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This paper investigates the impact of dependence among successive service times on the transient and
steady-state performance of a large-scale service system. This is done by studying an infinite-server queueing

model with time-varying arrival rate, exploiting a recently established heavy-traffic limit, allowing dependence
among the service times. This limit shows that the number of customers in the system at any time is approxi-
mately Gaussian, where the time-varying mean is unaffected by the dependence, but the time-varying variance
is affected by the dependence. As a consequence, required staffing to meet customary quality-of-service tar-
gets in a large-scale service system with finitely many servers based on a normal approximation is primarily
affected by dependence among the service times through this time-varying variance. This paper develops for-
mulas and algorithms to quantify the impact of the dependence among the service times on that variance. The
approximation applies directly to infinite-server models but also indirectly to associated finite-server models,
exploiting approximations based on the peakedness (the ratio of the variance to the mean in the infinite-server
model). Comparisons with simulations confirm that the approximations can be useful to assess the impact of
the dependence.
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1. Introduction
Performance analysis models for managing service
systems, for example, setting staffing in call centers,
usually assume that the required service times are
mutually independent random variables. However,
successive service times may in fact be dependent.
For example, in a technical support telephone call
center responding to service calls, a product defect
can lead to many calls concerning that same product
after the product is first introduced, and these calls
may tend to require longer-than-usual handling times.
This would increase the average handling time dur-
ing this time period, but it also would make the call
handling times positively correlated. There are well-
developed methods to study the impact of average
service times, but the impact of the dependence, for
a given mean, has evidently not been studied before.
We will show that positive correlation among service
times typically produces additional congestion, reduc-
ing the quality of service during that time period
unless staffing is increased. Moreover, we will quan-
tify the impact. This phenomenon and our results
apply both to the transient system performance after

any one new product is introduced and the steady-
state performance as a succession of new products are
introduced over time.

For another example, in a hospital emergency room,
multiple patients may be associated with the same
medical incident. Several people may be victims of
a single highway accident or food poisoning at the
same restaurant. There may be rapid spread of a
contagious disease. The common causes of serious
problems may lead to multiple patients with longer-
than-usual service times. Again, that would increase
the average service time during this time period;
it also would make the service times positively cor-
related. As in the first example, this dependence
affects both the transient system performance associ-
ated with a single incident and the steady-state per-
formance as a succession of incidents occur over time.

In this paper, we investigate the performance
impact of dependence among the service times in
a queueing model with a large number of homo-
geneous servers. We treat transient effects as well
as steady-state effects. We do so by establishing
results for transient behavior, allowing time-varying
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arrival rates. We directly develop analytical formu-
las and numerical algorithms to expose the approxi-
mate performance impact of dependent service times
for infinite-server (IS) models. The results have use-
ful applications for service systems with only finitely
many servers in two ways. First, IS models can be
directly applied to understand and control the per-
formance of large-scale service systems. Second, the
new approximation for IS models can be applied
to yield corresponding performance approximations
for models with only finitely many servers; we
elaborate below. In both cases, analytical formulas
and numerical algorithms can usefully complement
and supplement computer simulation. Analytical for-
mulas provide important insight; for example, see
Proposition 3 and the following discussion.

Previous work has shown that IS models can be
directly applied to effectively approximate and con-
trol the performance of large-scale service systems;
see Jennings et al. (1996), Feldman et al. (2008), and
Green et al. (2007) for applications of the IS model
to staffing. For systems with finitely many servers,
where customers wait if they cannot be served imme-
diately upon arrival, we can directly approximate the
number of customers in the system by the corre-
sponding number in the IS model. For example, if
s4t5 is the number of servers in the actual system at
time t and X4t5 is the random number in system in
the IS model at time t, then the probability that an
arrival at time t would have to wait before starting
service can be approximated by P4X4t5≥ s4t55.

For the IS model, we determine the performance
impact of the dependence among the service times by
approximating the distribution of the number of cus-
tomers in the system, allowing the dependence, and
comparing the result with and without the depen-
dence. To do this, we apply an approximation for
the distribution of the number of customers in an
IS model based on a many-server heavy-traffic limit
established in Pang and Whitt (2012b). Their anal-
ysis shows that (i) the number of customers in the
IS model at each time is approximately normally dis-
tributed, (ii) the average number in the IS model at
each time is unaffected by dependence among the ser-
vice times, and (iii) the variance of the number in
the IS model at each time is affected by dependence
among the service times, and it can be quantified.

Hence, to characterize the performance impact of
the dependence among the service times, it suffices to
examine the expression for the variance of the number
in the IS system. However, the expressions for the vari-
ance in Pang and Whitt (2012b) are quite complicated.
Even the steady-state variance formula is complicated;
see (6) below, which uses (3) and (5). Our main con-
tribution is to show that useful engineering approxi-
mations can be extracted from the results in Pang and

Whitt (2012b) and to conduct simulation experiments
showing that the approximations are effective.

Our results about the variance translate quite
directly into implications for staffing. As discussed
in Jennings et al. (1996), if we aim to set staffing to
achieve a target probability of delay, then the normal
approximation dictates that the staffing level be set at
the mean plus some constant multiple of the standard
deviation. Suppose that it has been decided to set the
staffing level at the mean plus a constant q times the
standard deviation. If dependence among the service
times changes the variance of the number in system
at time t from �24t5 to �4t5�24t5, where �4t5 > 1, then
the required staffing should increase from E6X4t57 +

q�4t5 to E6X4t57+ q
√

�4t5�4t5, which is an increment
of 4

√

�4t5− 15q�4t5.
We indicated that effective approximations for the

performance in finite-server models can be based on
the performance of associated IS models. For this pur-
pose, the peakedness—the ratio of the variance to the
mean of the number of busy servers in the IS model—
has proven to be very useful (see Eckberg 1983, Whitt
1984, Jagerman and Melamed 1994, Massey and Whitt
1996, Mark et al. 1997, Whitt 2004, and references
therein). Because the dependence in the service times
in the IS model does not affect the mean number of
busy servers at all, our approximation for the vari-
ance of the number of busy servers translates directly
into an associated approximation for the peaked-
ness. Thus we can obtain new approximations for the
performance in finite-server models with dependent
service times by simply substituting our new peaked-
ness for the old peakedness without dependence into
the previous approximation formulas; see (34). Such
new approximations need to be carefully examined,
because they have not been considered previously. We
demonstrate the potential of the new approximations
by reporting results from a simulation experiment for
a finite-server model with dependent service times.

1.1. Related Literature
Even for the relatively elementary IS model with
Poisson arrivals, relatively little work has been done
previously on dependent service times; one excep-
tion is Falin (1994), who provided an algorithmic
approach for the exact distribution with Poisson
arrivals. Another exact numerical approach could
be based on replacing the Pht service times in the
Pht/Pht/� model in Nelson and Taaffe (2004) by an
associated Markovian service process (MSPt), which
has the structure of a Markovian arrival process,
admitting dependence among the service times (e.g.,
see Asmussen 2003).

Unlike for the many-server models considered here,
much is known about the performance impact of
dependence among the service times, as well as
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among the interarrival times and between interar-
rival times and service times, in single-server queue-
ing models and related models with few servers.
This impact is clearly revealed in conventional heavy-
traffic approximations, where the traffic intensity is
allowed to increase toward its critical value 1 from
below; see Theorems 9.3.3 and 9.3.4 and §9.6 of
Whitt (2002) for a detailed treatment of the case of
a single-server queue. The impact of the dependence
is captured via the sums of all the pairwise correla-
tions, as shown in (6.11) on p. 308 of Whitt (2002).
The three forms of dependence—among interarrival
times, among service times, and between interarrival
times and service times—can all be important, as
shown for a packet queue example in Fendick et al.
(1989), reviewed in Example 9.6.1 of Whitt (2002). Our
results here indicate that the impact of the depen-
dence is less dramatic for many-server queues, but it
still can be significant; for example, see the end of §6.

1.2. Organization of This Paper
In §2 we review the result from Pang and Whitt
(2012b). In §3 we restrict attention to the the steady-
state distribution of one stationary IS model and
develop effective representations for the terms in
the steady-state variance formula. In §4 we develop
approximations for the variance of the steady-state
number in the system based on the correlations of suc-
cessive service times. We show that this approximation
is realized exactly via a model of randomly repeated
service times, which is a special case of a first-order
discrete autoregressive process, DAR(1), studied by
Jacobs and Lewis (1978, 1983). In §5 we consider exam-
ples and compare the approximations to simulations.
As an example of geometrically decaying correlations,
we include a simulation using a special sequence of
dependent service times with exponential marginals,
the so-called (mixed) exponential autoregressive-moving
average, EARMA(1, 1), process, from Jacobs and Lewis
(1977). In §6 we evaluate the performance of the
approximation for the delay probability in the finite-
server model with the same EARMA(1, 1) service pro-
cess. In §7 we apply the approximations developed
for the stationary model to develop an approxima-
tion for the time-varying variance in the model with
time-varying arrival rates. In §8 we conduct simula-
tions to evaluate the approximations for time-varying
arrival rates, considering the special case of sinu-
soidal time-varying arrival rates. Finally, in §9 we draw
conclusions.

