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This paper proposes simple methods for staffing a single-class call center with uncertain arrival rate
and uncertain staffing due to employee absenteeism. The arrival rate and the proportion of servers

present are treated as random variables. The basic model is a multi-server queue with customer
abandonment, allowing non-exponential service-time and time-to-abandon distributions. The goal is to
maximize the expected net return, given throughput benefit and server, customer-abandonment and
customer-waiting costs, but attention is also given to the standard deviation of the return. The approach
is to approximate the performance and the net return, conditional on the random model-parameter
vector, and then uncondition to get the desired results. Two recently-developed approximations are
used for the conditional performance measures: first, a deterministic fluid approximation and, second,
a numerical algorithm based on a purely Markovian birth-and-death model, having state-dependent
death rates.
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1. Introduction
For the design and management of telephone call
centers and many other service systems, it is common
to use stochastic models such as the Erlang delay
model, which capture the uncertainty associated with
arrivals and service times. When we apply those sto-
chastic models, we usually assume that key model
parameters such as the arrival rate and the number of
servers are known. Then, we typically describe the
congestion resulting from stochastic-process variabil-
ity given these assumed model parameters. However,
in practice, there often not only is the usual uncer-
tainty (fluctuations) captured by stochastic-process
variability, but there also is uncertainty about the
model parameters. For a given model, this issue is
commonly addressed by doing sensitivity analysis,
i.e., by describing the congestion stemming from a
variety of possible model parameters. Sensitivity anal-
ysis gives important insight, but it does not present a
unified approach, simultaneously taking into account
all forms of uncertainty. The purpose of this paper is

to introduce a model, and methods for analyzing that
model, that directly address the uncertainty in the
model parameters as well as the stochastic-process
variability in the model for given model parameters.

Even though model-parameter uncertainty has not
received much attention in the analysis of call-center
performance, it is a well recognized problem with a
long history; e.g., see Helton and Burmaster (1996),
Henderson (2003), Palm (1943) and Plum (1986). Re-
searchers have been investigating the extent of model-
parameter uncertainty in contact centers and how to
reduce it with better forecasting; e.g., see Avramidis et
al. (2004), Brown et al. (2005), Shen and Huang (2005),
and references therein. Other researchers are also in-
vestigating ways to cope with model-parameter un-
certainty in contact centers; see Bassamboo et al.
(2006a,b), Harrison and Zeevi (2005), Jongbloed and
Koole (2001), and Steckley et al. (2004). Our approach
is most closely related to Harrison and Zeevi (2005)
and Bassamboo et al. (2006a, 2006b) because, like
them, we exploit a deterministic fluid model, but we
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use a different fluid model—the fluid model from
Whitt (2006a)—which captures the impact of non-ex-
ponential service-time and time-to-abandon distribu-
tions beyond their means. (On the other hand, Harri-
son and Zeevi (2005) and Bassamboo et al. 2006a,b)
treat a multi-class call-center model with skill-based
routing.) We also present a numerical method based
on Whitt (2005a), which can be used to evaluate the
performance of the fluid model as well as be applied
directly.

The specific model we consider is a general multi-
server queue with customer abandonments. Moti-
vated by the application to call centers, we focus on
the case where there is a relatively large arrival rate
and a large number of servers; see Gans et al. (2003)
for background. Most call centers serve multiple
classes of customers, using multiple pools of servers,
by means of skill-based routing. However, here we
consider only the basic single-class special case. In
particular, we consider the M/GI/s � GI queueing
model, having a Poisson arrival process, independent
and identically distributed (IID) service times with a
general distribution (the first GI), s servers, unlimited
waiting space, IID times to abandon with a general
distribution (the �GI) and the first-come first-served
service discipline. Each customer who cannot start
service immediately upon arrival waits in queue, and
if service has not begun by that customer’s randomly
selected time to abandon, that customer abandons, i.e.,
leaves without receiving service, and without affect-
ing the future arrival process. (We do not consider
retrials.) Because we restrict attention to single-class
call centers, the results here will not be directly appli-
cable to many current call centers, but nevertheless we
think the present analysis can provide useful insight.
Similar analyses may be possible for more realistic
systems.

Our uncertainty about the model is represented by a
random vector (�, �), which takes values in (0, �) � (0,
1]. (The intervals are open on the left to rule out 0 as a
possible value.) The first random variable � is the
arrival rate, while the second random variable � is the
proportion of the s servers that are present. Since we
are thinking of large s, typically assuming values of
100 or more, we ignore the natural integrality require-
ment on the number of servers; i.e., we let the number
of servers be �s, the smallest integer greater than or
equal to �s. (This assumption can easily be modified.)
We are motivated to let the number of servers be
random because scheduled service representatives
may fail to show up due to absenteeism.

We assume that the random arrival rate � and the
random number of servers �s operates throughout a
time period in which we would be using the steady-
state distribution of the M/GI/s � GI queueing model
to describe system performance. For example, that

might be a half hour for a call center with service times
averaging about 5 minutes. We assume that the arrival
rate is constant throughout that half hour, but its
actual value is random. We achieve that by letting the
actual number of arrivals in an interval [0, t] be

A�t� � A1 ��t�, t � 0, (1.1)

where A1 � {A1(t) : t � 0} is a given rate-1 Poisson
process. That makes A a so-called Cox process with
random rate �. Conditional on � 	 �, A is a rate-�
Poisson process.

Our model uncertainty is limited to two elements:
the arrival rate and the number of servers. There are
also other model elements about which we could be
uncertain, but the two we consider seem especially
appropriate for customary call-center applications. Be-
cause of the large number of customers served in a call
center, there is less likely to be substantial uncertainty
about the distributions of customer service times and
times to abandon. However, the methods in this paper
can be applied to study uncertainty of other model
elements.

For this model, our goal is threefold: We want to (i)
obtain useful simple approximate performance descrip-
tions, (ii) perform optimization to determine staffing
levels that approximately maximize the expected net
return or revenue, given general throughput-benefit,
server-cost, abandonment-cost and customer-waiting-
cost functions, and (iii) improve our understanding of
model-parameter uncertainty (e.g., assess its conse-
quences).

Our approach is to approximate performance, and
subsequently, the net return, conditional on observing
a particular realization (�, �) of the random vector (�,
�), and then integrate out the uncertainty in (�, �). For
each realization (�, �) of (�, �), we have a conventional
M/GI/s � GI queue, for which there are steady-state
performance measures, depending on (�, �). We then
uncondition (average with respect to (�, �)) to de-
scribe the overall performance. For example, the over-
all expected kth moment of the steady-state waiting
time, as a function of the number of servers s, is
defined by

E
W�s�k� � �
�0,����0,1�

E
W�s�k���, ��

� ��, ���dP���, �� � ��, ���, (1.2)

where E[W(s)k�(�, �) 	 (�, �)] is the conventional kth

moment of the steady-state waiting time in the model
with model parameters (�, �) 	 (�, �).

