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Abstract

Telephone call centers and their generalizations - customer contact centers - usually handle sev-

eral types of customer service requests (calls). Since customer service representatives (agents)

have different call-handling abilities, contact centers exploit skill-based routing to assign calls

to appropriate agents, aiming to respond properly as well as promptly. Nevertheless, despite

a high level of sophistication, contact-center performance often falls far short of expectations.

Too frequently, both customers and agents are dissatisfied with their contact-center experi-

ence. Agent dissatisfaction is demonstrated by high turnover and absenteeism. This problem

might be addressed by empowering the agents, as others have observed, but that is difficult to

accomplish in today’s contact centers. As a new strategy to empower contact-center agents, we

propose dynamically soliciting agents’ working and call-handling preferences and responding to

them. It is natural to be concerned that traditional performance requirements will not be met

by such a strategy. However, we develop dynamic call-routing algorithms that take account of

agent preferences, allowing for adjustments in real time or near real time, while ensuring that

traditional performance requirements are met. Thus we present evidence that the strategy is

workable.
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1. Introduction

Many services - from emergency to retail - are largely teleservices, in that the people who

provide the service and the people who receive the service, herein called customers, are remote

from each other, at least when the service is initiated. With a teleservice, the delivery of

service is provided or enabled by a customer contact center; e.g., see Cleveland and Mayben

(1997) and Gans, Koole and Mandelbaum (2003).

A primary resource in a contact center is the group of people who respond to these service

requests - the customer service representatives, herein called agents. The classical contact

center is the (telephone) call center, where the interactions are telephone calls, but the tele-

phone is no longer the only means of interaction. Alternative media such as email, fax, web

pages and instant messaging are on the rise. Contact centers are supported by quite elab-

orate information-and-communication-technology (ICT) equipment, such as a private branch

exchange (PBX), an automatic call distributor (ACD), personal computers (PC’s) and as-

sorted database systems. The ICT technology reduces the requirement of spatial proximity:

The ICT technology makes it possible to have virtual contact centers of various kinds, ranging

from a small connected group of large call centers on different continents to a large number of

individual agents working out of their own homes.

Contact centers usually handle several different kinds of service requests, herein referred

to as calls. For example, telephone callers may speak different languages or may call about

different promotions. Sometimes a single contact center will respond simultaneously to calls

for several very different service providers. That occurs when service providers outsource their

contact center to an independent specialist. Grouping together several different contact centers

can be advantageous, because it facilitates economies of scale.

Thus, it is rarely possible or cost-effective to have every agent be able to handle every type

of call. Thus, the agents tend to have different call-handling skills, in different combinations.

Fortunately, contact centers can handle diverse calls with agents having diverse skill sets,

because modern ACD’s have the capability of assigning calls to appropriate agents: Contact

centers have gone beyond the traditional load-based routing to perform skill-based routing.

Traditional load-based routing is designed to ensure that calls are handled promptly; skill-

based routing is designed to ensure that calls are not only handled promptly but are also

resolved properly.

Contact centers maintain elaborate management-support systems to address important
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aspects of contact-center performance. First, there are customer-relations-management (CRM)

systems, that help ensure that customers are being served appropriately and business objectives

are being met. The CRM systems keep information about customers, including a history of

previous interactions. By analyzing the data (via “business analytics”), CRM systems enable

retail businesses to know the potential sales value of each interaction. Retail businesses can also

ensure that important customer information is immediately available for the agent via screen-

pop on the agent’s computer screen just prior to establishing contact. The CRM systems also

provide reports on how well business objectives are being met, by individual agents as well as

by the contact center as a whole.

There also are elaborate workforce-management (WFM) systems, that aim to ensure that

the right number of agents with the right skills are in the right place at the right time. The

WFM systems have sophisticated algorithms and computer software to perform forecasting,

staffing and scheduling. These three functions aim to determine the required number of agents

with specified skills over different time periods (e.g. weeks, days, and half-hours). The WFM

systems also help manage agent performance and compensation.

1.1. Performance Problems

Unfortunately, despite the complex systems described above, and perhaps partly because

of those complex systems, the performance of contact centers frequently falls far short of

expectations. Contact centers often are not able to meet business objectives; e.g., see Cleveland

and Hash (2004). First and foremost, customers are often dissatisfied with their contact-center

experience. Even though there are elaborate WFM systems, contact centers often are not

staffed efficiently. Even though there is the capability of performing skill-based routing, often

the routing does not achieve the desired results. There often are too many agents with some

skills, but not enough agents with other skills, so that some agents are unproductive, while

others are overworked. Despite all the management-support systems, service levels and other

performance targets often are not met. As a consequence, some service requests are handled

adequately, but too many others are not. Moreover, costs often are higher than expected, while

revenues are lower. Despite all the sophistication, contact-center performance frequently does

not nearly reach its potential.

There are clear signs that contact centers are not achieving their desired goals. There

is strong evidence that it is currently difficult to maintain an energized, effective workforce;

see Deery and Kinnie (2004), Frankel et al. (1999) and Holtgrewe et al. (2002). Indeed,
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there is strong evidence of agent job dissatisfaction: There are frequent reports of four telling

conditions: (i) high turnover or churn, (ii) chronic absenteeism, (iii) frequent deviation from

work schedules, and (iv) agent fatigue toward the end of the day. Even if it were not possible

to improve the customer experience, it would be desirable to address these problems.

Indeed, many contact centers report agent-retention problems, expressed as high churn.

Contact centers frequently report from 20% to 200% annual turnover. There are significant

costs associated with high turnover, which are often not fully appreciated; see Bliss (2004).

When considering the costs of employee turnover, it is natural to classify the costs, dividing

them into two types: (i) transition costs and (ii) productivity costs.

Transition costs account for the per-agent cost of terminating the departing agent, recruit-

ing and training the new agent to replace the departing one, and disruption costs associated

with the change, such as the cost of hiring a temporary employee, and the costs of managers

coping with the change, such as the cost of performing exit interviews, the administrative cost

of stopping benefit deductions and starting benefit enrollments, and so forth. It has been

estimated that transition costs alone can be as much as 100% − 200% of an agent’s annual

compensation.

Since new agents typically must undergo a significant start-up learning period in order to

perform effectively, high turnover also tends to produce significant productivity costs. High

turnover implies that too many agents are in the start-up learning period. More importantly,

however, high turnover strongly indicates that many agents are dissatisfied with their job, and

that job dissatisfaction is likely to make the agent a less effective worker; see Quiñones et

al. (1995), Batt (2000), Mitchell et al. (2001) and Glebbeek and Bax (2004). (Whitt (2004)

develops models to help analyze the productivity benefits of increased retention.)

High turnover directly hurts productivity, because it is necessary to recruit and train ad-

ditional agents, to allow for the eventual attrition caused by the turnover. The impact of high

turnover is actually greater than might be anticipated, because high turnover inevitably is as-

sociated with high uncertainty: It is very difficult to predict the long-term effects of recruiting

and training programs, when we are unsure about the ultimate retention. Even though we can

plan for the average loss, with all its attendant costs, the actual number of available agents

with one skill or another may end up being far less or far more then intended. In order to

hedge against potential shortfalls, it is necessary to recruit and train even more agents.

Closely related to turnover is absenteeism. Not only do many contact centers report high

turnover, but they also report high absenteeism; many of the agents on the payroll, scheduled
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to work on a given day, do not actually show up. Like high turnover, absenteeism can be

compensated for by scheduling extra agents in advance, but obviously that is at significant

cost. Moreover, there is again significant uncertainty associated with absenteeism as well.