2. Review of the Heavy-Traffic Limit
The new approximation for the performance of the
Gt/G/� model from Pang and Whitt (2012b), stated

in (5) below, is obtained from a many-server heavy-
traffic limit. The arrival process is assumed to satisfy
a functional central limit theorem (FCLT) of the form

4An4t5−nå4t55/
√
n ⇒

√

c2
aB4å4t55 as n→�1 (1)

in the function space D (see Whitt 2002), where

å4t5≡

∫ t

0
�∗4s5 ds1 t ≥ 01 (2)

and B is a standard Brownian motion. Thus, asymp-
totically, the arrival process is characterized by the
time-varying arrival-rate function �∗4t5 and the vari-
ability parameter c2

a , which is determined by the
limit (1). Dependence among the interarrival times is
captured by the parameter c2

a ; for example, see (7)
below. For the principal case in which An4t5 is a non-
homogeneous Poisson process, c2

a = 1. Consequently,
in model n, the arrival rate at time t is approxi-
mately n�∗4t5, while the number of arrivals in the
interval 601 t7, An4t5, is approximately distributed as
N4nå4t51nc2

aå4t55, where N4m1�25 denotes a random
variable normally distributed with mean m and vari-
ance �2. Asymptotically, the arrival process has inde-
pendent (but not necessarily stationary) increments.

Unlike the arrival process, we know from
Krichagina and Puhalskii (1997) and Pang and Whitt
(2010, 2012b) that the service times affect the many-
server heavy-traffic limit, not via their counting pro-
cess or partial sums, but via the sequential empirical
process. Let 8Si2 i ≥ 19 be the sequence of service times
of successive customers. The (fluid-scaled) sequen-
tial empirical process is K̄n4t1 x5 ≡ n−1∑�nt�

i=1 14Si ≤ x5,
where ≡ denotes equality by definition and 14A5 is
the indicator function of the event A, equal to 1 on
A and 0 elsewhere. The sequential empirical pro-
cess takes a horizontal (or sideways) view of the
service times instead of the customary vertical view.
Let all service times be distributed as the random
variable S having cumulative distribution function
(cdf) F with finite mean mS . With independent ser-
vice times, K̄n4t1 x5 → tF 4x5 as n → � by the law
of large numbers. The FCLT for the scaled process
K̂n4t1 x5 ≡

√
n4K̄n4t1 x5 − tF 4x55 is the basis for the

heavy-traffic limit for the IS model; the limit pro-
cess is K̂4t1 x5=U4t1 F 4x55, where U4t1x5 is the Kiefer
process. The key tool for dependent service times in
Pang and Whitt (2012b) is the FCLT for the sequen-
tial empirical process of weakly dependent random
variables in Berkes and Philipp (1977) and Berkes
et al. (2009). The service times are assumed to be
independent of the arrival process, but the service
times can be mutually dependent. To be able to apply
Berkes et al. (2009) and Berkes and Philipp (1977),
Pang and Whitt (2012b) assume that the service times
come from a stationary sequence of random variables,
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satisfying appropriate mixing conditions (producing
weak dependence), which we assume prevails. Let the
stationary sequence be extended to a two-sided sta-
tionary sequence (which always can be done).

The many-server heavy-traffic impact of the depen-
dence among the service times is determined by the
bivariate cdf of service times j and j + k, Hk4x1y5 ≡

P4Sj ≤ x1Sj+k ≤ y5, where Hk4x1�5 = Hk4�1x5 = F 4x5
for all k ≥ 1 and all x ≥ 0. In particular, the bivariate
cdfs Hk appear via the function

â4s5 ≡ 2
�
∑

k=1

(

Hk4s1 s5− F 4s52
)

= 2
�
∑

k=1

(

H c
k 4s1 s5− F c4s52

)

1 (3)

where F c4s5 ≡ 1 − F 4s5 is the complementary cdf (ccdf).
The last relation in (3) holds because

Hk4s1s5 = H c
k 4s1s5+2F c4s5−1 and

F 4s52 = F c4s52 +2F c4s5−11
(4)

so that Hk4s1 s5− F 4s52 =H c
k 4s1 s5− F c4s52.

Assuming that the system started empty in
the distant past, we obtain the following heavy-
traffic approximation from the FCLT in Pang and
Whitt (2012b):

Q4t5≈N4m4t51v4t551

where m4t5≡

∫ �

0
�4t − s5F c4s5 ds1 t ≥ 01 and

v4t5≡

∫ �

0
�4t − s5V 4s5 ds1

V 4s5≡ F c4s5+ 4c2
a − 15F c4s52 + â4s51 s ≥ 01

(5)

with â in (3), understanding �4t5= n�∗4t5. If we want
the system to start at time 0 instead of in the distant
past, then we can simply set �4t5= 0 for t < 0 in (5).

From above, it follows that the desired approxi-
mate time-dependent variance v4t5 is a function of
the arrival process through the arrival-rate function
�4t5 and the variability parameter c2

a , and of the ser-
vice times through the bivariate cdfs Hk4x1y5. If the
bivariate cdfs Hk4x1y5 were known and understood,
then the story would be complete above, but that typ-
ically is not the case. Much of the following is devoted
to developing effective ways to represent and esti-
mate v4t5 without directly calculating or estimating
Hk4x1y5 for all 4k1x1y5. After doing this, we conduct
simulations to show that the resulting approximations
are effective.

3. An Effective Representation for the
Stationary Model

Associated steady-state formulas are obtained by sim-
ply replacing the time-varying arrival rate function

�4t5 in (5) by the constant �. The corresponding
steady-state formulas are

m4�5= �
∫ �

0
F c4s5 ds = �mS1

v4�5= �
∫ �

0
V 4s5ds = �v�1 v� ≡

∫ �

0
V 4s5ds1

(6)

where V 4s5 is given in (5).
In the stationary setting, it is customary to work

with a single fixed arrival process A4t5 with rate �∗

and let An4t5 ≡ A4nt5, t ≥ 0, n ≥ 1. Then the FCLT (1)
holds with å4t5 = �∗t in (2). Then any dependence
among the interarrival times is captured by the vari-
ability parameter c2

a . Let 8Ui9 be the sequence of inter-
arrival times in A, assumed to be strictly stationary.
As in §4.4 of Whitt (2002), the standard case is

c2
a = 4�∗52�2

a 1

where �2
a =Var4U15+2

�
∑

k=1

cov4U11Uk50
(7)

The series is required to converge in order to have
(1). For a renewal process, c2

a = Var4U15/4E6U175
2, the

squared coefficient of variation (SCV) of an interar-
rival time U .

Clearly, dependence among the service times affects
the performance differently. If there is no dependence
among the service times, then â4s5= 0, so that the third
term in the integrand V 4s5 in (6) and (5) drops out. If
the arrival process is Poisson or if only the arrival pro-
cess satisfies an FCLT with variability parameter c2

a = 1,
then c2

a − 1 = 0, so that the second term 4c2
a − 15F c4s52 in

the integrand V 4s5 in (6) and (5) drops out.

3.1. Peakedness
As we indicated in the introduction, for stationary
IS models, it is revealing to focus on the peakedness,
z ≡ v4�5/m4�5. The Markovian M/M/� IS model is
the reference case; then z ≡ z4M/M5 = 1 because the
distribution is Poisson. Here we understand z to be
the heavy-traffic approximation for the peakedness (which
can be shown to be the limit of z4�5 as �→ � by limit
interchange and uniform integrability arguments). For
the G/M/� model in heavy traffic, where the station-
ary arrival process (å4t5= �∗t in (2)) satisfies an FCLT
with variability parameter c2

a , and the service times
are independent and identically distributed (i.i.d.), z ≡

z4G/M5= 4c2
a + 15/2 for c2

a in (7). For the more general
model with general possibly dependent, service times,
from (3), after dividing and multiplying by mS ≡ 1/�,
and recalling the tail integral formula used in (6), we
obtain a revealing alternative expression.

Proposition 1. For the general stationary model allow-
ing dependent service times, the 4heavy-traffic5 peakedness
can be represented as

z≡ z4G/G5≡ z4c2
a1 F 1 8Hk95= 1 + 4c2

a − 15I1 + I21 (8)
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where

I1 ≡ I14F 5≡

∫ �

0 F c4s52 ds

mS

(9)

and

I2 ≡ I248Hk95=

∫ �

0 â4s5 ds

mS

=
2
∫ �

0 4
∑�

k=14H
c
k 4s1 s5− F c4s5255 ds

mS

0 (10)

3.2. Representation of Integrals as Mean Values
Unfortunately, formulas (6), (9), and (10) are still com-
plicated, requiring that we somehow determine or
estimate the entire functions F c and â . However, we
actually only require the integrals of these functions.
We now show that the integrals have convenient
expressions as means of random variables, which facil-
itates both analysis and statistical estimation. In partic-
ular, with simulation or system data, we can estimate
these mean values directly via standard statistical
methods for estimating means, which provides a con-
venient simplification for application of these results.

We obtain the new representation by exploiting tail
integrals, as in (6). Let S1 ∧ind S2 be the minimum of
two independent random variables, each distributed
as a single service time random variable S with cdf
F , so that its complementary cdf is P4S1 ∧ind S2 > s5 =

F c4s52. Hence, the integral term I1 in (8) and (9) can
be expressed as the ratio of two mean values:

I1 = E6S1 ∧ind S27/E6S171 (11)

where S1 and S2 are independent random variables
with common cdf F . As a consequence, 0 ≤ I1 ≤ 1, with
I1 = 1 in the deterministic case when F is the distribu-
tion of a single point mass. More generally, I1 tends to
decrease as the distribution of F gets more variable.
The exponential case is an intermediate case, yielding
I1 = 1/2.