As indicated, we average over the performance met-
rics and expected rewards obtained for each candidate
value (�, �) of the random vector (�, �), using an
assumed probability distribution for the random vec-
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tor (�, �). That yields an overall expected performance
and overall expected reward. In addition, we compute
the overall standard deviation of the performance
measure and the total return. We want both high
expected return and low standard deviation of the
return. For our examples, we use linear reward (or
cost) functions, but our methods are not limited to
linear functions. Our approach allows high degrees of
uncertainty. For a discussion of the sensitivity of per-
formance to small changes in the model parameters,
see Whitt (2006b).

Clearly, a key element in our analysis is the proba-
bility distribution of the random vector (�, �), which
inevitably will also be unknown. (Nevertheless, our
approach may be useful.) We advocate carefully ex-
amining the conditional expected performance as well
as evaluating the overall expected performance. Since
we develop methods for approximating the condi-
tional expected performance given values of the
model parameters, we also make it possible to apply
robust optimization, where we seek the maximum
expected conditional reward given that the parame-
ters lie in a designated subset, as in Ben-Tal and Nemi-
rovski (2000), but we do not pursue that approach
here.

A significant feature of our model is customer aban-
donment. First, abandonments are important to in-
clude in call-center models, because they are realistic;
customers do abandon if they must wait too long
before starting service; e.g., see Brown et al. (2005).
The abandonment feature also plays an important role
in our analysis of model-parameter uncertainty. With-
out abandonments (and with unlimited waiting
space), the queueing model will be unstable for a
certain range of parameter values, in particular, when
the input rate exceeds the maximum possible output
rate, so that for some model parameters a proper
steady-state distribution will not exist, and the long-
run average cost is infinite. Assuming that instability
can occur with positive probability, the overall aver-
age cost is necessary infinite as well. However, with
abandonments, a proper steady-state distribution al-
ways should exist, and the long-run average cost al-
ways should be finite. The abandonments ensure that
we can average with respect to the probability distri-
bution on the model parameters. More generally,
abandonments tend to make the performance more
robust in the model elements, as well as more realistic.
For additional discussion about customer abandon-
ment in queues, see Baccelli and Hebuterne (1981),
Brandt and Brandt (1999, 2002), Garnett, Mandel-
baum, and Reiman (2002), Zohar, Mandelbaum, and
Shimkin (2002), Ward and Glynn (2003), Mandelbaum
and Zeltyn (2004), Whitt (2004, 2005a,b, 2006a,b), Zel-
tyn and Mandelbaum (2005) and references therein.

Introducing model-parameter uncertainty corre-

sponds to introducing variability in a second, longer,
time scale. From experience with variability in multi-
ple time scales, we know that the variability in the
longer time scale is likely to dominate; e.g., see Sec-
tions 2.4.2 and 9.8 of Whitt (2002) and references
therein. If there is significant uncertainty about the
arrival rate and/or the actual number of servers
present, then the fine details of the resulting queueing
model, given particular realizations of these random
variables, should become less important. It is thus
natural to consider approximating the behavior of the
conditional queueing model, for given values of (�, �),
by a deterministic fluid model, and then average with
respect to the distribution of the random vector (�, �).
And that is our first approach. The required fluid
approximation for the M/GI/s � GI model is con-
tained in Whitt (2006a). (It actually applies to non-
Poisson arrival processes.) That fluid approximation
yields a remarkably simple approximation for the per-
formance of the M/GI/s � GI queue, but one which is
quite insightful, as we shall show in Section 3. In our
fluid model, the time-to-abandon distribution beyond
its mean plays an important role when the arrival rate
exceeds the maximum total service rate, which need
not be an uncommon phenomenon in the presence of
customer abandonment. For other related work on
fluid models, see Altman et al. (2001), Bassamboo et al.
(2006a,b), Harrison and Zeevi (2005), Jiménez and
Koole (2004), and Mandelbaum et al. (1998, 1999).

For the M/GI/s � GI model with random vector (�,
�), we also propose a refined numerical approxima-
tion via Whitt (2005a). There the M/GI/s � GI model
is approximated by an M/M/s � M(n) model, having
state-dependent abandonment rates, with quite good
results. To apply that previous approximation, we
approximate the distribution of (�, �) by a finite dis-
tribution, so that we can apply the numerical algo-
rithm for each alternative and calculate the weighted
average. In our examples, we directly assume such a
finite distribution.

Our problem specification has ignored an important
feature. In most call centers there is significant vari-
ability of arrival rates over time. Other model ele-
ments, such as the service-time distribution, also may
vary significantly over time. We recognize that time-
variability is indeed an important factor for call-center
applications, but as is often done, we assume that the
arrival rates and other model parameters change suf-
ficiently slowly in time that we can use steady-state
analysis to analyze the local behavior of the system;
see Green and Kolesar (1991), Whitt (1991) and Green
et al. (2005). We are thus assuming that our analysis
applies to a relatively short time interval during which
variations over time can be disregarded.

We can also view our analysis as applying to an
entire day, when there is significant model variations
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over that day. Then we are determining time-depen-
dent staffing; i.e., we are determining staffing require-
ments during each short time interval (e.g., half-hour
period) within that day, using a stationary model de-
scription that is appropriate for the short time interval.
In other words, in a time-varying setting, we are pro-
posing our analysis of a stationary model to serve as
an approximation to the pointwise stationary approx-
imation (PSA) of the congestion in the actual system;
see Green and Kolesar (1991), Whitt (1991), Massey
and Whitt (1998), Green et al. (2005) and references
therein. See Jennings et al. (1996) and Feldman et al.
(2005) for alternative offered-load (or infinite-server)
approaches to time-dependent staffing that go beyond
PSA.

Here is how the rest of this paper is organized. We
start in Section 2 by specifying the queueing model in
more detail. Then, in Section 3, we show how the fluid
approximation in Whitt (2006a) can be exploited. In
Section 4, we briefly discuss the application of the
algorithm in Whitt (2005a). In Section 5, we make
numerical comparisons between the fluid approxima-
tion developed in Section 3 and exact numerical re-
sults in the M/M/s � M special case. We present
several variations of a base-case example in which the
random arrival rate � has a three-point probability
distribution. In Section 6, we derive an analytical so-
lution for the fluid approximation in the special case of
a normally distributed arrival rate, a known number
of servers and linear costs. Finally, in Section 7, we
draw conclusions.

