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ORDINARY CLT AND WLLN VERSIONS OF L =

PETER W. GLYNN* AND WARD WHITT*

The familiar queueing principle expressed by the formula L=^\W (Little's law) can be
interpreted as a relation among strong laws of large numbers (SLLNs). Here we prove
central-limit-theorem (CLT) and weak-law-of-large-numbers (WLLN) versions of L = \W.
For example, if the sequence of ordered pairs of interarrival times and waiting times is strictly
stationary and satisfies a joint CLT, then the queue-length process also obeys a CLT with a
related limiting distribution. In a previous paper we proved a functional-central-limit-theorem
version oi L = \W, without stationarity, by very different arguments. The two papers highlight
the differences between estabhshing ordinary limit theorems and their functional-limit-theorem
counterparts.

1. Introduction and summary. In [7] we established a functional-central-limit-
theorem (FCLT) version of the fundamental queueing formula L = \W [12], [14]. We
showed that the time-average of the queue-length process obeys a FCLT if the
customer-average waiting time obeys a FCLT jointly with the customer-average
interarrival time, and we described the limits. This was accomplished using the
continuous mapping theorem and related arguments in the setting of weak convergence
on the function space Z)[0, oo), as in [1] and [16]. Since FCLTs tend to hold in all the
standard situations in which ordinary central limit theorems (CLTs) hold, the FCLTs
in [7] seem quite satisfactory for practical purposes (e.g., applications to queueing
parameter estimation; see [7]-[9]). Nevertheless, it is natural to ask if it is possible to
establish corresponding relations among the associated CLTs; here we show that it is
possible, provided that we add the extra condition of stationarity.

In addition to the extending the queueing relation L = \W, the results here have
general probabilistic interest. In particular, we establish new asymptotic results for
random sums and inverse processes. This paper complements [16], in which it is shown
that functional limit theorems are preserved under various mappings on the function
spaces D[0, oo) and D[Q, oo) x D[Q, oo) such as composition and inverse. Here similar
results are obtained for ordinary limit theorems. For example, for inverse processes, §3
here is an analog of §7 of [16].

The importance of this paper given [7] hinges on the relation between ordinary limit
theorems (CLTs, SLLNs and WLLNs) and their functional-limit-theorem counterparts
(FCLTs, FSLLNs and FWLLNs). Consequently, we also address this issue here
(§2 and 6). We show that a CLT plus stationarity need not imply a SLLN or a
FWLLN (Example 1 in §6). As a consequence, a WLLN need not imply a FWLLN,
and a CLT need not imply a FCLT. On the other hand we show that SLLNs and
FSLLNs are equivalent (Theorem 4). We also show that a FCLT need not imply a
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SLLN (Example 2 in §6). As a consequence, we obtain the well-known result that a
WLLN need not imply a SLLN. However, as an important tool for establishing our
queueing results, we show that a WLLN does imply a SLLN under the extra conditions
of stationarity, normegativity and finite mean (TTieorem 5). Obviously much of this
background has been discovered before, e.g.. Theorem 4, but the importance makes a
brief explicit treatment worthwhile.

As in [7], we use the standard L = \W framework involving the sequence of ordered
pairs of random variables {(̂ 4 ,̂ D^): k > 1), where 0 < 4̂̂  < ^*+i and A/^ < Z)̂  for
all k. This framework is obviously very general, so that there are many applications. In
queueing, we interpret A/^ and D^ as the arrival and departure epochs of the ^th
arriving customer, where arrival and departure are understood to be with respect to the
system under consideration. For example, if we are interested in the waiting time
before beginning service, then the relevant system is the waiting room or queue, not
counting the servers, and the departure epochs D^ refer to the instants customers leave
the queue and begin service.

Let the associated interarrival times be t4 = v4̂  — yl^_i for A: > 2 and f/j = Ai. Let
the queue length at time /, Qit), be the number of k with A^ ̂  t ̂  D/^ and let the
waiting time of the A:th customer be W^^ = D,^ - A^. Let Nit) and Oit) count the
number of arrivals and departures, respectively, in the interval [0, t]. Let =» denote
convergence in distribution, i.e., weak convergence [1]. We omit "as t -* oo" when that
is obvious.

Our CLT version of L = \W can be viewed as an analog of Theorem 4 in [7], but
this paper can be read independently of [7]. The starting point here is an (ordinary)
joint CLT for ((/„, WJ, i.e.,

(1.1) n-'M tu,- X-'n, t^k- wn] ^ (f/, W),
/

where 0 < X < o o , w<oo and iU, W) is an arbitrary random vector in R^. (Note that
^k-i^k ~ ̂ k ^ (l-l)- Also note that we do not assume that the limit (f/, W) is
normally distributed, although that is what typically occurs [8].) The object is to obtain
a CLT for the cumulative process JoQis) ds and, if possible, a CLT jointly with other
related processes of interest. We obtain such a result here, but imlike [7], we have to
add an extra condition. We obtain positive results under the extra condition of
stationarity (by which we always mean strict stationarity), a condition which appears
in many treatments of L = XW; cf. [3], [6], [12], [15]. We rely heavily on stationarity,
but we have yet to establish that it is necessary. We also exploit the fact that W^ and
C4 = y4j — A,^_i are nonnegative. Here is our main result.

