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THE EFFICIENCY OF ONE LONG RUN VERSUS
INDEPENDENT REPLICATIONS IN
STEADY-STATE SIMULATION*

WARD WHITT
AT&T Bell Laboratories, Room 2C-178, Murray Hill, New Jersey 07974-2070

We evaluate the efficiency of one long run versus independent replications in steady-state
discrete-event simulation, assuming that an initial portion of each replication will be deleted to
allow the process to approach steady state. We provide supporting evidence in favor of one long
run, but we also show that multiple replications can be more efficient. The advantage of one long
run increases if the amount deleted increases or if the covariance function decreases more quickly
(assuming it is nonnegative and decreasing). Thus, assuming that the amount deleted depends
on the way the process approaches steady state, one long run tends to be efficient when the
covariance function decays rapidly compared to the rate the process approaches steady state. We
also discuss ways to determine the initial portion to delete. We consider the case of an exponential
covariance function in detail, and use it as a basis for approximations. We also consider the
M/G/oo queueing model and reflected Brownian motion, the latter as an approximation for the
G/G/1 queueing model. For these models starting at the origin, one long run is efficient, but a
moderate number of independent replications is essentially equally efficient. In agreement with
Kelton and Law (1984), for such examples our analysis only rules out many replications of very
short runs.

(SIMULATION; EXPERIMENTAL DESIGN; SIMULATION EFFICIENCY; INDEPENDENT
REPLICATIONS; COVARIANCE FUNCTION; INITIAL BIAS)

1. Introduction

Two curses of steady-state discrete-event simulation are the initial bias and the auto-
correlations. Initial bias is the difference between the expected value of the estimator,
here presumed to be a sample mean, and the quantity it is estimating. Initial bias occurs
because we cannot start the process in steady state. The effect of initial bias can be
reduced by deleting an initial portion of the run.

Autocorrelations are the correlations between successive values of the process. Auto-
correlations occur because new states of the process typically depend strongly on previous
ones. The autocorrelation function is typically positive and decreasing (or nearly so),
reflecting the fact that new states of the process are similar to previous states, with the
similarity decreasing (in a random way) as the process evolves. The effect of autocor-
relations can be reduced by using independent replications, but at the cost of having to
delete an initial portion from each replication. Thus it is natural to ask: Is it better to
make one long run or many independent replications?

Of course, this question has been studied before, see Fishman (1972), Cheng (1976),
Law (1977) and Kelton and Law (1984 ), but there evidently is no consensus about what
is an appropriate simulation strategy; see p. 80 of Bratley, Fox and Schrage (1987). We
contend that this is inevitable, because there is no simple answer. We provide examples
showing that each strategy can be much more efficient than the other, thus demonstrating
that a simple unqualified conclusion is inappropriate.

We are thinking of conventional simulation, but the issue of one long run versus
independent replications also arises in parallel simulations. With many processors, we
may do a distributed simulation of one run or do independent replications with one
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646 WARD WHITT

replication per processor; see Heidelberger (1986), Glynn and Heidelberger (1989, 1990)
and references cited there. Our analysis may provide some useful insights for parallel
simulation, but we do not discuss it further.

In this paper we provide support for the conclusion that it usually is more efficient to
make one long run than make independent replications, but we conclude that it usually
does not matter much. If the total simulation run length is long enough to obtain rea-
sonably good estimates, then several replications are usually just as efficient as one longer
run. In agreement with Kelton and Law (1984), our analysis only rules out a very large
number of independent replications of very short runs.

A main idea here is to evaluate these simulation strategies using the criterion of esti-
mation efficiency, as discussed in Glynn and Whitt (1991). In particular, estimation
efficiency here is defined to be the reciprocal of the product of the mean squared error
and the total simulation run length. We are thus identifying the total simulation run
length with the total cost of conducting the experiment, which of course is a simplifying
assumption. By using the efficiency criterion, we are able to circumvent the complicated
optimization problem obtained when we try to minimize the mean squared error subject
to a constraint on the total simulation run length (see §2).

However, it should be noted that there are other relevant criteria that we do not
consider. By focusing on efficiency, we consider the quality of the estimate (variance or
mean squared error), but not the quality of any estimate of the quality of the estimate,
i.e., we do not consider how to construct confidence intervals or whether they have
proper coverage. We also do not consider other measures to improve the efficiency, such
as initializing the simulation to make the process approach steady state more quickly,
e.g., see Kelton (1990). Our goal is not to identify the best simulation strategy, considering
the proper balance of all relevant criteria, but to provide additional insight into the trade-
off between initial bias and autocorrelations. Thus we consider only the efficiency criterion.

Our analysis indicates that doing fewer runs (e.g., only one) is more efficient when
the autocorrelations decrease rapidly compared to the rate the process approaches steady
state. This conclusion seems to provide a useful practical guideline for choosing simulation
strategies. Even though it is usually not possible to determine precisely how the auto-
correlations decrease or precisely how the process approaches steady state, we often have
some idea about what should happen (perhaps by doing pilot runs). In fact, the analysis
of the examples in this paper draws on previous investigations of the autocorrelations
and the way the process approaches steady state; e.g., Abate and Whitt (1987a, b, 1988).

A second main idea here is to initially assume that the amount to delete has been
specified. We assume that the initial portion to delete has been chosen sufficiently large
that the process of interest after the deletion is approximately stationary. By assuming
that the initial portion to delete has been specified, we separate the problem of bias from
the problem of variance. Moreover, our analysis thus covers cases in which the initial
portion to delete is larger than necessary, as well as the case in which it is chosen properly.
We also investigate ways to determine an appropriate amount to delete. Our analysis
indicates that the appropriate amount to delete should usually be a relatively small portion
of the total simulation run length.

The assumptions underlying our analysis seem most appropriate in a large sample
context. Indeed, our results seem consistent with the large-sample asymptotics of Glynn
(1987, 1988) and Glynn and Heidelberger (1989, 1990), which we were unaware of
when we did this work. These asymptotic results describe the limiting behavior of the
mean squared error (equivalently, the asymptotic efficiency) as the computational budget
or total simulation run length increases, depending on the number of replications and
the amount of initial transient deletion. These asymptotic results also show that there
can be difficulties if the number of replications is too large. Moreover, they show that
once a minimal amount of initial transient deletion is performed (which goes to infinity
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slowly as the computational budget increases) the asymptotic efficiency of the estimator
is essentially independent of the number of replications (provided that the number of
replications does not grow too quickly as the computational budget increases).

Before going further, we give an intuitive argument in favor of one run. Suppose that
a common fixed starting state is used for each run, an initial portion of length s is deleted
from each run, and the total run length is 2(s + ¢). As one candidate, consider two
replications, i.e., two runs each of length s + ¢, deleting the initial interval [0, s] from
each. First, we contend that it should be better to do one run of length 2(s + ¢) deleting
the two intervals [0, s] and [z + s, ¢ + 2s], because we expect that the process at time ¢
+ 2s will be in steady state approximately independent of the process before time ¢ + s,
assuming that this was true for the case 1 = 0. Indeed, we expect this to be more likely
to be true, because the process is presumably in steady state at time ¢ + s but not at time
0. (An example in §7.1 shows that this logic can fail, but we usually expect it to be valid.)
Second, given that we have one long run in steady state after time s, we expect that we
cannot gain efficiency by throwing away data. Thus, we expect it to be better to use one
run of length 2(s + ¢) deleting only the one interval [0, s].

Here is how the rest of this paper is organized. In §2 we formulate our problem precisely
in terms of the reciprocal of the efficiency, which we call the risk. In §3 we analyze the
risk function in detail for the special case of an exponential covariance function. In §4
we discuss exponential approximations to determine the initial portion to delete. In §5
we analyze the M/G /oo queueing model. For exponential service-time distributions,
this model satisfies the exponential assumptions of §§3 and 4, but for other service-time
distributions it does not. In §6 we analyze regulated Brownian motion (RBM) and the
M/M/ 1 queue; they serve as useful approximations for other queueing models; see Whitt
(1989). In §7 we present two rather extreme examples, which demonstrate that one long
run can be either much more efficient or much less efficient than multiple replications.
Finally, in §8 we draw some conclusions.

