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Abstract

In recent papers we considered how two large call centers that are primarily designed to operate in-
dependently can help each other in face of an unexpected overload. We proposed the fixed-queue-ratio
with thresholds (FQR-T) overload control to automatically activate sharing (sending some customers
from one class to the other service pool) once a ratio of the queue lengths crosses an activation threshold
(with ratio and activation threshold parameters for each direction). We established asymptotic results
and conducted simulations showing that this FQR-T control activates sharing quickly when an overload
occurs, keeps the ratio of two queues nearly fixed during the overload, and prevents sharing under normal
loads. The target ratio is chosen to be optimal in a deterministic fluid approximation, assuming a convex
holding cost is incurred on the two queues during the overload incident. To prevent harmful sharing,
FQR-T also allows sharing in only one direction at any time. In this paper, we modify the control to
ensure that the system recovers rapidly after the overload is over, either (i) because the two systems
return to normal loading or (ii) because an overload occurs in the opposite direction. To achieve rapid
recovery, we introduce additional lower thresholds for the queue ratios, below which one-way sharing
is released. As a basis for studying such more complex dynamics, we extend our previous fluid ap-
proximation to a general time-varying setting. We apply the new algorithm to show that the new FQR
control with activation-and-release thresholds (FQR-ART) is effective. Simulations show that our fluid
approximations are remarkably accurate.

1 Introduction

1.1 An Automatic Overload Control

In this paper we study an automatic control to temporarily activate “emergency” measures in an uncertain

dynamic environment to mitigate damage from an unexpected disruption, and then automatically return to

normal operation when the disruption is over. There are two important questions: First, how and when

should the control be activated? And, second, how and when should the control be released?

These issues arise in many contexts and have long been studied within the discipline of control theory

[25, 44]. A familiar automatic control is a thermostat, which automatically turns on and off a heater and/or

an air conditioner within a building. Since building temperature tends to change slowly relative to human

temperature tolerance, conventional thermostats operate well with little concern, but special thermostats are

needed for complex environments, such as in biochemical processes [3].
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Another example of an automated control occurs in a large stock market exchange, such as the New

York Stock Exchange (NYSE). To respond to the experience of dramatic fluctuations in prices, in 1988 the

NYSE instituted trading curbs called circuit breakers or collars, which stop trading for a specified period

in the event of exceptionally large price changes. With the increase of high-speed computer trading, these

controls have become even more important and interesting since then [16].

The specific setting considered here involves two large-scale telephone call centers (or service pools

within the same call center) that are designed to operate independently, but have the capability (due to

both network technology and agent training) to respond to calls from the other system, even though there

might be some loss in service effectiveness and efficiency in doing so. These call centers are designed

and managed to separately respond to uncertain fluctuating demand and, with good practices, usually can

do so effectively; see [1] for background. However, these call centers may occasionally face exceptional

unexpected overloads, due to sudden surges in arrivals, extensive agent absenteeism or system malfunction

(e.g., due to computer failures). It thus might be mutually beneficial for the two systems to agree to help

each other during such overload incidents. We propose an automatic control for doing so. We are motivated

by this call-center application, but the insights and methods may be useful in other queueing settings.

In telecommunication systems and the Internet, the standard overload controls reduce the demand

through some form of admission control (rejecting some arrivals) or otherwise restricting demand; see

[4, 14, 32, 41, 48] and references therein. These controls, that reject or reduce arrivals, are especially

important when the increasing load can cause the useful throughput (the “goodput”) not only to reach its

largest possible value, but also to actually decrease. Such anomalous behavior can occur because some of

the customers “go bad.” The classic telephone example is failure during the call setup process. The customer

might start entering digits before receiving dial tone or abandon before the call is sent to the destination. As

a consequence, the vast majority of system resources may be working on requests that are no longer active,

causing the throughput to actually decrease. In response, various effective controls were developed [10, 27].

In contrast, here we assume that no arrivals will be directly turned away, although on their own initiative

customers may elect to abandon from queue because they become impatient. Instead, we develop a control

that automatically sends some of the arrivals to receive service from the other service pool when appropriate

conditions are met. It is natural to prefer diverting instead of rejecting arrivals whenever some response

is judged to be better than none at all, even if delayed. Indeed, diverting instead of rejecting arrivals is

the accepted policy with ambulance diversion in response to overload in hospital emergency rooms, e.g.,

see [5, 9, 52] and references therein. The results here may be useful in that context as well, but then it is

necessary to consider the extra delay for ambulances to reach alternative hospitals, which has no counterpart

in networked call centers. (We assume that the calls can be transferred instantaneously.)
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1.2 Congestion Collapse

An important feature of our model is that the sharing may be inefficient. A simple symmetric example that

we will consider in §4 has identical service rates for agents serving their own customers, but identical slower

service rates when serving the other customers. Thus, the whole system will necessarily operate inefficiently,

with lower throughput of both classes, if both systems are busy serving the other customers instead of their

own. A major concern with such inefficient sharing is that the system may possibly experience congestion

collapse, i.e., the system may reach an equilibrium with inefficient operation [42]. Control schemes can

even cause congestion collapse, as shown in [11]. Indeed, for our problem, we showed in Example 2 of [35]

that the two call centers can indeed experience congestion collapse under normal loading if an inappropriate

control is used.

Within telecommunications there is a long history of congestion collapse and its prevention in the circuit-

switched telephone network. More than 60 years ago, it was discovered that the capacity and performance of

the network could greatly be expanded by allowing alternative routing paths [51]. If a circuit is not available

on the most direct path, then the switch can search for free circuits on alternative paths. The difficulty is that

these alternative paths may use more links and thus more circuits. Thus, in overload situations (the classic

example being Mother’s Day), the network can reach a stable inefficient operating regime, with the system

congested, but far less than maximal throughput. This congestion collapse in the telephone network was

first studied by simulation [47]. The classical remedy in such loss networks is trunk reservation control,

where the last few circuits on a link are reserved for direct traffic; see [12], §§4.3-4.5 of [24] and references

therein.

Overload controls have also been considered for more general multi-class loss networks. In the multi-

class setting, it may be desirable to provide different grades of service to different classes, including protec-

tion against overloads caused by overloads of other classes. Partial sharing controls achieving these more

general goals can be achieved exploiting upper limit bounds and guaranteed minimum bounds [6]. More-

over, in [6] algorithms are developed to compute the performance associated with such complex controls,

which greatly facilitates choosing appropriate control parameters. For the (different) problem we consider,

we also develop a performance algorithm that can be used to set the control parameters.

Even though a call center can be regarded as a telecommunications network, our problem is quite differ-

ent from the classical loss network setting discussed above. By definition, the loss network has no queues,

so that all arrivals that cannot immediately enter service are turned away. In sharp contrast, our system turns

no arrivals away. As a consequence, our system is more “sluggish;” it responds more slowly to changes in

conditions, and presents new challenges.

In fact, our proposed control uses only information about the queue lengths. Our overload control is a

modification of the Fixed-Queue-Ratio (FQR) and more general Queue-and-Idleness-Ratio (QIR) controls

proposed for routing and scheduling in a multi-class multi-pool call center under normal operating condi-

tions in [18, 19, 20]. For the two-class two-pool X model considered here, the FQR rule sends customers to
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the other service pool if the ratio of the queue lengths exceeds a specified ratio. Since the FQR control make

instantaneous routing decisions based only on the ratio of the queue lengths, the control does not require

model specification or knowledge of any model parameters.

However, the theorems establishing that the FQR control is effective in [18, 19, 20] have conditions that

do depend on the model and the model parameters. In particular, those results do not apply to the two-class

two-pool X model considered here with inefficient sharing. Indeed, the previously mentioned Example 2

of [35] shows that the X model can indeed experience congestion collapse under normal loading if FQR is

used.

Nevertheless, in [35] we showed that the FQR control can usefully be applied as an overload control

for the X model with inefficient sharing if we introduce additional activation thresholds. The FQR control

with thresholds (FQR-T) sends customers to the other service pool if the queue ratio exceeds the activation

threshold. For the X model, the FQR-T control has four parameters: a target ratio and an activation threshold

for each direction of sharing. The target ratios are chosen to minimize the long-run average cost during the

overload incident in an approximating stationary deterministic fluid model with a convex cost function

applied to the two queues. To prevent harmful sharing, we also imposed the condition of one-way sharing;

i.e., sharing is allowed in only one direction at any one time.

To better understand the transient behavior of the FQR-T control, in [36] we developed a deterministic

fluid model to analyze the performance. That model is challenging and interesting because it is an ordinary

differential equation (ODE) involving a stochastic averaging principle (AP). In [37, 38, 39] we established

supporting mathematical results about the FQR-T control. These mathematical results show that the FQR-T

control can rapidly respond to and mitigate an unexpected overload, while preventing sharing under normal

conditions. Asymptotically as the scale increases, the thresholds are exceeded instantaneously in face of an

overload in fluid scaling of order O(n), while at the same time are never exceeded under normal loading in

diffusion scaling of order O(
√
n).

1.3 New Contribution: Rapid Recovery After the Overload Is Over

In this paper we show that FQR-T needs to be modified in order to ensure that the system recovers rapidly

after an overload is over, either (i) because the two systems return to normal loading or (ii) because an over-

load occurs in the opposite direction. To achieve rapid recovery, we propose additional release thresholds

for the shared-customers processes, below which one-way sharing is released. As a basis for studying such

more complex dynamics, we extend our previous fluid approximation to a general time-varying setting. We

also extend our previous algorithm to numerically compute the fluid solution and show that the new FQR

control with activation-and-release thresholds (FQR-ART) is effective. We use simulations to show that our

fluid approximations are accurate.

The new fluid model and algorithm are more complicated than in the FQR-T setting, because the under-

lying CTMC is nonhomogeneous in time, due to the arrival rates and staffing functions being time-varying.
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In addition, we now need to consider the fluid model in its full 6-dimensional state space, instead of the

3-dimensional state space in the case when sharing takes place in only one direction during an overload.

As before, during overload periods with active sharing of customers there is important state space collapse

(SSC), namely, the approximating fluid model is essentially 3-dimensional instead of 6-dimensional. One

of the complications in the new setting is to identify if and when SSC begins and in what direction (which

queue is receiving help), and when it ends. The stochastic AP determines when SSC occurs, and how the

fluid evolves during periods of SSC; see §5.3 below.

When we introduce release thresholds, we also discover that to achieve good robust performance, we

also need to increase the activation thresholds. Even though we do not establish new asymptotic results here,

we conclude that it is necessary to make both the activation and release thresholds be of order O(n) in order

to obtain good performance. Having such O(n) activation thresholds necessarily causes an asymptotic loss

of optimality due to delayed activation. We conclude that it is necessary to sacrifice some optimality during

the overload incident in order to ensure that the overall FQR-ART control is robust.