2. The Model
We now elaborate on the M/GI/s � GI queue with
model-parameter uncertainty characterized by the
random vector (�, �). Let G be the general service-time
cumulative distribution function (cdf) and let F be the
general time-to-abandon cdf. We assume that the
mean service time is 1. That is, without loss of gener-
ality, because we are free to choose the measuring
units for time; we measure time in units of mean
service times. Let the arrival process A be defined in
terms of the random rate � and the rate-1 Poisson
process A1, as in (1.1). Thus the model is characterized
by the basic model 3-tuple (G, s, F) and the random
vector (�, �). We assume that we know the basic
model 3-tuple (G, s, F), i.e., the elements G, s, F and the
probability distribution of the random vector (�, �).
For example, we might have � normally distributed
with mean and variance 100, and � given a beta dis-
tribution on [0, 1], independent of �. However, we
might want to treat � and � as dependent. For exam-
ple, they might both be influenced by common factors,
such as the weather.

Because of the abandonments, the model should
have well-defined limiting steady-state behavior as

time evolves for all model parameters and for all
realizations of (�, �); we assume that is the case. Let T
� T(s) be the random steady-state throughput rate
(customers served per unit time); let L � L(s) be the
random steady-state abandonment (or loss) rate (the
arrival rate times the abandonment probability); let W
� W(s) be the steady-state waiting time (before start-
ing service or abandoning, whichever happens first);
let N � N(s) be the steady-state number of customers
in the system and let Q � Q(s) be the steady-state
queue length (number of customers waiting, not yet in
service), all assumed to be well defined. These quan-
tities are all random because they depend on the ran-
dom vector (�, �). Even conditional on (�, �), W(s),
N(s) and Q(s) are random variables.

In addition to describing performance, our goal is to
determine an appropriate number of servers, s, so as
to maximize the expected net return (revenue minus
cost), given various revenue and cost functions. We
assume that there is a throughput-revenue function rt,
a server-cost function cs, an abandonment-cost func-
tion ca, and a waiting-cost function cw. To make the
waiting time of the same order as other quantities
appearing in our expression for the net revenue, we
multiply W(s) by the arrival rate; �W(s) represents the
rate of arrivals experiencing different waiting times.
We represent the total net revenue (rate) as a function
of the targeted number of servers as

R�s� � rt �T�s�� � cs ��s� � ca �L�s�� � cw ��W�s��,

(2.1)

where rt, cs, ca and cw are positive-real-valued func-
tions of positive real values. In typical applications,
these functions should be nondecreasing as well. We
will also consider the special case of linear and homo-
geneous functions, e.g., when rt(T) 	 rtT for positive
real number rt on the right (an abuse of notation, using
rt in two ways), but the method also applies to the
general case. In practice, the cost functions often are
not linear, so that it is important to have methods that
are not restricted to the linear case.

Within this context, our goal is to evaluate the ex-
pected value E[R(s)] as a function of s and then deter-
mine the value s* that maximizes the expected net
return; i.e., we want to determine s* and the optimal
expected return

E
R�s*�� � max
s�1

�E
R�s��. (2.2)

However, we are also interested in seeing the expected
net return E[R(s)] as a function of s. More generally,
we are interested in the probability distribution of the
net returns as a function of s. As a surrogate for the full
distribution (beyond the mean), we focus on the stan-
dard deviation of the net return, SD(R(s)). The stan-
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dard deviation is useful to understand the additional
variability in performance caused by model uncer-
tainty. For example, we can gain insight into the effect
of model-parameter uncertainty by comparing the
model with and without model-parameter uncer-
tainty. The case of no model-parameter uncertainty
arises when we replace the random vector (�, �) by
the vector of expected values (E[�], E[�]).

3. The Fluid Approximation
We start by reviewing the fluid approximation for the
steady-state behavior of the standard M/GI/s � GI
model, assuming that we are given a particular real-
ization (�, �) of the random vector (�, �), where � � 0
and � � 0; see Whitt (2006a) for more discussion,
including a proof of the asymptotic correctness in the
many-server heavy-traffic limit with the fluid scaling
in a discrete-time framework. This fluid approxima-
tion, and thus our overall approximation based on it,
actually applies to more general arrival processes; the
fluid approximation only uses the deterministic ar-
rival rate.

Given any particular realization of the random vec-
tor (�, �), the fluid approximation for the steady-state
behavior is deterministic, so it is remarkably simple,
and intuitive. Given that the individual mean service
time has been fixed at one, the (exact) throughput
coincides with the expected number of busy servers.
In the fluid approximation, the throughput is

T�s� � � � �s, (3.1)

where a � b � min {a, b}. In the fluid approximation,
the �s servers are all busy all the time if � � �s;
otherwise they are never all busy.

The fluid approximation for the abandonment rate
is just the arrival rate minus the maximum possible
service rate, assuming that it is positive, so

L�s� � �� � �s��, (3.2)

where (x)� � max {0, x}. The associated fluid approx-
imation for the abandonment probability, as a func-
tion of s, is

P�ab�s� �
�� � �s��

�
. (3.3)

In the fluid approximation, there is a positive proba-
bility of abandonment only if the arrival rate is greater
than the number of servers.

Just as in the exact, fully stochastic system, the
throughput plus the abandonment rate must equal the
arrival rate: For each s,

T�s� � L�s� � �. (3.4)

Equation 3.4 is a basic conservation principle. How-
ever, in the fluid approximation, the two components

are not affected by stochastic fluctuations (with fixed
(�, �)). Clearly, the fluid throughput is an upper
bound on the throughput in the stochastic model,
while the fluid loss rate is a lower bound.

The fluid approximation for the steady-state wait-
ing time, number in system and queue length are
somewhat more complicated, as might be anticipated
since these are random variables in the stochastic con-
text. Actually, the complexity is caused by the aban-
donments.

There are two cases: If � � �s, then in the fluid
approximation all customers can begin service imme-
diately upon arrival, so that P(W(s) 	 Q(s) 	 0) 	 1
and P(N(s) 	 �). The number in system coincides with
the number of busy servers.

The more complicated, and interesting, case occurs
when � � �s. Then all customers have to join the
queue, and P(W(s) � 0, Q(s) � 0) 	 1. The complexity
appears when we describe customer waiting times
when � � �s. Now a proportion of these arriving
customers abandon, while the remainder enter ser-
vice. In keeping with the original model, we let indi-
vidual customer choices be random and independent.
By applying the law of large numbers, we see that is
consistent with the different outcomes coming out as
deterministic proportions among all customers; i.e.,
there is asymptotic correctness as the scale (number of
servers and arrival rate) increases; see Whitt (2006a).