2. The Efficiency Criterion with Specified Deletion per Replication

Consider a real-valued stochastic process {Y () : ¢ = 0} such that Y (¢) = Y(c0) as
t = oo, where Y (c0) is a proper random variable and = denotes convergence in distri-
bution. Our object is to estimate the steady-state mean m = E[Y (c0)].

REMARKS. (2.1) This setting is more general than it might appear, because we can
have Y (1) = f(X(t)), where {X(¢):t = 0} is a stochastic process with general state
space and [ is a real-valued function on this state space. For example, if f is the indicator
function of a set 4, then m = P(X(00) € 4).

(2.2) We only consider continuous-time stochastic processes, but a similar analysis
can be done for discrete-time stochastic processes.

To begin with, we assume that a decision has been made to delete an initial portion
of length s from each run. Moreover, we assume that s is large enough so that the stochastic
process { Y () : ¢t = s} can be regarded as a strictly stationary stochastic process with
mean E[Y ()] = E[Y(o0)] = m, variance Var [Y(¢)] = Var [Y(c0)] = ¢ < o and
(auto) covariance function

R(u) =cov [Y(t), Y(t+ u)] = E[Y()Y(t+ u)] — (E[Y()])?, u=0, (1)

for all 1 = s, where the integrals [;° |R(u)|du and fgo R(u)du are well defined and
finite.

Of course, only rarely does a stochastic process actually reach steady state in finite
time; i.e., only rarely does there exist finite s such that Y (¢) 4 Y (c0) for all £ = s, where
£ Jenotes equality in distribution and, more generally, {Y(t):t= s} 4 {(Y(t+h):t
= s} for all &> 0. (Examples appear in §§5.2 and 7.1 here and in Glynn and Iglehart
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1988.) We make this assumption, not because we are primarily interested in stochastic
processes that actually reach steady state in finite time, but because we believe that it is
a reasonable approximation.

REMARK. (2.3) Of course, in practice choosing s is difficult. A suitably large s will
often be obtained by choosing s larger than necessary ““to be on the safe side.” We discuss
ways to select s in §4.

Let {Y;(z):t=0}, 1 <i<n,benindependent copies of {Y(¢):¢=0}. We propose
to estimate the steady-state mean m by the grand sample mean

n
m=r(n,t)=n"" 3 Y1), (2)
i=1
where Y;(¢) is the sample mean for process i over the interval [s, s + ¢], i.e.,
s+t
7= [ v 3)
N

In other words, we are going to use n independent replications of length ¢ after deleting
an interval of length s from each process to reduce the initial bias. Hence, the total
simulation run length is n(s + ¢). ,

Under our stationarity assumption, #:(#, t) is an unbiased estimator of m, i.e.,
E[m(n,t)] = m, with variance

Var [#i(n, t)] = n~' Var [Y,(¢)] = % J: (t — u)R(u)du (4)

and limiting time-average variance constant
_ ol 2 (®

lim ¢ Var [#1(n, )] = n~ ! lim ¢ Var [V, ()] = —= = —f R(u)du, (5)

t—>co >0 n n Jo
by standard calculations; e.g., Chapter 3 of Parzen (1962).

The standard approach at this point, with s given, is to introduce a budget constraint

B on the total run length, and then look for values of # and ¢ that minimize the variance
Var [#i(n, t)] in (4) subject to the budget constraint n(s + ¢) < B. However, we propose
an alternative approach that eliminates the variable # from consideration. In particular,
we do not directly introduce the budget constraint. In order to determine what are good
choices for # and ¢, we use the criterion of efficiency; see Glynn and Whitt (1991). The
efficiency is the reciprocal of the product of the mean squared error of 72 as an estimator
of m and the total run length. Since the processes { Y;(¢) : ¢t = s} are being regarded as
stationary, the mean squared error coincides with the variance of 71, and the efficiency
is

1 1

D = Nar Gin, D)nGs 1) 2+ 9)/0) Jo (1 — wR(uydu

(6)

REMARK. (2.4) We are using the total run length for the total cost of computation
in our efficiency criterion. Of course, this is not always appropriate, especially with small
sample sizes, but it seems to be a natural way to proceed in further investigation here.

Note that the variable n cancels out in (6), which is convenient for optimization
purposes. Of course, this would also be true with the standard approach involving the
budget constraint #(s + ¢) < B if we simply chose # so that n(s + ¢) is approximately
equal to B; then the criterion would also be (6).

For convenience, we actually work with the risk r(t) = 1/e(n, t), i.e,

r(z)=z(t%—s—)£(t—u)R(u)du, t>0, | (7)
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with r(0) and r(co0 ) defined by the limits of r(z) as t = 0 and ¢t = oo, respectively. Of
course, the risk r(¢) depends on s too, but s is assumed given.

To interpret the risk #(¢) in relation to the question about one long run versus multiple
replications with a budget constraint, note that doing one long run (# = 1) is optimal
(yields minimum variance Var [#1(n, t)] subject to the budget constraint n(s + 1) < B)
for all s and all budgets B if r(¢) is nonincreasing in ¢.

REMARKS. (2.5) For any given s and run length budget B, having r(¢) nonincreasing
is sufficient for n = 1 to be optimal with a budget constraint, but obviously not necessary.
However, we believe that it is easier to investigate when r(¢) is nonincreasing than to
directly investigate the constrained optimization problem. Moreover, there rarely is a
hard budget constraint, so that the combinatorial difficulties it presents do not seem
worth addressing.

(2.6) In practice there are other important criteria besides minimizing the risk; e.g.,
we might want reliable estimates for confidence intervals, but it is nevertheless interesting
to see what happens with the risk criterion alone.

In general, the risk r(¢) is hard to evaluate because the covariance function R(¢) in
(7) is hard to evaluate. (See Reynolds 1975, Abate and Whitt 1988, and Glynn 1989 for
some positive results.) However, we often can evaluate the extreme cases ¢ = 0 and
t = oo. Assuming that {Y;(¢): ¢t = 0} has right-continuous sample paths, we have
Y;(0) = Y;(s) from (3). With this convention, the case ¢ = 0 corresponds to taking only
a single observation from each replication after deleting the initial portion of length s.
From (7) we obtain

r(O)Eling r(t) = sR(0) = so%,, (8)

where o5, = Var Y(o0) is the steady-state variance, and

r(co) = lim r(¢) =2 R(u)du = 2, (9)
1= 00 0
where 2 = lim,.., ¢ Var Y,(¢) is the limiting time-average variance constant as in (5).
Expressions for 52 for various Markov processes are given in Whitt (1991 ) and references
cited there.
From (8) and (9), we immediately see that there is no simple answer to the question
of one long run versus multiple replications applying to all circumstances; the appropriate
procedure depends on s and R(?).

THEOREM 1. r(c0) < r(0) ifand only if s > 6%/ %.

Hence, assuming that 2 > 0 (which implies that o2, > 0), there are values of s such
that r(oc0) < r(0) and other values such that r(0) < r(c0). Thus, for given R(t), the
answer depends on s. Indeed, for small s, independent replications are desirable.

It is very significant that r(¢) typically converges to the positive limit r(c0) = 2 as
t = oo. This convergence implies that the risk for a run of length ¢ is essentially the same
as for an infinitely long run if ¢ is sufficiently large. This property is the basis for concluding
that a moderate number of long replications is often just as efficient as one even longer
run when one long run is most efficient; see Examples 5.1 and 6.1.

From (7) we can also draw a few other elementary conclusions. First, for each ¢, the
risk #(t) is nondecreasing in s. The risk r(¢) is also nondecreasing in R(¢); i.e., if R, ()
< R,(t) for all ¢, then r (2) < ry(t) for all ¢. By considering the case R;(0) = R,(0) and
0 < R (1) =< R,(1), we can conclude that one long run becomes more efficient (7(c0)
decreases while #(0) remains unchanged ) when a positive covariance function R(¢) decays
more rapidly.
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We can also calculate the derivative of the risk, obtaining
14 l
r'(t) = 2t‘2f uR(u)du + 2st3 f (2u — t)R(u)du. (10)
0 0

In general, we need to know the covariance function R(¢) in order to determine the
form of the risk function r(z). However, we can obtain some general results for a large
class of covariance functions.