In summary, our contribution is fourfold: (i) We continue our study of the X model and demonstrate

how and when it is beneficial (or harmful) to exploit the flexibility of the system in response to an overload.

(ii) We improve the previous FQR-T control designed to automatically exploit that system flexibility when it

is beneficial to do so by ensuring rapid recovery when the overload has ended. (iii) We develop a novel fluid

model to approximate the intractable stochastic system in the time-varying environment and help determine

appropriate control parameters. (iv) Finally, we design an efficient algorithm to solve that fluid model.

Simulation also plays an important role in our study. First, we use simulation to show that refinements to

the FQR-T control are needed to ensure rapid recovery after the overload is over. Second, we use simulation

to demonstrate that the fluid model provides a good performance approximation. Finally, we use simulation

to verify that we can indeed gain important insights into complex system behavior from the fluid model,

even for systems that are not overloaded, as in our examples after the overload has ended.

1.4 Other Related Literature

Time-Varying Models. A significant contribution here is extending the analysis of the transient behavior

of a stationary fluid model to the analysis of (the necessarily transient behavior) a time-varying model.

When the predictable variability captured by time-varying model parameters dominates the unpredictable

stochastic variability, deterministic fluid models are especially appropriate. Operationally, the deterministic

fluid models tend to capture the essential performance. Mathematically, the deterministic fluid models

are much easier to analyze than their stochastic extensions, such as diffusion approximations. The vast

majority of the queueing literature concerns stationary models, but there have been important exceptions,

e.g., [26, 33]. For related recent work, see [21, 22, 28, 29, 30, 31], and references therein.

Overloaded Systems and Fluid Models. For other work that considers overloaded systems and fluid

models, see [7, 17, 23, 45]. The authors in [7] suggest using the max-weight policy which, much like the
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FQR-ART control here, is easy to implement because it uses only information on the current state of the

system; it stabilizes the system during normal loads and keeps the queues at target ratios when the system

cannot be stabilized due to high arrival rates. In [17] overflow networks in heavy-traffic are studied in

settings of co-sourcing, i.e., when firms that operate their own in-house call center overflow a nonnegligible

proportion of the arrivals to a call center that is operated by an outsourcer. Fluid and diffusion limits are

obtained via a stochastic averaging principle. The authors in [45] apply their previously introduced shadow

routing control to overloaded parallel systems with unknown arrival rates, and show that it maximizes the

reward rate, assuming a class-dependent reward of each customer served.

Healthcare Systems. System overloads are especially prevalent in healthcare systems, often even being

the “natural state.” Some facilities such as intensive care units (ICU’s) and equipment such as magnetic

resonance imaging (MRI) machines are so expensive that they are designed to be operated continuously,

and exhibit long lines of waiting patients.

Hospitals have complex queueing dynamics, with multiple internal flows among its units in addition

to exogenous arrival streams. Thus, overloads in some units of a hospital can “propagate” to other units,

creating a system-wide overload. For example, when inpatient wards (IW) are overloaded, patients from

the emergency department (ED) who need to be hospitalized cannot be transferred to the IW due to the

unavailability of beds, creating the phenomenon of blocked beds in the ED, i.e., beds that are occupied by

patients who finished their treatment in the ED; see, e.g., [5] for a current review. See [2] for a data-based

study of queueing aspects in hospital settings as well as an extensive literature review.

In [8], a fluid approximation of an ICU experiencing periods of overload periods is studied, in which the

service rate of current ICU patients increases (is “sped-up”) if the number of patients that are waiting to be

admitted to the ICU exceeds a certain threshold. In turn, the sped-up patients have an increased probability

of readmission to the ICU, so that alleviating overloads by employing speedup increases future overloads.

The fluid model in [8] exploits an averaging principle in the spirit of [36].

1.5 Organization of the Rest of the Paper

In §2 we carefully define the stochastic X model and the FQR-T and FQR-ART controls. Building on simple

fluid considerations, In §§3 and 4 we demonstrate the need to modify FQR-T in order to rapidly recover after

the overload is over. In §3 we show why release thresholds are needed. In §4 we show that, unless precaution

is taken, the release thresholds can cause congestion collapse when the system recovers from an overload.

To avoid that bad behavior, the activation thresholds need to be increased beyond the FQR-T values. In §5

we develop the fluid approximation and in §6 we develop an efficient algorithm to numerically solve it. In

§7 we provide numerical examples, demonstrating the effectiveness of both the FQR-ART control and the

fluid model by comparing the results of the numerical algorithm for the ODE to the results of simulation

experiments. Finally, in §8 we draw conclusions and suggest directions for further research.
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2 The Time-Varying X Model

As depicted in Figure 1, the X model has two customer classes and two agent pools, each with many

homogeneous agents working in parallel. We assume that each customer class has a service pool primarily

)(1 t )(2 t

11 21 12 22

1 2

m1(t) m2(t)

Figure 1: The X model

dedicated to it, but all agents are cross-trained so that they can handle calls from the other class, even

though they may do so inefficiently, i.e., customers may be served at a slower rate when served in the

other class pool. We assume that the service times are independent exponential random variables, with

1/µi,j being the mean time for a class i customer to be served in service pool j. Each class has a buffer

with unlimited capacity where customers who are not routed immediately into service upon arrival wait to

be served. Within each class, customers enter service according to the first-come-first-served discipline.

Customers have limited patience, so that they may abandon from the queue. The successive patience times

of class i customers are i.i.d. exponential variables with mean 1/θi.

We assume that customers arrive according to independent nonhomogeneous Poisson processes, one for

each class, with time-varying deterministic rate functions. The staffing levels are assumed to be time depen-

dent as well, usually chosen to respond to anticipated changes in the arrival rates; see [30] and references

therein. As discussed in §1 of [29], it is necessary to specify how the system responds when the staffing

level of a service pool is scheduled to decrease. As in [29], we allow server switching (an agent can take

over service from an agent scheduled to leave). Since service times are exponential, it thus suffices to let idle

agents leave when staffing decreases, and the first agent to become idle leave when all agents are busy when

staffing is scheduled to decrease. When all agents are busy, we do not remove agents that are scheduled to

leave until they are done serving their current customers. Thus, even if the staffing function is scheduled to

have downward jumps, those jumps do not occur in the stochastic system. (More accurately, a decreasing

staffing function jumps by −1 whenever an agent leaves the system, but there are no larger jumps.) How-

ever, in the fluid model we do let service capacity be removed together with the fluid that is processed with

that service capacity, so that some fluid in service is lost. As we will show (see Figure 22 in §7 below), the

discrepancy between the stochastic system and its fluid approximation is negligible even during downward
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jumps in the fluid staffing, provided the jump is not too large relative to the size of the pool.

Even though we do not prove any limit theorems as we did in [38], and instead develop direct fluid

models to approximate the stochastic system, we will use asymptotic considerations in our analysis. We

therefore consider a sequence of X systems, as just described, indexed by a superscript n. As is standard for

many-server heavy-traffic limits [38], the service rates and abandonment rates are independent of n, but the

arrival rates and staffing levels increase. Specifically, for each n ≥ 1, let λn
i (t) be the arrival rate to pool i

and let mn
j (t) be the number of agents in pool j at time t. For the fluid approximation, we assume that

λn
i (t)/n → λi(t) and mn

j (t)/n → mj(t) as n → ∞, (1)

uniformly in t over each bounded time interval.

As in [29], we assume that the limit functions λi and mj in (1) are piecewise-smooth, by which we mean

that they have only finitely many discontinuities in any finite interval, have limits from the left and right at

each discontinuity point and are differentiable at all continuity points. That assumption is not restrictive for

applications and supports analysis of the approximating fluid model by differential equations. For call-center

applications, it usually suffices to consider piecewise-constant functions, but we allow greater generality

because our methods can be applied in other settings.

Let Qn
i (t) be the number of customers waiting in the class-i buffer and Zn

i,j(t) be the number of class-i

customers in service pool j at time t in system n. Let the associated six-dimensional vector process be

Xn ≡ Xn(t) ≡ (Qn
i (t), Z

n
i,j(t) : i, j = 1, 2), t ≥ 0. (2)

We consider controls that are functions of Xn(t) at each t, making Xn a nonhomogeneous CTMC.

To define asymptotic regimes, let ρni (t) := λn
i (t)/(µi,im

n
i (t)) be the instantaneous traffic-intensity

function of class i (and pool i) alone in system n at time t. By (1),

ρni (t)− 1 → βi(t) as n → ∞, (3)

uniformly in t over each bounded time interval. We say that class i (and pool i) is underloaded at time t if

βi(t) < 0, overloaded at time t if β(t) > 0 and normally loaded at time t if βi(t) = 0.

The generality we have introduced allows for many possible scenarios, but here we restrict attention to

an unexpected overload incident followed by a subsequent instantaneous switch in state, either (i) a return

to normal loading or (ii) a switch in the direction of overloading. Thus, now there are three intervals: first

normally loaded, then overloaded and then a final new regime, which is either normal loading for both

classes or an overload in the opposite direction. During each of these three intervals, the arrival rates and

staffing functions are allowed to change.

As before, we consider the system starting at the unanticipated time when the first overload incident

begins. However, now the arrival rates and staffing functions no longer need to be constant within each
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interval. By assumption, they have discontinuities at the beginning of the first overload incident and at the

subsequent time when the overload is over. For the generality that we do consider, we exploit the fact that

we know how to staff to stabilize the system in face of time-varying arrival rates under normal loading; see

[29, 30] and references therein.

2.1 The Initial FQR-T Control

For each n ≥ 1, the FQR-T control is based on two positive (activation) thresholds, kn1,2 and kn2,1 and the

two queue-ratio parameters, r1,2 and r2,1 (which are chosen independent of n under (1)). We define two

(centered) queue-difference stochastic processes

Dn
1,2(t) ≡ Qn

1 (t)− kn1,2 − r1,2Q
n
2 (t) and Dn

2,1(t) ≡ r2,1Q
n
2 (t)− kn2,1 −Qn

1 (t), t ≥ 0. (4)

As long as Dn
1,2(t) < 0 and Dn

2,1(t) < 0 we consider the system to be not overloaded so that no

customers are routed to be served in the other class pool. Once one of these inequalities is violated, the

system is considered to be overloaded, and sharing is initiated. For example, if Dn
1,2(t) ≥ 0, then class 1 is

judged to be overloaded (because then Qn
1 − r1,2Q

n
2 ≥ kn1,2), and it is desirable to send class-1 customers

to be served in pool 2. Note that Dn
1,2(t) ≥ 0 does not exclude the case that class 2 is also overloaded;

we can have βi(t) > 0 for both i. However, once one of the thresholds is crossed, its corresponding

class is considered to be “more overloaded” than the other class. (We refer to this situation as unbalanced

overloads.) We call kn1,2 and kn2,1 activation thresholds, because exceeding one of these thresholds activates

sharing (and not exceeding prevents sharing when it is not desired).