Similarly, H c
k 4s1 s5 = P4Sj ∧ Sj+k ≥ s5, where these

random variables have their given joint distribution.
Hence, we can also obtain an alternative representa-
tion of I2 exploiting tail integrals. Paralleling (11), we
can write

Jk ≡
E6Sj ∧Sj+k7

E6Sj 7
1 k≥11 and I2 =2

�
∑

k=1

4Jk−I150 (12)

Just like I1, we have 0 ≤ Jk ≤ 1. Because we are consid-
ering positive dependence, we expect to have Jk ≥ I1
for all k. At first glance, there is an issue about con-
vergence for I2 in (12), but it can be expected, because
we should have Jk − I1 → 0 as k → �.

We summarize our conclusions in the following:

Proposition 2. The two integral terms I1 and I2
defined in (9) and (10) and appearing in the peakedness
formula (8) can be expressed in terms of mean values of
the random variables Sj , S1 ∧ind S2, and Sj ∧ Sj+k via (11)
and (12).

4. Approximations Based on
Correlations

In applications, it is common to specify dependence
through correlations, as opposed to the full bivariate
cdf Hk or the mean values of the random variables
Sj , S1 ∧ind S2, and Sj ∧ Sj+k. Thus, in this section we
develop an approximation that depends only on the
correlations. In the next section we investigate how
well it works. We cannot apply any assumption about
the correlations directly, because the approximation
formula for the key integral term I2 in (10) and (12)
depends on the full cdfs Hk, and not just the corre-
lations. Thus, we now provide a way to approximate
the bivariate cdfs Hk, given the partial information
provided by their correlation.

4.1. Exploiting Extremal Bivariate cdfs
We will construct the approximating cdf by exploit-
ing extremal bivariate cdfs with the given marginal
cdf F (see Whitt 1976). The maximum correlation 1 is
achieved when the two service times are identical; the
joint cdf is H̃14x1y5≡ F 4x∧y5. The minimum nonneg-
ative (zero) correlation is achieved when the random
variables are independent; the joint cdf is H̃04x1y5 ≡

F 4x5F 4y5. (It is possible to construct multivariate dis-
tributions with negative correlation, but that does not
seem realistic for the present application.) A specific
cdf with correlation �, 0 ≤ �≤ 1, is achieved by taking
a convex combination of these two cdfs; that is,

H̃�4x1y5 ≡ �H̃14x1y5+ 41 −�5H̃04x1y5

= �F 4x∧ y5+ 41 −�5F 4x5F 4y50 (13)

Given that two service times have correlation � and
marginal cdf F , we can let H̃� be the joint cdf in (13).
It has marginal cdf F and correlation �. We can thus
compute an approximation to I2 based on the partial
characterization of the joint cdf Hk by its marginal cdf
F and correlation �. In particular, as a first step, from
(13) and (4), we get

H̃ c
�4s1 s5− F c4s52 = �4F c4s5− F c4s525 and

H̃ c
�4s1 s5= �F c4s5+ 41 −�5F c4s521 s ≥ 00

(14)

Using the second relation in (14), we see that the func-
tion H c

�4s1 s5 of the single variable s coincides with the
ccdf of a random variable, say Y�, that is a mixture of
random variables with ccdfs F c4s5 and F c4s52. In con-
trast, we can apply the first relation in (14) with (10)
to directly obtain a new approximate expression for
the integral I2 as a function of all the pairwise corre-
lations; in particular we get

I2 ≈ 241 − I15è�1 è� ≡
∑�

k=1 �k and

�k ≡ Corr4Sj1 Sj+k50
(15)
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We assume that the sum è� in (15) is finite. Given
(13), we also obtain a simple representation for the
function V in (5). For these bivariate cdfs, we have

V 4s5 = 41 + 2è�5F
c4s5

+ 4c2
a − 1 − 2è�5F

c4s521 s ≥ 00 (16)

We now summarize our conclusions.

Proposition 3. If we fit an approximating bivariate
cdf H to a specified marginal cdf F and a nonnegative cor-
relation � via (13), then the peakedness in Proposition 1
becomes

z = 1 + 4c2
a − 15I1 + 241 − I15è�

= 41 + 2è�5+ 4c2
a − 1 − 2è�5I11 (17)

where è� is the sum of all correlations in (15).

Approximation (17) is very useful to obtain a basic
understanding of the causes of peakedness. There
are three relevant distinct parameters in approxi-
mation (17): the arrival process variability parame-
ter c2

a , the marginal service-time variability parameter
I1 depending only on F , and the service-time depen-
dence factor è� in (15).

From the first expression in (17), we see that the
peakedness z is linearly increasing in the two variables
c2
a and è� for any value of I1. For c2

a , the growth fac-
tor is I1; for è�, the growth factor is 241 − I15. The
first growth factor increases in I1, ranging from 0 to 1,
and the second decreases in I1, ranging from 2 to 0.
The second expression in (17) shows that z is lin-
early increasing (unaffected by or linearly decreasing) in
I1 when c2

a − 1 − 2è� > 4= or <50.
In the cases of D service, M service, and highly

variable service, we have I1 = 1, I1 = 1/2, and I1 ≈ 0,
respectively. Thus, for D service, z = c2

a ; for M ser-
vice, z= 44c2

a + 15/25+è�; and for highly variable ser-
vice (characterized by I1 ≡ 0), z = 1 + 2è�. Thus, with
D service, only the arrival process matters; with M
service, we add è� to the G/M/� peakedness expres-
sion; with highly variable service (as represented by
small I1), the arrival process variability as captured by
the parameter c2

a plays no role.

4.2. Randomly Repeated Service Times
We now introduce a model for a stationary sequence of
service times for which the bivariate cdfs Hk coincide
with the special bivariate cdfs H̃�k

in (13). As a con-
sequence, for these models, the approximation for the
(heavy-traffic) peakedness in Proposition 3 is exact.

4.2.1. A Simple One-Parameter Model. We start
with an initial simple single-parameter model for
the sequence of service times with marginal cdf F .
We let each successive service time be a mixture of

the previous service time with probability p or a new
independent service time having cdf F , with prob-
ability 1 − p. (This is a special case of a first-order
discrete autoregressive process, DAR(1), studied by
Jacobs and Lewis (1978, 1983).) In other words, we
can let S1 be distributed according to F ; 8Xk2 k ≥ 29 be
a sequence of i.i.d. random variables, each with cdf F ;
and then 8Zk2 k ≥ 29 be a sequence of i.i.d. random
variables with P4Zk = 15 = 1 − P4Zk = 05 = p. Then,
given S1, we construct the sequence of service times
8Sk2 k ≥ 19 by stipulating that

Sk =Zk−1Sk−1 + 41 −Zk−15Xk1 k ≥ 20 (18)

This model produces independent groups or “batches”
of identical service times, where the batch sizes are
geometric. In this model, we have the correlations

Corr4Sj1 Sj+k5= pk (19)

and we have all the bivariate cdfs

Hk4x1y5≡ P4Sj ≤ x1Sj+k ≤ y5= H̃�k
4x1y51

where �k = pk0 (20)

Hence è� = p/41 − p5 in this case.

4.2.2. General Batch-Size Distribution. We can
extend the model to allow batches of identical ser-
vice times with nongeometric distributions. The new
model for the sequence of service times with marginal
cdf F has each successive service time be a mixture
of the previous service time with probability pk or
a new independent service time having cdf F , with
probability 1 − pk, where the probability pk depends
on how many repeated service times have occurred
so far. We get probability pk if there have been k suc-
cessive identical service times previously.

In other words, as before, we can let S1 be dis-
tributed according to F , and we can let 8Xk2 k ≥ 29 be
a sequence of i.i.d. random variables, each with cdf F .
But now include the counter variables Nk. We ini-
tially set N1 = 1. Now let 8Zk2 k ≥ 19 be a sequence of
random variables that are conditionally independent
given the sequence 8Nk2 k ≥ 19, with

P4Zk = 1 �Nj1 j ≤ k5

= 1 − P4Zk = 0 �Nj1 j ≤ k5= pNk
1 (21)

where 8pk2 k ≥ 19 is a sequence of probabilities (0 ≤

pk ≤ 1), where
∏�

k=1 pk = 0. Then we can recursively
construct the sequences of service times 8Sk2 k ≥ 19 and
the counting variables 8Nk2 k ≥ 19 by stipulating that

Sk =Zk−1Sk−1 + 41 −Zk−15Xk1 k ≥ 21 (22)

and Nk = Zk−1Nk−1 + 1, k ≥ 2; i.e., Nk = Nk−1 + 1 if
Zk−1 = 1 and Nk = 1 if Zk−1 = 0.



Pang and Whitt: Dependent Service Times
268 Manufacturing & Service Operations Management 14(2), pp. 262–278, © 2012 INFORMS

We have specified the distribution of each suc-
cessive batch size via the conditional probabilities
P4B = k � B ≥ k− 15= pk−1, k ≥ 2. We have directly as-
sumed that B has a proper distribution: P4B<�5=1.
We will also want to require that the mean E6B7 is
finite as well. Hence, we assume that

E6B7=
�
∑

k=1

P4B ≥ k5=

�
∑

k=1

k−1
∏

i=1

41 − pi5 <�0 (23)

We also want the service times we consider to come
from a stationary sequence. To achieve that, we need
to start with a stationary batch, denoted by B∗.
We want to assume that the age of the initial batch
is distributed according to the batch-size stationary
excess distribution. In particular, we assume that

P4N1 =k5 = P4B∗
=k5≡p∗

k =
P4B≥k5

∑�

k=1P4B≥k5

=
P4B≥k5

E6B7
1 (24)

which has mean

mB∗ ≡ E6B∗7=
E6B27+mB

2mB

=
mB4c

2
B + 15+ 1

2
0 (25)

See Whitt (1983) for more on the batch-size stationary-
excess distribution.