THEOREM 1. / / ((f4, W^): k > 1} is a stationary sequence of nonnegative random
vectors satisfying the joint CLT (1.1), then EU^^ = X~S EW,, = w, and

- /, Nit) - Xt, oit) - Xt,
A-1

E (»t - XwU^), E ^* - ^^f' E l*i - ^»*''' (QU) ds - Xwt
fc-1 i-l k-i •'o

, -X^/^t/, -X^/^t/, X1/2JF, >t^iW- wU),

-wV),}^^iW-wU),)^^iW-wU)) inR^.
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We prove Theorem 1 and the other two theorems stated in the introduction in §5.
Example 3 in §6 shows that the conditions of Theorem 1 need not imply a FCLT
version of (1.1), so that Theorem 1 cannot be deduced from [7]. The formula L = XW
appears in Theorem 1 in the translation terms. To follow the convention of having
random variables represented by capital letters and nonrandom real numbers by lower
case letters, we change the notation: we replace W hy w and L by q. The translation
terms for JoQis) ds. Nit) and E2_iW^ in (1.2) are then g, X and w, respectively, where
q = Xw.

In queueing applications, the cumulative process f^Qis) ds is of primary interest,
but the random sum TJk~i^k ^ ^^ ^^ interest outside of queueing. Among the many
CLTs for random sums, we know of nothing containing the limit of the sixth
component in (1.2); cf. §17 of [1], [13], §5 of [16] and references dted there. Example 4
in §6 shows that this CLT for the random sum is not valid without the stationarity and
the nonnegativity of W,^. The CLT for Nit) alone (Theorem 6), which does not require
stationarity, is also of general interest.

The limiting random vector (t/, W) in (1.1) will typically have a bivariate normal
distribution, in which case the limit in (1.2) has a multivariate normal distribution.
(The distribution on R^ of the limit in (1.2) is obviously degenerate.) See Corollary 3.1
and Remarks 3.4 and 3.6 in [7] for descriptions of the variances and covariances plus
further discussion. Example 1 of [9] describes the M/M/1 special case.

In the process of proving Theorem 1, we establish several other useful weak
convergence results, which we now summarize. To interpret the results, recall that
convergence in distribution (weak convergence) to a nonrandom element is equivalent
to convergence in probability; see p. 25 of [1]. It is easy to apply Theorem 2 to prove
Theorem 1. The rest of this paper is primarily devoted to proving Theorem 2.

THEOREM 2. Under the assumptions of Theorem 1,
(a) t-^/\Nit) - Xt) =» -X^/^U,
(b) t-^/\Nit) - 0(0) = /-'/'(2(0 =» 0,
(c) t-^/^&2liU, - X-1) - Et^i\(t4 - ^-')) - 0,
(d) t-^^\U'k^AiWk - Awt4) - Z^j^^W^ - XwU,)) => 0,
(e) t-'/^(j:^,^\W,-lPk'l\W,)^Q,
(0 t-^/\j^Qis)ds- Z^k^llW,) ^ 0,
(g) t-^/^&l\iW^ - XwU,) - (Eĵ i'i'ff, - Xwt)) = Xwt-'/\t - A^^,^) =» 0,
(h) r»/2((^[x,j -t)-it- X-'Nit))) =» 0.

As in [7], we can also go the other way, starting with a joint CLT for
oQis) ds), but the situation is not symmetric; see Example 1 in [7]. If

) , JoQis) <ix) has stationary increments and

(1.3) r»/2(jV(/) - Xt, f^Qis) ds-qt^=^ iN, Q),

then, by essentially the same argument,

(1.4) n-'/^y^'Qis) ds-wn^^ X-'^^Q - wN).

Under the extra condition

(1.5) n-'M i W, - r-Qis) ds] ^ 0,

we also obtain (1.2) with U = -X'^^N. (We omit the proof.)
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In the same spirit as Theorem 1, we also establish the following weak-law-of-large-
numbers (WLLN) version of L = \W. Here we do not need the stationarity and the
proof is much easier. Previous WLLN-versions ot L = \W and the generalization
H = \G appear in Theorems 3 and 4 of Brumelle [3]. The statement here has appeal
because of its simplicity. The joint convergence in Theorem 3 is equivalent to the
converge of the components separately; see Theorem 4.4 of [1].

THEOREM 3. Ifn-^A„ => A~\ 0 < A"i < oo, and n~^Ll_^Wi^ => w, then

( NO) O(t)

Nit), I W,,f'Qis)ds, E W,,Oit)
*=i •'o k=i

=> (A, Aw, Xw, Xw, X) inR^.

Here is how the rest of this paper is organized. In §2 we give background on the
basic limit theorems (LLNs, CLTs and their functional counterparts). We do this to
put these theorems in perspective and also to provide some key tools for proving
Theorem 2. In §3 we discuss the relation between ordinary limit theorems for partial
sums and associated counting (inverse) processes, and prove Theorem 2(a). As a
further basis for proving Theorem 2, in §4 we prove a theorem establishing conditions
for certain fluctuations of random sums to be asymptotically negligible. We bring
everything together in §5 and prove Theorems 1-3. In §6 we give the four examples
mentioned above.

An important open problem is whether the condition of stationarity in Theorem 1 is
na:essary. We conjecture that the condition cannot be simply deleted. However, we
have succeeded in extending Theorem 1 to a large class of nonstationary processes
(paper in preparation). Theorem 1 here plays a vital role in this extension; we establish
an equivalence for CLTs, showing that certain processes obey a CLT if and only if an
associated stationary version also does.