The behavior of Xn in (2) depends on the choice of the thresholds kni,j . In particular, we want the

thresholds to be large enough so that sharing will not take place if both service pools are normally loaded,

and to be small enough to detect any overload quickly, and start sharing in the correct direction once the

overload begins. Note that without sharing, the two pools operate as two independent M/M/mn + M

(Erlang-A) models. The familiar fluid and diffusion limits for the Erlang-A model give insight as to how to

choose these thresholds; e.g., see [15, 34]. In our previous papers we assumed that the activation thresholds

are chosen to satisfy:

kni,j/n → 0 and kni,j/
√
n → ∞ as n → ∞, i, j = 1, 2 with i ̸= j. (5)

The first limit in (5) ensures that overloads are detected quickly (immediately in the fluid model obtained as

n → ∞), whereas the second limit in (5) ensures that stochastic fluctuations of normally-loaded pools will

not cause undesired sharing, since the diffusion-scaled queue in that case are of order
√
n.

Given that the system is designed so that sharing of customers takes place only during overloads, it is

reasonable to assume that agents serve the other class customers (the so-called “shared customers”) at a

slower rate than their own designated customers. Thus, substantial sharing is likely to reduce the effective
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service rate of the helping pool. In our previous work we took measures to avoid sharing in both directions

simultaneously. In particular, we imposed the one-way sharing rule described in §1. However, it is evident

that the one-way sharing rule may considerably slow the recovery after the overload is over. We elaborate

in §3 below.

To remedy this problem, we could consider removing the one-way sharing rule altogether and rely solely

on the activation thresholds to avoid undesired sharing. However, our experience is that, without one-way

sharing, it is necessary to choose activation thresholds that are higher than if the one-way sharing rule is

employed, increasing the time until overloads are detected. Moreover, if these thresholds are too large,

then some overloads may not be detected at all (recall that abandonment keep the queues from increasing

indefinitely.) Second, if sharing is taking place in one direction, and then immediately starts in the other

direction in response to a switch in the overload, then the combined service capacity of both pools may be

reduced significantly, creating a period of severe congestion in both directions. Hence, it is beneficial to

avoid too much simultaneous two-way sharing.

2.2 The Proposed FQR-ART Control

For the reasons discussed above, we suggest a modification of the one-way sharing rule by introducing

release thresholds (RT). For each n ≥ 1, we introduce two strictly positive numbers τn1,2 and τn2,1. A newly

available type-2 agent is allowed to take a class-1 customer at time t only if Zn
2,1(t) ≤ τn2,1, i.e., if the number

of type-1 agents serving class-2 customers at the same time t is below τn2,1 (and of course Dn
i,1(t) ≥ 0), and

similarly in the other direction.

However, we find that the new release thresholds make activation thresholds satisfying (5) unsuitable, as

we will show in §4 below. Instead, we conclude that these activation thresholds should be positive in “fluid

scale”, i.e., they should be chosen so as to satisfy

lim
n→∞

kni,j/n = ki,j > 0, i, j = 1, 2. (6)

Thus, the FQR-ART control is specified by the parameter six-tuple (r1,2, r2,1, k
n
1,2, k

n
2,1, τ

n
1,2, τ

n
2,1) and

the routing and scheduling rules which depend on the values of the two processes Dn
i,j and Zn

i,j , i ̸= j, in

the manner described above. Note that FQR-T requires knowing only the queue lengths Qn
i (t) at each time

t (specifically, the values of the two difference processes (4)), whereas FQR-ART also requires knowledge

of Zn
1,2 and Zn

2,1. Under either control, the X model is a (possible inhomogeneous) CTMC.

2.3 Analysis Via Fluid Approximations

Since the stochastic process Xn in (2) under FQR-ART is evidently too difficult to analyze exactly, we

will employ a deterministic dynamical-system approximation, and refer to that approximation as “fluid

approximation” or “fluid model” interchangeably. The main idea in using fluid approximations is that, for
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large n, X̄n ≈ x, for some deterministic function x that is easier to analyze than the untractable stochastic

process Xn. (We use the ‘bar’ notation throughout to denote fluid scaled processes, e.g., X̄n ≡ Xn/n.) In

particular, the fluid counterpart of Xn in (2) is the six-dimensional deterministic function

x ≡ x(t) ≡ (qi(t), zi,j(t) : i, j = 1, 2), t ≥ 0, (7)

where qi and zi,j are the fluid approximations for the stochastic processes Qn
i and Zn

i,j , i, j = 1, 2. The

approximation X̄n ≈ x should be supported by a functional law of large numbers (FLLN), stating that

X̄n ⇒ x as n → ∞, extending [38], but that remains to be established.

In the stochastic system, customer routing depends on the values of the difference processes in (4). For

example, if sharing is taking place with pool 2 helping class 1, and assuming Zn
2,1 ≤ τn2,1, the process Dn

1,2

determines which customer class a newly available type-2 agent will take. Unfortunately, in the fluid system

we cannot simply replace the process Dn
1,2 with a process

d1,2(t) ≡ q1(t)− k1,2 − r1,2q2(t), t ≥ 0.

In fact, the purpose of the control is to keep d1,2(t) = 0 during the overload. Hence, as in [36, 37, 38], a

refined analysis of the behavior of Dn
1,2 (or Dn

2,1 during overloads in the other direction) is required (namely,

a stochastic averaging principle, as in [36, 37, 38]) to determine the evolution of the fluid model; see §5

below, where the fluid equations are developed.

3 The Need to Relax the One-Way Sharing Rule

Relying on the fluid approximation, we now demonstrate why the one-way sharing rule impedes recovery

after the overload incident is over. The simple fluid analysis suggests that release thresholds provide a good

remedy, and helps indicate how they should be chosen.

3.1 The Recovery Time With One-Way Sharing

We consider two consecutive time intervals I1 = [t0, t1) and I2 = [t1, t2) with 0 ≤ t0 < t1 < t2 ≤ ∞, with

the system being overloaded in opposite direction over each interval. Suppose that class 2 is overloaded

over the time interval I1 and that sharing is takeing place with pool 1 helping class 2. Then, at time t1 the

loads suddenly change in such a way that sharing is required in the other direction. In particular, we assume

that β1(t) ≤ 0 and β2(t) > 0 for t ∈ I1, whereas β1(t) > 0 and β2(t) ≤ 0 for t ∈ I2. We also assume that

z2,1(t1) > 0.

From the established FLLN in [38], we know that having z2,1(t1) > 0 implies that Zn
2,1(t1) ≈ z2,1(t1)n,

so that Zn
2,1(t1) should be of order O(n). Thus, the mean time to wait until pool 1 has no more class-2

11



customers is, for large n,

Zn
2,1(t1)∑
j=1

1

j · µ2,1
≈

log (Zn
2,1(t1))

µ2,1
≈ log (nz2,1(t1))

µ2,1
, (8)

where log(r) is the natural logarithm (to base e) of r > 0. We thus see that the expected time required for a

pool to empty its shared customers after an overload is over, and no new shared customers are routed to that

pool, is of order log(n) as n → ∞.

A fluid approximation for the evolution of Zn
1,2 can easily be derived using rate considerations. Since

every type-1 agent who is helping a class-2 customer at time t > t1 will finish service immediately after

time t at a rate µ2,1, regardless of the value of t, due to the memoryless property, and since there are no more

class 2 customers routed to pool 1 after time t1, we expect that z2,1 will satisfy the ODE

ż2,1(t) = −µ2,1z2,1(t), t ∈ I2,

whose unique solution is

z2,1(t) = z2,1(t1)e
−µ2,1t, t ∈ [t1, t2). (9)

In particular, for the fluid model, if z2,1(t1) > 0, then pool 1 will never empty, so that sharing can never

begin in the opposite direction.

3.2 Choosing Appropriate Release Thresholds

The simple considerations leading to (8) and (9) show that a large system will be slow to recover after an

overload is over. That analysis also helps choose appropriate release thresholds. Indeed, the fluid model

easily generates an approximate recovery time. In particular, if a release threshold of τ2,1 is used in the fluid

model starting with z2,1(t1) at time t1, where z2,1(t1) > τ2,1 > 0, then the release threshold will be hit at

time

T ≡ 1

µ2,1
log

(
z2,1(t1)

τ2,1

)
.

The analysis above indicates that the release thresholds in stochastic system n should be of order O(n)

as n increases. It suffices to pick two strictly positive numbers τ1,2 and τ2,1 and let

τn1,2 ≡ nτ1,2 and τn2,1 ≡ nτ2,1. (10)

With the scaling in (10), the recovery time Tn in system n should be approximately a constant, independent

of n.

In summary, with FQR-ART, an available type-2 agent is allowed to serve a class-1 customer only if

Zn
2,1(t) ≤ τn2,1 (or, equivalently, only if Z̄n

2,1(t) ≤ τ2,1), and of course Dn
i,1(t) ≥ 0, and similarly in the other

direction. The choice in (10) shows that the release thresholds should be proportional to n, but does not

12



determine the proportionality constants τ1,2 and τ1,2. Further analysis shows that these can be quite small,

as we show next.

3.3 Simulation Experiments

To illustrate the importance of the release thresholds for stochastic systems, we conducted simulation ex-

periments, comparing the performance of a system with and without release thresholds. The results can be

seen in Figures 2 and 3.

The (fixed) parameters for this simulation are

mn
1 = mn

2 = 1000, λn
1 = 1200, λn

2 = 990, µ1,1 = µ2,2 = 1, µ1,2 = µ2,1 = 0.5,

κn1,2 = κn2,1 = 100, and r1,2 = r2,1 = 1.

(Here, we can think of n as being fixed and equal to 1000.) With these parameters, ρn1 = 1.2 and ρn1 = 0.99,

where ρni ≡ λn
i /(m

n
i µi,i), so that class 1 may be regarded as overloaded, whereas class 2 may be regarded

as normally loaded (recall (3)).