For this more general model, we again have the
bivariate distributions as in (20), but now, for k ≥ 1,

�k ≡ Corr4Sj1 Sj+k5=

�
∑

j=1

p∗

j P4B ≥ j + k � B ≥ j5

=

∑�

j=1 P4B ≥ j + k5

E6B7
= P4B∗ > k50 (26)

Because the bivariate cdfs are the same as in §4,
the approximation in Proposition 3 is again exact for
this model.

Proposition 4. For the G/RRS/� IS model with ran-
dom batch-size B having finite first two moments, the exact
heavy traffic peakedness is as in Proposition 3, with

è� ≡

�
∑

k=1

�k =

�
∑

k=1

P4B∗ > k5

= mB∗ − P4B∗
≥ 15=mB∗ − 1

=
mB4c

2
B + 15− 1

2
<�0 (27)

Proof. Apply (26) and (25) to compute è�. �
Under regularity conditions, we can also construct

a random repeated service (RRS) model to have given
correlations.

Proposition 5. Suppose that the stationary sequence
of service times has the sequence of correlations 8�k2 k ≥ 19
with è� <�. If the associated sequence 8�k−1 −�k2 k ≥ 19,
where �0 ≡ 1, is nonincreasing, then we can construct an
RRS model with the given correlation sequence. The mean
batch size is mB = 41 − �15

−1. The batch-size distribution
is specified by having P4B ≥ 15= 1 and

P4B ≥ k5=
�k−1 −�k

1 −�1
1 k ≥ 10 (28)

For the associated G/RRS/� IS model, the exact heavy-
traffic peakedness is as in Proposition 3.

Proof. From (26), 1 − �1 = P4B∗ = 15 = P4B ≥ 15/mB

= 41/mB5, implying that mB = 41−�5−1. Also from (26),

�k−1 −�k = P4B∗
= k5=

P4B ≥ k5

mB

= 41 −�15P4B ≥ k51 k ≥ 10 �

5. Examples and Simulation
Comparisons

In this section, we consider some examples and make
comparisons with simulation. In addition to the model
with RRS times in §4.2, we also consider the EARMA
service times introduced by Jacobs and Lewis (1977),
extended by Lawrence and Lewis (1980) and Sim
(1990), and studied further in queueing models by
Jacobs (1980). We consider a wide range of correla-
tions, including quite high values, which seem less
realistic but indicate the limits of the approximations.

5.1. Evaluating the Approximation with
RRS Times

We first describe simulations to evaluate the heavy-
traffic peakedness approximation for the M/RRS/�
model, having RRS times, as in §4.2. We let the service
times all be exponentially distributed with mean 1.
We consider the simple one-parameter model in (22)
specified by the parameter p. We consider five values
of p: 001100251005010075, and 0090, with higher values
indicating higher correlations.

For the stationary model, from (16), we get the asso-
ciated peakedness in (17). In the case of a Poisson
arrival process and exponential service times having
mean 1, we get

V 4s5= 41 + 2è�5e
−s

− 2è�e
−2s0 (29)

For the stationary model, we get the associated heavy-
traffic peakedness

z= 41 + 2è�5−è� = 1 +è� =
1

1 − p
0 (30)

Results for our simulation experiments are shown in
Table 1. In our simulation experiments we considered
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Table 1 Comparison of the Heavy-Traffic Peakedness for
the M/RRS/� Model in Propositions 3 and 4 to
Simulation Estimates

p � HT approx. Simul. 95% CI Time int. N reps.

0.10 1000 10111 10103 ±00009 62011007 11000
0.10 001 10111 10007 ±00018 62011007 31000
0.25 2500 10333 10320 ±00007 62011007 11000
0.25 200 10333 10201 ±00009 62011007 11000
0.50 10000 20000 10976 ±00012 62011007 21000
0.50 1000 20000 10839 ±00021 62011007 21000
0.75 80000 40000 30976 ±00012 62011007 51000
0.75 8000 40000 30861 ±00014 62011007 51000
0.90 1100000 100000 90899 ±00018 6201110007 51000
0.90 8000 100000 80999 ±00014 62001110007 51000

Notes. Here we use the single-parameter randomly repeated exponential
service times with heavy-traffic peakedness equal to 1 + è� = 1/41 − p5

from (17) and (19). We consider five cases for the RRS parameter p: 0010,
0025, 0050, 0075, and 0090. For each case, two arrival rates are considered,
the higher one yielding about 1% error and the lower one yielding about
10% error. Halfwidths of 95% confidence intervals (CI) are shown.

a range of arrival rates. For each value of p, we show
values of � that yield approximately 1% and 10% error
for each case (discovered through simulation experi-
ments). We see that the required value of � increases
as the dependence (measured by p) increases. When
p is not extremely large, the heavy-traffic peakedness
provides a remarkably good approximation for a wide
range of �. For the RRS examples in Table 1, the heavy-
traffic peakedness seems to be an upper bound that is
approached monotonically as � increases.

5.2. Nonexponential Distributions
We now extend the last subsection by considering
dependence in the interarrival times as well as the ser-
vice times and nonexponential distributions. (We use
independent RRS models for both the interarrival
times and the service times.) In addition to expo-
nential marginal distributions, now we also consider
hyperexponential (H2, a mixture of two exponential)
marginal distributions, using SCV c2 = 4 and balanced
means to fix the parameters (see (3.7) of Whitt 1982,
p. 137). As before, the mean service time is 1. For this
H2 distribution, I1 = 003500. As in Table 1, we con-
sider RRS times, using the single-parameter model
with p = 1/2. The RRS asymptotic variability param-
eter for the arrival process is c2

a = c241 + 2è�5 = 3c2,
where c2 is the SCV for a single interarrival times;
it is obtained by combining Theorems 4.4.1 and 7.3.2
of Whitt (2002). The arrival rate was initially set at
� = 100, but then increased to � = 11000 in the two
cases with the more variable RSS(H2) arrival process.
The results in Table 2 show that the good performance
extends to this greater level of generality, again pro-
vided that the arrival process is sufficiently large.

Table 2 Comparison of the Approximate Heavy-Traffic Peakedness for
Infinite-Server Models with Dependence and Nonexponential
Distributions to Simulation Estimates

HT
approx.

Arrival Service c2
a I1 � (17) Simul. 95% CI

M RRS(M) 1000 00500 100 20000 10976 ±00012
M RRS(H2) 1000 00350 100 20300 20274 ±00019
RRS(M) RRS(M) 3000 00500 100 30000 20944 ±00024
RRS(M) RRS(H2) 3000 00350 100 30000 20974 ±00018
RRS(H2) RRS(H2) 12000 00350 100 60150 50580 ±00032

11000 60085 ±00023
RRS(H2) RRS(M) 12000 00500 100 70500 60876 ±00058

11000 70417 ±00031

Notes. As in Table 1, random repeated service times are used, but now with
hyperexponential marginals, RRS(H2), as well as with exponential marginals,
RRS(M). Hence, the peakedness is given in Propositions 3 and 4. The H2

distributions have balanced means and SCV c2 = 400. We use the single-
parameter RRS model with p = 1/2, so that è� = 1. The arrival rate is
�= 100 and the mean service time is 1. The first case is from Table 1.
Halfwidths of 95% confidence intervals (CI) are shown.

5.3. EARMA Service Times
The EARMA sequence of random variables is sta-
tionary with exponential marginal distributions and
the correlation structure of an autoregressive-moving
average process, ARMA(1, 1), called EARMA(1, 1) in
Jacobs and Lewis (1977) and simply EARMA here.
The EARMA variables are random linear combina-
tions of i.i.d. exponentials with the same mean. Specif-
ically, we can start with three independent sequences
of i.i.d. random variables 8Xn2 n≥ 09, 8Un2 n≥ 19, and
8Vn2 n≥ 19, where Xn is exponentially distributed with
mean m, and

P4Un = 05 = 1 − P4Un = 15= � and

P4Vn = 05 = 1 − P4Vn = 15= �0
(31)

The EARMA sequence 8Sn2 n ≥ 19 is defined recur-
sively by

Sn = �Xn +UnYn−1

Yn = �Yn−1 +VnXn1 n≥ 10
(32)

The serial correlation has geometric decay. Specifically,

�k ≡ Corr4Sj1 Sj+k5= ��k−11

where � = �41 −�541 −�5+ 41 −�52�0
(33)

5.4. Simulations with EARMA Service Times
To evaluate the heavy-traffic approximation in Propo-
sitions 1 and 2, we simulated several M/EARMA/�
models with different EARMA service time sequences.
Without loss of generality (because we are always free
to choose the units to measure time), let the mean
service time be 1. There are two remaining EARMA
service-time parameters: � and �. In our simula-
tions we consider five cases: (007510050), (005010050),



Pang and Whitt: Dependent Service Times
270 Manufacturing & Service Operations Management 14(2), pp. 262–278, © 2012 INFORMS

Table 3 Simulation Estimates of Jk for the Five EARMA Examples with
Parameters 4�1 �5 Considered in Table 4

k (007510050) (005010050) (005010075) (000010075) (002510090)

1 00523542 00557248 00567959 00799895 00699137
2 00516550 00533666 00550338 00695559 00672134
3 00508623 00517945 00537533 00633580 00648603
4 00504265 00508890 00528097 00593897 00628662
5 00502138 00504377 00520967 00567253 00611864

10 00500073 00500093 00504739 00514462 00558417
20 00500038 00499998 00500192 00500792 00518249
40 00500046 00499984 00499920 00499993 00502008

100 00500026 00499977 00499936 00499988 00499885

(005010075), (000010075), and (002510090). The cumu-
lative correlations è� increase over these five cases:
0025100501100013000, and 5025. For each of these five
EARMA models, we used simulation to estimate the
first 100 values of Jk in (12) to compute I2 in (12) and
thus the exact heavy-traffic peakedness in (8). (These
estimates of I2 apply to all arrival rates.) From the
estimates of Jk, we see that the 100 (or much fewer)
values are adequate; see Table 3.