We have also written other related papers. We present sufficient conditions for
FCLT versions of (1.1), and thus (1.1) itself, in terms of regenerative structure in [8];
we discuss statistical issues related to indirect estimation using L = XW in [9]; we
prove an ordinary law-of-the-interated-logarithm (LIL) version of L = XW in [10]; and
we generalize H = XG and establish FCLT versions of it in [11].

2. Bad^round on die basic limit tlKOFems. Let [X^: n > 1} be a sequence of
real-valued random variables and let [Sni « > 0} be the associated sequence of partial
sums, defined by S„ = Xi+ ••• +X„, n > 1, SQ = 0. We say that the sequence { A'„}
obeys a WLLN it n~^Sn =» n tot some finite real number /t, and a SLLN if this limit
holds w.p.l. We say that the sequence {X„} obeys a CLT if n''^^^iS„ - nft) =^ Z tot
some proper (finite w.p.l) random variable Z. Usually Z has a normal distribution,
but we do not require it. (No conditions relating to finite moments, stationarity or
independence have been imposed on {X^}.) For the CLT, we could also consider
normalizations other than n~^^^, but we do not. Both the CLT and the SLLN imply
the WLLN, but neither the CLT nor the SLLN implies the other; we give examples
in §6.

We now discuss functional limit theorems in Z) = D[Q, oo). Let the space D he
endowed with the usual Skorohod /j topology, which reduces to uniform convergence
on compact subsets for continuous limit functions; see [1] and [16]. Let X, and S„ be
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FSLLN

FCLT

SLLN

/ X ^
CLT

WLLN
FIGURE 1. Relations among the limit theorems.

Notes: (a) Requires continuity of projection map.
(b) SLLN -» FSLLN covered by Theorem 4.

random functions in D defined by

(2.1) X„it)^n-%„,^ and S«(0 = «- ' / ' ( V l " M"')' ' > «,

where [JC] is the greatest integer less than or equal to x. Let e be the identity map on
[0, oo), defined by eit) = t,t> 0. The sequence { X, } obeys a FWLLN if X, =» ne in
D and a FSLLN if this limit holds w.p.l. (We could initially allow a more general limit
for Xn in the FWLLN or the FSLLN, but the limit will necessarily he\i.e provided that
(A',} obeys a WLLN, because n~^S„=> \i. implies that ^nit) =» lit for each t as
rt -• 00.) By the definition of the topology on D, the FSLLN is equivalent to

(2.2) lim sup [\n-\„,^- fit\] =Q w.p.l f o r a l i r > 0 .
0r

The sequence {X„ ] obeys a FCLT if S« =» S in £> for &„ in (2.1) and some random
element S in D. If S(t) is continuous at f = 1 w.p.l., then the FCLT implies the CLT
and Z is distributed as S(l). Figure 1 describes the relations among these limit
theorems; there is no implication where there is no arrow. (Implications extend by
transitivity of course.) Three examples suffice to establish all nonimplications: (1)
SLLN ^ CLT, (2) CLT •** FWLLN and (3) FCLT ^ SLLN. It is trivial that a SLLN
does not imply a CLT; e.g., just let 5n = «'/". The two nontrivial examples are given in
§6. All positive implications in Figure 1 are immediate except for one. We verify it
now.

THEOREM 4. The SLLN and the FSLLN are equivalent.

PROOF. The implication FSLLN -• SLLN is immediate using the continuous map-
ping theorem with the projection map. To go the other way, suppose that the SLLN
holds: n'^ -^ ft w.p.l. Let e > 0 and T he given. By the SLLN, there is a t^ie) such
that sup,^,^(,) \t'\^ - Ml < t/2T, so that

(2.3) sup {\int)-%,^-ii\)<e/2T and
n.t

sup
n.t
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However, we can also treat / < tf)(e)/n by bounding as

which converges to 0 as n -^ oo w.p.l. Given € and t^it), choose no(e) so that

(2.4) . n

for w > «o(«)- From (2.3) and (2.4),

sup sup

< sup sup { |M ^S^^,-^- fit]} -{• sup

n, /

It is significant that the analog of Theorem 4 for the WLLN is not true. Since the
CLT does not imply the FWLLN (Example 1), neither does the WLLN.

In Theorem 1, we start with the CLT in (1.1). We prove Theorem 1 by exploiting the
FSLLN, but since even a FCLT does not imply a SLLN (Example 2), we obviously
need something extra to get the FSLLN. We get the desired FSLLN from the CLT by
combining Theorem 4 with the following result, after adding two extra conditions:
stationarity and nonnegativity.

THEOREM 5. / / a stationary sequence of nonnegative random variables {X„) obeys a
WLLN, then EX„ = /n < oo and it obeys a SLLN.