All customers who are eventually served wait a
fixed deterministic time w(s), which depends on the
time-to-abandon cdf F. In particular, w(s) is the solu-
tion to the equation

F�w�s�� �
�� � �s��

�
� P�ab�s�. (3.5)

The equation clearly will always have a unique solu-
tion when the cdf F is continuous and strictly increas-
ing, which we assume to be the case. For any t with 0
� t � w(s), an arriving customer abandons before time
t with probability F(t). If the customer has not aban-
doned by time w(s), then the customer immediately
goes into service. In the fluid approximation, custom-
ers who abandon always wait less than customers
who are served.

Assuming that F is continuous and strictly increas-
ing, it has a unique inverse F�1. Then (3.5) implies that

w�s� � F�1��� � �s��/��. (3.6)

Then the fluid approximation for the distribution of
the steady-state waiting time W(s) is

P�W�s� � t� � F�t�, 0 � t � w�s�, and

F�t� � 1 for all t � w�s� (3.7)

for w(s) in (3.5) or (3.6).
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Given w(s), the fluid approximation for the number
of customers in the queue, Q(s), is

Q�s� � � �
0

w�s�

Fc�t�dt, (3.8)

where Fc(t) � 1 � F(t) is the complementary cdf (ccdf)
associated with the time-to-abandon cdf F. The den-
sity of the number of customers that have been wait-
ing in queue for a length of time t is the arrival rate �
times the ccdf Fc(t). Integrating from 0 to w(s) as in
(3.8) gives the total queue length.

Since the servers are always busy when � � �s, the
associated fluid approximation for the number in sys-
tem when � � �s is just

N�s� � �s � Q�s�, (3.9)

for Q(s) in (3.8).
Since the waiting-time distribution for this fluid

model, as characterized by (3.6) and (3.7), is relatively
complicated, it is natural to look for approximations
that will provide useful simplifications, facilitating
further analysis. When abandonment is relatively rare,
it is natural to focus attention of the conditional wait-
ing time given that the customer is served, w(s), in
(3.5), rather than the full waiting-time distribution in
(3.6), and we henceforth do that. Accordingly, in for-
mula (2.1) we use the approximation

W�s� � w�s�. (3.10)

Again, assuming that abandonment is relatively
rare, it is natural to approximately solve equation (3.5)
by exploiting a Taylor series approximation of the cdf
F about t 	 0; i.e., assuming that F(0) 	 0 and F has a
continuously differentiable density f in the neighbor-
hood of 0, we obtain the approximation

F�t� � F�0� � F��0�t � F��0�
t2

2 � F��0�
t3

6 � · · ·

� f�0�t � f��0�
t2

2 � f��0�
t3

6 � · · · . (3.11)

We then use the first nonzero term on the right in
(3.11) as an approximation; i.e., we use

F�t� � f�0�t if f�0� 	 0 (3.12)

and

F�t� � f��0�
t2

2 if f�0� � 0 and f��0� 	 0.

(3.13)

Combining approximations (3.5), (3.10), (3.12) and
(3.13), we obtain

W�s� � w�s� �
�� � �s��

f�0��
if f�0� 	 0

(3.14)

and

W�s� � w�s� � �2�� � �s��

f��0��
if

f�0� � 0 and f��0� 	 0. (3.15)

Assuming (3.14) or (3.15), we see that the three fluid-
approximation quantities T(s), L(s) and �W(s) are sim-
ply related. (The asymptotics in (3.11)–(3.15) here are
related to, and supported by, heavy-traffic asymptot-
ics for the M/M/s � GI model in Zeltyn and Mandel-
baum (2005).)

For simplicity, we henceforth assume that f(0) � 0,
so that we can restrict attention to the case (3.14).
Using (3.14) instead of (3.6) and (3.7) greatly simplifies
the structure, making the fluid model have essentially
the same structure as the classic single-period news-
vendor problem in inventory theory; e.g., see Section 3
of Porteus (1990). By assuming (3.14), we will obtain
correspondingly simple formulas here. The setting
now more closely parallels Harrison and Zeevi (2005).
There the structure of the multi-dimensional newsven-
dor problem appears; see van Mieghem (2003).

Given (3.14), we have

T�s� � � � L�s�,

W�s� �
L�s�

f�0��
,

�W�s� �
L�s�

f�0�
, (3.16)

where L(s) is given in (3.2).
The relationships in (3.16) suggest that we can sim-

plify our cost-benefit analysis (for (�, �) given) by
focusing on just two of the four components of the net
revenue R(s) in (2.1), the number of servers �s and one
of the other three components, such as the abandon-
ment rate L(s). We might aim to choose s to balance
just the server and abandonment costs, which is pre-
cisely what Harrison and Zeevi (2005) do. Of course,
these simple relationships do not extend to the origi-
nal stochastic model, but they indicate main tenden-
cies. The simple form of the fluid approximation helps
us think about the overall system behavior more
clearly.

Paralleling (3.16), under the assumption of (3.14),
we also have the relation

W�s� �
P�ab�s�

f�0�
. (3.17)
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Formula (3.17) is a generalization of an exact relation
for the mean waiting time in the M/M/s � M model.

We now observe key structural properties of our
model, assuming (3.14), which parallel the newsven-
dor problem. The functions T(s), �L(s), ��W(s) are all
continuous, piecewise-linear and concave in s, with
two linear pieces, one for s � �/� and the other for s
� �/�. We can thus provide conditions to ensure
appropriate structure for the net return

R�s� � rt �T�s�� � cs ��s� � ca �L�s�� � cw ��W�s��.

(3.18)

In particular, we have the following elementary prop-
osition, whose proof we omit.

Proposition 1. (Structure of the fluid-approximation
costs and revenues for fixed � and �) Assume that f(0) � 0
and that approximation (3.14) is used.

(a) If the cost functions cs, ca and cw in (3.18) are
nondecreasing and convex, and the revenue function
rt is nondecreasing and concave, then the fluid-ap-
proximation quantities �cs(�s), �ca(L(s)),
�cw(�W(s)), rt(T(s)) and R(s) in (3.18) are all con-
cave.

(b) If, in addition, the functions cs, ca, cw and rt are all
linear and homogeneous, so that we can express the
net return in (3.18) as

R�s� � rt T�s� � cs�s � ca L�s� � cw�W�s�, (3.19)

where rt, cs, ca and cw are now positive real numbers, then
the net return R(s) is continuous and piecewise-linear, with
two linear pieces, one for s � �/� and the other for s
� �/�. Moreover, the net return can be expressed as

R�s� � rt� � �rt � ca �
cw

f(0)�L�s� � cs�s, (3.20)

so that

R�s� �

	 �
ca �
cw

f(0)�� � 
rt � ca �
cw

f(0) � cs��s, 0 � s � �/�

rt� � cs�s, s � �/�.

