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Abstract

Routing mechanisms for stochastic networks are often designed to produce state space collapse
(SSC) in a heavy-traffic limit, i.e., to confine the limiting process to a lower-dimensional subset of its
full state space. In a fluid limit, a control producing asymptotic SSC corresponds to an ideal sliding mode
control that forces the fluid trajectories to a lower-dimensional sliding manifold. Within deterministic dy-
namical systems theory, it is well known that sliding-mode controls can cause the system to chatter back
and forth along the sliding manifold due to delays in activation of the control. For the prelimit stochastic
system, chattering implies fluid-scaled fluctuations that are larger than typical stochastic fluctuations.

In this paper we show that chattering can occur in the fluid limit of a controlled stochastic network
when inappropriate control parameters are used. The model has two large service pools operating under
the fixed-queue-ratio with activation and release thresholds (FQR-ART) overload control which we pro-
posed in a recent paper. The FQR-ART control is designed to produce asymptotic SSC by automatically
activating sharing (sending some customers from one class to the other service pool) once an overload
occurs. We have previously shown that this control can be effective, even if the service rates are less
for the other shared customers, if the control parameters are chosen properly. We now show that, if the
control parameters are not chosen properly, then delays in activating and releasing the control can cause
chattering with large oscillations in the fluid limit. In turn, these fluid-scaled fluctuations lead to severe
congestion, even when the arrival rates are smaller than the potential total service rate in the system, a
phenomenon referred to as congestion collapse. We show that the fluid limit can be a bi-stable switching
system possessing a unique nontrivial periodic equilibrium, in addition to a unique stationary point.

1 Introduction

State Space Collapse, Sliding Motion and Chattering. Asymptotic state space collapse (SSC) in heavy-
traffic limits is often a key step in developing effective (e.g., asymptotically optimal) controls for multidi-
mensional stochastic networks; e.g., [3, 9, 10, 22, 24, 30, 32, 34]. (Related ideas date back to [35], but
the systems there are uncontrolled.) As the term suggests, SSC means that the limit process is of a lower
dimension than the prelimit process. More precisely, if SSC holds, then the limit process “collapses” (i.e.,
is confined) to a lower dimensional subset of its full state space. It is significant that SSC is often not only
a mathematical tool that is employed to simplify asymptotic analysis, but rather, as in [22], SSC may be a
goal of the control. See also page 136 in [1].

In the context of a functional weak law of large numbers (FWLLN) or fluid limit, asymptotic SSC cor-
responds to the limiting deterministic fluid process exhibiting a sliding motion, i.e., all the fluid trajectories
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“slide” on a lower-dimensional subspace, called a sliding manifold; see, e.g., §14.1 in [12] and §1.2.3 in [15].
In such cases, the fluid limit often has discontinuous dynamics in its full state space; i.e., it is governed by an
ordinary differential equation (ODE) with a discontinuous right-hand side. The discontinuous dynamics is
often avoided by assuming that the initial condition is asymptotically on the sliding manifold and restricting
attention to the behavior of the limit on that region of the state space. However, if the initial condition of the
fluid limit is not on the sliding manifold, the fluid trajectory must first go through a transient period before
reaching the manifold; see Theorem 3 in [3] and the explanation preceding it.

An effective SSC control must therefore (i) pull the system to the sliding manifold without undue delay
and (ii) ensure that the system remains on the sliding manifold thereafter. For queueing networks, this may
require specifying different routing rules for different regions of the state space - on and off the sliding
manifold. For example, suppose that the state space S can be partitioned into three disjoint subsetsM,M+

andM−, whereM is a sliding manifold, whileM+ andM− are “above” and “below”M. A sliding-mode
control starting inM− may move upwards towardM, and move downwards towardM fromM+. Ideally,
a sliding-mode control that starts inM− will switch immediately once the fluid trajectory hitsM, aiming
to keep that trajectory sliding onM after that hitting time. In reality, however, there may be a delay period
until the control switches, so that the trajectory will cross immediately intoM+ after hittingM. Once the
control finally switches, the trajectory is in M+ and the trajectory reverses its direction towards M, but
may again crossM, this time intoM−, because of delays in switching the control. This is the chattering
phenomenon in the control literature; see §14.1 in [12]. When this chattering occurs, the sliding manifold
M becomes a switching manifold, because the system switches its dynamics each time it crossesM. Figure
1 depicts a schematic representation of chattering about a manifoldM, denoted by the dashed line, in the
two-dimensional plane.

 

Figure 1: Chattering aboutM

The Setting. In this paper we illustrate the chattering phenomenon in a queueing network. Specifically,
we consider a deterministic fluid approximation arising in the many-server heavy-traffic limit for a system
with two service pools, each having its own arrival process and designated queue, that is operating under the
fixed-queue-ratio with activation and release thresholds (FQR-ART) overload control which we suggested
in [23]. Normally, the two pools process work from their designated queues only. However, when an
overload occurs due to an unexpected shift in the arrival rates, the control automatically identifies which
queue should receive help and sharing begins, so that jobs from the overloaded queue are routed to both
service pools, according to a routing rule that will be specified below.

Since the model was motivated by applications to call centers, we consider the system to be a call center
with two large pools of agents and two associated customers classes, and refer to customers that are served
in the other (not their designated) pool as “shared customers”. When sharing is activated, the goal is to
maintain the two queues nearly fixed at a pre-specified ratio that is optimal in a fluid approximation during
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overload periods; see [19].
We showed that sharing can be effective even if sharing is inefficient, i.e., the shared customers are served

at a slower rate. Since there is the possibility of performance degradation if there is too much sharing, it is
necessary to choose the control parameters appropriately. The root cause of the chattering discussed here
is indeed the combination of excessive inefficient sharing and poorly chosen control parameters. To avoid
excessive simultaneous sharing of customers in both directions (“two-way sharing,”see §4.1 in [19]), sharing
with pool 1 helping queue 2 is activated only if the number of shared customers in pool 2 is below a certain
(small) threshold, and similarly in the other direction. This latter restriction can cause delays in activating
sharing when the direction of overload switches. Once activated, the control aims to produce asymptotic
SSC by confining the queues to a certain region of the state space in the fluid limit [22]. In the fluid limit,
this SSC translates to sliding motion on one of two sliding manifolds, each associated with one direction of
sharing. We elaborate in §2 below.