If absenteeism tends to average about 10% per day, it usually fluctuates between about 5%

and 15%, causing there to be, in the end, significant uncertainty about the staff level that will

actually be present. As a consequence, despite the presence of highly sophisticated optimization

algorithms to do the staff scheduling, there may be even more uncertainty about the number

of agents available on a given day than there is uncertainty about the number of calls that will

be received on that day, which customarily is regarded as a random phenomenon.

Closely related to turnover and absenteeism is deviation from the work schedule. Unfortu-

nately, even the agents who remain employed and show up as scheduled may not adhere to

the daily work schedule. They may not be logged in and available to handle service requests

when they are supposed to be. Or they may be logged in, but not actually available. Just

like turnover and absenteeism, schedule deviation degrades the agent availability to respond

to calls. Again, one may plan for such service degradation (and the associated cost), but there

is yet another added uncertainty, which reduces the effectiveness of planning.

Finally, there is agent fatigue, which is a decline in productivity over the day. In many

contact centers, the productivity of many agents declines during the day, often dropping off

precipitously toward the end of the day.

1.2. Root Causes

When these agent-performance problems are discussed by contact-center management, we

often hear direct or indirect criticism of the agents. The agents are criticized for their poor work

ethic. We hear management express their frustration. They complain that their employees

are not motivated and do not work efficiently. Frequently, the management response is to put

even greater pressure on the agents. For example, in an attempt to achieve better adherence to

work schedules, contact-center management might adopt a pervasive call monitoring system,

recording every call.

However, we believe that such responses may be a mistake. To put the issue in perspective,

it is helpful to recall the long history of the quality movement in manufacturing, led by such

pioneers as W. Edwards Deming and Joseph M. Juran; see Deming (2000) and Juran and

Godfrey (1999). Similar failures in manufacturing were blamed on inadequacies of the workers,

but experience and statistical evidence showed that the key to improved performance is usually
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improved processes. That is highlighted by the 85/15 rule of Deming and Juran, which says

that at least 85% of the problems are system problems, while less than 15% of the problems

are due to the workers.

It is important to recognize that the fundamental problem in contact centers may be

with contact-center processes, not the agents themselves. The easily measurable quantities

- turnover, absenteeism, schedule deviation and fatigue - are all indications that agents are

dissatisfied with their job. Indeed, research studies show that contact-center agents frequently

do not have a sense of wellbeing in the workplace; see Singh et al. (1994), Batt (2000, 2002),

Ruyter et al. (2001), Holman (2002, 2003) and Witt et al. (2004). When agents are required

to respond to telephone calls by carefully following prepared scripts, the agents inevitably feel

a loss of control, a lack of autonomy. When contact-center management adopts a pervasive

monitoring system, recording every call, the agents inevitably experience anxiety and stress;

see Witt et al. (2004). When agents are simultaneously trying to satisfy the customer’s needs

and trying to respond to management pressure to complete the calls more quickly, the agents

inevitably experience role ambiguity; see Ruyter et al. (2001). More generally, the current

contact-center working environment, be it in small cubicles or alone at home, too frequently

tends to cause boredom, loneliness, passivity and lack of recognition.

1.3. Empowering the Agents

Indeed, it is widely recognized that agent job dissatisfaction is a serious contact-center

problem. The importance of agent motivation and compensation is frequently emphasized; see

Cleveland and Hash (2004). Others have said that contact-center managers need to empower

the agents; e.g., see Spraetz (2004). However, the traditional responses may not be enough.

Radical changes may be needed.

In this paper we aim to contribute to significant work redesign in contact centers. Our the-

sis is that, in many circumstances, contact-center performance can be improved by enhancing

agent participation. That follows the general management principle that employee participa-

tion in decision making and problem solving usually improves the quality of work; again see

Deming (2000) and Juran and Godfrey (1999); also see Hackman and Oldham (1976), Karasek

and Theorell (1990), Bowen and Lawler (1995), Collins (1996), Rafig and Pervaiz (1998) and

Corsun and Enz (1999).

Thus we seek to empower the agents. Certainly, much can be accomplished within existing

contact centers. For example, management can give agents greater input in determining work
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schedules and meet regularly with agents seeking their input, as suggested by Spraetz (2004).

Much is accomplished by simply recognizing that it is important to treat one’s fellow employees

with mutual respect.

However, we believe that more substantial changes may be needed. We suggest consider-

ing structural changes in the way contact centers operate. Clearly, staffing and call routing

are major decision processes in contact centers. We aim to improve agent participation by

soliciting agent preferences about working and call routing and responding to them. We thus

propose going beyond skill-based routing to achieve preference-based routing and preference-

based staffing. In addition to responding to calls promptly and properly, we want to increase

customer and agent satisfaction from the contact experience.

The first step is to recognize that agents are individual people, with their own preferences.

By responding to agent working and call-handling preferences, contact-center management will

demonstrate that agent efforts are valued and appreciated. They will give the agents a sense of

belonging. They will make it clear that the agents are part of the overall contact-center team,

working towards a common goal. Moreover, the agents may have important insight about

system needs and their own effectiveness.

By establishing a dialog with the agents, management will be better able to energize the

agents. Management may give incentives to the agents, encouraging them to handle calls need-

ing greater attention. In that way, staffing and routing may be achieved by a dynamic game or

market, with adjustments in real time or near real time. One implementation involves loyalty

points; the agents may accrue loyalty points for responding favorably to management incen-

tives, working at desired times and handling desired calls. These points may be redeemable

for rewards. By enabling communication among agents, management will provide a way for

agents to cooperate, working together in teams. Consequently, agents may experience much

less isolation and loneliness in the workplace.

Of course, there should be concern that the proposed actions might backfire: By allowing

agent preferences to influence staffing and routing, there is a risk that contact-center per-

formance may actually degrade. Allowing individual agents to act independently, no matter

how well-meaning, does not ensure good system-wide performance. Thus, part of our task

is to provide suitable management controls to help ensure that contact-center performance is

satisfactory.

Mostly, however, we think there is more to gain than lose. In making this proposal, we do

so with the conviction that tight management control of staffing and call routing is actually
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not required. In Wallace and Whitt (2004), we found that both staffing and routing could be

accomplished remarkably well with relatively little effort provided there is a minimal amount

of cross training. A little flexibility goes a long way: When each agent has only two skills, in

appropriate combinations, it is often possible to staff primarily as if the contact center were

one large contact center in which all agents had all skills. Moreover, in such an environment,

it suffices to use a relatively primitive routing algorithm. Supporting theoretical results have

been established by Armony et al. (2004) and Chevalier et al. (2004).

Thus, we believe that there is little to lose from doing what the agents want. Moreover,

agents may respond even beyond management expectations. Agents may have access to in-

formation sources, such that their actions - though inconsistent with expressed management

priorities - may subsequently be recognized as effective.

1.4. New Call-Routing Algorithms

Nevertheless, we accept that a major burden on us, in proposing this new strategy, is to

show that it is workable. We need to show that we can respond to agent preferences, while

still meeting traditional performance targets.

Our approach is perhaps best communicated via a simple example. Suppose that we

have a contact center in which 100 agents can all respond to telephone calls in either French

or English. Suppose that some agents strongly prefer responding to French-speaking calls,

while others strongly prefer responding to English-speaking calls. Moreover, suppose there

is a balanced load of the two kinds of service requests, so that we need 50 agents primarily

devoted to responding to French-speaking calls, and 50 agents primarily devoted to responding

to English-speaking calls, in order to meet traditional performance targets.