Because the approximation is based on the heavy-
traffic limit in which � → �, we consider a range
of � values. We consider a Poisson arrival process
with five different arrival rates: �= 200110012011013.
From (17) and (33), the approximate peakedness
based solely on correlations here is z = 1 + è� = 1 +

�/41 − �5. From (33), in the five cases we have � =

1/811/411/413/4121/40.
To estimate the peakedness at each time point, we

performed 2,000 (or in some cases 5,000) independent
replications, starting the system empty. In each sim-
ulation run we collected data over the time interval
62011007 and formed the time average. (The system
tends to reach steady state in a few service times.)
To estimate the halfwidth of the 95% confidence inter-
vals, we performed four more independent replica-
tions and used the Student t distribution with three
degrees of freedom. (The halfwidth is 30182S4/

√
4,

where S2
4 is the sample variance.) The halfwidths of

the confidence intervals of all estimates are approxi-
mately 1%. Table 4 shows the results.

The first thing to observe from Table 4 is that the
dependence has a significant impact in these exam-
ples. The peakedness would simply be 1 if there were
no dependence among the service times. The peaked-
ness is higher by 11%, 25%, 53%, 200%, and 325% in
these five examples. Even if we dismiss the last cases
as extreme cases (chosen to test the approximation),
it is evident that the impact of the dependence can be
significant.

From Table 4, we see that the heavy-traffic approx-
imation for the peakedness (HT approx.) is remark-
ably accurate, provided that the arrival rate � is not
too small. For very small values of �, such as the

Table 4 Comparison of (i) the Heavy-Traffic Peakedness in 485,
Using Simulation to Estimate Jk and I2 in 4125, and (ii) the
Approximation in 4175 Based on the Correlations to
Simulation Estimates of the Peakedness for M/EARMA/�

Examples Specified by the Parameters 4�1 �5

HT Corr.
4�1 �5 � Simul. 95% CI approx. 95% CI approx.

40075100505 200 10116 ±00003 10119 ±00009 10250
100 10116 ±00010 10119 10250
20 10108 ±00004 10119 10250
10 10101 ±00008 10119 10250
3 10080 ±00011 10119 10250

40050100505 200 10251 ±00009 10249 ±00025 10500
100 10255 ±00008 10249 10500

20 10245 ±00011 10249 10500
10 10242 ±00008 10249 10500

3 10198 ±00005 10249 10500
40050100755 200 10533 ±00011 10526 ±00019 20000

100 10535 ±00008 10526 20000
20 10533 ±00009 10526 20000
10 10519 ±00015 10526 20000

3 10379 ±00010 10526 20000
40000100755 200 20988 ±00013 20951 ±00021 40000

100 30012 ±00020 20951 40000
20 30130 ±00017 20951 40000
10 30127 ±00017 20951 40000

3 20591 ±00025 20951 40000
40025100905 200 40335 ±00030 40240 ±00027 60250

100 40390 ±00019 40240 60250
20 40357 ±00029 40240 60250
10 30936 ±00065 40240 60250

3 20454 ±00043 40240 60250

Notes. For each model, five arrival rates are considered: � = 2001
10012011013. Halfwidths of 95% confidence intervals (CI) are shown.

value �= 3 for the last three cases, the exact peaked-
ness falls significantly below the heavy-traffic approx-
imation in (8), but for moderate values of � such
as 10, the approximation is remarkably accurate. The
exact value evidently first increases as � increases,
even slightly passing the heavy-traffic limit, and then
decreases toward that limit (as can be seen from the
cases �= 100 and 200).

Unfortunately, the appealing simple approxima-
tion based solely on the correlations alone in (17) is
not very accurate. The errors in the five cases are
12%120%131%133%, and 42%. Evidently a reasonably
rough approximation can be obtained from the cor-
relations alone if the correlations are not too large,
but the quality of the approximation degrades seri-
ously as the correlations increase. From the results, it
appears that 1 +è�/2 is a pretty good rough approxi-
mation for the M/EARMA/� IS model, except in the
last case. This experiment suggests that the approx-
imation based on correlations may yield an upper
bound. (Other experiments confirm this.)

Case 4 in Tables 4 and 1 both have the correla-
tion structure Corr4S11 S1+k5 = pk for p = 0075. Hence,
the heavy-traffic approximation in Table 1 coincides
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with the approximation based on the correlations in
Table 4, both yielding an approximate peakedness of
4000. The simulation estimate is quite close to that
approximation for the M/RRS/� model in Table 1,
but not for the M/EARMA/� model in Table 4. Thus,
Table 4 illustrates that correlations alone are not suf-
ficient for a good peakedness approximation.

6. Approximations for the Delay
Probability in the G/G/n Model

We now consider the stationary G/G/n queue with
dependent service times, n servers, and unlimited
waiting room, in which customers enter service from
a queue in order of arrival. Let W be the steady-state
waiting time experienced by an arrival. Formula (1.5)
in Whitt (2004) approximates the steady-state proba-
bility P4W > 05 in the G/GI/n model, which has i.i.d.
service times, by

P4W > 05≈ �4�∗/
√
z51 (34)

where the following holds: (i) �4�∗5 can be taken to
be either the exact steady-state probability of delay
in the elementary Markovian M/M/n model with
same arrival rate, service rate, number of servers and
parameter �∗ =

√
n41 − �∗5, with �∗ being the traffic

intensity, or the many-server heavy-traffic approxima-
tion of it, given by the so-called Halfin–Whitt delay
function (see Halfin and Whitt 1981),

�4�∗5≡ 61 +�∗ê4�∗5/�4�∗57−11 (35)

with ê and � being the standard normal cdf and
probability density function (pdf). (ii) z is the peaked-
ness in the associated G/GI/� IS model. As a new
approximation for the more general model with
dependent service times, here we propose the iden-
tical formula (34), but with our new peakedness z
accounting for the dependent service times instead of
the previous one based on i.i.d. service times.

To evaluate this new approximation, we consider
the same EARMA service times as in the previous
section, considering the first three cases with two
different numbers of servers, with the arrival rate
� chosen according to the many-server heavy-traffic
scaling � = �n41 − �∗/

√
n5, using �∗ ≡ �/n�, where

�∗ is a quality-of-service parameter (see Halfin and
Whitt 1981).

Table 5 shows the results. Clearly, the accuracy is
again remarkably good. Higher n is needed for good
accuracy as �∗ increases. Anticipated improvement in
accuracy is seen as n increases in all three EARMA
cases with �∗ = 100. This example demonstrates that
the new peakedness approximations can be useful for
finite-server models.

To put these results in perspective, note that the
delay probabilities based on (34) for the case z= 1

Table 5 Comparison of the Approximation for the Delay Probability
in 4345 Using the Halfin–Whitt Function 4355 to Simulation
Estimates for M/EARMA/n/� Examples, Using the EARMA
Service Times from the Previous Subsection for the First
Three Cases of 4�1 �5: 40075100505, 40050100505, and
40050100755

(QoS,
EARMA case servers) Simulation HT Percentage
4�1 �5 4�∗1 n5 estimate 95% CI approx. error

40075100505 411255 002310 ±000003 002459 605
4114005 002411 ±000002 007
40025145 007449 ±000008 007345 −104
400251165 007423 ±000006 −101

40050100505 411255 002551 ±000002 002683 502
4114005 002705 ±000002 −008
40025145 007542 ±000003 007472 −009
400251165 007555 ±000005 −101

40050100755 411255 002976 ±000003 003009 402
4114005 003142 ±000005 −104
40025145 007627 ±000003 007690 008
400251165 007755 ±000002 −008

Notes. The arrival rate was chosen according to the many-server heavy-
traffic scaling with quality-of-service (QoS) parameter �∗. From Table 4, the
peakedness values in these three cases estimated by simulation with n = 200
(approximation) are, respectively, 10116 (10119), 10251 (10249), and 10533
(10526). Halfwidths of 95% confidence intervals (CI) are shown.

(with no dependence) are 007209 and 002234 when
�∗ = 0025 and 100, respectively. With low peakedness,
as in the first case with 4�1�5= 40075100505, there is lit-
tle difference; with higher peakedness, as in the third
case, the difference is significant. However, the impact
is much less than in Fendick et al. (1989).

7. Time-Varying Arrival Rates
To treat transient phenomena and time-varying arrival
rates in service systems, we now develop approxima-
tions for the time-varying variance v4t5 in (5) and the
time-varying peakedness z4t5 ≡ v4t5/m4t5 to go with
the mean m4t5 in (5) and various approximations for it,
such as those based on Taylor series approximations
(see Eick et al. 1993b, Green et al. 2007).