Here, we carefully examine the bad behavior that can occur when the control parameters are not chosen
appropriately. In those cases, delays in activating the control can cause so much chattering that the fluid
trajectory hits both sliding manifolds, without remaining in either. As a consequence, the chattering is
more complicated than in the example above. Here the chattering manifests itself in periodic oscillations.
The oscillatory behavior leads to inefficient utilization of the service capacity, thus creating severe overloads,
even though the arrival rates we consider are smaller than the potential service capacity. Subcritical queueing
networks that become overloaded due to exercising a bad control are said to experience congestion collapse,
as in [28]; see §1.2 in [23].

Chattering in sliding-mode controls is a well-known phenomenon in deterministic control theory. In-
deed, chattering is considered to be the natural “state of affairs”, whereas perfect sliding motion is considered
“ideal” and typically unrealistic; e.g., §14.1 in [12]. Accordingly, even though we focus on a single system
that operates under a specific control, our results have broader relevance. In particular, similar phenom-
ena should be expected to occur with other SSC-inducing controls when there are deviations from ideal
modeling assumptions, such as stationarity, or “convenient” initial conditions and control settings.

Switching Dynamical Systems. The chattering found in the fluid model implies that the ODE governing
the evolution of the fluid trajectories switches whenever the control is activated or released. Therefore, the
appropriate fluid model x := {x(t) : t ≥ 0} for the stochastic system is a switching dynamical system
ẋ = fσ(x)(x), where σ(x) achieves a finite set of values, fi is a continuous function for each value i of σ,
but the function fσ is discontinuous [15]. As the notation suggests, the switching epochs are state dependent
(depending only on the value of the solution x), so that the ODE is autonomous (time-homogeneous).

The framework of switching systems in general, and of systems with sliding motion in particular, is
outside the classical ODE and dynamical-systems theory, because the right-hand side function fσ is not
continuous, and so it is not locally Lipshcitz. Hence, the conditions of the Picard-Lindelöf theorem, ensuring
the existence of a unique solution to the ODE, are not satisfied. In general, the existence of a unique solution
to a switching system with no sliding motion can only hold in the Carathéodory sense, namely, such a
solution is an absolutely-continuous function that satisfies the ODE almost everywhere; see [15]. A solution
with a sliding motion is generally considered to hold in the Filippov sense [7], but we have shown in [21, 22]
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how to prove that a unique solution exists for our system via a stochastic averaging principle when the fluid
limit slides on its target sliding manifold (i.e., the control achieves the desired asymptotic SSC). Since we
do not consider SSC in this paper, we do not review the Filippov theory, nor the averaging principle method.
The theory of the former is found in [7], and the latter in [14] and [21, 22].

Analytical Contributions. In addition to exposing the chattering behavior discussed above, our current
work has important analytical contributions. We emphasize at the outset that the derivation of the fluid
model (which will also be shown to be the FWLLN in §D.2) is standard, and the analytical contributions
lie in the nontrivial qualitative analysis of the fluid model. Specifically, we provide sufficient conditions for
chattering to lead to endless oscillations, and prove the existence of a periodic equilibrium. Furthermore,
we provide a simple algorithm to efficiently analyze the system for any given initial condition.

It is known that even seemingly simple switching systems can experience chaotic-like behavior, e.g.,
have infinitely-many periodic equilibria that are dense in the state space, and exhibit high sensitivity to
perturbations of the initial condition (popularly known as “the butterfly effect”); see, e.g., [4, 6]. Such
systems are clearly unamenable to long-run analysis. Even fluid models of uncontrolled systems can have
uncountably-many periodic equilibria [16]. However, numerical experiments suggest that our system has at
most one periodic equilibrium, and that it is bi-stable, i.e., any fluid trajectory can have long-run behavior of
only two kinds: either it converges to the periodic equilibrium, or else it converges to the unique stationary
point (which is therefore asymptotically stable).

To conduct a more rigorous study of the (bi)stability properties of the fluid model, we create an approx-
imation to the fluid system. (Note that “stability” here does not refer to the prelimit queueing system which
is always stable due to assumed abandonment.) For that approximating dynamical system we show that all
oscillating solutions must converge to the unique periodic equilibrium (of the approximating system), while
all other solutions converge to the unique stationary point, which is the same as that of the fluid limit. In
particular, the approximating system is bistable.We conjecture that the same is true for the fluid limit; see
Conjecture 5.1 below. This conjecture is supported by numerical experiments in §7.

To summarize our analytical contribution, we develop and analyze two layers of approximations, one
being the fluid limit, which approximates the stochastic system, and the other being an approximating dy-
namical system which serves as a simplified approximation to the fluid limit, whose qualitative behavior is
easier to characterize.

Implications of the Fluid Analysis to the Stochastic System. A straightforward implication of our result
that the fluid limit may oscillate indefinitely is that the prelimit stochastic systems can experience congestion
collapse. Moreover, the fluid limit may oscillate, even though the stochastic system in the pre-limit is
an ergodic continuous-time Markov chain (CTMC) and is therefore necessarily aperiodic with a unique
equilibrium (stationary) distribution. Since the CTMC converges to its unique stationary distribution also
for initial conditions that are associated with oscillatory fluid limits, one concludes that the convergence rate
of the CTMC to stationarity must be prohibitively slow. We elaborate in §E.2 of the appendix.