Consider two situations: First, suppose that all 100 agents prefer responding to French-

speaking calls. Then clearly we have a problem. We cannot meet our performance targets

if we let them do that. In that situation there is relatively little we can do; we will have to

require that 50 agents be primarily devoted to responding to each group of calls.

On the other hand, suppose that 50 agents strongly prefer responding to French-speaking

calls, while the other 50 strongly prefer responding to English-speaking calls. The traditional

skill-based routing will have 50 agents primarily responding to each group, but no attention

will be paid to agent preferences, so that there will be a preference mismatch, based on a

random assignment. With preference-based routing, we will be able to let all the agents do

what they want, and do not worse. Our goal is to show that, more generally, we can pay
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attention to agent preferences, while still meeting traditional performance constraints.

Thus, the remainder of this paper is devoted to developing new call-routing algorithms that

take account of agent preferences. (The approach will also apply more generally to staffing,

i.e., whether or not the agent is working at all, but we will focus on routing.) Our goal here

is to develop both specific algorithms and a framework for developing other algorithms. We

aim to be illustrative rather than definitive; we aim to show that effective preference-based

routing (and staffing) can be done. We intend to study the performance of these algorithms

by computer simulation, but we do not do that here. We leave simulation studies for future

research.

We remark that conducting successful simulation studies is challenging, because a main

goal of the innovation is to induce new behavioral responses: We want the agent to have a

better sense of wellbeing in the workplace, and we want more satisfied customers as a result.

Thus, the important intended benefits are not meeting conventional performance targets (e.g.,

service-level constraints, such as 80% of all calls answered within 20 seconds), even though

we should ensure that they are indeed met, but instead are increased agent and customer

satisfaction.

Of course, these feelings should have quantifiable effects: As a result of increased agent

job satisfaction, we would like to see less agent turnover and absenteeism; as a consequence

of having more satisfied customers, we would like to see more return business from customers

and increased customer demand over time. Simulation is a standard tool for analyzing contact

centers, as can be seen from Anton et al. (1999), Brigandi et al. (1994), Leamon (2004) and

Wallace and Whitt (2004), but we are unaware of any previous simulation studies that have

focused on these behavioral issues in contact centers. Previous simulation studies have focused

on conventional congestion measures, such as customer abandonment and delays.

We envision two possible implementations for the routing: The first, less invasive, imple-

mentation is to work with the existing call-routing algorithm in the ACD. Given an existing

algorithm, we need a way to apply agent preferences to modify (set) the parameters of the

existing algorithm, in order to affect the routing. The second, more invasive, implementation

involves inventing an entirely new call-routing algorithm, to replace whatever call-routing al-

gorithm is in the current ACD. That is tantamount to inventing a new ACD. However, from

an algorithmic perspective, the second implementation is easier, because we do not need to

coordinate with any existing algorithm. In this paper we will provide methods for carrying

out both implementations, but for the following discussion assume that we are considering the
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first implementation.

Even if we agree that preference-based routing is a good idea, there are serious challenges

in its implementation: In particular, there are information technology (IT) challenges: We

need to have a control point, such as a preference server, where we can orchestrate preference-

based routing. Second, we need to establish communication links connecting the agents, the

ACD, existing management-support systems (CRM and WFM) and this preference server.

The agents should be able to open preference windows on their computer screens, so that they

can receive information from the preference server. In brief, we need appropriate IT so that

the agents can indeed express their preferences in an effective dynamic manner. In this way,

agents may also be able to communicate with each other, so that they can exploit teamwork.

Finally, we need a way to apply the received agent preferences in order to influence or modify

the existing (skill-based) routing algorithm.

Here we do not discuss the IT challenges; in this paper we focus on the routing algorithm.

If we are not going to invent an entirely new routing algorithm, then the possible ways to

implement preference-based routing depend on the current (skill-based) routing algorithm in

place. We believe that it is possible to incorporate preference-based routing within the frame-

work of many different existing routing algorithms (without changing too much). To illustrate

what we believe is possible, and to be concrete, we define a candidate skill-based-routing al-

gorithm employing a priority matrix. The matrix element Pi,j gives the call-handling priority

for agent i to handle call type j, assuming that the calls have been classified into types. We

then show how to use agent preferences to select appropriate entries in this priority matrix. In

other words, we use agent preferences to set the parameters of that existing SBR algorithm.

Staffing is also affected, because agents may indicate that they prefer not to work at all for

some period of time.

For the second implementation, we develop an entirely new routing algorithm, to replace

whatever was being used by the ACD. We invent a new routing method, called value-based

routing (VBR), which depends on a value vi,j attached to agent i handling a call of type j.

Value-based routing is convenient for us, because the values provide a means for the agents to

express their preferences. We let agents specify their preferences via values. Then we provide

a method to combine agent values with management values to obtain composite values. And

then we use the VBR algorithm with these composite values to route the calls.

We also use the values to generate the priority matrix in our initial implementation. For

the first implementation of preference-based routing, we let agents specify their preferences

9



via values. Then, as before, we provide a method to combine agent values with management

values to obtain composite values. Now, instead of performing direct VBR, we use those values

to construct an appropriate priority matrix to use with the “existing” routing algorithm in the

ACD. We call the VBR algorithm implemented through the priority matrix an indirect VBR

algorithm.

Value-based routing itself is important, because it emphasizes focusing on the value of

the service provided - the true quality of service (QoS) - rather than conventional queueing-

theory performance measures related to congestion, such as abandonment rate, average speed

to answer and service level. Moving from traditional queueing-theory performance measures to

value-based performance measures in contact centers itself can be a major advance. However,

here we use the VBR algorithms as a framework to develop PBR algorithms. The PBR

algorithms enable the agents to participate in call-routing decisions. We thus provide a means

to genuinely empower the agents.

We envision the VBR and PBR algorithms as being dynamic feedback algorithms, with

adjustments being made by all parties in near real time. First, management adjusts its ex-

pressed value assignments in response to the observed performance of the routing, including

both the network conditions and the way business objectives are being met, as well as pre-

vious agent preferences. Moreover, management may communicate incentives to the agents.

In response to management input, and possibly input about network conditions and the way

business objectives are being met, the agents adjust their preferences and the cycle continues.

During their deliberations, the agents may possibly interact with each other, perhaps working

together in teams. We envision all parties learning and adjusting over time. For example,

agents may acquire earned empowerment: Management may adjust the weight given to each

agent’s preferences based on the agent’s past record of performance [3].

1.5. The Rest of this Paper

Here is how the rest of this paper is organized: First, in Section 2 we specify the candidate

SBR algorithm based on an agent priority matrix P , which is intended to illustrate what

is done today in the better SBR algorithms. Next, in Section 3 we develop the new direct

value-based-routing (VBR) algorithm. In Section 4 we introduced the alternative indirect VBR

algorithm in which the values are converted into priorities for handling different types of calls,

thereby affecting the existing SBR algorithm described in 2. The indirect VBR algorithm is

also appealing because it reduces the complexity.
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Having developed the VBR algorithms in Sections 3 and 4, we next consider ways to incor-

porate agent preferences. In Section 5 we develop preference-based routing (PBR) algorithms

in the framework of the two previous VBR algorithms. (Preference-based staffing arises as a

special case, because agents can indicate their preference for working at all.) We do so by

expressing agent preferences in the form of values. We take several measures to ensure that

management can maintain control in various ways, if it is deemed necessary. In particular,

we discuss ways to combine management values with agent values to obtain overall composite

values, to use in the PBR algorithms. We develop weighted values that allow management to

gradually adjust the amount of emphasis given to agent preferences. That allows management

to rapidly or slowly increase or decrease the weight given to agent input, as circumstances

dictate. We include a simple specific PBR algorithm in Section 5.3. We describe the overall it-

erative feedback process in more detail in Section 6 and We briefly state conclusions in Section

7.