(3.21)

As a consequence, if

rt � ca �
cw

f�0�
	 cs , (3.22)

then the optimal staffing level is s* 	 �/� and R(s*) 	 (rt

� cs)�. On the other hand, if the inequality in (3.22) is
reversed, then the optimal staffing level is s* 	 0 and R(s*)
	 �[ca � (cw/f(0))]� � 0. Hence, we have a positive finite
optimal staffing level, yielding positive net return, if and
only if rt � cs.

When we introduce the random vector (�, �), we
just have to take expected values with respect to its
distribution. Thus, we get the following overall fluid
approximation for the desired expected values:

E
L�s�� � E
�� � �s���,

E
T�s�� � E
� � �s� � E
�� � E
L�s��,

E
P�ab�s�� � E
�� � �s��/��,

E
W�s�� � E
�� � �s��/f�0��� � E
P�ab�s��/f�0�,

E
�W�s�� � E
�� � �s��/f�0�� � E
L�s��/f�0�.

(3.23)

Just as in (3.23) above, we get an associated approx-
imation for the expected net return with arbitrary
revenue and cost functions. In particular, still assum-
ing that f(0) � 0, we get

E
R�s�� � E
rt �� � �s�� � E
cs ��s�� � E
ca ���

� �s���� � E
cw ��� � �s��/f�0���. (3.24)

We can compute higher moments of the net return in
a similar way, but it is more complicated because we
lose the separability. For example, the second moment
is

E
R�s�2� � E
�rt �� � �s� � cs ��s� � ca ��� � �s���

� cw ��� � �s��/f�0���2�. (3.25)

For nonlinear cost and revenue functions, these ex-
pected values are easy to compute by simulation. We
can generate a large number of independent replica-
tions of the random vector (�, �), calculate the corre-
sponding deterministic values conditioned on (�, �)
	 (�, �), and then estimate the desired expected func-
tion of the net return by its sample mean, averaging
over all the replications.

Just as in Proposition 1(b), equations (3.24) and
(3.25) simplify when the revenue and cost functions
are linear and homogeneous. First, by (3.20), the ex-
pected net return becomes

E
R�s�� � rt E
��

� 
rt � ca �
cw

f(0)�E
L�s�� � cs sE
��. (3.26)

From (3.26), we see that, with the linear homogeneous
cost structure, the staffing problem with uncertain
model parameters reduces to a tradeoff between the
expected abandonment cost E[L(s)] 	 E[(� � �s)�]
and a linear homogeneous server cost cssE[�].

It takes a few more steps to get the standard devi-
ation, SD(R(s)); we use
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E
R�s�2� � �
�0,����0,1�

E
R�s�2���, ��

� ��, ���dP���, �� � ��, ���,

E
R�s�2���, �� � ��, ��� � �E
R�s����, �� � ��, ����2,

(3.27)

because Var(R(s)�(�, �) 	 (�, �)) 	 0. The last step in
(3.27) is trivial because the net return for any given
realization of (�, �) is deterministic. When the random
vector (�, �) assumes only finitely many values, the
integral in (3.27) is easy to compute, as we illustrate in
Section 5.

Since we simply average with respect to the distri-
bution of (�, �) in (3.26), much of the structure of L(s)
and R(s) in Proposition 1 is inherited by E[L(s)] and
E[R(s)] in (3.26). First, the concavity of �E[L(s)] and
E[R(s)] follows directly. If the distribution of (�, �) has
a finite probability mass function, then the piecewise-
linearity extends too. If the random ratio �/� has
finite support with maximum value 
, then E[L(s)] 	 0
for s � 
, so that the optimal staffing level s* must be
contained in the interval [0, 
].

More generally, it suffices to consider finite positive
s when searching for an optimum yielding a positive
expected net return, because we can rule out 0 and �.
Since E[L(0)] 	 E[�], we see that E[R(0)] � 0; since
E[L(s)] 3 0 as s 3 �, E[R(s)] 3 �� as s 3 �.

Under regularity conditions, we can characterize
the optimal point s* using calculus. If h(s) � E[L(s)]
had a continuous derivative h�, we would simply dif-
ferentiate in (3.26) and set the derivative equal to zero;
i.e., we would find the s such that

h��s� �
�csE
��

rt � ca � �cw/f�0��
� 0. (3.28)

However, in general, h need not have a continuous
derivative, as can be seen for the case of deterministic
(�, �), but we can work with left and right derivatives.
To do so, note that h(s) � E[L(s)] is non-increasing in s.
Hence, the function h has a left derivative h�� and a
right derivative h�� at all s. A positive optimal value s*
can be characterized as an s such that

h�� �s� �
�csE
��

rt � ca � �cw/f�0��
� h���s�. (3.29)

However, we anticipate simply calculating the ex-
pected net return E[R(s)] for a range of s values in
order to determine the optimum. In doing so, we will
take advantage of the known concavity.

Under regularity conditions, we can apply the rea-
soning of the newsvendor problem, as on p. 611 of
Porteus (1990): Letting

h�s� � E
L�s�� � �
0

1 �
�s

�

�� � �s�dP�� � ���

� ��dP�� � ��, (3.30)

and assuming that the conditional distribution P(�
� ��� 	 �) is absolutely continuous (has a density)
almost surely with respect to P(� 	 �), we get

h��s� � �
0

1 �
�s

�

����dP�� � ��� � ��dP�� � ��

� �E
�1���s�, (3.31)

where 1B is the indicator function of the set B, i.e., 1B

	 1 on B and is 0 elsewhere.
For the special case in which � is deterministic, i.e.,

P(� 	 �) 	 1, we get

h��s� � ��P�� 	 �s�. (3.32)

Then, combining (3.29) and (3.32), we get the optimal
s* satisfying

P�� 	 �s*� �
cs

rt � ca � �cw /f�0��
. (3.33)

4. Numerical Algorithms
An alternative direct approach is to use numerical
algorithms, such as the algorithm to compute approx-
imate performance measures for the M/GI/s � GI
model in Whitt (2005a). For such numerical algo-
rithms, it is convenient to consider the case in which
the distribution of (�, �) is a probability mass function
(pmf) with finitely many values (�, �). If we are not
initially given a finite pmf, we can approximate the
given distribution by a finite pmf. Then, we have

P���, �� � ��i , �i �� � pi (4.1)

for 1 � i � n, where p1 � . . . � pn 	 1.
Having reduced the model uncertainty to finitely

many cases, we can use the numerical algorithm to
solve for the performance measures in each case and
take the weighted average. For example, as we will
illustrate in the next section, for the M/GI/s � GI
special case, we can use the approximation algorithm
in Whitt (2005a), which is exact for the purely Mar-
kovian M/M/s � M special case.