Our fluid analysis also has indirect implications to the stochastic system. Specifically, stochastic noise,
which is not captured by the fluid approximation, may eventually push the system into the oscillatory be-
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havior, even if the system is unambiguously initialized in the attraction region of the stationary point. This
suggests that stochastic fluctuations can lead to fluid-scaled fluctuations. In addition, oscillations can occur
in the stochastic system even if its fluid limit does not possess a periodic equilibrium, and never oscillates.
Therefore, studying the relatively simple fluid model is important for gaining insight into the dynamics of
the stochastic system. See the examples in §7.3 below.

Organization. The rest of the paper is organized as follows. We describe the stochastic model and the
control in §2. In §2.2 we explain how to construct a direct fluid model to approximate the system’s dynamics.
The switching fluid model is derived in §3. Qualitative analysis, including relevant equilibrium and stability
notions for dynamical systems, are rigorously defined and analyzed in §4. In §5 we show that the fluid model
can oscillate indefinitely and when it does we show there exists a periodic equilibrium. The approximating
dynamical system to the fluid model is developed in §6 and is shown to be bi-stable. Numerical examples
and simulation experiments are provided in §7. We conclude in §8.

Additional material appears in an appendix. We develop important bounds on the fluid processes and
the switching times in §B which are employed to prove Theorem 5.5 which states that there are parameters
under which the fluid model oscillates indefinitely. In §C we prove that the solutions to the approximating
system converge geometrically fast to their equilibrium. We prove that the fluid model considered in this
paper arises as a bona-fide functional weak law of large numbers (FWLLN) in D.

2 The Model

We start by reviewing the stochastic model which is assumed Markovian, and in particular, it can be de-
scribed as a CTMC. In §2.2 we quickly develop the deterministic fluid model to the stochastic system, which
will be our focus in this paper. We defer the proof that the fluid model is indeed a rigorous approximation
via a FWLLN to the appendix; see §D.2.

The model has two large service pools of many homogeneous agents in a call center, each with with
its own arrival stream and designated queue for waiting customers. We assume that customers have finite
patience, and will abandon if their wait time in queue exceeds their patience. The two pools are designed to
operate independently when both are normally loaded, i.e., to serve their own arrivals only, but all the agents
can help both customer classes.

Sharing of customers (namely, routing customers from one pool to be served in the other pool) may
be beneficial if one of the pools is overloaded, even if sharing makes the second service pool overloaded as
well, because abandonment keep the two queues stable. Indeed, in [19] we showed that sharing of customers
may be optimal during overload periods in a deterministic fluid approximation, assuming a convex holding
cost is incurred on the two queues. However, as we showed in Proposition 2 in [19], when agents are
less efficient in serving the other class, i.e., agents serve shared customers slower on average than their
designated customers, it is never optimal to share in both directions simultaneously. Nevertheless, since
sharing of customers in either direction takes place sometimes, the routing graph of the system has the letter
X shape, as can be seen in Figure 2, and is therefore called the X model in the call-center literature.

In general, there is a fluid-optimal amount of sharing for any given pair of arrival rates and so, to find
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Figure 2: The X model

how many agents in the helping pool should be assigned to shared customers requires knowing the exact
arrival rates during the overload period. A simplification is achieved by observing that the exact amount
of sharing does not need to be determined at the outset, since it can be achieved, at least approximately, if
the two fluid queues are kept at a fixed ratio during overload periods. We again refer to [19]. There is a
different optimal ratio for each direction of sharing, and the direction of sharing depends on which pool is
overloaded.

The above reasoning lead us to design the fixed queue ratio with thresholds (FQR-T) overload control,
which (i) is activated automatically once the queue ratio exceeds a certain “activation threshold” (so that the
system is considered overloaded); (ii) aims to maintain the two queues at a pre-specified fixed ratio (in the
many-server asymptotics); (iii) class-i customers are routed to pool j only if there are no class j customers
in pool i, i 6= j.

In time-varying settings, the direction of overload may switch, so that the direction of sharing must
switch as well. If the one-way sharing rule in Condition (iii) above is forced, then substantial delays in
switching the direction of sharing may occur. We therefore modified FQR-T in [23] by introducing release
thresholds for the service process. Specifically, in the modified fixed queue ratio with activation and release
thresholds (FQR-ART) control the one-way sharing rule is relaxed as follows: class-1 customers can be
routed to pool 2, provided that the number of class-2 customers in pool 1 is smaller than a release threshold
τ2,1 > 0, and similarly in the other direction. We elaborate in §2.1 below.

Cyclic Routing Graph. An important characteristic of the X model is that its (undirected) routing graph
is cyclic. In particular, it is the most basic cyclic parallel server system (PSS). The X model is therefore
easier to study than other cyclic PSS’s but at the same time serves as a representative to problems that are
associated with its cyclic structure. Indeed, in [19] we showed that the QIR control from [10] can produce
severe congestion collapse if applied to the X model when the service rates of shared customers are slower
than those of designated ones. This congestion collapse cannot occur in PSS’s having a tree graph; see
Theorem 3.1 in [10]. The oscillatory behavior analyzed here is also due to cyclic structure of the system.
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2.1 The FQR-ART Control

We will start by developing a deterministic fluid approximation for the stochastic system directly, but to
fully describe the control we must consider that fluid model from an asymptotic perspective, We therefore
consider a sequence of X models indexed by superscript n, where system n has mn

i agents in pool i and
arrival rate λni of class-i customers, i = 1, 2. We assume that the arrival rates and number of agents in
each pool grow proportionally to n as n → ∞, putting us in the many-server heavy-traffic framework. See
Assumption 3 in §D.1.

The control of each system n ≥ 1 is based on two activation thresholds, kn1,2 and kn2,1, two release
thresholds, τn1,2 and τn2,1, and two ratio parameters r1,2 and r2,1. These ratios, which are independent of
n, are chosen to be optimal in a fluid model of an overloaded system (here we will consider underloaded
systems), as was mentioned above.