PROOF. We apply BirkhofTs ergodic theorem (Chapter 6 of [2]) twice, first to prove
that EX„ < 00 and second to establish convergence w.p.l. Let X" = min{ X/^, m}.
Since 0 < A'̂  < m, EX" < oo. Since [X,"": k> 1} is also stationary, we can apply
BirkhofiTs ergodic theorem to get n'^Ll^^iX^ -» EiX{" | /"") w.p.l as « ^ oo, where
/ " is the invariant a-field for {AT}- Since n"^E*_i^r < n'^L^^iX^ for all « and
n'^'Ll^iX^ =» /i by the assumed WLLN, EiX^ I / " ) < M w.p.l and thus also EiX{")
< [I for all m. By the monotone convergence theorem, EXi < n. We now can apply
the ergodic theorem again to the original sequence (X„} to get n ~ 'EJJ _ i AT̂  -» £( .Yj | / )
w.p.l, where / is the invariant a-field for {X^^}, but the assumed WLLN implies that

1 / ) = ju w.p.l, which in turn implies that EX^ = ft. m

3. Inverse pnx^sses. Ilie processes {A„: /z > 1} and {^(0- t > 0} ate inverse
processes in the sense that A^ ^ t if and only if Nit) > n. As a consequence, under
mild r^ularity conditions, we have a limit theorem for Nit) if and only if the
corresponding limit theorem holds for A„. For example, this equivalence is elementary
for the WLLN and SLLN (e.g., see the proof of Theorem 3 in §5). This equivalence for
FCLTs is discussed in §7 of [16] and applied in [7]. Here we establish the equivalence
for ordinary CLTs. No stationarity is assumed here. Part of the interest lies in idlowing
limits without continuous cdf s.

THEOREM 6. Let A be a proper random variable and assume that 0 < X < oo. Jlien

n-^^iA„ - X-^n) =» if and only if t'^^^Nit) - Xt) =» -
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PROOF. By the basic inverse relation,

P(«-i/2(/i« - nA-i) < x) = P{A„ < nX-i + x/i^/^)

J > « ) for/„ = «X-

- X/J > x„), where

(3.1) x„ = X-'/X'/\n - X/J = X ' / '

as « -» 00.
First suppose that A has a continuous cdf and the limit for A^ holds. Then

^-3/2,-1/2^^^^^^ - XtJ => -v4 as « -» 00. (Suppose that F„ and F are cdfs with F
being continuous. It is not difficult to see that F^ix) -» F(x)as n -* oo provided that
F„ix„) -* Fix) for some sequence {x^} with Xn -• x.) Since it is always possible to
choose nit) and x(0 as functions of t so that «(/) -• oo, xit) -» x and (3.1) holds as
t -» 00 (let n and t satisfy n'^^it - n/i) -• x), we also have X''^^'^t~^^\Nit) - Xt)
= » - y 4 a s r - » o o . A similar argument applies in the other direction, assuming that A
has a continuous cdf.

Now we treat the general case by letting an arbitrary random yariable A be the
weak-convergence limit as e ^ 0 of random variables A^ with continuous cdfs. In
particular, let X be a random variable uniformly distributed on the interval [0,1] that
is independent of the original basic sequence {A„} and let A\, = A„ + i4nX, « > 1.
Obviously n~'^''\A\, - X'^n) => A -\- eX where X is independent of A, so that A + eX
has a continuous cdf for each c. Moreover, since A^„ > A„ for all n and c, N^it) < A'̂ (/)
for all t and «, where N^it) is the counting process associated with [A^^].

To construct a boimd on the other side, let A^„ = A^„_gxx^^/^p n > 1. (The index
is positive for all sufficiently large «.) It is easy to see that n~^/^(.^* — nX~^) =*
iA - 8X). Moreover, since A*„ < A„ for all n and 5, N\t) > Nit) for all / and 8.

The bounds in^jly that

(3.2) r i /2(Af '(0 - XO < t-'^\Nit) - Xt) < r i /2( iv«(0 - Xt)

for all t, € and 8. The first part of the proof implies that

(3.3) ri/2(JV'(/) - XO =» -X^^iA + eX) and

/-V2(iV«(0 - \t) =̂  -XV2(^ - SX).

By letting £ -^ 0 and 5 -» 0, we obtain the desired results from (3.2) and (3.3). A
similar argument appUes in the other direction. •

4. Fluctuatioiis of randmii smas. As a basis for proving Theorem 2, we present
some preliminary results on the fluctuations of random sums. Again we rely heavily on
stationarity. To prove parts (b) and (c), we need the following preliminary result
(which d o ^ not reqiiire stationarity).
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LEMMA 1. If n'^El^iX,^ -^ ft w.p.l, then, for any a > 0,

681

so that

lim n max *
n-»oo l^k^n

1 < m < an

lim n ^ max
n-»oo

k + m
= 0 w.p.l.

k + m
< a|/i( w.p.l.

PROOF. Apply the triangle inequality to get

k + m k + m

so that

n ^ max
k + m

2n - 1 max (
I

wliich converges to 0 as /i -» oo by the FSLLN (Theorem 4). The second conclusion is
an easy consequence because for any k and m, with 1 < w < na.

k + m
- an\fi\

k+m

THEOREM 7. Let {X^: k > 1} be a stationary sequence such that n ^EjJ-iA'^ -»jti
w.p.l; let Y be a proper random variable, and let Yit) be an integer-valued process such
that

(4.1) -yt)^Y.

"IUJ ^ 0.(a) If EX, = 0, then r / ( I [ W
(b) IfZit) is any nonnegative process such that - Z(0) =» 0, then

Y(t)

k-l

(c) Without additional assumptions.

no

max 0.
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REMARK. In Theorem 7(b), we do not assume that EX^ = 0. If EX^ = 0, then (b)
follows from (a).

PROOF, (a) Let C,(e) be the event of interest, namely.