To respond to that unbalanced overload by having pool 2 help class 1, we should have Zn
1,2 > 0 and

Zn
2,1 = 0 if one-way sharing is employed. However, we initialize the system at time 0 sharing in the

opposite direction, with all pool 1 agents serving class 2 customers. We are interested in the time it takes

the stochastic process Zn
2,1 to reach 0, so that the desired sharing can begin. Without release thresholds, the

required recovery time is quite long, approximately 21 (mean service times, of their own type). In contrast,

with release thresholds of only τn1,2 = τn2,1 = 0.01n = 10, that time is reduced from about 21 to about 9

service times. Thus, clearing the last 1% of the class-2 customers in pool 1 without release thresholds takes

more than half the total clearing time!

We hasten to admit that we just considered an extreme example in which all of service pool 1 is initially

busy with customers from class 2. We did so in order to convey the message that it is the last few agents

working with class 1 that cause the largest part of the delayed response. In particular, the Zn
2,1 process

decreases fast at the beginning, but then the decrease rate slows down considerably.

From Figures 2 and 3, it is also easy to see what happens in less extreme cases, when 0 < Z2,1(0) <

m1. For example, if we initialize with 20% sharing in the wrong direction, we see that, without a release

threshold, the time to activate sharing in the right direction is about 21 − 4 = 17 time units. In contrast,

with release thresholds, it is about 9 − 4 = 5 time units. When we start with a lower percentage of agents

sharing the wrong way, the difference becomes even more dramatic, because we eliminate a common initial

period (here of length 4 time units).
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Figure 2: Sample paths of Z̄n
1,2(t) and

Z̄n
2,1(t) initialized incorrectly, without re-

lease thresholds.
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Figure 3: Sample paths of Z̄n
1,2(t) and Z̄n

2,1(t)
initialized incorrectly, with release thresholds
τ1,2 = τ2,1 = 0.01.

4 Congestion Collapse Due to Oscillations

The previous section dramatically showed the need for the release thresholds when the direction of the

overload suddenly shifts. However, a more common case is for the two systems to simply return to normal

loading, after which no sharing in either direction is desired. We now show that the release thresholds

can cause serious problems when the system returns to normal loading after an overload incident if the

activation thresholds are too small. In this case, there is a potential difficulty when the inefficient sharing

condition holds, i.e., when µ1,1 > µ2,1 and µ2,2 > µ1,2, which is what we now assume. We show that, with

inefficient sharing, the release thresholds combined with small activation thresholds can lead to oscillatory

poor performance. We emphasize that, even though the performance is oscillatory, the model after the

overload is over is a (necessarily aperiodic) positive-recurrent and stationary CTMC.

4.1 Simulations of Oscillating Systems with Inefficient Sharing

The oscillatory behavior is more evident when there is no abandonment, so we start by considering a

system without abandonment. We start with an extreme case having very inefficient sharing; i.e., we let

µ1,1 = µ2,2 = 1, but µ1,2 = µ2,1 = 0.1. Afterwards we consider a more realistic example with customer

abandonment and less efficiency loss from sharing. We consider a relatively heavily loaded symmetric sys-

tem. In particular, let there be m1 = m2 = 100 agents in each pool and let the arrival rates be λ1 = λ2 = 98.

Thus each class alone is stable, but if the sharing in one pool exceeds 12/90 or 13.3%, then the maximum

rate out is less than 98, so that the rate in exceeds the maximum rate out at that instant.

Figures 4 and 5 show a single simulated sample path with ratio parameters r1,2 = r2,1 = 1, activation

thresholds kni,j = 10 and release thresholds τni,j = 1 for i, j = 1, 2 and i ̸= j. We start the system with both

pools busy serving their own class, but no queues, i.e., Zn
1,1(0) = Zn

2,2(0) = 100 and Qn
1 (0) = Qn

2 (0) = 0.
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Figure 4: Oscillations of Z̄n
1,2 in the ex-

treme symmetric example with τni,j = 1,
kni,j = 10 and no abandonment.
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Figure 5: Oscillating growth of Q̄n
2 in the

extreme symmetric example with τni,j = 1,
kni,j = 10 and no abandonment.

The symmetry implies that both pools and queues exhibit symmetric behavior.

Figure 4 shows that the proportion of agents serving customers from the other pool oscillates between

0 and 1, alternating between these two extremes over this horizon. The oscillatory behavior is occurring

despite the fact that there is no sharing initially. Figure 5 shows that the queue lengths are growing in an

oscillating manner over the time interval [0, 800] at an average rate of 10.

The oscillatory behavior also occurs for systems with abandonment, but it is often hard to detect, because

the abandonment ensures that the stationary stochastic system after the overload has ended is stable and it

dampens any oscillatory behavior. Nevertheless, the difficulty highlighted above remains with abandonment.

To demonstrate dramatically, we simulated the same system considered in the previous example, but now

with the low positive abandonment rates θ1 = θ2 = 0.01. Figures 6 and 7 show that the oscillatory behavior

remains. Moreover, Figure 7 suggests that Qn
2 (and, by symmetry, also Qn

1 ) stabilizes at an overloaded

oscillatory equilibrium. The oscillatory behavior in Figures 6–7 may be surprising at first, because the

underlying (time-homogeneous) CTMC after the overload has ended is ergodic, as we mentioned above.

Fortunately, the fluid model provides valuable insight, as we explain in §4.2.

We now consider a less-extreme more realistic example, in which the sharing service rates and aban-

donment rates are changed to µ1,2 = µ2,1 = θ1 = θ2 = 0.5. First, Figure 8 shows the proportion of shared

customers over time with the previously specified activation thresholds of kni,j = 10, but we now consider

a system that is recovering from an overload in which pool 1 was helping class 2 customers. In particular,

there are initially 20 type-1 agents helping class-2 customers. By taking this initial condition, we are con-

sidering a system that starts “worse off” than before, because it is initially overloaded. (In the other two

examples, the systems were initialized empty.) We consider the time interval [0, 100] to make the figures

clear, but the behavior shown in the figures below remained for the whole duration of the simulation (which

lasted for 1500 time units).
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Figure 6: Oscillations of Z̄n
1,2 in the ex-

treme symmetric example with τni,j = 1,
kni,j = 10 with abandonment.

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

1600

1800
Number of customers in class 2 queue

Time

Figure 7: Oscillating stable behavior of
Q̄n

2 in the extreme symmetric example with
τni,j = 1, kni,j = 10 with abandonment.
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realistic symmetric example with abandon-
ment: µ1,1 = 1, µ1,2 = 0.5, θ1 = 0.5,
τn1,2 = 1 and kni,j = 10.
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Figure 9: Z̄n
1,2 in the more realistic example

but with higher activation thresholds kni,j =
35.

In this case, substantial customer abandonment significantly dampens the sharing oscillations seen pre-

viously. Nevertheless, Figure 8 shows that the pools share repeatedly in an oscillating manner over the time

interval [0, 100]. Although the long-run average number of agents that are helping the other class is not sig-

nificant, this oscillatory behavior, is clearly undesirable. We do not show figures of the queues because they

are uninformative (the oscillations are insignificant). Hence, the bad behavior in a system with a relative

substantial customer abandonment may be hard to detect by only observing the queues, so that a system

with no abandonment, or low abandonment rate, gives important insights.

To remedy the problem in Figure 8, we propose increasing the activation thresholds. To illustrate the

potential benefit, Figure 9 shows the sharing when the activation thresholds are increased to kni,j = 35,

i, j = 1, 2, with all other parameters kept the same. Even though some customers are shared occasionally,

especially just after the overload is over, the oscillatory behavior is minimal and decays quickly.
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4.2 Insight from the Deterministic Fluid Model

In the examples we have just considered, the six-dimensional stochastic process Xn in (2) describing the

system performance after the overload incident has ended is a stationary CTMC. With customer abandon-

ment, that CTMC is necessarily stable, so that with FQR-ART and any parameter setting, the stochastic

process Xn in (2) necessarily has a unique steady-state distribution. Nevertheless, we have just seen that the

system can exhibit quite complex undesirable behavior for some initial conditions if the control parameters

are not set properly.

Fortunately, the fluid model we develop provides an effective means to study the complex system per-

formance and set the control parameters. The oscillating behavior we see in the simulations looks periodic,

but it is not quite; it is nearly periodic, just as in [28]. The system becomes more nearly periodic as the scale

increases. In the many-server heavy-traffic limit, the stochastic process Xn approaches the deterministic

solution of the fluid model we introduce next to serve as an approximation. From the algorithm for that fluid

model, we see that it possesses a periodic equilibrium for some initial conditions.

As a consequence, the fluid model can be bistable; it can have a periodic equilibrium in addition to a

stable equilibrium, depending on the initial conditions. Consequently, the order in which two different limits

occur leads to different stories. As time increases, for any fixed scale, the stochastic process approaches its

unique steady-state distribution. In contrast, as the scale increases, a properly scaled version of the stochastic

process approaches a deterministic function, which can be periodic. Thus, if time is subsequently allowed

to increase, there will be periodic behavior, not simple convergence. Thus, the fluid model can provide

important insight.

5 The Fluid Model

The fluid model for the stochastic system Xn under FQR-ART is described implicitly as the solution to an

ODE. In this section we derive that ODE via a heuristic representation of the inhomogeneous CTMC in (2).

The reasoning parallels [36, 37, 38], to which we refer for more discussion.

5.1 Representation of the Stochastic System During Overloads

The sample paths of a queueing system are represented in terms of its primitive processes, i.e., the arrival,

abandonment and service processes, as a function of the control. Unlike traditional fluid models, in which

the primitive stochastic processes are replaced by their long-run rates, the deterministic fluid model here

is more involved and includes a stochastic ingredient in the form of a stochastic AP, which we describe in

detail in §5.2 below.

Even though we are not proving that the fluid model arises as a weak limit of the fluid-scaled stochastic

system, we need to take asymptotic considerations in order to develop the fluid approximation. We thus start

with a representation of the stochastic system during overloads, assuming that both service pools are full
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over an interval [0, T ], namely that

Zn
1,1(t) + Zn

2,1(t) = mn
1 (t) and Zn

2,2(t) + Zn
1,2(t) = mn

2 (t), t ∈ [0, T ]. (11)

During the time interval [0, T ] no customers can enter service immediately upon arrival, and so all customers

are delayed in queue. For simplicity, we first consider intervals over which the staffing functions are con-

tinuous and differentiable everywhere. In §7 we give an example of a staffing function with a discontinuity;

see Figure 22 below.