2. A Priority-Based SBR Algorithm

In this section we introduce a priority-based routing algorithm, which we regard as illus-

trative of current SBR algorithms. Indeed, the SBR algorithm here is similar to the routing

algorithm used by Wallace and Whitt (2004), which in turn is a variant of SBR algorithms in

practice. We will introduce a variety of additional parameters, which may go beyond existing

SBR algorithms, but which we believe can help management produce effective VBR and PBR

algorithms.

2.1. The Framework

We consider a contact center with n agents, who respond to m types of inbound calls. We

primarily base routing decisions on an agent priority matrix P . The matrix element Pi,j gives

the priority level for agent i to handle call type j. The ith row of the matrix P determines the

routing for agent i, while the jth column of the matrix P determines the routing for any call

of type j.

We assume that Pi,j is a positive real number for each call type j that agent i has the

required skill to handle, with higher numerical values indicating higher priority. (Usually the

possible priority values will be only a few integers.) Let Pi,j = 0 for all call types j that agent

i can respond to only when the system is overloaded. Let Pi,j = −1 for all call types j, if any,

that agent i cannot respond to under any condition.
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Here we take the individual values Pi,j as given. Moreover, at this point we are concerned

with routing, not staffing. We assume that the important staffing step has been completed, so

that there is an appropriate number of agents with the right skills. More generally, we want to

make the best possible use of the available agents, whatever demand and staffing we are faced

with. However, routing is intimately linked to staffing; it is invaluable to have the flexibility

to rapidly change the staffing, if needed, as discussed in Whitt (1999).

For call routing, we must make two important decisions: First, we must decide what to do

when a new call arrives; second, we must decide what to do when an agent becomes free after

completing a call. Since we will introduce time thresholds, we also need to make decisions when

these time thresholds are passed. We develop a class of algorithms depending on parameters

to be specified.

We initially specify what we mean by agent i being available: We say that agent i is

available at time t if (i) agent i is logged in to the ACD at time t, (ii) agent i is not already

handling a call at time t, and (iii) agent i has been busy less than a proportion βi of the time

during the last interval of time of length λi minutes. Let Ii(t) be the total length of time that

agent i has been idle in the time interval [0, t]. Then the proportion of time that agent i has

been idle in the interval [t− λi, t] (where λi < t) is

Ai(t, λi) ≡ Ii(t)− Ii(t− λi)
λi

, t ≥ λi . (2.1)

We thus say that agent i is available at time t if Ai(t, λi) ≤ βi. (Clearly, we can remove the

last condition by simply setting βi = 1.0.)

We also specify a waiting-time threshold θi,j for a call of type j, after which agent i, if

available, will respond to that call, even if call type j is not especially appropriate for agent

i. The agent might then only take appropriate information to facilitate calling the customer

back at a later time. (Again, we can eliminate this opportunity by simply setting θi,j = ∞.)

Thus, our SBR algorithm has four kinds of parameters: the n×m = nm priority values Pi,j ,

the n busy-time-proportion bounds βi, the n lengths λi of the time intervals for the busy-time

bounds and the n×m = nm waiting-time thresholds θi,j .

2.2. The Priority-Based SBR Algorithm

Given the agent-priority matrix P and the associated control parameters, we can now specify

our priority-based SBR algorithm. There are four situations in which action should be taken:
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1. When a new type-j call arrives, route (assign) the call to the available agent i with

the highest positive priority level Pi,j . Break ties with the longest-idle-agent-routing (LIAR)

policy: route the call to that agent, among all those available agents with that best priority

number, that has been idle the longest. If there is no available agent i for which Pi,j > 0, then

put the arriving call at the end of a queue of waiting calls of type j. Let there be a separate

queue for each of the m call types, with each queue served in the FIFO order.

2. When agent i becomes free, after completing a call, first check to see if agent i

satisfies the availability requirement: If agent i has been busy more than a proportion βi of the

time in the last time interval of length λi, let agent i go idle. Otherwise, look for waiting calls

to assign to agent i. Let the candidate calls to assign to agent i be from the front of the m

call-type queues (the calls of each type that have been waiting the longest). Assign the waiting

call of type j (in the front of its queue) with the highest priority. Break ties by assigning the

call that has been waiting the longest. If there is no waiting call for a call type j with Pi,j > 0,

then look to see if there are any waiting calls, of any type j for which Pi,j = 0, that have been

waiting for more than the time threshold θi,j . Among all these calls, answer the one for which

wj − θi,j is largest, where wj is the time spent waiting by the type-j call that has been waiting

the longest.

3. When agent i becomes available, after sitting idle, assign a call to agent i, just as

when the agent becomes free after completing a call (as in step 2 above, but considering the

current state of the system).

4. When the waiting time of a type-j call hits a threshold θi,j, look to see if agent

i is available and if Pi,j ≥ 0. If so, assign that call to agent i . Break ties among candidate

agents by using the LIAR policy. Ties among waiting customers should occur only negligibly;

to be specific, break them by numerical index of call type and then numerical index of position

in queue.

3. Direct Value-Based Routing

We now propose a new value-based algorithm to replace the SBR algorithm defined above.

We again consider a contact center with n agents, who respond to m types of calls. We assume

that a value vi,j (a real number) has been assigned for agent i handling a type-j call.
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In a sales environment, the value vi,j might be the expected dollar value of having agent

i handle the type-j call. These expected dollar values might be estimated from data from

the CRM system. On the other hand, these values vi,j might simply represent quantitative

expressions of the “value” management attributes to having agent i handle a call of type j.

For example, those value scores might be based on management estimation of agent skill levels.

It is natural to go beyond simply recognizing whether or not an agent has the skill to speak

French; we might try to assess how well the agent can handle French-speaking calls. Unlike

expected revenue, values clearly apply in any contact-center environment, e.g., in emergency

services as well as in retail. Finally, the value might be a direct expression of agent preferences

or be a composite combined expression of management and agent call-handling values, as we

will propose in Section 5 below. We believe that “value” is good terminology, because it

encompasses many different dimensions we might want to consider.

3.1. A Performance Target

Before defining any specific routing algorithm, it is appropriate to consider the contact-

center goals. Thus we start by formulating a performance target that can be used to judge

candidate routing algorithms, including the ones we present. However, we regard what we

do as only illustrative. In any contact-center application, it is natural to start by carefully

considering the overall goals, and then try to formulate a meaningful performance target.

Moreover, it is good to communicate the goals and the performance target to all employees,

so that the direction is clear to one and all.

Given that we are starting with values, it is natural to base the target directly on the values

vi,j , but we may require that relatively few calls abandon and that answered calls be answered

promptly. We think of value-based routing still aiming to meet traditional performance targets.

Thus, we ascribe a cost (negative value) cL,j to each class-j call that is lost due to customer

abandonment and a cost cD,j to each served class-j call that has to wait more than δj seconds.

Again this is only meant to be illustrative; we might to pay attention to exactly how long

abandoning calls waited before they abandoned, and we might pay attention to exactly how

long served calls had to wait.