We shall show that for any positive £ and 8 there exists t^ such that /'(C,(£)) < 8 for

Let <̂  be a strictly j)ositive function of TJ for TJ > 0 such that Pi\Y\ > ^ (TJ) /2) < TJ/2
for all TJ > 0, which exists because Pi\Y\ < oo) = 1. Let fi,(Tj) be the event

(4.2)

Thus, for any TJ, PiB'ir\)) < TJ for all sufficiently large /, wher fi/(Tj) is the comple-
ment of B,ir)). Next

max
k

y-0
>£/2

so that, by stationarity.

max
y-o

>£/2

which converges to 0 as / -» oo for every positive ^ by the FSLLN (Theorem 4). For
given positive c and 8, first choose TJ < 8/2 and then choose t^ so that /'(C,(£)JB,(TJ))

< 8/2 for all r >: t^. Then PiC,it)) < P(C,(£)5,(TJ)) -I- PiBfir\)) < 5 for all / > Q̂-

(b) Again let C,(£) be the event of interest, here

^-1/2 no
* - l k-X

let 5,(TJ) be as in (4.2); and let D,iy)

C,(£)l»,(T,)i>,(Y) c

_ [Zit)\\ < y}. Then

max'
k, m

k+m
> £

where the maximum is over the set S(y, TJ, r) of indices ik,m) defined by

S\TJ^*^/ ^ iv^j"')' 1 ^ m ^ yt and \k\ ^

By stationarity,

k + m

J-kk, m
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where the maximum is over the set

•S(Y,I?, 0 = {ik,m):l ^m^yt^^^andl < )t < 2[(<^(ii) -I-

683

^ + l]}.

Now, for positive e and 5 given, choose ^ < 5/3 and y < e/i. Then choose t^ so that
PiB,%r,)) < 7,, PiD,%8)) < 8/3 and P(C,i^)B,i-q)D,iy)) < 8/3 for all / > to, invok-
ing Lemma 1 for the last inequality. Then, for / > t^.

(c) As before, let C,(«) be the event of interest, here

max

and let B,irj) be as in (4.2). Then

> « h

+ l) and |A: - [yt] | + l ) .

k + m

where the maximum is over the set

Tiy,rj, t) = [(A:, m ) : l < m <

By stationarity,

Pic,i€)B,in))^pl

where the maximum is over the set

Tiy,v,t) = {ik,m): 1 < m < ([Y'^^^] + l) and 1 ^ A:

For positive c and 8 given, choose ij < 8/2 and then t^ so that P(C,(£).B,(7j)) < 8/2
for all t > ^0, applyirkg Lemma 1. Then, for all / > t^, P(C,(e)) < i'(C,(£).8,(7>)) +

max
k, m

5. Proofs of Theorems 1-3

PROOF OF THEOREM 1. The finite moment conclusion follows from Theorem 5 in
§2. The conditions of Theorem 1 plus the continuous mapping theorem, TTieorem 5.1
of [1], immediately yield the CLT

j:W^- Xwt, I (W, - XwU,)\
k-l k-1 I

(5.1)

in R^, Le., components one, four and five in (1.2). Then the convergence-together
theorem (Theorems 4.1 and 4.4 of [lj) combines with TTieorem 2 to yield the rest: The
second component of (1.2) is covered by (5.1) and (h); the third is covered by the
seccmd plus (b); the sixth is covered by (5.1) plus (d) and (g); the seventh is cover«i by
the »xth and (e); finally the eighth is a>vered by the sixth and (f). The only unused
parts of Theotetn 2, (a) and (d), are used to prove (h). Part (a) is also used to establish
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one of the conditions in Theorem 7, which is used for many of the other parts of
Theorem 2. Part (a) does not require stationarity. •

Theorem 2(a) is covered by Theorem 6 in §3 (without stationarity). The most
difficult part of Theorem 2 is (b). Let / be the indicator function, Le., IiA) = IiA)ix)
= 1 if X £ A and 0 otherwise.

PROOF OF THEOREM 2(b). t~^^\Nit) - Oit)) =* 0. We provide the broad outline
of the proof here and the supporting details in following lemmas. By Lemma 3, for any
Y > 0 ,

N(t)

0 < Nit) - Oit) < Nit) - N{t - Y/i/̂ ) -h E I{W„ >

For given e > 0, choose y < X~\/2 and /Q SO that, for all r > t^,

P{t^/\Nit) - N{t - yfi/^)) < Xy) > 1 - €/2,

which can be done by Lemma 4, and

<€/2
\ n-l

by Lemma 5. •
As a basis for Lemma 3, we need the following.

LEMMA 2. IfA^^t- y/^/^ for y > 0, then A^ + yyl^^ < t.

PROOF. Since the function x -I- yx)-^^ is strictly increasing in JC, the condition
implies that

A„ + yAY^ <it- yt^/^) + y(/ - yt^^^f^^ < (/ - yt^^^) + yt^/^ = t. m

COROLLARY. E^i'i^/(^« + yA^^ < t) > Nit -

PROOF. Apply Lemma 2 term by term, using

n - l

LEMMA 3. For positive t and y. Nit) > Oit) > Nit - yt^^) - J:^L'lIiW„ >

PROOF. Note that

N(t) 00

n-l n-l n-l

n-l

N(t) NO)

n-l n-l

B - l

applying the Corollary to Lemma 2 in titt last stq).
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LEMMA 4. For any y > 0, lim,^^ Pit~'^^\Nit) - Nit - yt^^^)) > Xy) = 0.

PROOF. Note that for 8 > 0

and

8) | => 0

by Theorem 7(c), so that

^̂ )̂ = 0. •

LEMMA 5. For any y > 0, t-^^E^^lIiW„ > yAY^) => 0.