Since the fluid approximation for the G/GI/s � GI
model in Whitt (2006a) does not depend upon the
arrival process beyond its rate and the service-time cdf
G beyond its mean, it is natural to approximate the
performance in the G/GI/s � GI model by the asso-
ciated M/M/s � GI model, having a Poisson arrival
process with the given rate and exponential service
times with the given mean, and that is what we pro-
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pose. Thus, the numerical approximation algorithm
for the M/GI/s � GI model can be regarded as a
refinement of the fluid approximation for the general
G/GI/s � GI model. Since the fluid approximation
depends upon the time-to-abandon cdf F beyond its
mean, we are motivated to keep the general time-to-
abandon cdf F. In Whitt (2005a), the M/GI/s � GI
model with general time-to-abandon distribution is
approximated by an associated M/M/s � M(n) model
with state-dependent abandonment rates.

With that algorithm, we can calculate the condi-
tional performance measures given that (�, �) 	 (�i,
�i) and the conditional expected net return E[R(s)�(�,
�) 	 (�i, �i)] for each i and s. Afterwards, we can
calculate the kth moment of the net revenue as a func-
tion of s by taking a weighted average of the corre-
sponding conditional moments; i.e., we exploit the
relationship

E
R�s�k� � �
i	1

n

E
R�s�k���, �� � ��i , �i �� pi . (4.2)

In the case of linear homogeneous costs and revenue
functions, the analysis simplifies. To calculate the stan-
dard deviation SD(R(s)), we use the reasoning in
(3.27), but we must change the last step, because the
conditional net return given (�, �) 	 (�, �) is no longer
deterministic. Nevertheless, the analysis greatly sim-
plifies because there is only a single source of variabil-
ity. We replace the last step in (3.27) by

Var�R�s����, �� � ��, ���

� cw
2 Var�W�s����, �� � ��, ���. (4.3)

As an alternative to the numerical algorithm in
Whitt (2005a), we can use simulation. For simulation,
it is also convenient for the random vector (�, �) to
have a finite-valued probability mass function. Then,
we can simulate the queue to estimate the desired
conditional performance measures in each case. We
could instead treat general distributions of (�, �) by
doing a two-stage simulation. In the first stage, we
would generate independent replications of the ran-
dom vector (�, �); in the second stage we would
simulate the G/GI/s � GI queue with the realized
parameters (�, �) and then average the results.

5. Examples
In order to show that both the fluid approximation
and the numerical algorithm are effective, and to il-
lustrate the kind of insights that can be gained from
such an analysis, in this section we compare the fluid
approximation in Section 3 to the numerical algorithm
in Section 4 for the special case of the purely-Mar-
kovian M/M/s � M model. For the M/M/s � M
model, the numerical algorithm is exact.

We start with a base case and then consider several
variations on the base case. For all these examples, we
let the arrival rate have three possible values. For all
these examples, we assume that there is no absentee-
ism, i.e., we let � 	 1 with probability 1. It is not
difficult to include a random �, but the model is easier
to think about initially when there are fewer issues.

In our base case, we let the arrival rate assume one
of the values 100, 110 and 120, each with probability 1

3.
We let the mean time to abandon be 1, just like the
mean service time. Since the mean time to abandon
equals the mean service time in this case, the number
of customers in the system is the same as in the infi-
nite-server M/M/� model, but we do not directly
exploit that connection. We let the revenue and cost
functions all be linear and homogeneous with rates rt

	 1, cs 	 0.7, ca 	 2.5 and cw 	 2.5. We have chosen the
four elements of the net return R(s) in (2.1) so that they
should be roughly of the same order when the rates
are of the same order. As we will see, our choice
makes the contributions of each component relevant
to the overall net return. Having rt � cs is necessary to
achieve positive expected net return.

For the base-case example, we plot the fluid approx-
imations and the exact numerical values for the ex-
pected net return and the standard deviation of the net
return in Figure 1. We let the number of servers range
from 100 to 140. As we should anticipate, the exact
expected net return is a concave function, first increas-
ing in s and then decreasing. In Figure 1, the exact
expected net revenue is maximized at s 	 126, yield-
ing the value E[R(126)] 	 17.0.

We also see that standard deviation tends to be
smaller when the mean is larger, so that there is not a
significant mean-variance tradeoff. The standard de-
viation is especially large at lower staffing levels. The
standard deviation is minimized at s 	 123, yielding
the value SD(R(123)) 	 2.86. We achieve high mean
return together with a low standard deviation, if we
choose the number of servers appropriately. The ex-
pected net return is flatter to the right of the optimum
value than to the left, implying that, in this case, it
would be safer to overstaff than understaff.

Having the standard deviation of the return high
(low) where the mean is low (high) is consistent with
intuition. First, low staffing levels will be good if � is
low, but there will be serious under-staffing if � turns
out to be high. On the other hand, high staffing levels
will be good if � is high, but there will be serious
over-staffing if � turns out to be low. We anticipate
that the risk of a mismatch will be reflected by the
standard deviation as well as the mean, and we see
that is the case.

Figure 1 shows the quality of the fluid approxima-
tion in this case. From Figure 1, we conclude that the
fluid-approximation captures the main effects, but it is
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not highly accurate. In this case, the fluid approxima-
tion achieves its maximum expected net return at the
maximum possible arrival rate s 	 120, as is easy to
verify analytically from the simple fluid formulas. The
fluid approximation for the expected net return is also
concave, first increasing and then decreasing.

As we should anticipate, the fluid approximation
for the expected net return is an upper bound on the
exact expected value. That will consistently be the case
in all our examples. We have no general proof, but it
may be possible to reason as in Jiménez and Koole
(2004). From the perspective of expected net return,
the fluid approximation represents the best-case sce-
nario, where there is no performance degradation due
to stochastic-process variability. When the gap be-
tween the fluid approximation and the exact solution
is small, we have achieved almost all possible econo-
mies of scale.

Additional insight can be gained by looking at the
individual performance measures and component
revenues and costs. To illustrate, we plot the exact
values of the component expected throughput reve-
nue and the individual expected costs, along with the
overall expected net return, as functions of s in Figure
2. We plot the negative values of the three expected
costs, so that the expected net return is simply the sum
of the other displayed functions. Since the mean
steady-state waiting time equals the product of the
mean time to abandon and the abandonment proba-
bility in the M/M/s � M model, the expected aban-
donment costs equal the expected waiting costs in this
example, where the mean abandonment time is 1 and
ca 	 cw 	 2.5. Thus only the expected abandonment

cost function appears in Figure 2. (The expected wait-
ing cost function falls on top of it.) To have the total
values of all four components comparable, we subtract
the constant 100 from the expected throughput reve-
nue and we subtract the constant 70 from the expected
server cost. The four components are then directly
comparable.)