We now define a specific total-value function. To do so, we specify a time interval over

which performance is to be judged, e.g., a typical day. Let Ni,j be the number of type-j calls

answered by agent i within γj seconds during the specified time period. Let Lj be the number

of type-j calls to be lost because of customer abandonment within the designated time period,
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and let Dj be the number of answered class-j calls delayed beyond δj seconds (δj > γj) within

the designated time period. Clearly, the quantities Ni,j , Lj and Dj should be regarded as

random variables, which depend on the unknown pattern of arrivals and service times as well

as the routing policy used. For each routing algorithm, let the total value gained from the

routing algorithm under consideration be the expected total value, i.e.,

V ≡
n∑

i=1

m∑

j=1

(E[Ni,j ] · vi,j)−
m∑

j=1

([E[Lj ] · cL,j ] + [E[Dj ] · cD,j ]) . (3.1)

We may then take as our overall goal the maximization of the total value expressed in

(3.1). We can estimate the expected values of the three random variables in (3.1) by first

specifying a stochastic model for the arrivals of call types and their service-time distributions,

and then applying computer simulation. For any given stochastic model, we can use computer

simulation to evaluate the performance of each alternative routing algorithm, e.g., as in Anton

et al. (1999), Brigandi et al. (1994) or Leamon (2004). We present candidate algorithms

below.

Before going on, we observe that we might well want a more elaborate model. By in-

cluding losses and delays in the performance target, we have accounted for important goals

in traditional load-based routing, but in that direction we could provide more detail, e.g., by

including service level. By including values depending on the (i, j) pair, we have accounted

for important goals in skill based-routing, but we could go further: We have not directly eval-

uated whether or not each call was handled properly; we have not indicated whether or not

the service request was properly resolved. Just assigning a call of type j to agent i clearly

does not directly guarantee that we will receive a fixed value vi,j from each interaction of that

kind. Nevertheless, we think of the performance target (3.1) as way to compare alternative

call-routing algorithms. We aim to present algorithms that can perform well by that criterion,

provided that the algorithm parameters are set appropriately.

3.2. The Parameters

Here we take the individual values vi,j as given. Moreover, as before, here we are concerned

with routing, not staffing. For call routing, we must make the same two important decisions

considered above: First, we must decide what to do when a new call arrives; second, we must

decide what to do when an agent becomes free after completing a call. Since we introduce

time thresholds, just as before, we also need to make decisions when these time thresholds

are passed. We develop a class of algorithms depending on parameters to be specified. We
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believe that good performance can be achieved within the class we propose by an appropriate

choice of these parameters. Unfortunately, however, our framework evidently does not contain

the optimal routing algorithm (for our target). Identifying an optimal routing algorithm is

evidently beyond current capabilities. We aim to develop an effective (reasonably good) routing

algorithm. The performance of the algorithms can be judged by comparing them to other

algorithms, using computer simulation.

As before, we have the agent-availability parameters βi and λi. We also have waiting-time

threshold θi,j for a call of type j, after which agent i, if available, will respond to that call, even

if call type j is not especially appropriate for agent i. We also want to take extra measures to

ensure that there is a good match between calls and agents. Hence we have lower and upper

bounds on assignments, based on the values. For agent i, there are lower and upper agent

value bounds αL
i and αU

i with αL
i < αU

i ; for call type j, there are lower and upper call-type

value bounds τL
j and τU

j with τL
j < τU

j . Their use will be specified below.

Thus, our direct-VBR algorithm has eight kinds of parameters: the n×m = nm values vi,j ,

the n busy-time-proportion bounds βi, the n lengths λi of the time intervals for the busy-time

bounds, the n×m = nm waiting-time thresholds θi,j , the 2n agent value bounds αL
i and αU

i ,

and the 2m call-type value bounds τL
j and τU

j .

3.3. The Direct VBR Algorithm

There are four situations in which action should be taken. Here is what to do in each case:

1. When a new type-j call arrives, route (assign) the call to the available agent i with

the highest positive value vi,j among those agents i with τL
j ≤ vi,j ≤ τU

j . Break ties with the

longest-idle-agent-routing (LIAR) policy: route the call to that agent, among all those available

agents with maximal value, that has been idle the longest. If there is no available agent i for

which τL
j ≤ vi,j ≤ τU

j , then put the arriving call at the end of a queue of waiting calls of type

j. Let there be a separate queue for each of the m call types. Customers from each (call-type)

queue are served in first-in first-out (FIFO) order.

2. When agent i becomes free, after completing a call, first check to see if agent i

satisfies the availability requirement: If agent i has been busy more than a proportion βi of

the time during the last time interval of length λi, let agent i go idle. Otherwise, look for

waiting calls to assign to agent i. Let the candidate calls to assign to agent i be from the front
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of the m call-type queues (the calls of each type that have been waiting the longest). Assign

the waiting call of type j (in the front of its queue) if vi,j is the largest positive value among

call types j with waiting calls satisfying αL
i ≤ vi,j ≤ αU

i . Break ties by assigning the call that

has been waiting the longest. If there is no waiting call for a call type j with αL
i ≤ vi,j ≤ αU

i ,

then look to see if there are any waiting calls, of any type j, that have been waiting for more

than time θi,j . Among all these calls, answer the one for which wj − θi,j is largest, where wj

is the amount of time spent waiting time by the type-j call that has been waiting the longest

(necessarily associated with the call at the front of its queue).

3. When agent i becomes available, after sitting idle, assign a call to agent i, just as

when the agent first becomes free after completing a call (as in step 2 above, but considering

the current state of the system).

4. When the waiting time of a type-j call hits a threshold θi,j, look to see if agent

i is available. If so, assign that call to agent i. Break ties among agents by using the LIAR

policy. Ties among waiting customers should occur only negligibly; to be specific, break them

by numerical index of call type and then numerical index of position in queue.

That completes the specification of our direct VBR algorithm. Both an advantage and a

disadvantage of this direct VBR algorithm is that it has a fairly rich collection of parameters

that can be (needs to be) set in order to achieve good performance. Computer simulation can be

used to identify good parameter settings. Initially we can ignore the value bounds αL
i , αU

i , τL
j

and τU
j , but experience indicates that they can often be exploited in order to improve overall

performance. They can prevent assignments that are feasible, but not desirable. In many

scenarios, it is sometimes advantageous to let an agent sit idle when there are waiting calls.

If the agent is highly skilled, we may want to save the agent in reserve for future important

calls. On the other hand, if the agent is not highly skilled, then we may prefer to wait until a

new more-highly-skilled agent becomes available to handle the call. We might want to restrict

the calls that an agent handles, at least as long as customers are not waiting excessively.

4. An Indirect Value-Based-Routing Algorithm

In this section we introduce an alternative indirect VBR algorithm. We start with values

as in Section 3, but then we convert those values into an agent priority matrix P as in Section
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2. We thus show how to incorporate value-based routing into the SBR framework based on an

agent priority matrix.

There are clearly many ways to transform values into priorities. A simple direct way is to

just let Pi,j = vi,j for all i and j. However, we aim for a more elementary resulting routing

algorithm. Specifically, here (i) there are fewer categories and (ii) each agent has only a few

active skills. Here we work with four priority levels; in general, it might suffice to have fewer,

or it might be better to have more. Here we assume that each agent has exactly one active skill

at each of the top three priority levels. The agent may have the ability to handle other types

of calls; the active skills are the skills that the agent will mostly be asked to handle during

the time period those skills have been designated as the active skills. In Wallace and Whitt

(2004) it was found that it often suffices for agents to have only two skills, in appropriate

combinations. It may even suffice for only some of the agents to have two skills, with the rest

having only one.