THEOREM 2. (a) Suppose that R(t) = R(0) + f(; R'(u)du with R(t) > 0 and R'(1)
<0 forallt. Then
11
f Qu—t)R(u)du <0 forallt, (11)
0

so that there is a function s(t) with 0 < s(t) < oo for 0 <t < oo such that r'(t) < 0 for
all s > s(t) and v'(t) > 0 for all s < s5(1).
(b) In addition, s(t) is nonincreasing in t if and only if

1 ! 2
t2R (1) J; (t — uw)R(uw)du <2 (J; uR(u)du) , (12)

in which case r(t) is unimodal with maxima at all t such that s(t) = s. When this holds,
the minimum risk is always attained byt = 0 or t = 0.

PROOF. For (a), use integration by parts with (11) to obtain

f[ (2u — t) R(u)du = —ft (u? — tu)R'(u)du < 0.

0 0

Hence, the first term on the right in (10) is always positive, while the second term is
always negative. Hence, the function s(¢) exists with the claimed property. For (b), apply
(10) to obtain

t fo uR(u)du
fo (t = 2u)R(u)du’

s(t) = t>0. (13)

Differentiating (13), we obtain (12). We obtain the unimodality from (a) and the non-
increasing property of s(¢z). O

REMARKS. (2.7) A sufficient condition for R(¢) > O for all ¢ is to have the random
variables Y (¢), t > 0, be associated; see p. 29 of Barlow and Proschan (1975). A sufficient
condition for R(¢) = 0 and R'(z) < 0 is for the underlying stochastic process { X () :
t = 0} to be a Markov process with stochastically monotone transition function and
for the function f in Y (1) = f(X(t)) to be monotone; see Daley (1968) and p. 71 of
Stoyan (1983).

(2.8) To see that (12) is not satisfied under the conditions of Theorem 2(a) alone,
let R(¢£) = Kt™/% for t = ty and R(t) = R(fo) + (to — t) for 0 < t < ;. Then
*R(2) [y R(u)du — oo ast — oo, while the other terms in ( 12) converge to finite limits.
Moreover, §5.4 and Table 1 show that (12) need not be satisfied when the covariance
function R(¢) is completely monotone, i.e., a mixture of exponentials.

EXAMPLE 2.1. To quickly see that ¢ for which 0 < ¢ < oo can be optimal and that
R(t) need not be nonnegative, let Y (k+ t) = m + (—1)*Z(t),0 < t < 1, for all nonnegative
integers k, where Z(¢) is a stationary process with 0 < E[Z(¢)?] < co. Then, for all k
>0, R(2k + 1) = —Var [Z(t)] and Y (2k) = Var [ Y(2k)] = r(2k) = 0. One run with s
= 0 and ¢ = 2 achieves zero variance. [J
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Unfortunately, however, it seems difficult to find the minimum risk, even if we assume
that R(7) = 0 and R'(¢) < O for all ¢, neither of which have to hold. In the following
sections we consider several examples, all of which satisfy these properties. For these
examples, one of the extreme strategies 1 = 0 or f = oo is good, if not optimal. Hence, it
seems that Theorem 1 provides useful guidance in the general case. Lacking detailed
information about r(z) for 0 < ¢t < oo, we would tend to use one long run if s
>g%/0%,.1fs < 5%/0%, then we would first check to see if s is large enough so that we
can regard Y (¢) as being approximately in steady state; if it is, then we would tend to
use many replications of much shorter runs.

3. The Exponential Covariance Model

In the spirit of Fishman (1972) and Kelton and Law (1984), we consider concrete
examples to do further analysis. In particular, throughout this section we assume that the
covariance function decays exponentially, i.e., we assume that

R(1) = 0% e, t=0, (14)

for a > 0. We focus on (14) to see what happens in one special case, but also to provide
an approximate analysis for other cases. This assumption is satisfied exactly by the
M/M/oo queue considered in §5.1 and its heavy-traffic limit, the Ornstein-Uhlenbeck
diffusion process. A stationary process {Y () : ¢ = s} has the exponential covariance
function in (14) if and only if the process is Markov in the wide sense; see p. 233 of
Doob (1953). More generally, (14) is consistent with the asymptotic behavior of many
covariance functions; e.g., for finite-state Markov chains (assuming that the eigenvalue
having second largest real part has multiplicity one). The theorems then say that e R(¢)
converges to a positive constant as t = oo.
From (7) and (14), we can express the risk as

(e =1+ at)

_ 2
r(t) = 205,(t + 5) (al)? R

t>0. (15)
Let £*(s) be the value of 7 (including o) yielding the minimum value of r(¢). We will
show that ¢*(s) is always 0 or co under (14), with t*(s) = 0 if and only if s < 2/a.
Formula (15) quantifies the inefficiency of a suboptimal strategy. We will show that the
simulation strategy does not matter much when s is near 2/«, but that the simulation
strategy is very important when s is not near 2/ «.

The shape of (¢)/ o2, as a function of f and s = r(0)/ o2 is depicted in Figure 1. Time
¢ is measured on the horizontal axis, while the normalized risk r(¢)/ o2 is measured on
the vertical axis. By (8), s = r(0)/0%, so different curves are obtained by using (15)
with different values of s. For each s, 7(¢)/ 2% = 5%/02 by (9). We are interested in
the values of ¢ that yield the minimum for each curve. The actual shapes of the curves
are justified below.

REMARK. (3.1) To better understand (14), it is helpful to note that there is an in-
variance under changes of scale by «; i.e., if t = t'/a and s = §'/«, then

ar(t) . (e =1+1)
ey =2(t'+s )——(t’)2

For large ¢', we have
ar(t) 2+ s — 1) (s'—1)
2~ N2 ~2+ ) .
0o (2') t
To do further analysis, it is convenient to express r(t) as

r(t) = 202, (sf(2) + g(2)), (16)
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FIGURE 1. The normalized risk r(¢)/ o2 as a function of s = r(0)/ ¢, and ¢ for the exponential covariance
model in (14).

where f(¢) = (e™* — 1 + at)/(at)? and g(¢) = tf(¢). The first two derivatives of fand
g are

2—-—at)— (2 + at)e™™

f(t) = a2t3 )

” —6(1 —e ) + 2at(1 + 2e™) + (at)’e™
S = o ,

ot
| —e ™ — ate™

! [ —
g'(1) 2 ,

, =2(1 —e )+ 2ate™™ + (at)?e™
g'() = PEPE . (17)

We summarize some of their basic properties in the following theorem.

THEOREM 3. The function f is nonnegative, nonincreasing, and convex, while the
function g is nonnegative, nondecreasing, and concave.

PROOF. First, f(t) = O for all ¢ is equivalent to ¢™ = 1 — x for all x, which is
immediate for x = 1. For 0 < x < 1, we see that ¢' = 27, x/k! < 2%
xx = 1/(1 — x) by comparing the coefficients. Second, f”(¢) < 0 for all ¢ is equivalent to
(2 — x) =(2 + x)e ™ for all x, which is immediate for x = 2. For x < 2, note that
e < (1 +x)/(1—x)=1+22%, x* by comparing the coefficients. Third, /”(¢) = 0
for all ¢ is equivalent to

a(x)=—6(1—e™)+2x(1 +2e™) + x%e =0 for all x, (18)

which holds because a(0) = 0, a’(0) = 0, and a”(x) = x*¢* > 0. Fourth, g(¢) = 0
because g(¢) = ¢ f(¢). Fifth, g’(¢t) = 0 for all ¢ is equivalent to | — ¢ — xe™ = 0 for all
x, which holds because e* = 1 + x. Finally, g"(¢) < 0 for all ¢ is equivalent to

b(x)=-2(1 —e ™)+ 2xe "+ x’e <0 for all x, - (19)
which holds because 5(0) = 0 and b'(x) = — x2e > < 0. O
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COROLLARY. (a) r(t) is increasing in s;

(b) for each t = 0, there is an s,(t) < oo such that ¥"(t) = 0 for s < s,(t) and r'(t)
<0 fors = s5,(1);

(c) foreacht = 0, there is an s,(t) < oo such that r"(t) < 0 for s < 5,(t) and r"(t)
>0 for s = s5(t).