Let Qni (t) denote the number of class-i customers waiting in their designated queue at time t, and let
Zni,j(t) denote the number of class-i customers being served in pool j at time t. The FQR-ART is an overload
control, namely, it is designed to be activated and start customer sharing automatically when an overload
occurs. To define overloads, we consider the difference processes

Dn
1,2(t) ≡ Qn1 (t)− r1,2Q

n
2 (t)− kn1,2 and Dn

2,1 ≡ r2,1Q
n
2 (t)−Qn1 (t)− kn2,1, t ≥ 0. (1)

As long as Dn
1,2 < 0 and Dn

2,1 < 0, the system is considered normally loaded. Once one of these difference
process hits 0, which corresponds to the ratio between the two queues hitting one of the activation thresholds,
the system is deemed overloaded, and sharing begins, provided that there is only a small number of shared
customers in the overloaded pool. By “small number” we mean that the number of shared customers in the
overloaded pool is no larger than its associated release threshold. For example, if Dn

1,2(t) ≥ 0, then class
1 is judged to be overloaded (because then Qn1 (t) − r1,2Q

n
2 (t) ≥ kn1,2) and it is desirable to send class-1

customers to be served in pool 2. However, sharing is allowed only if Zn2,1(t) ≤ τn2,1. Similar rules apply to
overloads in the other direction.

Once sharing is activated, say with class 1 receiving help from pool 2, the routing rule is as follows:
Any agent, from either pool, that becomes available at any time t, will take his next customer from class 1 if
Dn

1,2(t) > 0, and will take his next customer from his designated queue otherwise. Observe that this means
that agents from pool 1 will only take customers from their own queue, but some class 1 customers will be
routed to pool 2. The routing mechanism when class 2 is overloaded is similar, with Dn

2,1 replacing Dn
1,2,

and the labels of the thresholds switched.

Spare Capacity in One Pool. With release thresholds the possibility of having congestion collapse due
to too much simultaneous sharing is avoided. However, when one pool has significant idleness (due to low
arrival rate) while the other pool is severely overloaded, it may be beneficial to consider that idleness as
“spare capacity” in the system, and exploit it to help the congested queue. That motivates an exception to
the sharing rule when one pool has idleness while the other has a queue that is larger than its corresponding
activation threshold. For example, if pool 2 has idleness (and no queue, necessarily) and Qn1 (t) ≥ kn1,2, then
a newly available agent in pool 2 at such a time t will take a customer from queue 1, regardless of the value
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of Zn2,1(t), i.e., even if Zn2,1(t) > τn2,1. However, to avoid sharing in pool 2 beyond its spare capacity, there is
strict priority to class-2 customers in the sense that a type-2 agent will always give strict priority to its own
customer class whenever Zn2,1(t) > τn2,1. The exact same routing rule is used if, at a time t in which a type
1 agent becomes available, pool 1 has idleness and Qn2 (t) ≥ kn2,1.

This control is a version of the control in ec21 in the electronic companion (EC) of [19]. It is not hard
to show that when pool i has spare capacity, i = 1, 2, its own queue will remain null in the fluid model (and
fluid limit) when this control is employed, due to the strict priority it receives from its agents.

2.2 A Deterministic Fluid Model

If the arrival processes are independent Poisson processes, and all service times and times to abandon are
independent exponential random variables, then the six-dimensional process

Xn(t) = (Qni (t), Zni,j(t); i, j = 1, 2), t ≥ 0, (2)

is a CTMC. Our goal is to develop and then analyze a fluid approximation for this CTMC, based on asymp-
totic considerations (which will be made rigorous in §D.2).

When sharing is active, the control aims to keep the two queues at the corresponding fluid-optimal ratio,
either r1,2 or r2,1, depending on the direction of sharing. Minor modifications to the statement and proof of
Corollary 4.1 in [22] show that, if the system is overloaded and there is no sharing initially, then the control
achieves asymptotic SSC in the fluid limit (or under any scaling of the appropriate process in (1) that is
larger than log n). More general assumptions were considered in [23]. The mathematical support for the
asymptotic SSC was a direct consequence of the aforementioned stochastic averaging principle.

The oscillatory performance and its resulting congestion collapse we analyze here does not involve the
averaging principle, because there is no SSC. Indeed, unlike the fluid models in [22] and [23], the fluid
model we develop here has an explicit solution. The challenges are associated with proving that oscillations
(and congested collapse) can be self-sustained and in studying the long-run behavior of the fluid model.

It is significant that the fluid approximation for Xn is obtained as the FWLLN for X̄n ≡ Xn/n, see
§D.2. However, we start by deriving the fluid model directly. (We refer to the fluid model as fluid approxima-
tion or limit, depending on the context, as the terms are equivalent in our case.) For each of the six stochastic
processes comprising Xn in (2) there is a fluid counterpart, namely a deterministic and almost-everywhere
differentiable function. We let x ≡ {x(t) : t ≥ 0} denote the fluid approximation of Xn, where

x(t) = (q1(t), q2(t), z1,1(t), z1,2(t), z2,1(t), z2,2(t)), t ≥ 0,

and call a time t “regular” if x(t) is differentiable at t. In our case, any compact interval will have at most a
finite number of points that are not regular.

To derive the fluid equations, we simply replace the instantaneous rates of the stochastic processes
at each time t with instantaneous rates of change of the derivatives of their fluid counterparts, e.g., the
instantaneous rate of abandonment from queue 1 at time t in system n is θ1Q

n
1 (t), which becomes θ1q1(t) in

the fluid model. Similarly, the instantaneous rate of departure from service in pool j at time t is µj,jZnj,j(t)+
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µi,jZ
n
i,j(t) in system n is replaced with the instantaneous processing rate µj,jzj,j(t) +µi,jzi,j(t) in the fluid

model. Combining all these instantaneous rates gives the derivative of x(t) at a regular time t.
For example, if both queues are smaller than the activation thresholds at a time t, then any newly-

available agent in pool 1 will take his next customer from queue 1 in the stochastic system. Similar reason-
ings applied to q2 give that, if q1(t) < k1,2 and q2(t) < k2,1, and t is regular, then

q̇1(t) = λ1 − θ1q1(t)− µ1,1z1,1(t)− µ2,1z2,1(t),

q̇2(t) = λ2 − θ2q2(t)− µ2,2z2,2(t)− µ1,2z1,2(t).
(3)

We derive the full set of differential equations for the fluid model during overload periods (due to congestion
collapse) in §3.1 below.