PROOF. It suffices to show that n'^^'^Ll-JiW, > yAy^) => 0 because, for any
e > 0 .

mo
E li^k > yA^^) > e, Nit)

/
P r^/ ' £ / (» ; > yAY^) > e + Pit-^Nit) > 2X)

and Pit'^Nit) > 2X) =» 0 because i\r(O satisfies the WLLN with limit X as a
consequence of Theorem 6. Next, for 8 > 0,

(5.1) n-'/'tliW,

t \ A, > (X'^ - 8)A:)

^ - 8)k)
k-1

k-1

k-1

The first term on the right in (5.1) is asymptotically n^ligible by Lemma 6 below.
Hie second term is asynqjtotically negligible too because, by the SLLN (Tbeotetn 5),
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n~M„ -* X~^ w.p.l, so that

£ / ( ^ ^ < ( X - i - 8 ) ; t ) < 00 w.p.l.

and thus n'^Lf^iIiA^ < (X-^ - 5)A;) => 0. •

LEMMA 6. For any y > 0, Um,^^ n-'^^^T.^^PilV^ > yk^^^) = 0.

PROOF. Since n'^'^LUiPiW^ > yk^^^) = Ef.la,,„k-^/^PiW^ > y/t^/^) where
^kn ~ ik/n)^^^ for 1 < A: < n and 0 otherwise, so that \a^„\ < 1 and fl^„ -» 0 as
n -* 00 for each k, to establish the desired limit it suffices (as a consequence of the
dominated convergence theorem) to show that ifJ^-ik'^^^PiW^ > yk^^'^) < oo. By
stationarity, this is equivalent to Hf^ik'^'^^PiWi > y^k) < oo, which in tum is
equivalent to EiW^/y) < oo (Example 5, p. 44, of [4]). However, by Theorem 5,

< 00. •

PROOF OF THEOREM 2(C). First apply Theorem 5 to show that {U„} obeys the
SLLN with EU„ = X~̂  < oo. Then apply Theorem 2(a) to verify condition (4.1).
Finally, apply Theorem 7(a). •

PROOF OF THEOREM 2(d). Apply Theorem 7(a) again. To verify the conditions
of Theorem 7, apply Theorem 2(a) for (4.1) and Theorem 5 to establish that {W^}
and {f4} each obey a SLLN with EW,. = w < oo and EU^ = \~^ < oo. Then

} is stationary and obeys a SLLN with £(»'^ - XwU^) = 0. •

PROOF OF THEOREM 2(e). Apply Theorem 7(b) after applying Theorem 2(b) and
Theorem 5 to establish the conditions there. •

PROOF OF THEOREM 2(f). Apply Theorem 1 of [7] to get
^k for all r > 0, and then apply Theorem 2(e). •

PROOF OF THEOREM 2(g). Note that t - A^^,^ < -̂ Ar(o+i ~ ^mt) ^^^ apply Theo-
rem 7(b). Apply Theorem 2(a) and Theorem 5 to establish the conditions there. •

PROOF OF THEOREM 2(h). Note that

[Xr]

{A,^,, -t)-{t- X-'Nit)) = E (14 - X-') + {X-'[Xt] - t)
k-l

so that

/-1/2

The first t«m goes to 0 by T^eoi^n 2ic), the second trivially, and the tfiird by
Theorem 2(g). •
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PROOF OF THEOREM 3. By Theorem 4.4 of [1], it suffices to treat the marginals
separately. As indicated in §3, the WLLN for Nit) is elementary: For c > 0,

> X + e)

< X - c)

< 0 ^ 0 and

> 0 - 0

as / - • 00. Turning to the second component, suppose that w < oo and let e > 0 be
given. Then

(5.2) P\ >€

N(t)

+Pi\Nit)-Xt\>i,t)

+ Pi\Nit)-Xt\>r,t).

Choose TJ = €/2w and let / -» oo. The case w = oo is an easy modification.
For JoQis) ds, it suffices to prove that ^"^E î'JW^* ^ Xw, by the inequality used in

the proof of Theorem 2(f). Since the convergence for the random sum L Ĵ'i'JW t̂ just
proved in (5.2) depends on Nit) only through the weak convergence t~\Nit) =» X, we
can apply that argument again and complete the proof if we can shown that
=* X. T'o this end, note that

< (X - €)t)

SO that

(5.3)

>liA,^t/il+r,))-liW,>riA,), and

< t/il + 7,)) = Nit/il + 7,)),

< (X - €)t) < P Nit/il + ri))- £ /(»; > riAk) < (X - c)/

- Ti)) < t[X - €/2])

mn
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Choose IJ sufficiently small so that X/(l + ^) > X — e/2 and the first term on the
right in (5.3) is asymptotically negligible as ; -» oo. We complete the proof by showing
that the second term converges to 0 as f -> oo for any positive c and ij. Note that

/ NO) \ j
(5.4) Ph-' l,IiW,>r,A,)>eUp\t-' L liW,> riA,) > e

We have already shown that the second term on the right in (5.4) is asymptotically
negligible, so that it suffices to show that n^^Hl^iIiW^ > rfA/^) => 0. Since