7.1. Exact Expressions
First, we review exact expressions for the time-
varying mean from Eick et al. (1993b) and then
develop analogs for the time-varying variance.
To express these, recall that for any nonnegative
random variable S with cdf F and finite mean mS , we
can define a random variable Se with the stationary-
excess cdf

Fe4x5≡ P4Se ≤ x5≡
1
mS

∫ x

0
F c4x5dx1 (36)

where F c4x5 ≡ P4S > x5 is again the ccdf, which has
mean E6Se7=mS4c

2
S + 15/2 and kth moment

E6Sk
e 7=

E6Sk+17

4k+ 15mS

1 k ≥ 10 (37)
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Theorem 1 of Eick et al. (1993b) gives two alternative
expressions for the mean in (5):

m4t5= E

(

∫ t

t−S
�4u5du

)

= E6�4t − Se57mS 0 (38)

The first formula in (38) expresses m4t5 as the inte-
gral of the arrival rate over the interval 6t − S1 t7 of
random length S ending at t. The second formula
expresses m4t5 as the pointwise-stationary approximation
(PSA) �4t5mS modified by a random time shift by the
stationary-excess random variable Se.

In Eick et al. (1993b), these expressions are shown
to be exact for the number in the system at time t in
the Mt/GI/� model with nonhomogeneous Poisson
arrival process (the Mt) and a sequence of i.i.d. ser-
vice times independent of the arrival process. But the
same reasoning shows that the mean formula is also
exact for the more general Gt/G/� model with the
same arrival rate function and stationary service times
independent of the arrival process. The extension to
Gt arrivals is noted and explained in Remark 2.3 of
Massey and Whitt (1993). The formulas then remain
exact in the heavy-traffic limit.

It is clear from the representations (11) and (12)
that the same constructions can be used for the time-
varying variance formula in (5). We now give an
analog for the final relation in (38), with the under-
standing that an analog of the other can be obtained
as well.

Proposition 6. An alternative 4exact5 expression for
the time-varying variance 4of the heavy-traffic limit5
in (5) is

v4t5 = E6�4t−Se57mS

+4c2
a −15E6�4t−4S1 ∧indS25e57E6S1 ∧indS27

+2
�
∑

k=1

(

E6�4t−4S1 ∧S1+k5e57E6S1 ∧S1+k7

−E6�4t−4S1 ∧indS25e57E6S1 ∧indS27
)

0 (39)

The associated 4heavy-traffic5peakedness is z4t5=v4t5/m4t5,
combining (39) with (38).

Proof. The key is to write V 4s5 in (5) in terms of
stationary-excess random variables Se, 4S1 ∧ind S25e and
4S1 ∧ S1+k5e associated with the random variables S,
S1 ∧ind S2 and S1 ∧ S1+k, defined as in (36). We get

V 4s5 = fSe 4s5E6S7+ 4c2
a − 15f4S1∧indS25e

4s5E6S1 ∧ind S27

+ 2
�
∑

k=1

(

f4S1∧S1+k5e
4s5E6S1 ∧ S1+k7

− f4S1∧indS25e
4s5E6S1 ∧ind S27

)

0 (40)

We now can integrate in (5). �

To provide illustrative examples and insight, it has
become standard to study sinusoidal arrival rates.
In Eick et al. (1993a) exact formulas are given for the
mean with a sinusoidal arrival-rate function. Parallel-
ing §7, we can construct corresponding exact formu-
las for the time-varying variance. Suppose the arrival
rate function is

�4t5= �̄+� sin4�t51 t ≥ 01 (41)

where �̄ is the average arrival rate, � is the amplitude,
�/�̄ is the relative amplitude, �= 2�/T is the frequency,
and T is the period. Theorem 4.1 of Eick et al. (1993a)
gives the following expression for the mean:

m4t5 = �̄mS +�
(

sin4�t5E6cos4�Se57

− cos4�t5E6sin4�Se57
)

mS 0 (42)

Following Proposition 6, we obtain a corresponding
exact expression for the variance.

Proposition 7. An alternative 4exact5 expression for
the time-varying variance 4of the heavy-traffic limit5 in (5)
when the arrival-rate function is sinusoidal as in (41) is

v4t5 = �̄mS +�
(

sin4�t5E6cos4�Se57

−cos4�t5E6sin4�Se57
)

mS

+4c2
a −15

[

�̄+�
(

sin4�t5E6cos4�4S1 ∧indS25e57

−cos4�t5E6sin4�4S1 ∧indS25e57
)]

E6S1 ∧indS27

+2
�
∑

k=1

(

[

�̄+�
(

sin4�t5E6cos4�4S1 ∧S1+k5e57

−cos4�t5E6sin4�4S1 ∧S1+k5e57
)]

E6S1 ∧S1+k7

−
[

�̄+�
(

sin4�t5E6cos4�4S1 ∧ind S25e57

−cos4�t5E6sin4�4S1 ∧indS25e57
)]

E6S1 ∧indS27
)

0

(43)

The associated 4heavy-traffic5 peakedness is z4t5=v4t5/m4t5,
combining (43) with (42).

From Proposition 7, we can deduce that the heavy-
traffic peakedness can be effectively computed with
sinusoidal arrival rates. Paralleling Proposition 2 for
the stationary model, we can conclude the following
for sinusoidal arrival rates.

Corollary 1. If the arrival-rate function is sinusoidal
as in (41), then the heavy-traffic approximations for the
time-varying mean, variance, and peakedness in (42) and
Proposition 7 can be computed in terms of the mean
values: E6Sj 7, E6S1 ∧ind S27, E6Sj ∧ Sj+k7, E6cos 4�Sj57,
E6cos 4�4S1 ∧ind S2557, E6cos 4�4S1 ∧ S1+k557, E6sin 4�Sj57,
E6sin 4�4S1 ∧ind S2557, and E6sin 4�4S1 ∧ S1+k557, k ≥ 1.
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As noted in §5 and §7 of Eick et al. (1993a), nice
explicit formulas can be obtained in the case of expo-
nential and hyperexponential service times, because
if S is exponential with mean mS , Se is distributed
the same as S and E6sin4�Se57 = mS�/41 +m2

S�
25 and

E6cos4�Se57 = 1/41 + m2
S�

25. From (15) of Eick et al.
(1993b), the mean has the expression

m4t5 =
[(

�̄+�41+�2m2
S5

−1

·4sin4�t5−�mS cos4�t55
)]

mS 0 (44)

Hence, we can obtain the following explicit formula in
the case of RRS exponential service times. We exploit
Equation (16).

Proposition 8. An alternative 4exact5 expression for
the time-varying variance 4of the heavy-traffic limit5 in (5)
when the arrival-rate function is sinusoidal as in (41) and
the service times are RRS exponential with mean mS = 1 is

v4t5 = 41 + 2è�5mS

(

�̄+�41 +�2m2
S5

−1

· 4sin4�t5−�mS cos4�t55
)

+
1
2 4c

2
a − 1 − 2è�5mS

[

�̄+�41 +�2m2
S/45−1

· 4sin4�t5− 4�mS/25 cos4�t55
]

0 (45)

The associated 4heavy-traffic5 peakedness is z4t5=v4t5/m4t5,
combining (45) with (44).

The formulas in Proposition 8 can serve as an ap-
proximation based on the correlations alone, parallel-
ing Proposition 3.

7.2. Approximations
Various approximations for the mean are given in Eick
et al. (1993b) and reviewed in §4.4 of Green et al. (2007).

7.2.1. Taylor-Series Approximations. A simple
effective approximation for the mean is obtained by
applying a Taylor series approximation in the final
formula in (38), assuming that the arrival rate is suit-
ably smooth and that the successive derivatives are
suitably small so that the Taylor approximation is
justified. Eick et al. (1993b) observe that a quadratic
variant of a two-derivative approximation is reveal-
ing and often effective. It produces a time lag and a
space shift, yielding

m4t5≈ �4t −E6Se75mS +
�′′4t5

2
Var4Se5mS 0 (46)

The analog of approximation (46) for v4t5 is ob-
tained by again applying a two-term Taylor series ap-
proximation to the arrival-rate function �. For v4t5,
we obtain the approximation

v4t5 ≈ �4t −E6Se75mS

+ 4c2
a − 15�

(

t −E64S1 ∧ind S25e7
)

E6S1 ∧ind S27

+ 2
�
∑

k=1

(

4�4t −E64S1 ∧ S1+k5e75E6S1 ∧ S1+k7

−�
(

t −E64S1 ∧ind S25e75E6S1 ∧ind S27
)

+
�′′4t5

2
Var4Se5mS

+
4c2

a − 15�′′4t5

2
Var

(

4S1 ∧ind S25e
)

E6S1 ∧ind S27

+�′′4t5
�
∑

k=1

(

Var
(

4S1 ∧ S1+k5e
)

E6S1 ∧ S1+k7

− Var
(

4S1 ∧ind S25e
)

E6S1 ∧ind S27
)

0 (47)

The associated peakedness approximation is z4t5 ≈

v4t5/m4t5 for v4t5 in (47) and m4t5 in (46).

