times can also be time-dependent; then a modification of formula

(2) of Whitt (2013) still holds, namely,

m(t)≡E[X∞(t)] =

∫ t

−∞

P (St−s > s)λ(t− s)ds. (1)

but it is harder to analyze. Even when the service-time distribution varies over time, it often does

so relatively slowly, so that formula (2) of Whitt (2013) can still be applied over subintervals.

Second, the offered load analysis extends to the more general Gt/G/st + GI model with non-

Poisson arrival process having a time-varying arrival rate λ(t) and a general stationary sequence

of service times, allowing dependence among successive interarrival times and among successive

service times, e.g., see Pang and Whitt (2012). When the arrival process is no longer Poisson,

the time-varying number of busy servers X∞(t) itself no longer has a Poisson distribution, but a

heavy-traffic limit theorem can still generate a normal approximation supporting the SRS formula.

For the associated Gt/G/∞ IS model, the approximation

X∞(t)≈N(m(t), v(t)) (2)

1
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is asymptotically correct, where the mean m(t) remains as in formula (2) of Whitt (2013), while

the variance v(t) satisfies

v(t) ≡
∫ ∞

0

λ(t− s)V (s)ds, V (s)≡Gc(s) + (c2
a − 1)Gc(s)2 +Γ(s),

Γ(s) ≡ 2
∞

∑

k=1

(Hc
k(s, s)−Gc(s)2), Gc(s)≡P (S > s), Hk(s1, s2)≡P (Sj ≤ s1, Sj+k ≤ s2), (3)

with c2
a being the asymptotic variability parameter of the arrival process, which is 1 for a Poisson

process, and Sj and Sj+k being service times separated by k indices (independent of j because of

stationarity). The second term in the integral including the three terms of V (s) drops out if the

arrival process is Poisson, while the third term drops out if the service times are i.i.d.

With this generalization, a time-varying square-root-staffing (SRS) formula still holds. Instead

of (3) in Whitt (2013), we now have

s(t) = m(t) +β
√

v(t), (4)

for v(t) in (3) above, again using the least integer above that value.

2. The Modified Load Approximation

The offered load approach to staffing reviewed in §4 of Whitt (2013) succeeds in stabilizing the

performance, but by itself cannot closely match specified performance targets. Given that the

performance can indeed be stabilized, the appropriate constant level is not difficult to find by

simulation, but the desired performance target also can often be met by applying the the modified

offered load (MOL) approximation. The MOL approximation uses the steady-state performance

of the corresponding stationary model with capacity constraints and other details, e.g., customer

abandonment, but in a nonstationary way. The stationary OL for the approximation at time t is

made to agree with the time-varying OL in formula (2) of Whitt (2013) by letting the arrival rate

in the stationary model to be used for the MOL approximation at time t be

λMOL(t)≡m(t)/E[S]. (5)

Moreover, it often suffices to apply many-server heavy-traffic approximations for that steady-state

distribution. The MOL approximation can stabilize all standard performance measures at desired

targets with a suitably high quality of service, but not all performance measures simultaneously

at a low quality of service; see Liu and Whitt (2012b).
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The MOL approximation also applies with more general arrival and service processes. Histori-

cally, the offered load analysis and the MOL approximation for non-Poisson arrival processes trace

their roots to approximations for the performance of loss and delay models based on the peakedness

z(t)≡ v(t)/m(t), (6)

as discussed in Li and Whitt (2012), Pang and Whitt (2012) and references therein.

3. A Theoretical Explanation

It is natural to wonder why it should be possible to stabilize the performance using the SRS formula

in (4) or equation (3) of Whitt (2013) when the offered load m(t) is time-varying. Valuable insight

can be gained from many-server heavy-traffic limits, because these SRS formulas correspond to the

scaling in the Quality-and-Efficiency-Driven (QED) many-server heavy-traffic regime. Indeed, the

QED regime is defined by the scaling

s−m√
m

→ β as m→∞. (7)

As the offered load increases with these SRS formulas held fixed for given QoS parameter β, in

considerable generality the delay probability converges to a nondegenerate limit. Hence, at least

for larger offered loads, we should anticipate that the delay probability should be independent of

the offered load, provided that the SRS formula holds for all t with fixed QoS parameter β.

By similar reasoning, we can understand why it is not possible to stabilize the abandonment

probability at high targets (low QoS) using the SRS formulas, while it is by the new method in Liu

and Whitt (2012b). That behavior is to be expected because, with SRS scaling, the abandonment

probability tends to be asymptotically negligible. A positive abandonment probability is consistent

with a many-server heavy-traffic limit in the ED regime, in which s = βm + o(m) as m →∞ for

constant β, but not according to the SRS formula and the QED regime. In contrast, the new

procedure for stabilizing the abandonment probability in Liu and Whitt (2012b) should be effective

for high abandonment probabilities, because it is consistent with many-server heavy-traffic limits

in the ED regime.

4. More Complex Offered Load Models

Another way offered load analysis can be generalized is to introduce network structure. That can

arise when service does not take place continuously, but is occasionally interrupted, as in web

chat, or when patients return to a medical unit of a hospital after being elsewhere, e.g., to take

tests. Such features can be modeled by considering networks of queues and we can apply results
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for networks of IS queues, as in Massey and Whitt (1993), as has been done by Yom-Tov and

Mandelbaum (2010).

The network structure can be viewed as adding a spatial component as well as a time component

to the OL. Other spatial OL models are the Poisson arrival location model (PALM) in Massey

and Whitt (1994) and the variant in Leung et al. (1994) introduced to represent wireless com-

munication taking place in mobiles moving through space. General non-integer-valued OL models

were introduced by Duffield et al. (2001) to represent the demand for bandwidth in communication

networks. Capacity can be set in a similar way with these more general OL models.

5. Routing and Scheduling

For more complex systems with multiple classes and network structure, it is important to consider

routing and scheduling and the design of the network, all of which can have important implications

for staffing. However, in some cases, routing and scheduling policies can be developed that permit

the overall problem to be decomposed, so that staffing can be considered separately, as for the

single-class system considered above; e.g., see Gurvich and Whitt (2009).

6. Inflexible Staffing

Staffing to stabilize performance with time-varying arrival rates requires suitable flexibility in

staffing, but in some cases, as in many hospitals, staffing is actually quite inflexible. Then the

system inevitably must alternate between periods of overloading and underloading. Then offered

load analysis as described above cannot be applied, because the periods of overloading significantly

alter system performance. Nevertheless, infinite-server (IS) models can often be used to analyze the

performance in both overloaded and underloaded intervals and thus select appropriate inflexible

staffing levels. For this purpose, fluid and diffusion approximations resulting from many-server

heavy-traffic limit theorems can be applied, as in Liu and Whitt (2012a) and references therein.

7. Conclusions

For staffing to meet time-varying exogenous demand in service systems, much depends on the

length of the service times. When the service times are relatively short, as in many telephone call

centers, it usually suffices to apply traditional stationary models in a nonstationary way in order to

set staffing. On the other hand, when the service times are relatively long, as in many healthcare

systems, that approach fails, while offered load analysis can often produce stable performance over

time at target performance levels, even in face of strongly time-varying demand. Moreover, the

scope of offered load analysis can be extended, e.g., by including space as well as time, as in a

network of queues; see §4.
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