The following two theorems show that /*(s) must be either O or co. The numerical
value 2.68 appearing in the next theorem is an approximate solution to a transcendental
equation.

THEOREM 4. r(oo0) < r(t)forall t > 0, so that t*(s) = oo, if and only if s = 2 /a. For
s =2/a, r(c0) = r(0) and the maximum relative inefficiency occurs at t = 2.68/«;
r(2.68/a)/r(c0) = 1.14.

PROOF. If s < 2/a, then 7(0) < r(co) by Theorem 1, because r(co) = o>
=2¢2 /a, so that r(¢) < r(co) for all suitably small ¢ by continuity. Suppose that
s = 2/a. Since r(t) is increasing in s (see the Corollary to Theorem 3), it suffices to let
s = 2/a. Then

r(t) — r(o0) _ (at + 2)e‘3‘;’z+ at — 2 0. (20)

2
20%, @

because ¢ >¥ > (1 — x)/(1 + x) for x > 0, as shown in the proof of Theorem 3. By

differentiating (20), we see that the maximum occurs at the unique positive zero of the
transcendental function

H(t)=e (> + 3at + 4)+ at — 4, (21)

which is approximately 2.68 /«. [

Theorem 4 says that worst choice of ¢ is 14% worse than the optimal choice of t when
s = 2/a. (For example, this means that the variance Var [#1(#, t)] would be 14% greater
with the worst strategy than with the best strategy given a common total simulation run
length.) We interpret this result to mean that the simulation strategy does not matter
too much when s is near 2/«. After the next theorem, we will show that the situation is
very different when s is not near 2/ a.

THEOREM 5. r(0) < r(t) for all t, so that t*(s) = 0, if and only if s < 2/ a.

PROOF. By Theorem 4, ¥(0) > r(c0) if s > 2/«, so that s < 2/« is necessary. For s
= ¢/ a, it suffices to show that

t+ee =1+ ot ca’,
= 203, LN S LR A5 10 = 03, = <22

fort=0 (22)
83
or, equivalently, after setting x = «f,

5

L ) cx
e 1+A2——2(X+0) for x = 0. (23)

Since the right side of (23) is increasing in c, it suffices to consider ¢ = 2. However, for
s=2/a, r(0)=20%/a =35> =r(w), so that Theorem 4 implies that (22) holds. [

Consider the constrained optimization problem: min r(¢) subject to n(s + ¢)
< B.Theorem 4 shows that it is optimal to use one long run (n = 1) for all sufficiently
large budgets B if s > 2. However, one long run is optimal for this constrained problem
for all budgets B when r(¢) is nonincreasing in ¢.

THEOREM 6. For t = 0, r(t) is nonincreasing in t if and only if s = 3/«a. For
s = 3/a, the maximum inefficiency is ¥(0)/r(c0) = as/2.
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PROOF. First, it is easy to see that #'(0) < 0 if and only if s = 3/«. Hence s = 3/«
is necessary. By the Corollary to Theorem 3, it suffices to consider s = 3/«. Then r'(¢)
=< 0 for all ¢ if and only if

c(x)=6—2x—6e*—4xe ™ —x*¢*<0  forallx,

which holds because ¢(x) = —a(x) for a(x) in (18). O
The following result, together with Theorem 6, allows us to characterize the extreme
cases of maximum inefhiciency.

THEOREM 7. r(t) is increasing in t for all t = 0, so that maximum efficiency occurs
att = oo, ifand only if s < 1 / a. Then the maximum inefficiency is r(c0)/r(0) = 2/(as).

PROOF. Since

262(1 — as)

: 2 —
lim 7' (¢) = 5 ,
o

>
r'(t) is eventually negative for s > 1/a. For s < 1 /¢, it suffices to consider s = 1/« by
the Corollary to Theorem 3. Then a™' f'(¢) + g'(¢) = 0 for all ¢ if and only if

dx)=2—2e*—2xe™* —x* =0 for all x,

which holds because d(x) = —b(x) for b(x)in (19). O

Theorems 6 and 7 show that r(¢)/r(t*) = oo ass = 0 and as s > 0.

REMARK. (3.2)From the results above, it follows that o ™! < r(¢)/ 2 < 3a ™! provided
that o' < 5 < 3a~!. Moreover, r'(¢) = 0 for all very small ¢ in this region. In the proof
of Theorem 7 we showed that '(¢) is negative for all sufficiently large ¢ when s > 1/a.
Indeed, for ™! < s < 2a7!, it can be shown that 7(¢) is unimodal rising up from its
minimum at 7(0) to a value above 7(c0) and then coming down to (o0 ). Also, for 2o~
< s < 3a”!, r(t)is unimodal and 2a ! < r(¢)o% < 3a . Finally, r(t) is decreasing and
convex if and only if s = 4/ .

4. Determining the Initial Portion to Delete

Provided that we regard the exponential covariance model as a reasonable approxi-
mation, §3 provides a basis for determining whether a single replication is more efficient
than multiple replications. From Theorem 6, we conclude that a single replication min-
imizes r(t) subject to n(s + t) < B for all budgets B in the exponential covariance model
if s > 3/«. We believe that a single replication is usually optimal in this context, because
we believe that we usually have s > 3/a. (We are thinking of queueing models, as in
Whitt 1989 and §§5 and 6 here.) We investigate this further by considering what is an
appropriate choice of s.

4.1. A Criterion for Choosing s

The quantity s to delete from each run is typically determined by bias considerations
(as opposed to whether Y (¢) 4 Y (c0) approximately for ¢ > 5), and we shall follow that
approach. To consider the bias, we drop our stationarity assumption; i.e., we do not
assume that Y (z) 4 Y (c0) for ¢ = 5. Given that we delete an initial portion of length s
and make a run of length ¢ as in (3), the (absolute) bias is

S+
B(s, 1) =1" f | E[Y (u)] — m| du. (24)
If 1 is very large, then the bias tends to be negligible, being dominated by ¢! 8, where

B, = lim,_., t8(s, t), which is usually finite; e.g., sce Whitt (1991). However, for ¢ very
small, the bias is approximately | E[Y (s)] — m]|. Thus, for small ¢, we would want to
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be sure that the relative bias 8(s, t)/m ~ | E[Y (s)] — m|/m is suitably small. The bias
(24) is typically decreasing in both s and ¢. Given that | E[Y ()] — m| usually decreases
rapidly at first and then more slowly as ¢ increases, considerable bias reduction is obtained
by making s positive but the bias reduction decreases as s increases.

To justify our assumption that Y (z) is approximately stationary for ¢ > s, we would
like to choose s so that | E[Y (¢)] — m|/m is suitably small for all 1 > 5. Note that this
covers the relative bias for small ¢. Thus, it is natural to consider the criterion

s=inf{t=0:sup | E[Y(u)] — m|/m <p}, (25)

where p is a small positive number such as 0.01.

Indeed, (25) is the definition of the time when the stochastic process Y (¢) reaches
steady state used by Gafarian, Ancker, and Morisaku (1978); see (6) of Wilson and
Pritsker (1978). Note, however, that the mean being close to its steady-state limit does
not guarantee that the full process is nearly stationary, i.e., that we approximately have
Y (1) 4 Y(o0) for t = 5. (Given that Y () 4 Y (c0) approximately, we expect that
{Y(¢):t= s} is approximately a strictly stationary stochastic process, i.e., that (Y (z,),
o Y(R) 4 Y(ty + h),..., Yt + h)) for all 7 > 0, integers kK > 0 and ¢ > 1,
> ««+ >, > 5.)Criterion (25) seems reasonable as a time when bias has been reduced,
but it is somewhat questionable as a criterion for Y (¢) truly reaching steady state. Nev-
ertheless, we suggest (25) as a criterion for choosing s.

REMARKS. (4.1) It might be fruitful to modify (25) to require that the maximum
distance between the probability distributions of Y (u#) and Y (c0) for u = ¢ is suitably
small, but this would take us away from the relatively simple analysis here. For example,
we could use the total variation metric, i.e., sup {| P(Y (u) €A) — P(Y (o) € A)|} where
the supremum is over all measurable sets 4.