From Figure 2, we see that the expected net return is
the sum of four concave functions, three increasing
and one decreasing. (Increasing the number of servers
is good for throughput, abandonment and waiting,
but bad for server cost.) The assumed costs and reve-
nues guarantee that there will be an interior maximum
for the expected net return.

It is interesting to contrast the case of a random
arrival rate � with the three individual possibilities: �
	 100, � 	 110, and � 	 120. To show that the case of
a random arrival rate is quite different from any of the
three possibilities, we plot the expected net return in
the three individual cases, together with the overall
expected net return in Figure 3. The overall expected-
net-return function is the average of the other three
displayed functions.

Figure 3 shows the lost return caused by the uncer-
tain arrival rate. The expected return with � 	 110 is
the expected return with the average arrival rate (110
	 100 � 110 � 120)/3. Thus, the expected net return
with � 	 110 is an upper bound for the overall ex-
pected net return (by Jensen’s inequality). The differ-
ence shown in Figure 3 can be viewed as the cost of
arrival-rate uncertainty. For this example, Figure 3
shows that we would not fare too badly in our anal-
ysis if we used the expected arrival rate (here � 	 110)
instead of the more complicated model with the ran-
dom arrival rate �.

Figure 2 The component exact expected revenues or negative costs for
the first base-case example in Figure 1. In this case, the
expected waiting costs equal the expected abandonment
costs.

Figure 1 A comparison of the fluid approximation in Section 3 with the
exact numerical calculation of the mean and standard devi-
ation of the net return as a function of the number of servers
for the M/M/s � M example when the random arrival rate �
takes one of the three values 100, 110 and 120 with equal
probability, and the mean time to abandon is 1.
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Faced with uncertainty about the arrival rate, one
might respond by simply assuming the “worst” case
(from the perspective of having to provide good ser-
vice). When the arrival rate is fixed at � 	 120, the net
revenue is maximized at s 	 132, yielding the value
E[R(132)] 	 23.5. Considering only the highest case,
leads us to choose the wrong number of servers, and it
leads us to overestimate the resulting revenue. Indeed,
Figure 3 suggests that it would be better to use the
average arrival rate than the highest-case arrival rate.
However, as noted before, overstaffing slightly does
not cause too great a problem, because both the mean
and standard deviation are relatively flat to the right
of their optimal values. Most important, however, we
see that we gain new insight from the full analysis
portrayed in Figure 1, beyond what can be gained
from only analyzing the three separate cases � 	 100,
� 	 110, and � 	 120.

We now consider variations of the base case. We
first consider what happens when the arrival rates are
much larger. To do so, we scale up the base case by
multiplying the arrival rates by 10. In particular, we let
the arrival rate assume one of the values 1000, 1100 or
1200, each with probability 1

3. We again assume that
there is no absenteeism, i.e., we let � 	 1 with prob-
ability 1. Again, we let the mean time to abandon be 1,
just like the mean service time. We use the same
revenue and cost functions. For each of the two meth-
ods, we plot the mean and the standard deviation of
the net revenue as a function of the number of servers
s in Figure 4. There is no increased computational
complexity to compute the fluid approximation, but
that is not true for the numerical algorithm. It is thus
reassuring to see that the numerical algorithm can

handle the scale increase. The run time was a few
seconds using matlab.

The first thing we see from Figure 4 is the dramatic
improvement of the fluid approximation. When the
scale is increased, the fluid model becomes very accu-
rate. Indeed, in this case the exact numerical solution
provides little practical value added in terms of accu-
racy. Seeing both results confirms that all economies
of scale have been achieved at these high arrival rates.
Figure 4 also shows that the performance is remark-
ably insensitive to the staffing level at this scale. More-
over, staffing exactly at s 	 �max 	 1200, as dictated by
the fluid model is essentially optimal.

In the introduction, we contended that the presence
of model uncertainty makes it more appropriate to use
a fluid approximation, because the fine model detail
should then matter less. By the same reasoning, the
quality of the fluid approximation should improve as
the variability of (�, �) increases. To illustrate that
phenomenon in a simple example, we make the dis-
tribution of � in the base case more variable. In par-
ticular, we let the three possible values be 90, 110, and
130 instead of 100, 110, and 120. We thus make the
distribution more variable (in the convex stochastic
ordering; see p. 15 of Müller and Stoyan (2002)) while
keeping the mean fixed at 110. The fluid approxima-
tion is compared to the exact numerical algorithm in
Figure 5. As expected, we see that the fluid approxi-
mation is more accurate than in the base case in Figure
1. We also see that extra variability lowers the ex-
pected return: The optimal expected net return has
been reduced from 17.0 in Figure 1 to 10.4 in Figure 5.
The lost expected return can be attributed to increased

Figure 4 A comparison of the fluid approximation in Section 3 with the
exact numerical calculation of the mean and standard devi-
ation of the net return as a function of the number of servers
for the M/M/s � M example with the random arrival rate �
taking one of the three values 1000, 1100 and 1200 with equal
probability, when the mean time to abandon is 1.

Figure 3 The expected net return as a function of the number of servers
in the first M/M/s � M example for each of the possible arrival
rates: � � 100, � � 110 and � � 120, together with the
overall expected net return.
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model uncertainty. In addition, the overall standard
deviation SD(R(s)) has gone up substantially. The
fluid approximation describes it well too.

We now consider alternative mean times to aban-
don. To do so, we return to the base case, where the
three possible values of the arrival rate are � 	 100, �
	 110, and � 	 120. In Figures 6 and 7, we compare the
fluid approximation to the exact numerical algorithm
when the mean time to abandon is increased to 4 and

decreased to 0.25, respectively. The rest of the model is
the same as in Figure 1.

From Figures 6 and 7, we see that the quality of the
fluid approximation improves (degrades) as the mean
time to abandon increases (decreases). The fluid ap-
proximation is excellent when the mean time to aban-
don is increased to 4, but it is not good when the mean
time to abandon is decreased to 0.25.

6. A Normally Distributed Arrival
Rate

When we consider random arrival rates, especially
when we do so without a detailed analysis of the
distribution of �, it is natural to let � be normally
distributed. In doing so, we are assuming that the
standard deviation of � is relatively small compared
to its mean, so that negative values would occur with
only negligible probability. That seems realistic for
most call centers.