4.1. The Priority Matrix

Our indirect VBR algorithm can start from the same value function v ≡ vi,j in Section 3,

but it produces a more elementary routing scheme based on only the four priority levels. In

particular, routing will be determined by an n×m priority matrix P that assigns one of four

priority levels to each agent-call-type pair (i, j), 1 ≤ i ≤ n and 1 ≤ j ≤ m: For each agent i

and call-type j, the matrix element Pi,j gives the priority level for agent i handling a call of

type j.

We assume that Pi,j can assume one of the four different numbers: 0, 1, 2, and 3. The

highest (top, preferred) priority level is 3; the second highest is 2 and so forth. If Pi,j is not

assigned a number or is assigned the number −1, then agent i is deemed unqualified to handle

calls of type j. We can specify which call types the agents can handle with a n×m skill matrix

S ≡ (Si,j). If agent i can handle service request j, then Si,j = 1; otherwise, Si,j = 0. Some

very simple skill-based routing algorithms in practice just let the Pi,j = Si,j − 1 for all i and

j. However, experience indicates that performance can be improved by imposing additional

structure. That hypothesis can be tested with simulation.

A standard skill-based-routing (SBR) algorithm can be obtained by directly defining the

priority matrix P . An indirect VBR algorithm is obtained from a direct VBR algorithm by

mapping the set of nm values {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} into the corresponding set of nm

priorities {Pi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. A simple way to do this is to choose three boundary
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numbers b1, b2 and b3 with 0 < b1 < b2 < b3, and let

Pi,j = 3 if vi,j ≥ b3,

Pi,j = 2 if b2 ≤ vi,j < b3,

Pi,j = 1 if b1 ≤ vi,j < b2,

Pi,j = 0 if 0 < vi,j < b1 . (4.1)

If we stipulate that the set of possible values is {0, 1, 2, 3}, then we can directly identify

Pi,j with vi,j , so we really have not done much yet. However, we continue to propose a more

elaborate scheme that gives each agent exactly three non-zero (active) skills. We assume that

each agent has one priority-3 skill, one priority-2 skill, one priority-1 skill and any number of

priority 0 skills, where agent i having skill j at priority level k means that call type j is of

priority level k for agent i. If Pi,j is not assigned a value in the set {0, 1, 2, 3}, then agent i

does not have the skill to handle call type j.

We are aiming to assign calls from the top three priority classes, but the agent can handle

priority-0 calls as well, if necessary. We call the three high-priority skills active skills; those are

the skills that are intended for the agent to be using. In restricting the number of active skills

we are drawing on the results of Wallace and Whitt (2004), which show that it suffices for each

agents to have only two skills, if the agents have appropriate skills in appropriate combinations.

But when we limit the number of skills in this way, it becomes challenging to make a good

skill assignment. To meet that goal, we suggest using mathematical programming; see Hillier

and Lieberman (2003) and Winston and Venkataramanan (2002).

For the mathematical program, we assume that the priority levels 3, 2 and 1 each appear

precisely once in each row, while 0 can appear any number of times. That is, each agent has

one priority-3 skill, one priority-2 skill, one priority-3 skill and any number of priority 0 skills,

where agent i having skill j at priority level k means that call type j is of priority level k for

agent i. We construct the priority matrix P by applying a mathematical program, using the

values as input parameters.

4.2. Constraining Parameters

In this setting with the agent-priority matrix P , we also use the busy-time-proportion

bounds βi, the lengths λi of the time intervals for the busy-time bounds, and the waiting-time

thresholds θi,j , but we no longer need the four value bounds αL
i , αU

i , τL
j and τU

j . With the
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indirect VBR algorithm, we directly specify the call types an agent can serve, so that we can

prevent inappropriate feasible assignments.

We assume that we have specified staffing requirements in terms of: (i) the total number

n of agents, (ii) lower and upper bounds nL
j and nU

j on the number of agents for which call

type-j is priority 3 (top priority), (iii) lower and upper bounds nL
j,k and nU

j,k on the number of

agents for which call type j is priority 3 and call type k is priority 2 (where it is assumed that

j and k are distinct) and (iv) lower and upper bounds nL
j,k,l and nU

j,k,l on the number of agents

for which call type j is priority 3, call type k is priority 2 and call type l is priority 1 (again

where j, k and l are distinct).

For example, a systematic way to specify the staffing parameters n, nj,k and nj,k,l was

specified in Wallace and Whitt (2004). First, we can obtain the total number of agents, n,

by staffing as if all agents had all skills, or as if we had a multi-server queue with a single

call type. Second, we can use a square-root-staffing rule to choose values of nj : we can

let n̄j = Rj + x
√

Rj , where Rj is the offered load for call-type j and x is chosen so that

n̄1 + · · ·+ n̄m = n; then round to get nj . Third, we can let n̄j,k be proportional to the product

nj · nk, and then round to get nj,k.

Let the decision variables in our integer program be xi,j,k,l; let xi,j,k,l = 1 if agent i has

call type j as priority 3, call type k as priority 2 and call type l as priority 1; let xi,j,k,l = 0

otherwise. Let the value of such an assignment be vi,j,k,l, which we assume is a nonnegative

number. We assume that these values are specified. There are many possible ways to assign

such values.

To establish a close connection to the previous section, we show how these values vi,j,k,l can

be defined in terms of the more elementary values vi,j defined in Section 3 above. In particular,

we can let

vi,j,k,l = vi,j + εi,j,kvi,k + εi,j,k,lvi,l , (4.2)

where εi,j,k and εi,j,k,l are numbers satisfying

0 < εi,j,k,l < εi,j,k < 1 for all i, j, k and l . (4.3)

We think of εi,j,k as being roughly equal to the ratio of the number of priority-2 calls of type

k handled by agent i to the number of priority-3 calls of type j handled by agent i. Similarly,

we think of εi,j,k,l as being roughly equal to the ratio of the number of priority-1 calls of type

l handled by agent i to the number of priority-3 calls of type j handled by this agent.
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For example, we might simply set εi,j,k = 0.20 for all (i, j, k) and εi,j,k,l = 0.05 for all

(i, j, k, l). On the other hand, these ratios might be defined iteratively: We can initially

estimate these proportions and then perform a simulation with the specified parameters, and

see what proportions occur. We would then reset the proportions to the revealed values, and

perform another simulation, and continue until there is close agreement. Because j is priority

3, k is priority 2, and l is priority 1, we expect the ratios to satisfy (4.3), but we could allow

violation of condition (4.3) as well.

The first (main) point for the indirect VBR algorithm being developed here is that we

have values vi,j,k.l for all four-tuples (i, j, k, l). The second point is that we have some way

to convert the values vi,j defined in Section 3 into the more complex values vi,j,k,l. We are

strongly interested in being able to relate the indirect VBR algorithm in this section to the

direct VBR algorithm in the previous section. Hence, it is important that here, too, we can

start with the same values vi,j that were central to the direct VBR algorithm in Section 3.

Here we have the following additional parameters: the single parameter n (as before),

the 2m parameters nL
j and nU

j , the 2 × m × (m − 1) = 2m(m − 1) parameters nL
j,k and

nU
j,k, the 2 × m × (m − 1) × (m − 2) = 2m(m − 1)m − 2) parameters nL

j,k,l and nU
j,k,l, the

m×(m−1) = m(m−1) parameters εj,k in (4.2) and the m×(m−1)×(m−2) = m(m−1)m−2)

parameters εj,k,l in (4.2). (For simplicity, those parameters might be chosen to be independent

of the indices; e.g., we might let εj,k = 0.20 for all (j, k) with j and k distinct and εj,k,l = 0.05

for all (j, k, l) with j, k and l distinct.