(4.2) We have assumed that Y (¢) = Y (o0) as ¢t = oo in §2, but the estimation
problem is relevant even if only E[ Y,(¢)] = m = E[Y (c0)] as t > oo, for Y (¢)in (3).
For example, we could be simulating a periodic process. However, if we have a periodic
process, then additional care should be given to the choice of s. Then we expect to obtain
significant bias reduction by making the length of the undeleted portion a multiple of
the period. ‘

4.2. The Second Exponential Assumption

In the spirit of (14 ), now suppose that the mean approaches steady state exponentially;
ie.,

|m—E[Y()]| _

" ye ™, t=0. (26)

The justification for (26) is essentially the same as for (14); e.g., it is exact for the
M/M/oo model in §5.1 and a representative approximation more generally. _

Our criterion (25) dictates that we set ye ™ = p for some suitably small p. Then 3
= mp/n.

THEOREM 8. With criterion (25) and both exponential assumptions (14) and (26),
s> 3/a and r(t) is decreasing if and only if p < ye "=,

REMARK. (4.3) Perhaps the main idea in this paper is that one long run tends to be
more efficient than multiple replications if the covariance function decays faster than
the process approaches steady state, which here is measured by (25). Given both expo-
nential assumptions (14) and (26), Theorem 8 expresses this idea by concluding that
one long run is optimal for all budget constraints if the ratio of the decay rates, 7/ «, is
suitably small (assuming that p < ).
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4.3. The Common Parameter Assumption

In many circumstances it is reasonable to assume that (14) and (26) hold with a
common parameter, i.e., « = 7. Moreover, in (26) it is often reasonable to assume that
v = 1. For example, this is the case with the M/M /oo queue in §5.1. If we are using
approximations obtained via asymptotic representations as = oo (i.e., relaxation times;
see Keilson 1979), then we often have « = 7; e.g., this is true for finite Markov chains.
We obtain v = 1 by considering the case 1 = 0; we are thinking of the mean E[Y (¢)]
approaching the steady-state mean » monotonically or approximately so, such as occurs
in most queueing systems when started empty. Then we can determine an appropriate
strategy without knowing the value of the decay parameter «. Since e > ~ 0.05, we see
that p = 0.05 is the cutoff point for s = 3/a.

COROLLARY. Ifa = nand~y = 1 with both exponential assumptions (14) and (26),
then s = 3/ a based on criterion (25) and r(t) is decreasing if and only if p < 0.05.

Since we believe that it is reasonable to have p < 0.05, we regard the Corollary to
Theorem 8 as positive support for one long run. Indeed, in practice we might choose s
even larger as a safety factor.

4.4, Constructing Exponential Approximations

In practice, the exponential assumptions (14) and (26) rarely hold exactly, but they
may be reasonable approximations. As mentioned above, one way to justify both ex-
ponential approximations is via asymptotic expansions related to-the relaxation time;
1.e., it is often possible to show that (14) and (26) are asymptotically correct as t = oo.
However, experience indicates that the relaxation time limits often do not provide very
good approximation for the times ¢ most relevant in practice; e.g., see Abate and Whitt
(1987a, b, 1988), Aldous (1987), Aldous and Diaconis ( 1987), Diaconis and Shahshahani
(1987), and Mitra and Weiss (1989). In particular, the stochastic processes often reach
steady state in the sense of criterion (25) or in the sense that we approximately have Y (¢)
= Y (o0 ) much sooner than predicted by these exponential approximations. Hence, here
we propose another exponential approximation, which like the relaxation-time method,
is exact for true exponentials.

In particular, we suggest approximations for « and n in (14) and (26) based on the
asymptotic variance and the asymptotic bias of the sample mean, i.e., ¢ in (9) and §
= B, after (24). As shown in Whitt (1991) and references cited there, 5> and § are
relatively easy to calculate for many one-dimensional Markov processes. As in Whitt
(1989), we suggest approximating a more complicated process by a basic Markov process
and then working with the asymptotic quantities of the approximating Markov process.
(Of course, appropriate approximations are often not easy to determine.)

First, we consider the approximate covariance function of the assumed stationary
process { Y(¢): 1= s}. (It is significant that the limiting time-average variance ¢~ typically
depends on the original process only through its stationary version, so we obtain an
appropriate match.) The exponential form (14) implies that 62 = 2¢2 /. Hence, the
proposed exponential approximation for the covariance function is ( 14) with decay rate

a =~ 20 /52, (27)

Next, we consider the approximate bias function of the process {Y(t) t=0}, now
no longer assumed to be stationary. We assume that we are given 8 = f, as defined after
(24).If (26) held with v = 1, then 8 = m /7. Hence, the proposed exponential approx-
imation is (26) with v = 1 and decay rate

n~m/B. (28)
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From (24), (26), and (28), the resulting approximate bias is

m(e—s _ e—(s+t))

B(s, 1) = ”

(29)
Applying Theorem 8 with criterion (25), we conclude from (27) and (28) that r(¢)
is approximately decreasing if and only if p < e™>"/* or

3ma?
2802,

péexp[ (30)

4.5. Estimating the Initial Portion to Delete

Our mathematical analysis in this section has primarily been aimed at determining
what values of s should be appropriate, e.g., when we should have s = 3/« so that one
long run is more efficient than multiple replications, using the exponential covariance
model in §3. However, our analysis may also contribute to the long-standing problem
of empirically determining an appropriate initial portion to delete; e.g., as discussed by
Gafarian et al. (1978), Wilson and Pritsker (1978), Law and Carson (1979), Schruben,
Singh, and Tierney (1983) and Heidelberger and Welch (1983). Two ways come to
mind. First, analytic approximations may be calculated as described here and employed
together with existing statistical estimation procedures to determine an appropriate s.
For example, the analytical estimates based on (25), (26), and (28) can help avoid
selecting s too small based on observed data.

The second approach is based on assuming (26 ) and possibly (28 ) with criterion (25),
and then using statistical techniques to estimate the unknown parameters v and 7 in
(26) or m and B in (28). These ideas remain to be explored.

5. The M/G/o Queue

To illustrate the ideas in §2-§4, we now consider a few specific models and some
numerical examples. In this section we consider the M/G/co queue; in §6 we consider
reflected Brownian motion and the M/M/1 queue; and in §7 we consider two rather
artificial extreme examples that show that one long run can be either much better or
much worse than many independent replications.

Let Y (1) be the number of busy servers at time ¢ in an M/G/o0 queue starting out

- empty. The M/G/oco model has infinitely many servers, a Poisson arrival process with
rate A and i.i.d. service times having a general distribution with cdf G(¢) and mean u™".
Suppose that we focus on the steady-state mean m = E[Y (c0)]. It is well known that
‘the steady-state distribution is Poisson with ¢, = m = \/u. Moreover, '

R(t)=A foo [l — G(u)]du and (31)

m— E[Y()]
— -

MJZOO [ = G(w)]du; (32)

see Benes (1957), p. 386 of Reynolds (1975), and p. 18 of Ross (1970).
5.1. The M/M /oo Model

In the M/M /o special case (exponential service times) the exponential assumptions
in (14) and (26) are satisfied with a« = n = w and v = 1, so that by the Corollary to
Theorem 8, r(¢) is decreasing if and only if p < 0.05.

EXAMPLE 5.1. Suppose that we simulate an M /M /oo model starting out empty with
A =100 and u = 1 to estimate the steady-state mean m = \/u = 100. Suppose that we
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want the absolute width of a 95% confidence interval to be 1.0 (so that the relative width
is 0.01). Assuming that we make one long run starting in steady state, the appropriate
run length is approximately ¢ = 45%(1.96)% = 3073, which corresponds to 307,300 arrivals;
see (9) of Whitt (1989).

Let us choose s according to criterion (25) using p = 0.001 to be conservative; then s
= 6.91, which corresponds to 691 arrivals. Note that s is much less than t. Since s = 3,
r(t) is decreasing and one long run minimizes the risk (¢) subject to n(s + t) < B for
all budgets B. From (24) and (32), we see that the bias 3(s, ¢) with these values of s and
tis

3079.9
B(s, t) = B(6.91, 3073) = 100(3073)"! f eMdu=3.25X%X107°,
6.91

which clearly is negligible. (Even with s = 0, the bias would only be 100/3073 = 0.033.)
The optimal risk without budget constraint is 7(co) = o> = 200. From (15), our risk
with run length ¢ = 3073 is #(3073) = 200.38, which is about 0.2% above optimal.