- iin - \)/n)in -
k-1

W„/A„ =» 0, so that PiW„ > •qA„) -* 0, which implies that n'^Zl^i
=> 0. •

6. Examples. We conclude with four examples that help place our results in
perspective.

EXAMPLE 1. We show that the CLT does not imply either the SLLN or the
FWLLN (and thus also not a FCLT). Let (Y^: n > 1] be a sequence of i.i.d.
nonnegative random variables and let Xjn-i = ¥„ and X^, = - Yn for « > 1. Then
the associated partial sums are Sjn-i = 1̂  and Sjn = 0. Since n~^^^Y„ =» 0, {X^}
obeys the CLT with nonrandom limit, i.e., P(Z = 0) = 1. On the other hand, if
EY = 00, then (p. 42 of [4]) E"_iP(y > n) = I " . i P ( i ; > n) = oo, so that by Borel-
Cantelli (p. 76 of [4]), PiY„> n infinitely often) = 1 and n~% fails to converge
w.p.L; i.e., the SLLN does not hold. Moreover, it is easy to modify the construction so
that the basic sequence {X^} is stationary: just let

nX^„-^ = y« = -X^„ for all n) = PiX^^_, = -Y„==-X^„ for all n) = 1/2.

By BirkhofFs ergodic theorem (Chapter 6 of [2]), then EY = +oo above is necessary to
get nonconvergence of {n~^S„] w.p.l.

Since the CLT holds with / i " ^ / ^ =* 0. >f the FWLLN held, it must be with n = 0.
To show that the FWLLN need not hold, it suffices to show that we need not have
n~^maX],^^^^{5^} =» 0. To see this, we specify the distribution of Y^ in more detail,
let P ( i ; = 2*) = 2~* for all positive integers k. Then PiY„> k)> l/k for all k, so
that, for any e > 0,

{ ] 2nt)"

- — j - » l - e / as«-*oo,

which implies that the FWLLN does not hold. •
EXAMPLE 2. We now show that a FCLT does not imply a SLLN. Let (X,: n > 1}

be a sequence of independent random variables, which for most values of n assume the
value 0 w.p.l. Let {n̂ :̂ A: > 1} be a rapidly increasing s^uence of indices for which Y^
has a different distribution; in particular, assume that n̂ +̂i > " * - * ! ^^^ " A + I / " * ~*
00 as Jt-» 00. Let Y^ = 0 w.p.l. for n not in the subsequence {n^^} and let
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^ A:"' = 1 - PiY„^ = O). Now let the basic sequence {^«} be defined in
terms of (y),} as in Example 1. Since T,f_iPiY^ = n^) = oo, PiY„ = n^ infinitely
often) = 1 by Borel-CantelU, so that {n^^S^} fails to converge w.p.l. In fact, the set of
limit points for {n~^S„} is the two-point set {0,1} w.p.l. On the other hand,

max {IS,.!} =/ii/^ max {Y.} ^ n^^^^ max {Y,} for n^ < n/2 <

0

by the growth condition on (n^^} and the distribution of Y^^. Hence, the FCLT holds:
§„ =» S for Sn in (2.1) with ja = 0 and S = 5, where Bit) = 0, t > 0. m

EXAMPLE 3. We now construct a stationary sequence of nonnegative random
variables {X„: n ^ 1} obeying a CLT, but not a FCLT. This shows that the conditions
of Theorem 1 do not imply a corresponding FCLT, so that Theorem 1 cannot be
deduced from [7]. Without loss of generality, we can extend any single-ended station-
ary sequence {X^: « > 1} to a double-ended stationary sequence {X„: -oo < n <
-foo}; see p. 105 of [2]. We do this below. Let (T^.: k ^ 1} be a sequence of
independent random variables with Pir^. = j) = «^^ 1 <y < nl, where (n^.: k > 1)
is a rapidly increasing sequence of positive integers, to be specified in more detail
below. Let {Y,^ f. — oo <j< oo} be defined by

(6-1) ^k,j={ 0, ww| -I- T̂  -(- 1 <7 < mnl + 114(2'' - 1),

"*, otherwise,

for all integers m and k^l.To have (6.1) well defined, we require that {«t} be an
increasing sequence satisfying n^l'' < nl ot, equivalently, n^^2~* > 1 for all ^. Since
the T^ variables are independent, [Y^^f. - 00 <j< 00} are independent sequences for
different k. For each k, the sequence [Y^ j) is made up of deterministic cycles of
length n\. The discrete uniform distribution for T̂ . provides the proper initialization to
make [Y,^ j-. -00 <y < 00} defined in (6.1) a double-ended stationary sequence for
each k. Note that E'.il^^ = «2~* provided that F̂ i = Y|^„ = 2"*, which will occur
with high probability for large k.

Let the basic sequence [X^: « > 1} be defined by X„ = E"_iljt,« for n > 1. It is
easy to see that {X„) is stationary. For the remainder of the construction we require
that n^ increase rapidly enough so that

(6.2) £«7i2^^0 and n^^ £ «y -• 0 as A: -• oo.
7 = 1 /

For any n given, let k = kin) he such that n | < « < n|+i. Let S„ = Xi + • • • +X„
and note that

A„^{\S„-n\> £ «,. c £y,.^.#n2-*fc

c (y^ 1 ¥= 2"* or Y^ „ ¥= 2~* for some A: > kin)].
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SO that, by (6.2),

(6.3)
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j-k(n)

n2-'' for some k > kin)

as/i-*oo.

We want to show that
To this end, note that

However, on A'i,,

J
J-k(n)

) -» 0 for each e > 0, where

£ nj'2
j-k(n)

k(n)-\

, - n\> «}.