4.3. The Integer Program

Given the values vi,j,k,l for all four-tuples (i, j, k, l), we solve an integer program to find

the priority assignments specified by the decision variables xi,j,k,l. The integer program is a

generalization of the classical assignment problem; see Hillier and Lieberman (2003), Winston

and Venkataramanan (2002) and Wolsey (1998). We use standard mathematical programming

algorithms to find an optimal solution or an efficient heuristic to find a good solution. In either

case, the mathematical program gives a precise specification of the decision variables, which

in turn directly produce the desired priority matrix P .

In particular, we maximize the total value subject to constraints on the number of agents

of each type. That is, we solve the optimization problem:
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max
{xi,j,k,l: 1≤i≤n,1≤j≤m,1≤k≤m,1≤l≤m}

n∑

i=1

m∑

j=1

m∑

k=1

m∑

l=1

xi,j,k,l · vi,j,k,l (4.4)

subject to:

xi,j,k,l ∈ {0, 1} for all (i, j, k, l) ,

xi,j,k,l = 0 if j, k and l are not distinct ,
n∑

i=1

m∑

j=1

m∑

k=1

m∑

l=1

xi,j,k,l = n ,

nL
j ≤

n∑

i=1

m∑

k=1

m∑

l=1

xi,j,k,l ≤ nU
j for all j ,

nL
j,k ≤

n∑

i=1

m∑

l=1

xi,j,k,l ≤ nU
j,k for all (j, k) with k 6= j ,

nL
j,k,l ≤

n∑

i=1

xi,j,k,l ≤ nU
j,k,l for all (j, k, l) with distinct j, k, l . (4.5)

We apply available optimization techniques to solve this optimization problem. Given any

optimal solution (there may be more than one) or a good (possibly suboptimal) solution, we

then obtain the agent-priority matrix P be letting Pi,j = 3, Pi,k = 2 and Pi,l = 1 if xi,j,k,l = 1.

Otherwise, we let Pi,p = 0 if agent i has the skill to handle type p calls; if not, we assign no

number (or −1).

The indirect VBR algorithm is the SBR algorithm developed in Section 2 using the special

priority matrix P created in this section from specified values. The indirect VBR algorithm

provides a way to implement value-based routing in the framework of an existing SBR algo-

rithm. Both an advantage and a disadvantage of this indirect VBR algorithm is that it has

fewer parameters than the direct VBR algorithm in Section 3. Even though this algorithm has

a different structure than the direct-VBR algorithm in Section 3, we can compare the algo-

rithms by using the same overall performance criterion (3.1), assuming that both algorithms

are based on the same values {vi,j}.

5. Preference-Based Staffing and Routing

For the direct-VBR and indirect-VBR algorithms developed in the previous two sections,

we did not specify where the values came from. Following current practice, it is natural to

assume that management assigns both the values and the additional constraining parameters.

However, we instead obtain (agent-based) preference-based-routing (PBR) algorithms if we let

the agents participate in assigning the values vi,j , leaving management to assign the additional
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constraining parameters. We might even let the values be assigned entirely by the agents. By

allowing these values to affect whether or not the agent works at all, we also obtain preference-

based staffing.

5.1. Direct Agent Call Selection

If we have decided that we want to let the values be assigned entirely by the agents, we

might also go further and let the agents directly select the calls. In some circumstances that

may be feasible and desirable. Such a scheme requires that the agents receive the required

information, but it evidently is possible to make information about the waiting customers

available to the agents.

There are a number of concerns, however, which keep this approach from being our main

proposal. First, it is problematic in the situation in which many agents are idle and a new

call arrives. In that situation, it seems inappropriate to rely on the individual agents, because

they would then be competing to answer (or not answer) each new call.

Thus, we might elect to use direct agent call-selection only when calls are waiting and

an agent becomes available, either after handling a call or after being idle. However, there

might be a great many calls waiting, so that the agent would have to do much information-

processing. Moreover, management might be reluctant to relinquish control. However, there is

an intermediate approach that can address both of those problems: The agents might be given

the opportunity to directly select the call from among a subset of the waiting calls, designated

by the system, under management guidelines.

5.2. Composite and Weighted Values

However, the main approach we propose is value-determination using input from both man-

agement and the agents. We could let the values be directly specified by the agents, but in

many cases it will be desirable to compromise between management priorities and agent prefer-

ences, as expressed via their separate value functions. It may not be enough to let management

specify the additional constraining parameters.

Thus we now define new PBR algorithms by combining management-specified values vm
i,j

with associated agent-specified values va
i,j in order to obtain composite values vc

i,j . To do so, we

define a function mapping the pair of functions (vm, va) into the single function vc. There are

many ways to do that. We propose a simple specific method, the product mapping, yielding
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the value product:

vc
i,j = va

i,j · vm
i,j for all i, j . (5.1)

However, we also go beyond that and introduce a whole class of procedures for constructing

composite values that satisfy certain reasonable properties. Let I ≡ {1, 2, . . . , n} be the set

of n agents, and let J ≡ {1, 2, . . . , m} be the set of m call types. The value functions can be

represented as

vm : I × J → Sm and va : I × J → Sa , (5.2)

where Sm is the allowed set of management values (preference scores) and Sa is the allowed

set of agent values (preference scores).

We let our composite value function vc be defined simply by

vc : I × J → Sc with vc
i,j = c(vm

i,j , v
a
i,j) , (5.3)

where c is a composition function, defined by

c : Sm × Sa → Sc . (5.4)

Given the sets Sm, Sa and Sc, it is natural to simply require that the composition function

be monotone, i.e., by having c(x1, y1) < c(x2, y2) if either (i) x1 < x2 and y1 ≤ y2 or (ii) y1 < y2

and x1 ≤ x2. Two natural examples of monotone composition functions are the product above

in (5.1) and the sum. The value product seems to be a nice simple choice.

In addition, we provide management with controls to continually adjust between these

three kinds of values. Specifically, management can choose weights wm
i,j , wa

i,j and wc
i,j , which

in generally we allow to depend on the agent i and the call type j, with the property that, for

each pair (i, j),

wm
i,j ≥ 0, wa

i,j ≥ 0, wc
i,j ≥ 0 and wm

i,j + wa
i,j + wc

i,j = 1 . (5.5)

Then the final weighted values are

vw
i,j = wm

i,j · vm
i,j + wa

i,j · va
i,j + wc

i,j · vc
i,j . (5.6)

Note that the first three kinds of values - the management-specified values vm
i,j , the agent-

specified values va
i,j the composite values vc

i,j - are each obtained as a special case; e.g., we get

vm
i,j if we simply choose the weights wm

i,j = 1. The generality of the weights (the dependence

upon i and j) allows management to choose weights depending on the agent, the call type and

24



the combination. For example, management might place more weight on agent values over

time as the agent demonstrates good performance. In that way, the agent can acquire earned

empowerment; see [3] for more discussion.

In summary, we let the individual agents express their preferences through their value

function; i.e., agent i declares his call-handling values {va : 1 ≤ j ≤ m}. Management in turn

has several controls: First, management specifies the remaining constraining parameters, as

specified in Sections 3 and 4. Second, management declares its priorities through its own value

function vm ≡ {vm
i,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Third, management specifies the composition

function c in (5.4), which is required to be monotone. Finally, management specifies the weights

wm
i,j , wa

i,j and wc
i,j in (5.5) and (5.6). In that way, management contributes to the specification

of the final weighted values vw
i,j in (5.6). Those weighted values can then applied with the

algorithms in Sections 3 and 4 to obtain the corresponding PBR algorithms.