Now suppose, instead, that we decide to do independent replications with the same
total run length s + ¢ = 3079.9 and s = 6.91. If there are 10 independent replications,
then ¢ = [3079.9 — 10(6.91)]/10 = 301.08, which yields a bias 8(s, ¢) = 3.3 X 10™* and

" arisk r(¢) = 203.9. Note that the bias is again negligible and the risk is only 1.96% higher
than the optimal value r(oco) = 200. On the other hand, if there are 100 independent
replications, then ¢ = 23.89, which yields a bias (s, 1) = 4.19 X 103 and a risk (23.89)
= 247. The bias is still negligible, but the risk is now 23.5% higher than the optimal value
without a budget constraint, r(co) = 200.

Finally, suppose that we do 100 replications with the same total run length 3079.9
and s = 0, so that 1 = 30.8. Then the bias is (s, t) = 1/30.8 = 3.2, which is larger than
the width of the desired 95% confidence interval. Hence, bias does play a role with many
replications, without initial deletion. The process clearly is not nearly stationary with s
= 0, but if it were, then the risk would be 193.5, which is 3.2% less than the optimal
value r(o0) = 200 for s = 3.

In conclusion, for this example one long run and 10 independent replications are
nearly equivalent with risk nearly equal to the optimal value without a budget constraint,
r(c0). In both cases, we can set s = 0 without much harm, because the resulting bias is
small. On the other hand, 100 replications is worse. With initial deletion of s = 6.9, the
bias is negligible, but the risk is 23% higher; without initial deletion (s = 0), the bias is
3.2, larger than the width of the desired 95% confidence interval. For this example, we
conclude that it does not matter much whether we delete an initial portion and it does
not matter much whether we use one long run or multiple replications, unless the number
of replications is large; only a very large number of multiple replications of relatively
short run leads to difficulties. Then the estimation procedure performs poorly whether
or not we delete an initial portion of each run.

5.2. Stochastic Comparisons

Formulas (31) and (32) imply that the exponential decay assumptions in (14) and
(26) are not satisfied exactly if the service-time distribution is not exponential. However,
the decay rates in (31) and (32) are identical, providing support for the common parameter
assumption in §4.3.

From (31) and (32), we see that the approach to steady state in the M/G/co model
gets slower, i.e., the functions R(¢) and |m — E[Y (¢)]]| both increase, as the service-
time distribution becomes more variable in the convex stochastic order; see p. 8 of
Stoyan (1983). Recall that one random variable X, is less than or equal to another
random variable X, in the convex stochastic order, denoted by X; <. X», if E[A(X))]
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< E[h(X;)] for all convex real-valued functions /. Since 4(x) = x and A(x) = —x are
both convex, we must have E[X;] = E[X,] when X| <. X,. For example, X, <. X, if X,
is normally distributed with mean m and variance ¢? with ¢} < ¢3. Suppose that X; and
X, are two candidate service times with cdf’s G(¢) and G,(¢). Since X, <. X, if and
only if

fw [1—=G(u)]du < fw [1 = Ga(u)]du for all ¢, (33)

see Stoyan (1983), it is immediate that R,(¢) < R,(¢) and
Im— E[Y(D)]|/m =< |m— E[Y2()]]/m

for all ¢.

For fixed s, independent replications thus become more favorable as the distribution
becomes more variable. (R(¢) decays more slowly, so that there is more to gain from
replication.) However, the appropriate value of s when the system starts out empty in-
creases as well, so that the overall effect is unclear. To see what happens more generally,
we consider two specific nonexponential service-time distributions. The first is the de-
terministic distribution, which is less variable in the convex stochastic order than an
exponential variable with the same mean, and the second is a hyperexponential (Hy, a
mixture of k exponentials), which is more variable in the convex stochastic order than
an exponential variable with the same mean.

5.3. The M/D /oo Model

For a deterministic distribution, G(¢) = 0 for t < u~! and G (1) = 1 otherwise. Hence,
R(t)=(N/p)(1 — pt)fort < u~'and R(t) = 0 for t > ', so that 3% = \/p? and, from
(7),

A t
—(Z+s)<1—“—), O<t=u,
u 3

1

r(t) = (34)

1
—(t+s)——553|, t=wul
,u( S)(/.LZ 3“212) I

Hence, r(c0) < r(0) if and only if s > u~'. However, by (32), m = E[Y(¢)] for all ¢
> u~'. Hence, s < u~!; indeed if p is our cutoff probability, then s = (1 — p)u~'. Moreover,
we see that in this case the full process actually reaches steady state at time u~". Indeed,
this is true in the strongest sense that {Y (u) : u = ¢} is a stationary process for all ¢
> pu ' It is easy to see that Y (¢) = Y(oo) for all # = u™!, because Y (¢) has a Poisson
distribution for all t and E[Y (¢)] = E[Y(c0)] for t = u™".

Since the process reaches steady state by time u~!, s should not be larger than x!. In
this case, for any given p, 0 < p < 1, multiple replications with s = (1 — p)u~'and =0
is optimal. However, r(0) = r(co ) for s = u~", so the two extreme strategies are essentially
equivalent. For s = u~', r(¢) in (34) is unimodal with maximum at t = s = u~'; r(u™")
= 4)\/3u® = 3r(0). Hence, for s = u~!, the two extreme strategies are optimal and the
maximum inefficiency compared with one of the extreme strategies is 33%.

The exponential approximations based on (27), (28), (31),and (32) are o = 5 = 2u
and v = 1, i.e, R(1) ~ (\/p)e > and [m — EY (t)]/m ~ e *'. The approximation
indicates that the rate of approach to steady state is as in an M /M /oo queue with service
rate 2u instead of u, correctly reflecting the faster approach. The approximation indicates
that we should use one long run and have s > u~' (assuming s > 2/«a). Note that one
long run is optimal in the actual model for s > u~!. On the other hand, if we let s = u™',
then s = 2/, so that the approximation correctly predicts that the extreme strategies ¢
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= 0and ¢ = oo are equivalent and optimal (Theorem 4). Then the maximum inefficiency
is estimated to be 14% instead of the exact value of 33%.

5.4. The M/H, /oo Model

A service-time distribution that is more variable in the convex stochastic order than
an exponential distribution with the same mean is the H), (hyperexponential ) distribution,
which is the mixture of k exponential distributions. Suppose then that G(¢) = 2%, p;(1
— e ") where 2, p;=1, 25, pja;' = 'and p;= 0, 1 <i < k. From (31),

k Y
R()= 2 pR(t)=2pi—e ™, 120, (35)

i=1 i=1 !

where R;(t) is the covariance function for the M/M /oo queue with exponential service-
time distribution having mean «;'. As before, 7(0) = sR(0) = sa2, = sA\/u, but (o)
=g2=X(c? + 1)/u?, where ¢? is the squared coefficient of variation (variance divided
by the square of the mean) of the H service-time distribution. For an H, distribution,
c? > 1 so that g2 is greater in the M /H, /oo model than in the M/M /oo model with a
common mean service time. ( This qualitative property follows from the convex stochastic
order comparison.)

Assuming that none of the probabilities p; are too small, (32) is often well approximated
by p;e”*' using the smallest «;. Then we can apply (25) and (26) to determine an
appropriate s and see if 7(0) = so2, < o2 = (00 ). Given this s, we can easily calculate
r(t) using (14), (15), and (35).