0 as n-» oo

by (6.2). Hence, for any c, there exists an n^ such that B„^A'i, = 0 for n > n^, so that
indeed PiB^^) -* 0 as « -» oo for each e > 0.

We have shown that n-^^iS„ - «) =» 0. It foUows that n-^/^(S,«,, - [nt]) =» 0 as
n ^ 00 for each individual t. If a FCLT held as well, then we would have weak
convergence in C[0,1] with the topology of uniform convergence, which would imply
that n~^/^ max{S, - j : 1 <y' < «} =» 0, by the continuous mapping theorem, but we
do not, as we now show.

We exploit the fact that 0 < Tfj^i
h b d l i

- n2~* < n, with equality holdingj j

at both bounds at least once in every segment WQ < « < «o + "*> provided that
Yi,i*O, by virtue of (6.1). Let C and Q be the random sets C = {/: 1̂  i # 2"'} and
C ; = { y : j'^k,Yji*2-J}. Let Z = I ^ . c " , and Z, = Z,.^c,nr Since C, c C
w.p.l, Zi,<Z<<xi w.p.l. For k^C, I"_iyt,y > "2 -* for all M, so that 5; -
« -I- Z > 0 for all n. On the other hand, 7^ y = n^^ for some n in {y: 1 <y < n\}
w.p.l. Hence,

, y t̂.i = 2"*}{max(S,-y:l

Since [Y,^ f. — oo <y < oo} is independent of Z^, we can write

p(max(S,. -j: 1 <> < «?) > «t/2) > PCZ^^ < n^A)P(Y^^i = 2"*)

which converges t o l a s ik -^oo . Asa consequence,

1/2) a s * - * 00.
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REMARK. Since the FCLT does not hold in Example 3, the various mixing condi-
tions that imply the FCLT, such as the ^mixing condition in Theorem 20.1 of [1],
must fail. In fact, mixing fails with a vengeance. For example, let n^ = 2^\ so that the
conditions of (6.2) are satisfied and we can identify whether or not Y,^ j = n^ by
looking only at Xj. For the event Ej = [Y^ j = n^}, obviously £y+«nj = £, for aU
integers m. Hence,

for all m, so that <>(«) fails to converge to 0 as n -» oo. •
EXAMPLE 4. We now show that Theorem 1 does not hold if we drop the nonnega-

tivity and stationarity assumptions. This reveals limitations of the ordinary CLT
framework, because the FCLT for the random sum E î'̂ fF^ in [7] holds without these
conditions. Let [Nit), / > 0} be a Poisson process with mean 1. Let PF̂  = 1 for all k,
except certain spedal k dq)ending on Nit). In particular, let

(6.4)

provided that iV(2"'̂ i) > Ni2") -f 1, which occurs all but finitely often by Borel-
CanteUi: P(Ar(2''+i) < JV(2") 4- 1) = P(Af(2") < 1) and I^_iP(iV(2") < 1) < oo. In
the exceptional case, let Wf,^2r) = JfW(2")+i = 1- Let B^^ he the random subset of
unusual indices, i.e..

B^= [k: ^^(2") = A: and iV(2''+») > Af(2")-1-1, for some «,/i = 1,2,... }.

In Lemma 7 below we show that lim^_^ P(A: G .8̂ )̂ = 0, which implies that the joint
CLT (1.1) is valid with the limits U being iV(0,1) and W = 0. To see this, note that

However, P(E;J1\">»; - 2" > 2") -* 1, so that the CLT for Z^^^lW^, the sixth compo-
nent in (1.2), fails. Of course, (6.4) also causes the FCLT for {^^ } to be invalid. (This
is necessary by ITieorem 17.1 of [1].) This is easy to see because

2-"/2 max ( £ iW^ - k)\ > 2-''/^2'' = 2"/^ provided iV(2''-M < 2".
2»\ )

Hence, n-^''^tmx.„^„{I.J..^iWJ - j)} -^ oo w.p.l as « -» oo. If the FCLT held, then
the limit would have to be 0, by the continuous mapping theorem. •

LEMMA 7. With definition (6.4), P(A:eS^)->OasA:-» oo.

PROOF. By the SLLN, for any c > 0, there exists an m such that \Ni2") - 2"| < £2"
for all R > m. We will show that for all c sufficiently small, there exists at most one
n s nik, i)-^ m such that Ni2") = A:. To see this, note that we must have |A: - 2"| <
t2", which is equivalent to

(6.5) [log k - log(l + e)]/log2 < n < [log * - log(l - £)]/log2,

so that it suffices to clux)se c suffidently small so that [ - Ic^ l — c) -t- log(l -I- e)]/
Iog2 < 1 or, equivaloitly, so that (1 -t-1)/(l - c) < 2. We suppose that such an e has
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been selected. Then

Pik e Bff) < PiNi2") = k tor some n)

< P{Ni2'') = k, \2'"Ni2'') - 1| < £ for some n > m)

-\-P{Ni2") = k for some n < m)

+ P{\2-"Ni2") - 1| >£ for some « > m)

< i'(jV(2"<*>) = A:) + E P{Ni2J) = k)

+ P{\2-"Ni2") - 1| > € for some n ^ m)

m

< supi>(iV(2"<*>) =j) + I P{Ni2J) = A:)

+ P(|2-"Ar(2") - 1| > £ for some n > m).

First let A: -^ 00 with w fixed to get the first two terms to converge to zero. Then let
m -» 00 to get the last term to converge to zero, invoking the SLLN. •
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