7.2.2. Approximations Based on a Recent Aver-
age Arrival Rate. It may suffice to use an even more
elementary approximation, exploiting the formulas
and approximations for the stationary model, after
replacing the time-varying arrival rate function in (5)
by its time-varying average prior to t. (Ways to apply
results for stationary models to describe the aver-
age performance of models with periodic arrival rates
were proposed in Massey and Whitt 1996.) In particu-
lar, we propose the alternative approximations (again
assuming that the system starts in the distant past):

m4t5 ≈ �̂4t5
∫ �

0
4F c4s55 ds = �̂4t5mS1

v4t5 ≈ �̂4t5
∫ �

0

(

F c4s5+ 4c2
a − 15F c4s52

+ â4s5
)

ds1

z4t5 ≈
v4t5

m4t5
= 1 + 4c2

a − 15I1 + I2

(48)

for t ≥ 0, where

�̂4t5≡

∫ �

0
�4t − s5�e−�s ds1 (49)

with � being a weighting factor that can be selected.
A natural choice is � = 1/E6Se7 = 2E6S7/E6S27 =

2/4E6S74c2
S + 155, because Se is the random time lag

and E6Se7 is the approximate time lag. From these
formulas, we can deduce that the stationary model
approaches steady state over a few service times; for
example, see (20) in Eick et al. (1993b). It is signifi-
cant that the approximate peakedness in (48) is not
time varying; it has precisely the same form as in
Proposition 1. Thus, even though the variance may
be strongly time varying, we expect its fluctuations to
be largely cancelled out by the mean. Equation (48)
tells us to expect that the peakedness should be nearly
constant, assuming nearly the same value as in the
case of a constant arrival rate.

Paralleling the mean in Eick et al. (1993b), the sim-
ple stationary approximation (SSA) for v4t5 replaces
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�̂4t5 in (48) by the long-run average �̄; the PSA
replaces �̂4t5 in (48) by �4t5. Both the SSA and PSA
predict a constant peakedness, just as in (48).

7.3. Random Repeated Service Times
It is significant that we can directly compute all the
quantities in approximation (47) in the setting of §4.
To evaluate the terms E6S1 ∧ S1+k7, E64S1 ∧ S1+k5e7 and
Var44S1 ∧ S1+k5e5, we can exploit the first line of (14),
noting that the random variable S1 ∧ S1+k is the mix-
ture of two random variables having pdf

fS1∧S1+k
4x5= �kfS1

4x5+ 41 −�k5fS1∧indS2
4x51 x ≥ 00 (50)

Hence, the first three moments are

E6S1 ∧S1+k7=�kE6S17+41−�k5E6S1 ∧indS271

E64S1 ∧S1+k5
27=�kE6S

2
1 7+41−�k5E64S1 ∧indS25

271

E64S1 ∧S1+k5
37=�kE6S

3
1 7+41−�k5E64S1 ∧indS25

371

(51)

where, by integration by parts (Feller 1971, p. 150),

E6S1 ∧ind S27 =

∫ �

0
F c4s52 ds1

E64S1 ∧ind S25
27 = 2

∫ �

0
sF c4s52 ds (52)

E64S1 ∧ind S25
37 = 3

∫ �

0
s2F c4s52 ds0

The moments of the associated stationary-excess ran-
dom variable are then determined by (37).

A relatively simple case arises when S is exponen-
tial with mean m. Then S1 ∧ind S2 is exponential with
mean m/2, and so S1 ∧ S1+k is H2 (hyperexponential
of order 2, a mixture of two exponentials), taking the
value of an exponential with mean m with proba-
bility �k and taking the value of another exponen-
tial with mean m/2 with probability 1−�k. Moreover,
the stationary-excess distribution associated with an
exponential is again that same exponential, whereas
the stationary-excess cdf associated with an H2 cdf
is again H2, with the same mixing probabilities but
new exponential means. In this case, the first three
moments of S1 are m12m2, and 6m3; the first three
moments of S1 ∧ind S2 are m/21m2/2, and 3m3/4; and
the first three moments of S1 ∧ S1+k are 41 + �k5m/2,
41 + 3�k5m

2/2, and 43 + 21�k5m
3/4. Finally, E64S1 ∧

S1+k5e7= 41 + 3�k5m/4241 + �k55 and E644S1 ∧ S1+k5e5
27=

43 + 21�k5m
2/4641 +�k55.

We now elaborate on how to compute the last term
in (47) in the case of RRS times when S is exponential.
Suppose that m= 1. Then

Var
(

4S1 ∧ S1+k5e
)

=
1 + 10�k + 5�2

k

441 +�k5
2

and

Var
(

4S1 ∧ind S25e
)

= Var4S1 ∧ind S25=
1
4
1

(53)

so that

Uk ≡ Var
(

4S1 ∧ S1+k5e
)

E
[

4S1 ∧dep S1+k5
]

=
1 + 10�k + 5�2

k

841 +�k5
1

W ≡ Var
(

4S1 ∧ind S25e
)

E6S1 ∧ind S27=
1
8
1 (54)

and
Uk −W =

�k

8
·

9 + 5�k

1 +�k

0

Hence, the sum in the last term of (47) is finite when
∑�

k=1 �k <�; i.e., the last term is

�′′4t5
�
∑

k=1

4Uk −W5<�1 (55)

where Uk −W is given in (54) above.

8. Simulation Experiments for
Sinusoidal Arrival Rates

We now conduct simulation experiments to evaluate
the approximations with time-varying arrival rates.
We restrict attention to sinusoidal arrival rates as
in (41), letting the relative amplitude be fixed at
�/�̄= 0025.

Our first example is for the Mt/RRS/� model, with
nonhomogeneous Poisson arrival process and the
same randomly repeated exponential service times
with mean 1, as in Table 1. We consider four cases of
the single parameter p: 00101002510050, and 0075. For
each p, we let the average arrival rate �̄ coincide with
the larger constant arrival rate in Table 1, yielding
about 1% error with the constant arrival rates. As a
base case, we consider a period T = 2�/�= 10. After-
ward, we consider the much longer period T = 50 and
the much shorter period T = 1.

We consider four different approximations for the
time-varying variance v4t5. We first consider the
exact heavy-traffic value in (45) (and, more generally,
in (43)). We also consider the “recent” approxima-
tion in (48) using � = 1/E6Se7 = 1/E6S7 = 1, the Taylor
series approximation in (47), and the PSA, obtained
by replacing �̂4t5 in (48) by �4t5.

We show the results for the single case p = 0075,
�̄= 800 and T = 10 in Figure 1. As before, the simula-
tion is conducted using multiple replications, without
any averaging over time. Further independent repli-
cations were used to confirm that the confidence 95%
intervals are about 1%. From Figure 1, it is appar-
ent that the new approximations are better than PSA,
with exact and recent approximations in (45) and (48)
being noticeably better than the Taylor approximation
in (47).

Table 6 gives a more details for other cases, all with
period T = 10. Table 6 shows that the approximation
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Figure 1 Comparison of the Approximations for the Time-Varying Variance v4t5 in the Mt/RRS/� Model with Sinusoidal Arrival Rates to
Simulation Estimates
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Notes. Here the RRS service times have mean 1 and parameter p = 0075. The average arrival rate is �̄ = 800, the relative amplitude is �/�̄ = 0025, and the
period is T = 2�/�= 10.

effectiveness has the clear ordering Exact > Recent >
Taylor > PSA, where > means “better than.” The aver-
age absolute errors for PSA are quite large, about
10%, but all the other approximations are quite effec-
tive. As in Table 1, the approximations consistently

Table 6 Comparison of the Approximations for the Time-Varying
Variance v4t5 in the Mt/RRS/� Model with Sinusoidal
Arrival Rates to Simulation Estimates

ErrorsParameters Approximation
4p1 �̄1 T 5 method Avg. Avg. abs. Max. abs.

400101101105 Exact HT (45) 0014 0019 0066
(v̄ ≈ 10097) Recent (48) 0014 0020 0069

Taylor (47) 0014 0038 1008
PSA 0014 1000 1099

400251251105 Exact HT (45) 0047 0056 1095
(v̄ ≈ 32085) Recent (48) 0047 0060 2015

Taylor (47) 0047 1025 3076
PSA 0048 3015 6050

4005011001105 Exact HT (45) 1059 2064 9034
(v̄ ≈ 19803) Recent (48) 1060 4042 13014

Taylor (47) 1056 8074 21032
PSA 1065 20073 38080

4007518001105 Exact HT (45) 16003 47012 169002
(v̄ ≈ 31183) Recent (48) 16026 114028 296019

Taylor (47) 15014 148067 372024
PSA 17014 373055 691020

Notes. As in Table 1, we use the single-parameter randomly repeated expo-
nential service times with mean 1 and parameter p, here considering four
values of p. The average variance v̄ is shown in each case. The sinusoidal
arrival rate function is as in (41) with relative amplitude �/�̄ = 0025 and
period T = 2�/� = 10. We let the average arrival rate �̄ for each p be the
higher level in Table 1, yielding about 1% error in Table 1.

overestimate the actual values, but only by a rela-
tively small value, ranging from 005% to 105%.

We next consider the longer period T = 50 in
Table 7; the other parameters are the same. In this case
with a very slowly varying arrival rate, the system
can be regarded as being approximately in a “local”
steady state at each time, so that it is natural to use

Table 7 Comparison of the Approximations for the Time-Varying
Variance v4t5 in the Mt/RRS/� Model with Slowly
Varying Sinusoidal Arrival Rates to Simulation Estimates

ErrorsParameters Approximation
4p1 �̄1 T 5 method Avg. Avg. abs. Max. abs.