Thus, in this section, we assume that � 	 N(m, �2),
where N(m, �2) denotes a normal random variable
with mean m and variance �2. (We assume that m
� 3�, so that negative values can be ignored.) In this
section, we derive an analytical expression for the
fluid approximation for the expected net return when
� is normally distributed, � 	 1 and the revenue and
cost functions are all linear and homogeneous. For
simplicity, we again assume that the time-to-abandon
pdf satisfies f(0) � 0. As noted at the end of Section 3,
with these assumptions, the model will have the struc-
ture of the single-period newsvendor problem; e.g.,
see Section 3 of Porteus (1990).

Figure 5 A comparison of the fluid approximation in Section 3 with the
exact numerical calculation of the mean and standard devi-
ation of the net return as a function of the number of servers
for the M/M/s � M example with the random arrival rate �
taking one of the three values 90, 110 and 130 with equal
probability, when the mean time to abandon is 1.

Figure 6 A comparison of the fluid approximation in Section 3 with the
exact numerical calculation of the mean and standard devi-
ation of the net return as a function of the number of servers
in the M/M/s � M example with the random arrival rate �
taking one of the three values 100, 110, and 120 with equal
probability, when the mean time to abandon is increased to 4.

Figure 7 A comparison of the fluid approximation in Section 3 with the
exact numerical calculation of the mean and standard devi-
ation of the net return as a function of the number of servers
in the M/M/s � M example with the random arrival rate �
taking one of the three values 100, 110, and 120 with equal
probability, when the mean time to abandon is decreased to
0.25.
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In general, when � 	 1, the fluid approximation for
the expected revenue and costs can be expressed as

E
L�s�� � E
�� � s��� � E
� � s�� 	 s�P�� 	 s�,

E
T�s�� � sP�� 	 s�

� E
��� � s�P�� � s� � E
�� � E
L�s��,

E
�W�s�� � E
L�s��/f�0�, (6.1)

so, as observed in Section 3, the number of costs and
revenues considered can be reduced. We can then use
formulas for conditional normal moments, e.g., see
Proposition 18.3 of Browne and Whitt (1995), to find
explicit expressions when � 	 N(m, �2). For this pur-
pose, let � be the cdf and let � be the pdf of a standard
normal random variable N(0, 1). Let �c be the com-
plementary cdf, i.e., �c(t) 	 1 � �(t). (The key rela-
tions are x�(x) 	 ���(x) and x2�(x) 	 �(x) � ��(x).)
Then,

E
L�s�� � �m � s��c��s � m�/�� � ����s � m�/��,

E
T�s�� � m � E
L�s��. (6.2)

From (3.26), the fluid approximation for the overall
expected net return is

E
R�s�� � rt m

� �rt � ca � �cw /f�0��� E
L�s�� � cs s, (6.3)

where E[L(s)] is given in (6.2). In this case, from (3.33)
we see that the optimal value s* satisfies

P�� 	 s*� � P�N�m, �2� 	 s*� � P�N�0, 1� 	

�s* � m�/�� �
cs

rt � ca � �cw /f�0��
. (6.4)

To illustrate, we display the calculated fluid approx-
imation for the expected net return in the M/M/s � M
model when � is normally distributed for six cases in
Figure 8. We keep all parameters of the base case in
Section 5, except we change the distribution of the
random arrival rate �. In all six cases, E[�] 	 110, as
in the base case in Section 5. What changes from case
to case is the variance of �. We consider six possible
variances: 100, 200, 300, 400, 500, and 600. As we
should anticipate, Figure 8 shows that the expected
net return decreases and the optimal number of serv-
ers increases as the variance increases. The loss in
expected net return decreases as the variance in-
creases.

7. Conclusions
In this paper, we introduced a model of a single-class
call center with model-parameter uncertainty. Specif-
ically, we considered the M/GI/s � GI model with
uncertainty about the arrival rate and the number of

servers, represented by the random vector (�, �). We
then developed tools for (i) approximately describing
the overall steady-state performance, (ii) determining
near-optimal staffing levels, and (iii) gaining insight
into the impact of different forms of uncertainty. In
particular, we focused on the impact on the mean and
standard deviation of the overall net return in the
presence of throughput revenue and several costs.
That, in turn, enabled us to determine near-optimal
staffing levels when there is uncertainty about the
arrival rate and the number of servers that will be
present.

Our analysis shows that model-parameter uncer-
tainty can make a big difference, but the effect on
staffing was not too great in our examples. In our
examples, the expected net return as a function of the
number of servers was relatively flat. But, rather than
drawing definitive conclusions about whether or not
model-parameter uncertainty matters, we would em-
phasize the approach, which makes it possible to form
an independent judgment, and investigate the impact
of different kinds of uncertainty, in other specific sce-
narios. A similar approach might be exploited, with
the aid of simulation, to study more complex call
centers with skill-based routing.

Our approach here to model-parameter uncertainty
has been to compute the overall average performance,
weighting the conditional performance given the
model parameters by the probability of those param-
eter values. In contrast, call-center managers may
want to hedge against that uncertainty by providing
flexibility to change the staffing level upon short no-
tice in response to unanticipated changes in demand,
as discussed in Whitt (1999). The present analysis can

Figure 8 The fluid approximation for the expected net return as a
function of the number of servers and the variance of the
arrival rate in the M/M/s � M model when � is normally
distributed with mean 110. The six variances range from 100
to 600.
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be used to show the advantage of such hedging strat-
egies.

This paper has focused on concepts and numerical
examples, not asymptotics. However, it is significant
that heavy-traffic limits justify fluid approximations,
showing that they are asymptotically correct as the
scale increases. In particular, a many-server heavy-
traffic limit supporting the fluid approximation used
here, without model-parameter uncertainty, is con-
tained in Whitt (2006a) in a discrete-time framework.
However, it still remains to establish the associated
fluid limit in the customary continuous-time frame-
work; that remains an important direction for future
research. It is evident, though, that the fluid limit
should extend. Those fluid limits imply corresponding
fluid limits when we incorporate model-parameter
uncertainty; they directly imply convergence for the
integrands in an integral with respect to a fixed mea-
sure (when we average with respect to the distribution
of the random vector (�, �)). Under regularity condi-
tions, that will imply convergence of the integrals
themselves. Consistent with such a generalized fluid
limit, we see that the accuracy of the fluid approxima-
tion improves as scale increases. That phenomenon
was illustrated when we compared Figures 1 and 4.

It is also interesting and important that the quality
of the fluid approximation in the setting of model
uncertainty improves as the model uncertainty in-
creases. The intuitive explanation is that the fine detail
of the stochastic processes describing the system be-
havior for given model parameters become less critical
when new variability is introduced in a longer time
scale (the model uncertainty). This phenomenon was
illustrated when we compared Figures 1 and 6. More
generally, it suggests that deterministic fluid models
should prove to be especially useful in the setting of
model-parameter uncertainty.
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