The purpose of FQR-ART is to produce SSC in the fluid limit by sending customers from one queue to
both pools according to the routing rules described above during overload periods. If the control is successful
in achieving SSC, the six-dimensional fluid model is confined to one of the sliding manifolds

S1,2 ≡ {x ∈ S : q1 − r1,2q2 = k1,2, z1,1 + z2,1 = m1, z1,2 + z2,2 = m2},

S2,1 ≡ {x ∈ S : r2,1q2 − q1 = k2,1, z1,1 + z2,1 = m1, z1,2 + z2,2 = m2},

where S = R2
+ × [0,m1]× [0,m2] is the domain of x.

The behavior of the fluid limit when sliding on one of these manifolds can be thought of as an infinitely-
fast chattering with infinitely-small fluctuations of the queues about the corresponding activation threshold.
This view can be justified rigorously via the aforementioned stochastic averaging principle; see §4 in [21]
and Theorem 4.1 in [22].

Observe that the fluid model is essentially a three-dimensional process on either one of these sliding
manifolds, because knowing x3 ≡ (q1, z1,2, z2,1) for example, is sufficient to determine the value of the
remaining three processes. Here, however, we are interested in bad oscillatory behavior when the fluid
model overshoots past the sliding manifold due to delay in activating the control, where a delay is caused
if zj,i(t0) > τj,i, at the time t0 in which Si,j is hit. If no SSC occurs, we must consider all six components
of the fluid model and, as will become clear below, four different switching epochs for each cycle. We can
obtain considerable simplification by considering a symmetric model. Symmetry reduces the amount of
notation and, as will become clear later, allows us to focus attention on two switching times in each cycle
instead of four.

A Symmetric Model. In order to expose the bad behavior that can result from poorly chosen controls, we
consider a special case that is easier to analyze than the general model. In particular, we consider systems
with the following parameters

µ1,1 = µ2,2 = 1, µ1,2 = µ2,1 = µ < 1, λ1 = λ2 = λ < 1, θ1 = θ2 = θ > 0,

m1 = m2 = 1, r1,2 = r2,1 = 1, τ1,2 = τ2,1 = τ > 0 and k1,2 = k2,1 = κ.
(4)
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Observe that time is measured in terms of µ1,1 and µ2,2 (which are normalized to be equal to 1). In this
model there are 5 parameters instead of 16 in the general case. There is the triple of model parameters
(λ, µ, θ) and the pair of control parameters (κ, τ). Note that each of the pools is underloaded if there is no
sharing that slows its potential service capacity, because λi < µi,imi = 1, i = 1, 2.

In this model, there is sharing with all class-1 fluid sent to pool 2 if q2(t) > q1(t) + κ and z1,2(t) ≤ τ ;
there is sharing with all class-2 fluid sent to pool 1 if q1(t) > q2(t) + κ and z2,1(t) ≤ τ ; there is complex
sharing, associated with sliding motion and described by the averaging principle if if q2(t) = q1(t) + κ and
z1,2(t) ≤ τ or if q1(t) = q2(t) +κ and z2,1(t) ≤ τ ; there is possibly sharing according to the spare capacity
control described above if q1(t) ≥ κ and z1,2(t) + z2,2(t) < m or q2(t) ≥ κ and z2,1(t) + z1,1(t) < m.
otherwise there is no sharing actively taking place.

We have assumed in (4) that λ < µ, so that either pool is underloaded if it serves its own class only
(because µi,imi = 1, i = 1, 2). It will be convenient to assume that λ ≤ 1 − τ . In that case, if class i fluid
is sent to pool j at time t, i 6= j, then zj,i(t) ≤ τ and the instantaneous service rate in pool i is

µzj,i(t) + zi,i(t) = µzj,i(t) + (1− zj,i(t)) ≥ µzi,j(t) + 1− τ ≥ µzi,j(t) + λ ≥ λ,

implying that the instantaneous total service rate in pool i is larger than the arrival rate to that pool so that
qi is decreasing; see also (3). In addition, to achieve explicit solutions to the ODE’s we develop, we will
assume that θ < µ. We summarize in the following assumption.

Assumption 1. The model parameters satisfy (4). Furthermore, λ ≤ 1− τ and θ < µ.

Assumption 1 is not necessary for chattering and oscillations to occur, and is taken in order to somewhat
simplify the analysis.

Since the activation thresholds κ are strictly positive in the fluid model, there is no ambiguity about the
translation of the FQR-ART control to the fluid model when there is no SSC. It is then entirely determined
by the processes

d1,2(t) = q1(t)− q2(t)− κ and d2,1(t) = q2(t)− q1(t)− κ, t ≥ 0, (5)

which are simply the fluid counterparts of (1). Due to the assumed symmetry, the state space of the fluid
model is R2

+ × [0, 1]4 and the sliding manifold are defined via

S1,2 ≡ {x ∈ S : d1,2 = 0, z1,1 + z2,1 = 1, z1,2 + z2,2 = 1}

S2,1 ≡ {x ∈ S : d2,1 = 0, z1,1 + z2,1 = 1, z1,2 + z2,2 = 1}.
(6)

For i, j = 1, 2, i 6= j, we define

S−i,j ≡ {x ∈ S : di,j < 0} and S+
i,j ≡ {x ∈ Si,j : di,j > 0}.