400101101505 Exact HT (45) 0011 0017 0079
(v̄ ≈ 10054) Recent (48) 0011 0017 0079

Taylor (47) 0011 0017 0079
PSA 0008 0028 0086

400251251505 Exact HT (45) 0036 0047 1075
(v̄ ≈ 31058) Recent (48) 0035 0046 1076

Taylor (47) 0036 0048 1077
PSA 0027 0074 2077

4005011001505 Exact HT (45) 1067 2055 9034
(v̄ ≈ 19001) Recent (48) 1053 2071 13014

Taylor (47) 1068 2055 21032
PSA 1002 5052 38080

4007518001505 Exact HT (45) 4066 41000 195029
(v̄ ≈ 31064) Recent (48) 1025 47011 204010

Taylor (47) 4044 40097 194033
PSA −6083 96006 250083

Note. The model is the same as in Table 6, except the period T is changed
from 10 to 50.
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Table 8 Comparison of the Approximations for the Time-Varying
Variance v4t5 in the Mt/RRS/� Model with Rapidly
Varying Sinusoidal Arrival Rates to Simulation Estimates

Errors
Parameters Approximation
(p1 �̄1 T ) method Avg. Avg0 abs0 Max. abs.

40010110115 Exact HT (45) 0008 0016 0057
(v̄ ≈ 11003) Recent (48) 0008 0016 0057

Taylor (47) 0013 36044 56089
PSA 0008 1076 3015

40025125115 Exact HT (45) 0047 0057 2019
(v̄ ≈ 32086) Recent (48) 0047 0059 2004

Taylor (47) 0064 124086 194087
PSA 0046 5028 9084

400501100115 Exact HT (45) 2006 3022 10085
(v̄ ≈ 19709) Recent (48) 2005 3079 11097

Taylor (47) 3032 881094 11373084
PSA 2003 31092 60019

400751800115 Exact HT (45) 11020 39013 147083
(v̄ ≈ 31188) Recent (48) 10099 64057 213050

Taylor (47) 34005 161077045 241978046
PSA 10070 516070 906070

Note. The model is the same as in Table 6, except the period is T = 1.

PSA, and it performs quite well. Nevertheless, even
in this case, Table 7 shows that the other methods
are superior to the PSA approximation (even though
the difference is not likely to matter for applications).
In this case, the Taylor series approximation in (47)
gets better than in Table 6, performing slightly better
than the recent approximation in (48).

Figure 2 Comparison of the Approximations for the Time-Varying Variance v4t5 in the Mt/RRS/� Model with Sinusoidal Arrival Rates to Simulation
Estimates
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Notes. Here the RRS service times have mean 1 and parameter p = 0075. The average arrival rate is �̄ = 800, the relative amplitude is �/�̄ = 0025, and the
period is T = 2�/�= 10.

We now turn to the case of very short periods,
letting T = 1, but keeping all other parameters the
same. Table 8 reports results for the sinusoidal arrival
rate with period T = 1. With such short periods, the
Taylor series approximation makes no sense at all.
It should not be surprising that it gives exceptionally
bad results, because the successive derivatives fail to
get smaller. In this case, the PSA approximation is
also very bad. The average absolute errors for PSA
in Table 8 are approximately 10 times bigger than
with the exact heavy traffic approximation in (45). The
recent approximation in (48) performs quite well here;
it is only slightly worse for lower values of p but has
twice the average absolute error for p = 0075.

The recent approximation in (48), which pro-
duces constant approximate peakedness, indicates
that there should be benefits from looking at the
time-varying peakedness instead of the time-varying
variance. Approximation (48) suggests that errors in
the time-varying mean and variance may cancel when
we divide. We thus look at direct estimates for the
time-varying peakedness for the same case in Figure 2
and Table 6 when the period is T = 10. Paralleling
Figure 1, we show the results for the single case p =

0075, �̄= 800, and T = 10 in Figure 2.
Figure 2 shows that the peakedness values for this

case are all within ±8% of the average value, and
mostly within ±4%, so that the constant approxima-
tion should not be so bad. More detailed results for
more cases, all with period T = 10, are shown in
Table 9.
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Table 9 Comparison of the Approximations for the Time-Varying
Peakedness z4t5 in the Mt/RRS/� Model with Sinusoidal
Arrival Rates to Simulation Estimates

ErrorsParameters Approximation
4p1 �̄1 T 5 method Avg. Avg. abs. Max. abs.

400101101105 Exact HT (45) 00013 00019 00060
(z̄ ≈ 10100) Taylor (46), (47) 00013 00019 00057

Recent (48) & PSA 00013 00019 00057
400251251105 Exact HT (45) 00018 00023 00079
(z̄ ≈ 10315) Taylor (46), (47) 00018 00024 00093

Recent (48) & PSA 00018 00024 00091
4005011001105 Exact HT (45) 00016 00027 00103
(z̄ ≈ 10986) Taylor (46), (47) 00014 00038 00130

Recent (48) & PSA 00014 00044 00127
4007518001105 Exact HT (45) 000067 00054 00215
(z̄ ≈ 30988) Taylor (46), (47) 000062 00054 00215

Recent (48) & PSA 000022 00062 00205

Notes. We use the designated approximation for the variance, divided by the
time-varying mean in (44). As in Table 1, we use the single-parameter ran-
domly repeated exponential service times with parameter p, here considering
four values of p. The average peakedness z̄ is shown in each case. The sinu-
soidal arrival rate function is as in (41) with relative amplitude �/�̄ = 0025
and period T = 2�/� = 10. We let the average arrival rate �̄ for each p be
the higher level in Table 1, yielding 1% error in Table 1.

In Table 9, we use the same method for approx-
imating the mean as we use for the variance, to
increase the likelihood of errors cancelling. This is
shown directly for the recent and PSA approximations
in (48). Thus, the exact peakedness approximation
is the variance in (45) divided by the correspond-
ing exact mean in (44); the Taylor approximation is
the Taylor variance approximation in (47) divided by
the corresponding Taylor approximation for the mean
in (46). In a separate detailed comparison, we found
that this Taylor approximation for the peakedness
performs substantially worse when we divide by the
exact mean in (44) than when we divide by the Taylor
mean in (46). The simulation estimate for the peaked-
ness is the estimated variance divided by the exact
mean (which is exact in the stochastic model, as noted
before).

9. Conclusions
In this paper, we have explored the applied conse-
quences of a recent heavy-traffic limit established by
Pang and Whitt (2012b). Their research tells us that,
under regularity conditions, the distribution of the
number of customers in an IS model at time t becomes
approximately Gaussian as the arrival rate increases,
even in the presence of dependence among the service
times. Moreover, the dependence among the service
times affects the normal distribution only through the
variance or, equivalently, the peakedness (the variance
divided by the mean).

Here we have shown that the exact heavy-traffic
variance and peakedness with dependent service

times can often be effectively computed. Explicit
expressions are given for the general stationary model
in Propositions 1 and 2; the stationary model with
randomly repeated service times in Propositions 3
and 4; and the model with time-varying arrival rates
in Propositions 6 and 7, the last being for the case of
a sinusoidal arrival rate. Simulation experiments for
the stationary model in §5 and for the case of sinu-
soidal arrival rates in §8 show that the explicit heavy-
traffic expressions are quite accurate for the examples
of EARMA service times and RRS times. The sim-
ulation experiment in §5.2 shows that the approxi-
mations remain effective with dependence among the
interarrival times as well as the service times and for
nonexponential marginal distributions. These exper-
iments show that the dependence can have a big
impact, with the impact increasing in the amount of
dependence.

Because the explicit heavy-traffic formulas are com-
plicated, it is of interest to develop even more elemen-
tary rough approximations that can provide insight.
From that perspective, the approximations based on
the correlations alone in Proposition 3 for the station-
ary model and in Proposition 8 for sinusoidal arrival
rates are especially interesting. The contributions of
the dependence to the peakedness are clearly visi-
ble from these formulas. It is significant that these
approximations are accurate for the RRS model, for
which they are the exact heavy-traffic formulas. How-
ever, Tables 4 and 1, showing results for EARMA
and RRS service times, show that the approximations
based on correlations alone only provide a rough
approximation more generally.

For the case of time-varying arrival rate, we found
that the constant approximate peakedness of the cor-
responding stationary model performs remarkably
well. This is the “recent” approximation in (48).
Table 9 shows that its performance is not so much
below the exact heavy-traffic peakedness (which is
not constant). More generally, approximation errors
in the mean and variance tend to cancel when divid-
ing to calculate the peakedness; the Taylor approxi-
mation performs better when dividing by the Taylor
approximation for the mean than when dividing by
the exact mean.

There are many directions for future research. In a
sequel to this paper (Pang and Whitt 2012a), we our-
selves have examined an alternative model with batch
arrivals and dependence among service times only
within the same batch. It remains to consider the per-
formance impact of the dependence between arrival
times and service times. In Fendick et al. (1989) all
three forms of dependence were shown to play a sig-
nificant role, even though the dependence between
interarrival times and service times was least impor-
tant. In §6 we showed that the new peakedness
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approximations with dependent service times can be
used to extend previous approximations for finite-
servers based on peakedness for independent service
times, but it remains to more thoroughly explore such
approximations for queues with only finitely many
servers. It remains to consider more general network
models, with dependence among the service times at
different queues. It also remains to conduct empiri-
cal studies to estimate the level of dependence among
service times in applications.
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