We next use random time-changes of independent unit-rate Poisson processes to represent the sample

paths of Xn, as reviewed in [34]; see Equations (41)-(43) in [38] for such a representation applied to the X

model operating under FQR-T. Let

A1,2(s) ≡ {{Dn
1,2(s) > 0} ∩ {Zn

2,1(s) ≤ τn2,1}} and

A2,1(s) ≡ {{Dn
2,1(s) > 0} ∩ {Zn

1,2(s) ≤ τn1,2}},
(12)

the representation of Qn
1 over [0, T ] is

Qn
1 (t) = Na

1

(∫ t

0
λn
1 (s)ds

)
−Nu

1

(
θ1

∫ t

0
Qn

1 (s)ds

)
−N+

1

(∫ t

0
1A1,2(s)

(
µ1,1Z

n
1,1(s) + µ1,2Z

n
1,2(s) + µ2,1Z

n
2,1(s) + µ2,2Z

n
2,2(s)

)
ds

)
−N−

1

(∫ t

0
(1− 1A1,2(s) − 1A2,1(s))

(
µ1,1Z

n
1,1(s) + µ2,1Z

n
2,1(s)

)
ds

)
,

where Na
1 , N

u
1 , N

+
1 and N−

1 are mutually independent unit rate (homogeneous) Poisson processes, and 1A
is the indicator function that is equal to 1 if event A occurs, and to 0 otherwise.

Note that the representation of Qn
1 is essentially a flow conservation equation (based on the memoryless

property of the exponential distribution). That is, the queue at time t is all those customers who arrived

by that time, captured by the Poisson process Na
1 , minus all the customers that abandoned, captured by

the Poisson process Nu
1 , minus all those who were routed into service, as captured by the last two Poisson

processes in the expression. Similar expressions hold for the other processes in Xn.

We elaborate on how the intensities of the last two Poisson processes in the right-hand side (RHS) of

the representation were obtained. First, if at time s ∈ [0, T ] the event A1,2(s) in (12) holds, then any newly

available agent in the system will take his next customer from the head of queue 1. Since agents become

available at an instantaneous rate
∑

i,j µi,jZ
n
i,j(s) at time s, we get the third component in the RHS of Qn

1 (t).

Next we recall that, by the routing rule of FQR-ART, if at a time s ∈ [0, T ] A2,1(s) in (12) holds, then any

newly available agent takes his next customer from queue 2, in which case queue 1 will not decrease due

to a service completion. If neither of the events A1,2(s) or A2,1(s) holds at a time s, then only service

completions at pool 1 will cause a decrease at queue 1 due to a customer from that queue being routed to
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service. That explains the last term in the RHS of the representation.

Next, we exploit the fact that each of the Poisson processes in the representation minus its random

intensity constitutes a martingale (again, see [34, 38]), e.g.,

Mn,u
1 ≡ Nu

1

(
θ1

∫ t

0
Qn

1 (s)ds

)
− θ1

∫ t

0
Qn

1 (s)ds

is a martingale. Thus, subtracting and then adding all the random intensities, and using the fact that a sum of

martingales is again a martingale, we get the following representation for the processes Qn
1 , Q

n
2 , Z

n
1,2, Z

n
2,1

(the remaining two processes Zn
1,1 and Zn

2,2 are determined by (11)):

Qn
1 (t) = Mn

1 (t) +

∫ t

0
λn
1 (s)ds−

∫ t

0
θ1Q

n
1 (s)ds

−
∫ t

0
1A1,2(s)

(
µ1,1Z

n
1,1(s) + µ1,2Z

n
1,2(s) + µ2,1Z

n
2,1(s) + µ2,2Z

n
2,2(s)

)
ds

−
∫ t

0
(1− 1A1,2(s) − 1A2,1(s))

(
µ1,1Z

n
1,1(s) + µ2,1Z

n
2,1(s)

)
ds,

Qn
2 (t) = Mn

2 (t) +

∫ t

0
λn
2 (s)ds−

∫ t

0
θ2Q

n
2 (s)ds

−
∫ t

0
1A2,1(s)

(
µ1,1Z

n
1,1(s) + µ1,2Z

n
1,2(s) + µ2,1Z

n
2,1(s) + µ2,2Z

n
2,2(s)

)
ds

−
∫ t

0
(1− 1A1,2(s) − 1A2,1(s))

(
µ2,2Z

n
2,2(s) + µ1,2Z

n
1,2(s)

)
ds,

Zn
1,2(t) = Mn

1,2(t) +

∫ t

0
1A1,2(s)µ2,2Z

n
2,2(s)ds−

∫ t

0
(1− 1A1,2(s))µ1,2Z

n
1,2(s)ds,

Zn
2,1(t) = Mn

2,1(t) +

∫ t

0
1A1,2(s)µ1,1Z

n
1,1(s)ds−

∫ t

0
(1− 1A2,1(s))Z

n
2,1(s))ds,

(13)

where Mn
1 ,M

n
2 ,M

n
1,2 and Mn

2,1 are the martingale terms alluded to above. It is not hard to show that those

martingales are negligible in the fluid scaling, i.e., that Mn
i ⇒ 0 and Mn

i,j ⇒ 0 as n → ∞, uniformly

over [0, T ], i, j = 1, 2; see, e.g., Lemma 6.1 in [38]. Hence, we consider those martingales as a negligible

stochastic noise that can be ignored for the purpose of developing the fluid approximation for (13).

To replace the stochastic integral representation in (13) with a deterministic one, we need to replace the

indicator functions with smooth functions. We start by assuming that there is a fluid counterpart x for Xn

in (13) which is continuous and differentiable. (This fact can be shown to hold by a minor modification of

Corollary 5.1 in [38]). For any fluid point x(t), let

d1,2(x(t)) ≡ q1(t)− r1,2q2(t)− k1,2 and d2,1(x(t)) ≡ r2,1q2(t)− q1(t)− k2,1. (14)

We first observe that, if di,j(x(t)) > 0 then, since di,j(·) is a continuous function, di,j is strictly positive
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over an interval, and similarly if di,j < 0, i, j = 1, 2. In such cases the indicator functions are easy to deal

with because each is a constant over the interval, and equals either 1 or 0. For example, if d1,2(x(t)) > 0

for t ∈ [s1, s2), for some 0 ≤ s1 < s2 < ∞, and in addition, Zn
2,1(t) ≤ τn2,1 over that interval for all n large

enough, then

1A1,2(s) ≡ 1{{Dn
1,2(t)>0}∩{Zn

2,1(t)≤τn2,1}} = 1{[s2,s2)} for all n large enough.

Hence, a careful study is required for all x(t) ≡ γ in the boundary sets defined by

B1,2 ≡ {γ ∈ R6 : d1,2(γ) = 0} and B2,1 ≡ {γ ∈ R6 : d2,1(γ) = 0} (15)

Note that FQR-ART aims to “pull” the fluid model to one of these two boundary sets during overloads, when

sharing is actively taking place, i.e., Bi,j is the region of the state space where we aim the fluid model to be

when pool j helps class i, i, j = 1, 2.

Unfortunately, there is no straightforward fluid counterpart to the stochastic processes Dn
1,2 and Dn

2,1

when the fluid is in the boundary sets. However, there are two related stochastic processes, operating in an

infinitely faster time scale, whose behavior determines the evolution of the fluid model, as we now explain.

5.2 A Stochastic Averaging Principle

Before we explain how to deal with the indicator functions in the representation (13), we emphasize that

the following explanation is for the purpose of gaining insight only. The explanation draws on results in

[37, 38], which were proved in different settings than here.

Assume, for example, that x(t) ∈ B1,2 and consider Dn
1,2. To be able to apply the results in [38], we

assume (for now) that the arrival rates are fixed (the arrival processes are homogeneous Poisson processes)

and that Zn
2,1 < τ2,1, so that routing is determined solely on the value of Dn

1,2. In particular, sharing can take

place if Dn
1,2(t) > 0. Then, by Theorem 4.5 in [38],

Dn
1,2(t) ⇒ D1,2(x(t),∞) in R as n → ∞, (16)

where D1,2(γ, ·) ≡ {D1,2(γ, s) : s ≥ 0} is a CTMC associated with γ ∈ R6 whose distribution is deter-

mined by the value γ. (There is a different process for each γ.)

An analogous result holds for Dn
2,1 when x(t) ∈ B2,1. The notation Di,j(γ,∞) stands for a random

variable that has the steady-state distribution of the CTMC Di,j(γ, ·). Loosely speaking, Dn
i,j moves so fast

when x(t) is in Bi,j , that it reaches its steady state instantaneously as n → ∞. Hence, we call Di,j(γ, ·) the

fast-time-scale process (FTSP) associated with the point γ, or simply the FTSP.

Since we are interested in analyzing the indicator functions in (13), we first define

Di,j(γ, ·) ≡ +∞ if di,j(γ) > 0 and Di,j(γ, ·) ≡ −∞ if di,j(γ) < 0, γ ∈ R6.
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Next, we define

π1,2(γ) ≡ P (D1,2(γ,∞) > 0), for γ ∈ B1,2 and

π2,1(γ) ≡ P (D2,1(γ,∞) > 0), for γ ∈ B2,1.
(17)

Now, by Theorem 4.1 in [38], which was proved for the process Dn
1,2 when x ∈ B1,2, and assuming that

Zn
2,1(s) ≤ τn2,1 over [t1, t2] for all n large enough, we have that, as n → ∞,

∫ t2

t1

1A1,2(s)ds ≡
∫ t2

t1

1{{Dn
1,2(s)>0}∩{Zn

2,1(s)≤τn2,1}}ds ⇒
∫ t2

t1

π1,2(x(s))ds.

Similarly, if x ∈ B2,1 over an interval [t3, t4], and Zn
1,2(s) ≤ τn1,2 for all n large enough over that interval,

we have ∫ t4

t3

1A2,1(s)ds ≡
∫ t4

t3

1{{Dn
2,1(s)>0}∩{Zn

1,2(s)≤τn1,2}}ds ⇒
∫ t4

t3

π1,2(x(s))ds.

The convergence in both equations above holds uniformly.

We called these limits a “stochastic averaging principle”, or simply an averaging principle (AP), since

the process Dn
i,j(t) is replaced by the long-run average behavior of the corresponding FTSP Di,j(x(t), ·)

for each time t over the appropriate interval.

In the FQR-ART settings, the AP holds under the assumption that Zn
i,j lies below the appropriate release

threshold over the interval [t1, t2] for all n large enough (i.e., with probability converging to 1 as n → ∞).

If Zn
i,j is above the appropriate release threshold for all n large enough (again, with probability converging

to 1) over [t1, t2], then the limit of the integral considered above is clearly the 0 function. It remains to

rigorously prove convergence theorems at points at which Zn
i,j(t) = τni,j + oP (n), where oP (n) denotes a

random variable satisfying oP (n)/n ⇒ 0 as n → ∞. However, it is not hard to guess the dynamics of the

limit (if it exists) at such points, as we do in our fluid approximation below.