If x(t) ∈ Si,j for all t over some interval I , then x is said to slide on the sliding manifold Si,j . Chattering
corresponds to the fluid trajectory hitting and immediately crossing a sliding manifold, e.g., when it is
moving from S−i,j to S+

i,j (necessarily via Si,j) without sliding on Si,j , and back from S+
i,j to S−i,j . It will
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be clear that chattering about one sliding manifold is not sustainable unless the fluid trajectory makes it all
the way to the second manifold. When both manifolds are hit, we say that the fluid oscillates. Since we
will consider initial conditions in S+

2,1, a full cycle is considered to end when the fluid trajectory first enters
S+

2,1 after hitting S1,2. When chattering or oscillations occur, the sliding manifolds in (6) become switching
surfaces, because the dynamics of the fluid model switches when it hits either of these subspaces.

The sliding manifolds in (6) should not be confused with the invariant manifolds in [3] which are defined
to be the fixed points of the fluid limit.

The State Space. It is easily seen from (3) that q̇i(t) ≤ λ − θqi(t), and that this inequality holds for all
t ≥ 0 regardless of the routing. It follows from the comparison principle for ODE’s, e.g., Lemma 3.4 in
[12], that for all t > 0,

qi(t) ≤ max{qi(0), λ/θ}, i = 1, 2,

and that, if qi(0) > λ/µ, then qi must be strictly decreasing as long as qi(t) > λ/θ. Furthermore, qi can
never cross λ/µ from below, i.e., if qi(s) < λ/θ, then qi(t) < λ/θ for all t > s ≥ 0. We can therefore
assume without any loss of generality that qi(0) < λ/θ so that the state space of the symmetric model is the
compact and convex subset S ⊂ R6, where

S ≡ [0, λ/θ]2 × [0, 1]4. (7)

3 The Switching Fluid Model

Consider a system that has just recovered from an overload, in which class 1 was receiving help from pool
2. Suppose that λ1, which was greater than µ1,1m1 = 1 during the preceding overload period, dropped to
the value λ < 1 in (4) Since sharing was taking place with pool 2 helping, we necessarily had z2,1 < τ and
q1 − q2 = κ > 0 (x sliding on S1,2) during the overload period.

Assuming that z1,2 was larger than τ during the preceding overload period, we designate by 0 the first
time that z1,2 hits τ , so that sharing can begin with pool 1 helping queue 2 if d2,1(0) > κ. Formally, for S in
(7),

Assumption 2. (initial condition)

x(0) ∈ S, q1(0) > 0, d2,1(0) > 0 ( i.e., q2(0) > q1(0) + κ), z1,2(0) = τ and 0 ≤ z2,1(0) < τ.

To describe the oscillatory behavior of the fluid model, we define the hitting times

T1 ≡ inf {t ≥ 0 : d2,1(t) ≤ κ}

T2 ≡ inf{t ≥ 0 : z2,1(Σ1 + t) ≤ τ},

T3 ≡ inf{t ≥ 0 : d1,2(Σ2 + t) ≤ κ}

T4 ≡ inf{t ≥ 0 : z1,2(Σ3 + t) ≤ τ},

(8)

11



where, with T0 ≡ Σ0 ≡ 0,

Σk ≡
k∑
i=0

Ti and Ii ≡ [Σi−1,Σi), k = 1, 2, 3, 4. (9)

We refer to the times Σi as switching times, and to Ti as holding times (the times between switching).
The length of each interval Ii is Ti, i.e., |Ii| ≡ Σi − Σi−1 = Ti, 1 ≤ i ≤ 4. We will interchangeably write
T1 or Σ1, and T1 + T2 or Σ2, as convenient.

Clearly T1 > 0 for the initial condition in Assumption 2, but it is possible that Ti = 0 for i > 1. Observe
that if at the end of the first cycle x(Σ4) satisfies the same conditions specified for x(0) in Assumption 2,
then x(Σ4) can be taken as a new “initial condition” for the fluid model (which is time homogeneous, as will
be shown below), and a new cycle begins. Furthermore, if both fluid queues are strictly positive on [0,Σq)

and z2,1(Σ1) > τ in addition to d1,2(Σ2) > 0, then x(Σ2) can be thought of as a “mirror image” of x(0)

because we necessarily have 0 < z1,2(Σ2) < τ . In particular x(Σ2) satisfies the conditions in Assumption
2, but with the labels (subscripts) reversed. Similarly, if both queues remain positive throughout [0,Σ3),
then x(Σ3) is a “mirror image” of x(Σ1) ≡ x(T1). This observation greatly simplifies the search for a
periodic equilibrium since, on the trajectory of a periodic equilibrium, it holds that xs(Σ2) = x(0) and
xs(Σ3) = x(Σ1), where xs := (q2, q1, z2,2, z2,1, z1,2, z1,1) (i.e., xs has the labels of x reversed). We can
then focus on analyzing a half cycle [0,Σ2] for the symmetric model.

Hence, we consider the fluid model as long as the conditions in Assumption 2 hold in the switching
times, either for x or for xs. It will be seen below that, for any initial condition in S, 0 ≤ zi,j ≤ 1,
i, j = 1, 2. However, the equations for q1 and q2 can become negative. We thus consider the fluid model on
[0,Σq), where

Σq ≡ inf{t > 0 : min{q1(t), q2(t)} = 0}. (10)

Since T1 > 0 for any initial condition satisfying Assumption 2, we necessarily have Σ1 > T1 > 0. Similarly,
if Σ2 > 0, then necessarily T3 > 0. It follows that, if Σq < Σ4, then Σq ∈ I2 or Σq ∈ I4. On the other
hand, if x(Σ4) satisfies the conditions in Assumption 2, then Σq > Σ4. We then take x(Σ4) as the initial
condition for the second cycle, and start over. We will provide sufficient conditions for Σq to be infinite,
in which case cycle-end time Σ4 is the beginning of a new full cycle, and the fluid model keeps oscillating
indefinitely. Since both queues are strictly positive throughout (despite Assumption 1), we get congestion
collapse that is due to self-sustained oscillations.