EXAMPLE 5.2. For a concrete example, consider a balanced H, distribution with u
=1,p, =0.8873, oy =2p, = 1.775, ay = 2p, = 0.2254, and ¢; = 4.0; see (3.7) of Whitt
(1982). Let the criterion be p = 0.05, so that s approximately satisfies 0.1127 ¢70-22%4s
=0.05 or s = 3.61. (It is easy to verify that this is an excellent approximation.) With
this value of s, r(0) = 3.61\ < 5\ = ¢, = r(c0), so we should not use one long run.
(However, for p = 0.01, s = 10.75, and r(0) > r(c0).) Representative values of r(¢) for
s = 3.61, 6.0, and 20.0 appear in Table 1. Unlike the exponential models in §§3 and 4
and the previous M /G /oo models, here we can have 0 < t*(s) < co. (This is consistent
with the conclusions of Kelton and Law 1984 for a different model and a different cri-
terion.) However, the evidence suggests that the best extreme strategy is pretty good; e.g.,
the inefficiencies of 7 = 0 when s = 3.61 and ¢t = co when s = 6.0 are evidently less than
5%. O

TABLE 1

The Risk r(t) for Three Values of s for the M/H/oo Quete
Example in §5.4

The Risk r(z)

Time ¢ s =3.61 s =6.00 s = 20.00
0 3.61A 6.00A 20.001
0.1 3.59A 5.90A 19.44)
0.5 3.54) 5.60A 17.66)
1.0 3.52\ 5.34) 16.03\
2.0 3.53x 5.03\ 13.84)
4.0 3.791 4.98X 11.95)

10.0 4.36M 5.13\ 9.61A
100.0 4,97\ 5.08\ 5.75\

© 5.00A 5.00n 5.00A
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In this case, the exponential approximations from §4.4 is equivalent to the M/M /o
model with individual service rate 2u/(c2 + 1), i.e., R(¢) = (A/ ) e~ */(F*D _This properly
reflects the slower approach to steady state of the M /H,/co model compared to the M/
M /oo model with service rate u.

6. RBM and M/M/1

Suppose that Y (¢) is regulated or reflecting Brownian motion (RBM) on the positive
half line with drift coefficient —1 and diffusion coefficient 1, which has an exponential
stationary distribution with mean 1 ; see Abate and Whitt (1987a). As before, we focus
on the steady state mean; then m = 1 and ¢% = 1. Asindicated in Whitt (1989), RBM
is a useful approximation for stochastic processes associated with the standard GI/G/ 1
queue and related models. Explicit expressions for the covariance function R(#) appear
in Ott (1977) and Corollary 1 of Abate and Whitt (1988). From these expressions, we
deduce that o = }; see Corollary 9 to Theorem 1 of Abate and Whitt (1988). However,
as indicated in Whitt (1989, 1991), the asymptotic variance is easy to derive directly.

From the above, we can immediately calculate the extreme risk values: 7(0) = so?,
= s/4 and r(c0) = a2 = L. Hence, r(c0) < r(0) (without any approximations) if and
only if s = 2. From (27) we obtain the rough exponential approximation with rate o
=1l,ie,R(t)~ te ', t=0.

Suppose that we consider RBM starting at zero. An explicit expression for the time-
dependent mean E[Y (¢)] appears in Corollary 1.1.1 of Abate and Whitt (1987a). The
asymptotic bias starting in 0 is just m = 3 times the mean of the first-moment cdf there.
Hence, from Corollary 1.3.4 of Abate and Whitt (1987a), 8 = 1 and we obtain the
approximation n = 1 and |m — E[Y(¢)]|/m ~ e¢”' from (28). Since « = pand v = 1
using these approximations, we can apply the Corollary to Theorem 8 in §4.3 to conclude
that with these approximations s > 3/« if and only if p < 0.05.

We can also use the exact formulas or more accurate approximations to do an analysis
without the simplifying exponential assumptions. From (1.13) of Abate and Whitt
(1987a), a good approximation for the distance from steady state for the mean is

m— E[Y ()]

~ 0.724¢7538 4027670754 ;> 0. (36)
m

As shown in Table 4 of Abate and Whitt (1987a), it suffices to use only the second term
of (36) provided that 0.001 < p < 0.1, so that a better approximation for determining s
is (26) with v = 0.276 and # = 0.764. From (25), s ~ (—log p — 1.29)/0.764. With p
= 0.05, s ~ 2.24, as compared to s ~ 3.0 using the more elementary exponential ap-
proximation. For p < 0.027, s = 3.0, so that p < 0.027 is the condition for r(#) to be
decreasing using (25).

Now suppose that we specify p = 0.05 with the refined approximation above, and
obtain s = 2.24. The rough exponential approximation for R(¢) still indicates that a
single replication is optimal for all sufficiently long total run lengths. However, suppose
that we use a better approximation. From Corollary 6 of Abate and Whitt (1988) and
Table 5 of Abate and Whitt (1987a), a very good approximation for the covariance
function is

—-2t/3 + -2t
R()~ & —TC¢ (37)
8
Note that the dominant terms for larger ¢ in (36) and (37) are 0.276¢7%7% and
0.125e7967¢ 5o that the rates of decrease in (36) and (37) are similar.
Table 2 displays the risk function for several values of t and s = 2.24, 3.00, and 6.00.
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The first value s = 2.24 is based on the refined approximation (36) with p = 0.05; the
second value s = 3.00 is based on the basic exponential approximation with p = 0.05;
and the third value s = 6.00 reflects a larger value to have a safety factor. For all three
values of s, r(¢) in Table 2 is decreasing in ¢. However, for s = 2.24 there is a relatively
small advantage for large ¢ of approximately 10%. The best (worst) strategy is always ¢
= oo (t = 0); the risk of these strategies is exact. To put the times ¢ in Table 2 in
perspective, note that we need ¢t = 4 32(1.96)2/(0.01)2 = 76,832 for a 95% confidence
interval to have absolute width 0.01 (relative width 0.02); see (9) of Whitt (1989). For
such ¢, r(¢) is obviously very close to r(co). The conclusions deduced about the
M/M /w0 queue in Example 5.1 evidently can be made here as well.

A similar analysis applies to the queue length process (counting the customer in service,
if any) and related descriptive processes in the M/M/ 1 queue starting out empty, drawing
on Abate and Whitt (1987b, 1988). Indeed, the heavy-traffic behavior of the M/M/ 1
queue is essentially a scaled version of RBM above.

Good simple approximations for the correlation function, and thus the covariance
function, of the M/M/1 queue length process appear in (3.7) and (3.8) of Abate and
Whitt (1988); good simple approximations for the time-dependent mean appear in (2.1)-
(2.7) of Abate and Whitt (1987b). Since the exact values of the steady-state variance
and the asymptotic variance of the sample mean (assuming that the service rate is 1 and
the arrival rate is p) are

s _ P —»_ 2p(1 +p)
o5 1=, and o 1= (38)
r(co) < r(0)if and only if s > 2(1 + p)/(1 — p)?. The approximation in (2.3) of Abate
and Whitt (1987b) yields

s~ =2(1 = p)[c(p) log (p[1 + 2¢(p)])  where (39)
24+ p+[5—(1=p)5+p]1"? (1+4p'?)?
c(p) = p+I[5—( g p)(5 +p)] - ((2 +I;l/4)) ’ (40)

which is always greater than 2(1 + p)/(1 — p)? if p < 0.05. For example, if p = 0.70,
then ¢(p) =~ 1.13 and r(c0) < #(0) if and only if p < 0.068.

EXAMPLE 6.1. Suppose that we simulate an M/M/ 1 model starting out empty with
arrival rate p = 0.8 and service rate 1 to estimate the steady-state mean queue length m
= p/(1 — p) = 4.0. From (38), o2 = 20 and &> = 1800. Suppose that we want the
absolute width of a 95% confidence interval to be 0.08 (so that the relative width is 0.02).

TABLE 2

The Risk r(2) for Three Values of s for RBM Based on the Covariance
Function Approximation in (37)

The Risk r(f)

Time ¢ s =224 s =3.00 s =6.00
0.0 0.560 0.750 1.500
1.0 0.558 0.689 1.206
2.0 0.556 0.656 1.049
4.0 0.551 0.618 0.883
6.0 0.546 0.596 0.795

30.0 0.515 0.527 0.575
100.0 0.506 0.510 0.525

o 0.500 0.500 v 0.500
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If we could assume that we are making one long run starting in steady state, the appropriate
run length is approximately ¢ = 46%(1.96)2/(0.08)? = 4,321,800, which corresponds to
about 3.5 million arrivals; see (9) of Whitt (1989). Let us choose s according to criterion
(25) with p = 0.001. Using (39), we obtain s ~ 338.6, which corresponds to 271 arrivals.
Note that s is again very small compared to ¢. Also note that

r(oo) = a2 = 1800 < r(0) = se% = 6772.