5.3 Representation via an ODE

The above limiting arguments lead to the following fluid approximation for the X system under FQR-ART

during overload periods. Considering an interval [0, T ] for which

z1,1(t) + z2,1(t) = m1(t) and z2,2(t) + z2,2(t) = m2(t) for all t ∈ [0, T ], (18)

together with an initial condition x(0), the fluid model of Xn is the solution x ≡ {x(t) : t ≥ 0} over [0, T ]

to the ODE:
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q̇1(t) = λ1(t)− θ1q1(t)−Π1,2(x(t)) (µ1,1z1,1(t) + µ1,2z1,2(t) + µ2,1z2,1(t) + µ2,2z2,2(t))

− (1−Π1,2(x(t))−Π2,1(x(t))) (µ1,1z1,1(t) + µ2,1z2,1(t)) ,

q̇2(t) = λ2(t)− θ2q2(t)−Π2,1(x(t)) (µ1,1z1,1(t) + µ1,2z1,2(t) + µ2,1z2,1(t) + µ2,2z2,2(t))

− (1−Π1,2(x(t))−Π2,1(x(t))) (µ2,2z2,2(t) + µ1,2z1,2(t)) ,

ż1,2(t) = Π1,2(x(t))µ2,2z2,2(t)− (1−Π1,2(x(t)))µ1,2z1,2(t),

ż2,1(t) = Π2,1(x(t))µ1,1z1,1(t)− (1−Π2,1(x(t)))µ2,1z2,1(t),

ṁ1(t) = ż1,1(t) + ż2,1(t),

ṁ2(t) = ż2,2(t) + ż1,2(t),

(19)

where, for πi,j(x(t)) in (17), i, j = 1, 2,

Πi,j(x(t)) :=

{
πi,j(x(t)) if zj,i(t) < τj,i,

0 otherwise.

Note that the ODE (19) can be equivalently represented by an integral equation resembling (13), but with

the negligible martingale terms omitted, all the stochastic processes replaced by their fluid counterparts, and

the indicator functions replaced by the appropriate Πi,j functions.

In practice we do not a-priori know the value of T , and there is a need to make sure that the ODE is

a valid approximation for the stochastic system. We consider the ODE (19) valid as long at the following

two conditions are satisfied: (i) the two queues are strictly positive; (ii) if a queues is equal to 0 at some

time t ≥ 0, then the derivative of that queue is nonnegative at time t (so that the queue is nondecreasing at

this time). When the ODE (19) is not valid, then other fluid models should be employed to approximate the

system. We discuss such scenarios in §5.4 below.

We elaborate on Condition (ii). Consider, for example, the ODE for q1 and assume that q1(t) = 0 and

q̇1(t) < 0 for some t ≥ 0. Necessarily Π1,2(x(t)) = 0, because d1,2(x(t)) ≤ 0, and the assumption that

q̇1(t) < 0 implies that

λ1(t)− (1−Π2,1(x(t)))(µ1,1z1,1(t) + µ2,1z2,1(t)) < 0. (20)

In addition, since all the class-1 arrivals must immediately enter service (for otherwise, the queue will be

increasing), it also holds that

ż1,1(t) = λ1(t)− µ1,1z1,1(t).
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Hence,

ż1,1(t) + ż2,1(t) = λ1(t)− µ1,1z1,1(t) + Π2,1(x(t))µ1,1z1,1(t)− (1−Π2,1(x(t)))µ2,1z2,1(t)

= λ1(t)− (1−Π2,1(x(t)))(µ1,1z1,1(t) + µ2,1z2,1(t)) < 0,
(21)

where the inequality follows from (20).

Now, since ṁ1(t) = ż1,1(t) + ż2,1(t), we see that pool 1 can remain full just after time t only if m1(t)

happens to decrease exactly as in (21). However, q1 is becoming negative, so that the ODE is not valid.

On the other hand, if (21) holds (which ODE (19) enforces to be equal to ṁ1(t)) and q1(t) = 0, then

necessarily q̇1(t) < 0, so that the queue is becoming negative. In either case, we see that the ODE is valid as

an approximation for the stochastic system when q1(t) = 0 only if pool 1 can be kept full without enforcing

q1 to become negative. Similar reasonings hold for the q2 and m2 processes.

5.4 The Fluid Model When There is No Active Sharing

The ODE for the fluid model above was developed for all cases for which both pools are full, i.e., (18) holds.

This is the main case because systems are typically designed to operate with very little extra service capacity

(if any), and is clearly significant when overloads occur. In particular, note that a normally-loaded system,

with β1(t) = β2(t) = 0, will have the two pools full, at least after some short time period. Since the system

may go through periods in which at least one of the pools is underloaded, we now briefly describe the fluid

models for underloaded pools.

Consider an interval I ⊂ [0,∞). If no sharing takes place and z1,2(t) = z2,1(t) = 0 for all t ∈ I ,

then the two classes operate as two independent single-pool models (with time-varying parameters and

staffing) over that interval I , to which fluid limits are easy to establish. Specifically, assuming without loss

of generality, that I = [0, s) for some 0 < s < ∞, the fluid dynamics of both classes obey the ODE

q̇i(t) = (λi(t)− µi,izi,i(t)− θiqi(t))1{qi(t)≥0}

żi,i(t) =

{
0 if qi(t) > 0,

λi(t)1{zi,i(t)≤mi(t)} − µi,izi,i(t) if qi(t) = 0.

(22)

In the time-invariant case, when the arrival rates and staffing functions are fixed constants, the unique

solution for a given initial condition to the ODE in (22) is easily seen to be

qi(t) =

(
λi − µi,imi

θi
+

(
qi(0)−

λi − µi,imi

θi

)
e−θit

)
∨ 0,

zi,i(t) =

 mi,i if qi(t) > 0,
λi
µi,i

+
(
zi,i(0)− λi

µi,i

)
e−µi,it if qi(t) = 0.

(23)

where a∨ b ≡ max{a, b} and (q1(0), q2(0), z1,1(0), z2,2(0)) is a deterministic vector in [0,∞)2× [0,m1]×
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[0,m2].

If z1,2(s0) > 0 (or z2,1(s0) > 0) for some s0 ≥ 0 and there is no active sharing over the interval [s0, s1),

then z1,2 (z2,1) is strictly decreasing over that interval. Then zi,j , i ̸= j, satisfies the ODE

żi,j(t) = −µi,jzi,j(t), s0 ≤ t < s1

which is the same as the ODE for zi,j in (19) with Πi,j = 0.

Remark 5.1. A proof of existence of a unique solution to the ODE (19) requires showing that the RHS is

a local Lipschitz continuous function of x and is piecewise continuous in t. We do not prove such a result

here, but it is important to consider arrival rates and staffing functions that ensure that the right side of the

ODE satisfies the piecewise continuity condition in the time argument.

6 Solving the ODE

Computing the solution to (19) requires computing π1,2(x(t)) and π2,1(x(t)) for all x(t) ∈ R6. Simpli-

fication is achieved when r1,2 = r2,1 = 1, because the FTSP’s Di,j(x(t), ·), i, j = 1, 2, become simple

birth-and-death (BD) processes. To facilitate the discussion we thus consider this simpler case and refer to

§6.2 in [37] for the treatment of the FTSP D1,2 as a quasi-birth-and-death process (QBD) when the ratio

parameters are not equal to 1. (In [37] FQR-T is studied with one overload incident, with pool 1 receiving

help, but the same method can be applied to D2,1 with sharing in the opposite direction.)

For simplicity, we again start by assuming that the arrival processes are homogenous Poisson processes,

having constant arrival rates λ1 and λ2 over [0, T ], and that the staffing functions are also fixed over that time

interval at m1 and m2. Recall that Di,j(γ, ·) ≡ ∞ if di,j(γ) > 0 and Di,j(γ, ·) ≡ −∞ if di,j(γ) < 0, and

let A1,2 and A2,1 be the subsets of R6 in which the FTSP’s D1,2(γ, ·) and D2,1(γ, ·) are positive recurrent,

i.e.,

A1,2 ≡ {γ ∈ B1,2 : 0 < π1,2(γ) < 1} and A2,1 ≡ {γ ∈ B2,1 : 0 < π2,1(γ) < 1}. (24)

By definition, if the fluid model at time t is in Ai,j , i.e., x(t) ∈ Ai,j , then di,j(x(t)) = 0. However,

if di,j(x(t)) = 0, then x(t) is not necessarily in Ai,j , because the FTSP Di,j(x(t), ·) may be transient

(drift to +∞ or −∞) or null recurrent; in particular, The evolution of the fluid model is determined by the

distributional characteristics of the FTSP’s D1,2 and D2,1. Hence, even before we try to compute πi,j(x(t)),

which is necessary in order to solve the ODE (19), there is a need to determine whether x(t) is in one of the

sets A1,2 or A2,1. We focus on D1,2, with the analysis of D2,1 being similar.

To determined the behavior of the FTSP D1,2 it is again helpful to think of x as a fluid limit of the fluid-

scaled sequence {X̄n : n ≥ 1} and to recall that D1,2 was achieved as a limit of Dn
1,2 without any scaling;

see (16). (See also Theorem 4.4 in [38] which provides a process-level limit relating D1,2 and Dn
1,2.) Hence,

both processes are defined on the same state space, which, for r1,2 = 1, is Z ≡ {. . . ,−1, 0, 1, . . . }.
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Now, for a fixed x(t), when D1,2(x(t), ·) = m > 0, the birth and death rates of the FTSP are, respec-

tively,

λ+(x(t),m) ≡ λ1(t) + θ2q2(t),

µ+(x(t),m) ≡ λ2(t) + µ1,1z1,1(t) + µ1,2z1,2(t) + µ2,1z2,1(t) + µ2,2z2,2(t) + θ1q1(t).

In analogy to the (non-Markov) process Dn
1,2 = Qn

1 − Qn
2 − kn1,2, λ+(x(t),m) corresponds to an increase

of D1,2 due to arrival to queue 1 plus an abandonment from queue 2 (since either one of these two events

cause an increase by 1 of Dn
1,2 in the stochastic system). Since any other event causes Dn

1,2 to decrease by

1, due to the scheduling rules of FQR-ART, we get the expression for µ+(x(t),m).

Next, if D1,2(x(t),m) = m ≤ 0, the birth and death rates are, respectively,

λ−(x(t),m) ≡ λ1 + µ2,2z2,2(t) + µ1,2z1,2(t) + θ2q2(t),

µ−(x(t),m) ≡ λ2 + µ1,1z1,1(t) + µ2,1z2,1(t) + θ1q1(t).