3.1 The Switching Fluid Equations

3.1.1 The Equations on I1: Both Pools Serve Queue 2 Only

Recall that over the interval I1 ≡ [0,Σ1) sharing takes place with both pools accepting only fluid from queue
2 and no fluid from queue 1. For a given initial condition x(0) satisfying Assumption 2, and determined by
specifying the triple (q1(0), q2(0), z2,1(0)), the fluid equations for the service process are therefore

ż1,1(t) = −z1,1(t)µ1,1, so that z1,1(t) = (1− z2,1(0))e−t and z2,1(t) = 1− z1,1(t)
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so that z2,1(t) = 1− (1− z2,1(0))e−t

ż1,2(t) = −z1,2(t)µ1,2, so that z1,2(t) = τe−µt and z2,2(t) = 1− τe−µt, (11)

and the fluid equations for the queue processes are

q̇1(t) = λ− q1(t)θ,

q̇2(t) = λ− q2(t)θ − z1,1(t)µ1,1 − z2,1(t)µ2,1 − z1,2(t)µ1,2 − z2,2(t)µ2,2

= λ− q2(t)θ − [(1− z2,1(0))e−t + 1− τe−µt]− [1− (1− z2,1(0))e−t + τe−µt]µ

= (λ− 1− µ)− q2(t)θ − (1− µ)(1− z2,1(0))e−t + (1− µ)τe−µt. (12)

For the given initial condition x(0), we can calculate the interval termination time T1 and the fluid
performance functions in I1. Observe that by first solving for the service processes in (11), the autonomous
(time-homogeneous) ODE for the queues becomes a nonhomogeneous first-order linear ODE. Under the
condition θ < µ in Assumption 1, the explicit solution to the ODEs (12) over [0, T1) is

q1(t) = q1(0)e−θt +

(
λ

θ

)
(1− e−θt)

q2(t) = q2(0)e−θt +

(
λ− 1− µ

θ

)
(1− e−θt)−

(
(1− µ)(1− z2,1(0))

1− θ

)
(e−θt − e−t)

+

(
(1− µ)τ

µ− θ

)
(e−θt − e−µt). (13)

We see that q1(t) is strictly increasing in S and necessarily remains strictly positive in the interval I1.
Given the initial conditions in Assumption 2 and the definition of Σ1 ≡ T1 in (8), this implies that both fluid
queue lengths are necessarily strictly positive in the interval I1, so that Σq > T1.

3.1.2 The Equations on I2: No Active Sharing

Given any initial condition (q1(0), q2(0), z2,1(0)), we can calculate T1 and the 6-tuple (qi(T1), zi,j(T1)); i, j =

1, 2). These provide the initial condition for the second interval I2 ≡ [Σ1,Σ2). We assume that z2,1(T1) > τ

so that sharing with pool 2 helping queue 1 did not begin at time T1 and so T2 > 0. The fluid equations for
the service process for t ∈ I2 are

ż2,1(t) = −z2,1(t)µ2,1, so that z2,1(T1 + t) = [1− (1− z2,1(0))e−T1 ]e−µt

and z1,1(T1 + t) = 1− z2,1(T1 + t) = 1− [1− (1− z2,1(0))e−T1 ]e−µt

ż1,2(t) = −z1,2(t)µ1,2, so that z1,2(T1 + t) = τe−µ(T1+t)

and z2,2(T1 + t) = 1− z1,2(T1 + t) = 1− τe−µ(T1+t). (14)

As long as both queues remain positive, since there is no no new sharing in this second interval I2, at
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time T1 + t for t ∈ [0, T2], the queues evolve as follows:

q̇1(T1 + t) = λ− q1(T1 + t)θ − z1,1(T1 + t)µ1,1 − z2,1(T1 + t)µ1,2

= −(1− λ)− q1(T1 + t)θ + (1− µ)z2,1(T1)e−µt

q̇2(T1 + t) = λ− q2(T1 + t)θ − z2,2(T1 + t)µ2,2 − z2,1(T1 + t)µ2,1

= −(1− λ)− q2(T1 + t)θ + (1− µ)z1,2(T1)e−µt (15)

under the new initial condition (q1(T1), q2(T1), z1,2(T1), z2,1(T1)).
Paralleling (13), we can solve these ODE’s explicitly: For all t ∈ [0, T2)

q1(T1 + t) = q1(T1)e−θt +

(
λ− 1

θ

)
(1− e−θt) +

(
(1− µ)z2,1(T1)

µ− θ

)
(e−θt − e−µt)

q2(T1 + t) = q2(T1)e−θt +

(
λ− 1

θ

)
(1− e−θt) +

(
(1− µ)z1,2(T1)

µ− θ

)
(e−θt − e−µt), (16)

provided that T1 + t ≤ Σq.

3.1.3 The Switching Fluid Model

The equations on I3 ≡ [Σ2,Σ3) and I4 ≡ [Σ3,Σ4) are derived similarly to the equations for the intervals
I1 and I2, assuming Σq < Σ4. We summarize in the following definition of the direct fluid model. As was
mentioned before, we consider the interval [0,Σq) and provide sufficient conditions for Σq to be infinite.
We further prove that oscillations must end at time Σq when this time is finite.

For two real numbers a, b, let a ∧ b ≡ min{a, b}. We will later also use the notation a ∨ b for the
maximum between the two numbers.

Definition 3.1. (switching symmetric fluid model) For any initial condition x(0) satisfying Assumption 2,
the fluid model for the symmetric system is the solution x ≡ {x(t) : t ∈ [0,Σ4 ∧ Σq)} to the autonomous
(time invariant) switching ODE

ẋ = fσ(x)(x), σ(x(t)) = 1, 2, 3, 4; (17)

where f1 is defined in (11)-(12), f2 is defined in (14)-(15), f3 satisfies the equations of f1, but with the labels
of the processes reversed, and f4 satisfies and equations of f2, with the labels of the processes reversed. The
switching times Σi, 1 ≤ i ≤ 4, are determined by the value of the solution x(t) at time t and are defined in
(9). Furthermore, all points t ∈ [0,Σ4 ∧ Σq), except for the switching times, are regular.