5.3. A Specific Simple PBR Algorithm

In this section we introduce a specific PBR algorithm, which we believe is appealing for its

simplicity. We also believe it can be effective.

As before, we start with n agents responding to m types of calls. In this specific algorithm,

we assume that management determines its values vm
i,j for all nm pairs (i, j), assuming that

they each take one of the four values in the set {0, 1, 2, 3}. Management then communicates

these values along with appropriate incentives to the agents. In response, agent i for each i

individually determines his values va
i,j for each call type j, again assuming that they take one

of the four values in the same set {0, 1, 2, 3}. By design, we use a symmetric structure. In

addition, we let the agent indicate that he prefers not to work at all; in addition to specifying

the value vi,j = 0, the agent sets a flag indicating that he prefers not to work at all during this

period.

We then use the product function in (5.1) to form composite values vc
i,j , which necessarily

take one of the seven values in the set {0, 1, 2, 3, 4, 6, 9}. For the weighted value function in

(5.6), we assume that wc = 1, so that vw = vc; i.e., we work directly with the composite value

function.

We now specify how to do the routing. We could use the direct PBR algorithm, which is

just the direct VBR algorithm based on the composite values vc
i,j . Instead, we propose using

the indirect PBR algorithm to do the routing. In particular, we propose generating the priority

matrix P in the manner specified in Section 4, allowing only three skills for each agent, and
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allowing each priority level to appear only once in each row of the priority matrix. As described

in Section 4, we use the integer program to create the priority matrix P , using the composite

value function vc created above as input, where (4.2) provides the values vi,j,k,l from the values

vc
i,j . For simplicity, we simply set εi,j,k = 0.20 for all (i, j, k) and εi,j,k,l = 0.05 for all (i, j, k, l),

as suggested in Section 2. To do the routing itself, we then use the indirect VBR algorithm

based on the priority matrix P , which we have just specified.

To achieve transparency and mutual trust, management could communicate the full priority

matrix to all the agents. For even greater transparency, management could communicate all

the value functions. Such full disclosure might lead to further negotiations about the priority

assignments. On the side, pairs of agents might agree to switch assignments.

Finally we discuss performance evaluation. We propose doing the performance evaluation

and the routing differently: We suggest evaluating the performance by the composite values

vc
i,j , but doing the routing using the priority matrix P (which of course is based on the values

vc
i,j). For example, by this method, agent i has only a single highest-priority (priority-3) skill

in the routing, and yet the composite values vc
i,j for agent i’s skills could all be 9’s.

We can use the composite value function vc in the performance target (3.1) to evaluate the

overall performance of the routing algorithm. That evaluation applies to any routing scheme

we might use. However, a different goal seems very appealing: Instead (or in addition), we

should pay attention to the proportions of calls receiving different composite-value scores. In

favorable circumstances, we might want to have at least 80% of all calls with composite value

9, and at least 95% of calls with composite value 6 or higher. In doing so, we are assuming that

greater customer satisfaction and agent satisfaction will be associated with higher composite

values.

In other words, we suggest looking separately at the components of the overall performance

criterion in (3.1). We want to achieve high composite value for the handled calls, but we also

want low abandonment and low delay for the answered calls. It is natural to pay attention to

each performance statistic as well as to combine them into one overall performance score.

6. A Dynamic Algorithm with Feedback

We envision the VBR and PBR algorithms being dynamic algorithms with feedback: The

values and the constraining parameters in the algorithms should be dynamically adjusted in

response to performance and input from the other parties. For example, adjustments in the

algorithm might be done every half hour. However, it might be preferable to allow agents to
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express preference changes at any time. The system might be designed to immediately respond

favorably to agent requests, providing current contact-center performance is good enough.

We envision the PBR algorithm working as follows: First, management determines its value

function vm and communicates it to the agents. Management may communicate its entire

value function to each agent or it may only communicate {vm
i,j : j ∈ J} to agent i for each i.

Then, in response, the agents express their preferences through their value functions: Agent i

communicates its preferences {va
i,j : j ∈ J} to management. Then, given all the management

and agent values, the algorithm determines the composite value function vc and the weighted

value function vw, using the management-specified composition function c and weights wm,

wa and wc. Then the final weighted value function vw ≡ {vm
i,j : 1 ≤ i ≤ n; 1 ≤ j ≤ m} is

used to generate the routing, following one of the algorithms in Sections 3 or 4, based on the

constraining parameters set by management.

But that is not the end of the story: The algorithm dynamically adjusts through time. The

algorithm based on the value vw routes the calls. Then the results of this routing is observed.

The algorithm, as directed by management (either automatically or manually) can update

its value function vm in response to network conditions (as communicated by input from the

ACD) and the way that business objectives are being met (as communicated by input from

the CRM system). Moreover, management can update other parameters such as the weights

wm, wa and wc used in forming the weighted values. As indicated in Section 5.2, agents may

be experiencing earned empowerment in response to their performance.

Moreover, management can offer the agents incentives, external to the routing system,

encouraging the agents to make desired choices. The overall procedure repeats, just as above,

but with the understanding that at each decision point, the agents are responding both to

updated management value function and incentives communicated to them by management.

The agents may also be given information about network conditions and the way business

objectives are being met, so that the agents too can see the overall contact-center needs.

The incentives described above may take various forms. They might involve direct compen-

sation. Alternatively, they might be in the form of loyalty points, which are later redeemable

for rewards or prizes. For example, incentives might be given for handling difficult customer-

service calls involving complaints.
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7. Conclusions

We have proposed a new strategy to empower contact-center agents via preference-based

routing. To show that the proposed strategy is feasible, we have developed algorithms to

perform value-based routing (VBR) and preference-based routing (PBR), with extensions to

cover staffing as well. The PBR algorithms have been developed in the framework of the

direct and indirect VBR algorithms in Sections 3 and 4. The indirect VBR algorithm in turn

has been developed in the framework of the priority-based SBR algorithm in Section 2. Thus

both a VBR algorithm and a PBR algorithm can be implemented using the priority-based SBR

algorithm, using an existing algorithm on the ACD. It is not necessary to modify the algorithm

on the ACD, provided that it is the priority-based SBR algorithm in Section 2. We anticipate

that VBR and PBR algorithms can be developed within the framework of other existing SBR

algorithms, in much the same way.

It remains to determine good parameter settings for these routing algorithms and evaluate

their effectiveness. It also remains to more fully specify the dynamic-feedback aspects of the

routing algorithms discussed in Section 6. Natural next steps are simulation experiments. For

them, we should keep in mind that we not only want to ensure that the traditional goals of

load-based routing and skill-based routing are still met, but that we want to realize more total

value, as expressed by a target such as in Section 3.1. However, our ultimate goal is to go

beyond that to achieve the desired behavioral changes among the agents and the customers:

We want more satisfied agents and customers as a result, and thus less agent turnover and

absenteeism, and more customer demand.

Preference-based staffing and routing was conceived as a way to empower contact-center

agents, enabling them to participate more fully in contact-center decisions, and thereby expe-

rience more job satisfaction. That is intended to supplement other actions such as providing

better compensation and better career paths. The ultimate proof of the pudding is in the

tasting: Can it work in practice?
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