Again, whenever Dn
1,2 is non-positive and sharing is taking place with pool 2 helping class 1, a “birth”

occurs if there is an arrival to queue 1 or an abandonment from queue 2, or if there is a service completion in

pool 2 (since then a newly available type-2 agent takes his next customer from queue 2). Similarly, a “death”

occurs if there is an arrival to class 2, an abandonment from queue 1, or a service completion in pool 1.

We see that the FTSP D1,2(x(t), ·) is a two-sided M/M/1 queue, i.e., it behaves like an M/M/1 queue

with “arrival rate” λ+(x(t),m) and “service rate” µ+(x(t),m) for all m > 0, and behaves like a different

M/M/1 queue with “arrival rate” µ−(x(t),m) and “service rate” λ−(x(t),m), for all m ≤ 0. Thus, for

δ+(γ) ≡ λ+(γ, ·)− µ+(γ, ·) and δ−(γ) ≡ λ−(γ, ·)− µ−(γ, ·), γ ∈ B1,2,

the set A1,2 can be characterized via

A1,2 ≡ {γ ∈ B1,2 : δ
+(γ) < 0 < δ−(γ)}.

Next, letting T+(γ) and T−(γ) denote, respectively, the busy period of the M/M/1 in the positive region

and the busy period of the M/M/1 in the negative region, and using simple alternating renewal arguments

for the renewal process D1,2(γ, ·), we have

π1,2(γ) =
E[T+(γ)]

E[T+(γ)] + E[T−(γ)]
, (25)

where, from basic M/M/1 theory,

E[T±(γ)] =
1

µ±(γ)− λ±(γ)
.
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Note that if d1,2(γ) = 0 but γ /∈ A1,2, then π1,2(γ) is equal to either 1 or 0. In particular,

if δ+(γ) ≥ 0, then π1,2(γ) = 1 and if δ−(γ) ≤ 0 then π1,2(γ) = 0. (26)

There are no other options, since for any γ = x(t) for which both pools are full (as is required for the ODE

(19) to be valid), it holds that

δ−(x(t))− δ+(x(t)) = 2(µ1,2z1,2(t) + µ2,2z2,2(t)) > 0,

where the inequality above follows from the fact that z1,2(t) + z2,2(t) = m2(t) > 0.

We see that the sets Ai,j and the computation of πi,j(·) are completely determined by the staffing, arrival

rates, service and abandonment rates for any given point γ ∈ R6, where the only points that require careful

analysis are those in one of the two sets Bi,j . However, if the arrival rates or the staffing functions are

time dependent, then the distribution of the FTSP Di,j(x(t), ·) is also time dependent. In particular, given a

γ ∈ R6 we cannot determine whether D1,2(γ, ·) is positive recurrent or not, since that may depend on the

time t ∈ [0, T ]. Thus, the sets at which the FTSP’s are ergodic are themselves time dependent, and we need

to consider sets of the form {Ai,j(t) : t ∈ [0, T ]}, where

Ai,j(t) ≡ {(γ, t) ∈ Bi,j × R+ : δ+(γ, t) < 0 < δ−(γ, t)}, (27)

where δ+(γ, t) and δ−(γ, t) are the drifts of the FTSP D1,2(γ, ·) at the point γ at time t.

Fortunately, for the purpose of solving the ODE, we do not actually need to characterize the sets

{Ai,j(t) : t ∈ [0, T ]}, because we can determine whether Di,j(x(t), ·) is ergodic at each time t as we

solve the ODE.

6.1 A Numerical Algorithm to Solve the ODE

We can use the analysis in §6 to numerically solve the ODE (19), starting at a given initial condition x(0),

since we can now determine the value of Πi,j(x(t)) for each t ≥ 0. For example, if at a time t ≥ 0

d1,2(x(t)) = 0, then we check whether (27) holds, so that x(t) ∈ A1,2(t). If z2,1(t) ≤ τ2,1, then

Π1,2(x(t)) = π1,2(x(t)) and it can be computed using (25). If z2,1(t) > τ2,1, then Π2,1(t) = 0. If

d1,2(x(t)) = 0 but x(t) /∈ A1,2(t), i.e., if (27) does not hold, then we can determine the value of π1,2(x(t)),

and thus of Π1,2(x(t)), by computing the drifts of the FTSP and employing (26) (replacing the drifts in

(26) with the time dependent drifts as in (27)). Similarly we can compute the value of Π2,1(x(t)) whenever

d2,1(x(t)) = 0.

In all other regions of the state space for which both pools are full, i.e., zi,j(t) + zj,i(t) = mj(t), i ̸= j,

we can easily determine the value of π1,2(x(t)) by considering whether di,j(x(t)) is bigger or smaller than 0.

For example, if at time t ≥ 0 d1,2(x(t)) > 0, then π1,2(x(t)) = 1 and if d1,2(x(t)) < 0, then π1,2(x(t)) = 0.

This, together with the value of z2,1(t), immediately gives the value of Π1,2(x(t)).
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We need to use other fluid equations when at least one of the two pools is not full. If, for example

z1,1(t) + z2,1(t) < m1(t), then necessarily q1(t) = 0 < k1,2, so that

ż1,2(t) = −µ1,2z1,2(t) and ż1,1(t) = λ1(t)− µ1,1z1,1(t).

The evolution of z2,1 in this case is determined by whether q2(t) < k2,1 or q2(t) ≥ k2,1. In the first case

z2,1(t) must be strictly decreasing at time t if it is positive, or remain at 0 otherwise. In the latter case, when

q2(t) ≥ k2,1, the excess fluid - that is not routed to pool 2 and does not abandon, if such excess fluid exists -

is flowing to pool 1. We thus have

ż2,1(t) =

{
−µ2,1z2,1(t) if q2(t) < k2,1

−µ2,1z2,1(t) + (λ2(t)− µ2,2z2,2(t)− µ1,2z1,2(t)− θ2k2,1)
+ if q2(t) = k2,1

(28)

Similar reasonings lead to the fluid model of z1,2 when pool 1 is full, but pool 2 has spare capacity.

If both pools have spare capacity at time t, then q1(t) = q2(t) = 0 and

żi,j(t) = −µi,jzi,j(t) and żi,i(t) = λi − µi,izi,i(t), i, j = 1, 2, i ̸= j.

To compute the solution x over an interval [0, T ] we employ the classical Euler method, combined with

the AP. Given a step size h and the time T , the number of iterations needed is N ≡ T/h. Let ẋ = Ψ(x),

where Ψ(x) is the RHS of the appropriate ODE, e.g., if both pools are full, then Ψ(x) is the RHS of (19).

Given x(0), we can compute x(h) using the first Euler step: x(h) = x(0) + hΨ(x(0)). Given x(h) we can

compute Π1,2(x(h)) and Π2,1(x(h)), if needed, and then compute x(2h) using the second Euler step. In

general, the solution to the ODE is computed via

x((k + 1)h) = x(kh) + hΨ(x(kh)), 0 ≤ k ≤ N,

where at each step, if x(kh) ∈ B1,2 or x(kh) ∈ B2,1, we can compute Π1,2(kh) and Π2,1(kh) as explained

above.

The algorithm just described remains unchanged when the ratio parameters are general (not equal to 1),

except that the sets Ai,j and the computations of πi,j are more complicated (the FTSP’s are no longer BD

processes). We refer to [37] for these more complicated settings.

Remark 6.1. If at iteration k ≥ 0 the solution lies outside the set B1,2∪B2,1, then due to the discreteness of

the algorithm, there is a need to ensure that the boundary is not missed in the following iterations. Hence, if

in the kth iteration d1,2(x(kh)) > 0 (< 0) and in the (k+1)st iteration d1,2((x(k+1)h)) < 0 (> 0), then the

boundary d1,2 necessarily was missed, because the fluid is continuous, and so we set d1,2((x(k+1)h)) = 0.

We then check whether x((k+1)h) ∈ A1,2((k+1)h), compute π1,2(x(k+1)h) and use its value to compute

the value in the (k + 2)nd iteration. It is significant that we do not force the solution to be on the boundary,
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e.g., we do not compute q1((k + 1)h) and use its value to compute q2((k + 1)h) via

q2((k + 1)h) = q1((k + 1)h)− k1,2. (29)

We solve the six-dimensional ODE in (19), and if indeed (29) holds whenever it should, then we have a

good indication that the algorithm works. That is, we can check at which iteration the boundary B1,2 was

hit, and then observe if q1(t) − q2(t) = k1,2 over an interval for which we have indication that this should

hold. (Of course, the solution to the algorithm might leave the boundary for legitimate reasons, i.e., because

the fluid model leaves it.)

7 Numerical Examples

We now study three examples. The first two are piecewise continuous models, whereas the third is for

a general time-varying model. In all three examples the system starts empty, so that we also check the

numerical algorithm in periods when (18) does not hold, as in §5.4.

We compare the numerical solutions to the ODE to simulations, to see how well the fluid approximated

stochastic systems. In the first two examples we simulate three systems, each can be considered as a com-

ponent in a sequence {X̄n : n ≥ 1}. In the smallest system we take 50 agents in each service pool, in the

middle one there are 100 agents in a pool, and the largest has 400 agents in each pool, i.e., we simulate X̄n

for n = 50, 100, 400. That allows us to observe the “convergence” of the stochastic system to the fluid ap-

proximation. We plot the fluid and simulation results together, normalized to n = 10. (E.g., for the system

with 400 agents in each pool we divide all processes by 40.)

The following parameters are used for all three simulations:

µ1,1 = µ2,2 = 1; µ1,2 = µ2,1 = 0.8, θ1 = θ2 = 0.5. In addition, we take r1,2 = r2,1 = 1. We take

kn1,2 = kn2,1 = 0.3n; τ1,2 = τ2,1 = 0.02n, so that, for n = 50, 100, 400, we have kn1,2 = kn2,1 = 15, 30, 120

and τ1,2 = τ2,1 = 1, 2, 8, respectively.

7.1 A Single Overload Incident

The first example aims to check whether FQR-ART detects overloads automatically when they occur and

starts sharing in the right direction, and whether, once an overload incident is over, FQR-ART avoids oscil-

lations. In particular, over the time interval [0, 60] the arrival rates are as follows: λn
2 = n throughout that

time interval. Over [0, 20) and [40, 60] the arrival rate to pool 1 is λn
1 = n. Hence, both pools are normally

loaded during these two subintervals. However, during the interval [20, 40) the arrival rate of class 1 changes

to λn
1 = 1.4n, so that, during [20, 40) the system is overloaded, and pool 2 should be helping class 1.