As in Example 5.1, the risk r(¢) for ¢ = 4,321,800 is nearly r(c0 ), and would remain
so even with a moderate number of independent replications under the budget constraint
n(s + t) < B where B = 4,321,800 + 339. Moreover, the bias is negligible, even with s
= 0. In this case we use the approximations instead of the exact values to do the calcu-
lations; e.g., R(1) ~ 10(e %0148 4 o~004421y ‘Even with 100 replications, = 42,879 and
r(t) =~ 1801.5, which is only 0.08% above r(co) = 1800. On the other hand, if we let ¢
= 0, then we could have n = 4,321,800/338.6 = 12,764 replications. The variance of
the estimator is then 0.001567 and a 95% confidence interval has width 0.155. This width
is about two times what can be obtained with long runs.

7. Extreme Examples

For the models in §§5 and 6, it did not matter much whether we used one long run
or multiple replications, provided that the individual runs were long enough. However,
in general, either strategy can be much better than the other. To obtain additional insight,
we consider two more rather extreme examples.

7.1. When Many Replications Is Much More Efficient

To show that many independent replications can be much more efficient than one
long run, we give an example in which the process approaches steady state very rapidly,
so that s can be very small, while the steady-state covariance function decays very slowly,
so that the asymptotic variance of the sample mean is very large. (We aim for simplicity
rather than realism, but we also want to avoid extremely pathological processes.) Our
example involves a continuous-time Markov chain (CTMC) {Y(¢) : ¢ = 0} with state
space {0, 1, 2} that begins in state 0. Suppose that we want to estimate the steady-state
mean. Let the infinitesimal transition rates be Qo; = Qoz = A = — 4 Qoo, Q12 = Qo1 = 4,
Oi0= 0=\ and Q) = 0 = —(A"! + w). To achieve the desired effect, let \ be
very large and u be very small. Then the process very quickly reaches state 1 or state 2,
each with probability 1. Then the time-dependent mean approaches steady state ap-
proximately at rate A, while the steady-state covariance function R(¢) decays approxi-
mately at rate 2u. Note the detailed analysis reduces to the two-state case (we can treat
states 1 and 2 as one), for which all relevant formulas are given on p. 104 of Kemeny
and Snell (1961). The steady-state probability vector is (1/(1 + A?), A2/2(1 + A?),
A2/2(1 4+ A?)) and the time-dependent transition probabilities starting in O are

Por(1) = Py (£) = [AN/2(N + A"H](1 — e OOy,

Hence, E[Y (1)]/E[Y(c0)] = 1 — e~ ®*D 5o that the time-dependent mean starting
in 0 approaches its limit monotonically at rate A + A ~' (which is essentially X since A
> 1). Suppose that we let s be the first time that E[Y (¢)]/E[Y(0)] =1 — p. Then s
= —(log p)/(X + A1), which is of order A™! for A > 1. Indeed, s > 0 as A\ > oo.

For the remaining calculations, suppose that A = co, corresponding to an instantaneous
transition from state 0, so that the process is effectively stationary. Then the process
behaves like the reduced CTMC with the state space {1, 2} and time-dependent prob-
abilities Py (¢) = Py (t) = § (1 + e~ ). Note that the reduced CTMC reflects the original
CTMC with large A\ because the transition probabilities and the asymptotic variance of
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the sample mean in the original model converge to those of the reduced model as A —
oo . For large finite A, the process is not stationary. For the reduced model, the covariance
function is R(t) = 4 P, (¢) — 4 = +e7?", so that the time-average variance constant is
a* = Lu. Since u is very small, a? is very large.

Fmally, note that for any given budget B associated with the budget constraint n(s
+t) < B, we can achieve a variance for the estimate of {» by using » independent
replications with s = ¢ = 0. (Of course, we can do even better by setting ¢ = B/#.) Indeed,
since s = 0, (8) implies that r(0) = 0 < r(¢) for all ¢, so that 1 = 0 and infinitely many
replications is optimal. In conclusion, in this example we have r(0) = 0 and r(c0)
= &2 where a2 is very large, so indeed many replications is much better than one
long run.

7.2. When Many Replications Is Much Less Efficient

To show that independent replications can be much less efficient than one long run,
we give an example in which the process approaches steady-state very slowly, so that s
needs to be very large, while the steady-state covariance function decays very rapidly, so
that the asymptotic variance of the sample mean is very small. Our example is a deter-
ministic linear motion on [0, y] starting at O plus a CTMC on the two states y + | and
y+2ie,letY(@)=t,0<t<y,and Y1) E{y+ 1,y +2},t=y, with the Y ()
entering states y + 1 and y + 2 each with probability § at time z = y. On {y + 1,
y + 2} let the holding time in each state be exponential with mean u”! before transitioning
to the other state. (A more realistic stochastic process with essentially the same behavior
as the deterministic motion component is a diffusion process on [0, y] with a reflecting
boundary at 0 and an absorbing boundary at y, diffusion coefficient ¢?(x) = € and drift
coefficient u(x) = 1. For suitably small e, the diffusion process is well approximated by
the deterministic motion.)

The idea now is to choose y and u very large, so that the process remains in the
transient deterministic motion component a relatively long time before reaching the
CTMC component, but the covariance of the CTMC component decays rapidly. Ob-
viously the process reaches steady state precisely at time ¢ = y, so it is appropriate to set
s = y. Just as for the reduced model in §7.1, the covariance function for the CTMC is
R(t) = Le™ but here u is supposed to be large instead of small. In this example, the
risk decreases from 7(0) = sR(0) = y/4 to r(c0) = 6° = }pu as ¢ increases.

In conclusion, in this example we have r(oo ) much less than r(0), so indeed one long
run is much better than multiple replications.

8. Conclusions

The analysis here seems to justify our common practice with steady-state queueing
simulations of performing one long run, deleting an initial portion. We try to be on the
safe side and delete more than necessary, but we try to make the rest of the run sufficiently
long that the portion of the run deleted is negligible, certainly less than 5%. Indeed, in
Examples 5.1 and 6.1 it sufficed to delete 0.2% and 0.1%, respectively.

To estimate confidence intervals, we typically use nonoverlapping batch means with
about 20 batches, acting as if they are independent and normally distributed; see Schmeiser
(1982). However, if we want to have more confidence in our confidence intervals, and
we are not too nervous about the time required to reach steady state, then we perform
about 10 independent replications of slightly shorter runs. (This assures independence,
but not the normal distribution, so that there still can be coverage problems.) We try to
make these shorter runs sufficiently long that the efficiency is nearly the same as for one
long run. As illustrated by Examples 5.1 and 6.1, the runs in steady-state queueing sim-
ulations often need to be surprisingly long. Thus the efficiency for 10 replications is often
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essentially the same as for one long run. Moreover, the bias without initial deletion is
often negligible. In this context, the only radically different alternative is a very large
number of independent replications of much shorter runs. Our analysis tends to rule out
this alternative, as did Kelton and Law’s (1984).

Even though our analysis tends to favor long runs, we have seen that many replications
of relatively short runs can be efficient when the process Y (¢) and its mean E[Y (¢)]
approach steady state relatively quickly compared to the rate that the covariance function
decays. Of course, to achieve this efficiency, we must recognize the rapid approach to
steady state and let s be appropriately small. (We have offered some suggestions about
how to choose s.) When s is relatively large, either because it needs to be or because we
have insufficient information, one long run or a small number of replications tends to
be more efficient. From our analysis, we conclude that the key to answering the replication
question is the transient behavior of the stochastic process. The issue is whether or not
the estimator with its specified initial condition approaches steady state faster than the
covariance function decays.

We have suggested three levels of analysis for any particular case: First, given s, compare
the exact values #(0) and r(c0 ), which are relatively easy to calculate; see (8) and (9).
Second, perform the exponential approximation based on the asymptotic variance and
the asymptotic bias of the sample mean in §4.4. From §3, we know thatz = O or ¢t = o
will then be optimal, so that this step adds to the first primarily by providing an estimate
for s. Third, do an analysis using (7) and (25) based on more reliable expressions for
the covariance function R(?) and the time-dependent mean E[Y(¢)]. This final more
reliable method was illustrated in §5-7.!

' am very grateful to Professors Peter W. Glynn, Robert G. Sargent, and James W. Wilson for helpful
comments.
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