We compare the solution to the fluid equations, solved using the algorithm, to an average of 1000

independent simulation runs for the three cases n = 50, 100, 400. The results are shown in Figures 10-

12 below. In addition Figure 13 plots q1 − r1,2q2 − k1,2. The fact that shortly after time 20 the value is 0, is
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a strong indication that the numerical solution is correct, because during most of the overload period, when

sharing takes place, it should hold that d1,2(x(t)) = 0.
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Figure 10: comparison of the fluid model
to simulations of 10Q̄n

1 for n = 50, 100
and 400 with a single overload

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4
Class−2 Queue

Time

50

100

400

fluid

Figure 11: comparison of the fluid model
to simulations of 10Q̄n
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Figure 12: comparison of the fluid model
to simulations of 10Z̄n

1,2 for n = 50, 100
and 400 with a single overload
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Figure 13: plot of q1 − r1,2q2 − k1,2 in the
single overload example

The simulation experiments indicate that the fluid model approximates well the mean behavior of the

system even for relatively small systems, e.g., when n = 50. Of course, the accuracy of the approximation

grows as n becomes larger. The simulation experiments show that FQR-ART quickly detects the overload

and the correct direction of sharing. Moreover, the control ensures that there are no oscillations, as in §4.

Another observation is that when the system is normally loaded and there is no sharing, the fluid model,

which has null queues, does not describe the queues well. In those cases there is an increased importance

to stochastic refinements for the queues. If there is only negligible sharing, as FQR-ART ensures, then such

stochastic refinements are well approximated by diffusion limits for the Erlang A model, as in [15].
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7.2 Switching Overloads

In the second example we consider an overloaded system, with pool 1 being overloaded initially, and with

the direction of overload switching after some time, making pool 2 overloaded. Specifically, we let the

arrival rates be λn
1 = 1.4n and λn

2 = n over [0, 20), and λn
1 = n, λn

2 = 1.4n on [20, 40]. The results are

plotted in Figures 14-16. Figure 17 plots q1 − r1,2q2 − k1,2 and r2,1q2 − q1 − k2,1.

Once again, the fact that the appropriate difference process equals to 0 shortly after the corresponding

overload begins is an indication that the solution to the ODE is correct, since each queue is calculated via

the averaging principle, without forcing the relations d1,2(x(t)) = 0 and d2,1(x(t)) = 0.
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Figure 14: comparison of the fluid model
to simulations of 10Q̄n

1 for n = 50, 100
and 400 with the switching overloads
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Figure 15: comparison of the fluid model
to simulations of 10Q̄n

2 for n = 50, 100
and 400 with the switching overloads

As in the figures in §7.1, it is easily seen from the figures above that the fluid model approaches a fixed

point, so long as the arrival rates are fixed. Then, once a change in the rates occurs, the fluid goes through a

new transient period until it relaxes in a new fixed point.
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Figure 16: comparison of the fluid model
to simulations of 10Z̄n

1,2 for n = 50, 100
and 400 with the switching overloads
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Figure 17: the two fluid difference pro-
cesses with the switching overloads
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7.3 General Non-stationary Model with Switching Overloads

We next test our algorithm in a more challenging time-varying example. This example is unrealistic in call-

center setting, because the arrival rates and staffing functions are not likely to change so drastically, but it

demonstrates the robustness of our fluid model and of the algorithm.

We assume that the arrival rate to pool 1 over the time period [0, 20) is sinusoidal. We further assume that

management anticipated the basic sinusoidal pattern of the arrival rate, but did not anticipated the magnitude,

so that pool 1 is overloaded. To accommodate the sinusoidal pattern, we assume that staffing follows the

appropriate infinite-server approximation; see, e.g., Equation (9) in [13]. The purpose of that staffing rule in

our setting, is to stabilize the system at a fixed point eventually, as in the examples above. In particular, for

t ∈ [20, 40] we let

λn
1 (t) = 1.3n+ 0.1n sin(t) and mn

1 (t) = n+ 0.05n[sin(t)− cos(t)]; λn
2 (t) = n and mn

2 (t) = n.

Then, on the time interval [20, 40] the overload switches, with pool 2 becoming overloaded and experi-

encing a sinusoidal arrival rate. However, we now take fixed staffing in both service pools. In particular, the

parameters over the second overload interval [20, 40] is

λn
1 (t) = n and mn

1 (t) = n; λn
2 (t) = 1.1n+ 0.1n sin(t) and mn

2 (t) = n.

Thus, we test two overload settings in this example. In the first interval, we can see whether the fluid

approximation stabilizes. Since there is sharing of class-1 customers, previous results such as in [29] do

not apply directly to our case. In the second interval, we expect to see a sinusoidal behavior of the system,

because the staffing in both pools is fixed. In particular, the fluid model should not approach a fixed point

after the switch at time t = 20.

We compare the fluid approximation to simulations for n = 100 and n = 400. Figures 18–21 demon-

strate the effectiveness of the fluid model and the numerical algorithm. As expected, the fluid over [0, 20)

approaches a fixed point, and exhibits a sinusoidal behavior after t = 20, with the accuracy of the fluid

approximation increasing in the scale parameter n.

As was mentioned above, the fluid model requires special care when the staffing functions are decreas-

ing; we refer again to [29]. Figure 22 shows the actual number of agents in Pool 1 for the case n = 100

(the average of the 1000 simulations), and the staffing function mn
1 (t) given above. Clearly, the fluid model

follows the actual staffing closely. We further note that there is a downward jump in the staffing function

at time t = 20. In the fluid model, we simply eliminated the appropriate amount of staffing from the pool,

together with the fluid that was processes with that removed capacity (this fluid in service is lost). However,

in the simulation, agents are removed only when they are done serving, so there is no jump in the actual

staffing at t = 20, and no customer in service is lost. Nevertheless, the fluid model with the jump is clearly

a good approximation for the stochastic model with no jump. This behavior is to be expected, since there

are many service completions over short time intervals in large systems.
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Figure 18: the two fluid difference func-
tions d1,2 and d2,1 with the switching sinu-
soidal overloads
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Figure 19: comparison of the fluid model to
simulations of 10Z̄n

1,2 and 10Z̄n
2,1 for n =

100 and 400 with the switching sinusoidal
overloads
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Figure 20: comparison of the fluid model to
simulations of 10Q̄n

1 for n = 100 and 400
with the switching sinusoidal overloads
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Figure 21: comparison of the fluid model to
simulations of 10Q̄n

2 for n = 100 and 400
with the switching sinusoidal overloads
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Figure 22: Fluid vs. simulations: Number of agents in pool 1

7.4 The Oscillatory Model

Our final examples show that the fluid model can also predict the bad oscillatory behavior. Here we consider

the fluid model of the examples shown in Figures 4–7 in §4. In particular, the parameters are µ1,1 = µ2,2 =
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1, µ1,2 = µ2,1 = 0.1, λ1 = λ2 = 98, m1 = m2 = 100 and τi,j = 1 and ki,j = 10, i, j = 1, 2. Figures 23

and 24 show the fluid solution to the system with no abandonment (in (19) we simply plug θ1 = θ2 = 0),

whereas Figures 25 and 26 show the fluid solution to (19) with θ1 = θ2 = 0.01.

However, the initial conditions here are different than in Figures 4–7. We now take z1,1(0) = m1 = 100

and z1,2(0) = m2−z2,2(0) = 20. The reason is that, if the fluid is initialized with no sharing and no queues,

then its components (q1, q2, z1,2, z2,1) are fixed at (0, 0, 0, 0), i.e., there is never any sharing, and the fluid

queues are constant at zero. However, if it is initialized at states with some sharing, then it may get stuck

at an oscillatory equilibrium, as shown in Figures 23 – 26. In particular, this is a numerical example that

the fluid model may be bi-stable, namely, have two very different stationary behaviors. To which stationary

behavior the fluid ends up converging depends on the initial condition.

This fluid bi-stability property has two immediate implications to the stochastic system. First, once

an overload incident is ending, with substantial sharing taking place, the system may start to oscillate.

Indeed, this is the case in the example shown in Figures 8. The second implication is that the no-sharing

equilibrium may be unstable in practice, because stochastic noise can eventually “push” the system out

of this equilibrium, and cause it to oscillate. That was demonstrate in Figures 4 and 5 in §4. (Recall

that the initial condition of the example in §4 was of an empty system. In particular, with no sharing

initially.) Note also that the time scale in Figures 23 and 24 is shorter than in Figures 25 and 26. As for the

corresponding figures in §4, the time scale of the second example is longer to make it clear that the system

with abandonment converges to an oscillatory equilibrium.
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Figure 23: Oscillations z1,2(t) in the fluid
model of the extreme example with no
abandonment.
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Figure 24: Oscillating growth of the con-
tent q2(t) in the fluid model of the extreme
example with no abandonment.
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Figure 25: Oscillations z1,2(t) in the fluid
model of the extreme example with aban-
donment.
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Figure 26: Oscillating growth of the con-
tent q2(t) in the fluid model of the extreme
example with abandonment.

8 Conclusions

In this paper we studied a time-varying X model experiencing periods of overloads. While our previous

FQR-T control is effective in automatically responding quickly to unexpected overloads, the examples in §3

and §4 show that it needs to be modified to recover rapidly after the overload is over, due to either a return to

normal loading or a sudden change in the direction of the overload. We thus proposed the fixed-queue-ratio

with activation-and-release-thresholds (FQR-ART) control. With FQR-ART, the one-way sharing rule is

relaxed by adding the lower release thresholds. To avoid oscillations of the service process, which in turn

can cause congestion collapse, we indicated that the activation thresholds also need to be increased, being

asymptotically of order O(n) as in (6) instead of o(n), as in (5) with FQR-T.

We then extended the fluid model developed in [36, 37, 38] based on the stochastic averaging principle to

cover a more general time-varying environment. and developed the corresponding algorithm to numerically

compute the performance functions in that fluid model. Simulation experiments indicate that this fluid model

captures the main dynamics of the system, even in extreme cases, as the one considered in (7.3). Thus the

fluid model can be used to ensure that the control parameters of FQR-ART are set properly.

There are many directions for future research. First, it remains to investigate the performance of FQR-

ART in more complex time-varying scenarios. Second, it remains to establish theoretical properties of the

new fluid model paralleling [37]. Third, it remains to establish many-server heavy-traffic limits in this more

general setting paralleling [38, 39]. Fourth, it remains to extend the sharing mechanism to more than two

systems.
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