We refer to any specific solution to (17) as a fluid solution or a trajectory. As was mentioned above,
if x(Σ4) satisfies Assumption 2, then it serves as an initial condition for the following cycle, so that (17)
describes the fluid dynamics beyond the first cycle in an obvious way. In §D.2 we will show that the unique
solution x to (17) with a given initial condition arises as the FWLLN of X̄n in (2) as n → ∞ over any
compact subinterval of [0,Σq), and is therefore a fluid limit.
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3.2 The Queue-Difference Process

Let
∆(t) ≡ q2(t)− q1(t), t ≥ 0.

As indicated in (8), at time T1 we have ∆(T1) = κ. If ∆̇(T1) < 0, then ∆(T1 + t) < 0 for all t in some
interval [0, ε] for ε > 0. In that case, fluid from queue 2 stops flowing into pool 1. At some point t0 ∈ I1

we may have that −∆(t0) = κ, in which case sharing should begin with pool 2 helping queue 1, unless
z2,1(t0) > τ , which means that x will cross the sliding manifold S1,2 into S+

1,2. We now study the difference
process over [0,Σ2).

In terms of (13),

∆(t) = ∆(0)e−θt − 1 + µ

θ
(1− e−θt)

−
(

(1− µ)(1− z2,1(0))

1− θ

)
(e−θt − e−t) +

(
(1− µ)τ

µ− θ

)
(e−θt − e−µt). (18)

Lemma 3.1. (derivative of ∆ over I1) The function ∆ in (18) has a negative derivative on I1 and is
therefore strictly decreasing. In particular,

∆̇(t) = −θ∆(t) + Ψ(t), t ∈ I1, (19)

where ∆(t) > 0 and

Ψ(t) ≡ −(1 + µ)− (1− µ)(1− z2,1(0))e−t + (1− µ)τe−µt < 0, t ∈ I1, (20)

so that ∆̇(t) < 0 and
−ΨU ≤ Ψ(t) ≤ −ΨL,

where
0 < ΨL ≡ 2µ− (1− µ)(1− τ) < 2 ≡ ΨU <∞, t ∈ I1. (21)

Proof. The expression for the derivative (prior to time T1) follows immediately from (12). The function
Ψ(t) in (20) is strictly negative because

1 + µ > 1− µ > (1− µ)τe−µt for all t ≥ 0.

Corollary 3.1. (equation for T1) The time T1 is well defined as the unique solution t to the equation ∆(t) =

κ.

We also have an explicit expression for the difference at time t in terms of its value at time 0.

Lemma 3.2. (explicit expression as a function of the initial difference) The function ∆(t) can be represented
as

∆(t) = ∆(0)e−θt + e−θt
∫ t

0
eθsΨ(s) ds, t ∈ I1. (22)
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where Ψ(t) is defined in (20) and is independent of ∆(0). Thus, ∆(t) is a strictly increasing function of
the initial difference ∆(0) > 0. In addition, Ψ(s) and ∆(t) are increasing functions of z2,1(0) and τ . As a
consequence, T1 is strictly increasing function of ∆(0), z2,1(0) and τ . Moreover,

∆(0)e−θt −ΨU

(
1− e−θt

θ

)
≤ ∆(t) ≤ ∆(0)e−θt −ΨL

(
1− e−θt

θ

)
for all t ∈ I1, (23)

for ΨL and ΨU in (21).

Proof. Equation (19) is a classic first-order ordinary differential equation, which is known to have the ex-
plicit solution in (22), where the second term in (22) is independent of ∆(0).

From (15), we immediately obtain an expression for the derivative of the queue difference, which we
can apply to show that there is no sharing during I2.

Lemma 3.3. The derivative of ∆ on I2 satisfies

∆̇(T1 + t) = −θ∆(T1 + t) +Ae−µt, 0 ≤ t ≤ T2, (24)

where ∆(T1) = κ and
A ≡ (1− µ)(z1,2(T1)− z2,1(T1)) < 0. (25)

Hence, ∆̇(t) < 0, so that d2,1(t) < 0 (q2(t) < q1(t) + κ) for all t ∈ I2.

From Lemmas 3.1 and 3.3 we immediately obtain the following corollary.

Corollary 3.2. (monotonicity of ∆(t) on [0,Σ2)) ∆̇(t) < 0 for all t ∈ [0,Σ2), so that ∆ is strictly decreas-
ing over that interval.

We can give an explicit expression for the difference process ∆(T1 + t), t ≤ T2 using (16).

Lemma 3.4. The function ∆(t) can be expressed as

∆(T1 + t) = κe−θt + Φ(t), 0 ≤ t ≤ T2, (26)

where

Φ(t) ≡ Ae−θt
∫ t

0
eθse−µs ds = A

(
e−θt − e−µt

µ− θ

)
< 0 for all 0 ≤ t ≤ T2, (27)

with A < 0 in (25). In particular, ∆(T1 + t) < κ for all t ∈ I2, so that there is no active sharing in this
interval.

Proof. Just as in Lemma 3.1, we apply the explicit solution to the first-order linear ODE to obtain (26) with
(27).
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3.3 Conditions for Finiteness of the Switching Times

From the definition of T1 in (8) together with (23), we immediately get that T1 < ∞. Given T1, we can
apply (14) to obtain an equation for T2. If T1 is sufficiently large so that z2,1(T1) > τ , then

z2,1(Σ2) ≡ z2,1(T1 + T2) = z2,1(T1)e−µT2 = [1− (1− z2,1(0))e−T1 ]e−µT2 = z1,2(0) = τ,

where the last equality follows from the definition of T2. As an immediate consequence of (8), we have
explicit formulas for T2:

T2 =
loge (z2,1(T1)/τ)

µ
=

loge ([1− (1− z2,1(0))e−T1 ]/τ)

µ
. (28)

It is easy to check whether z2,1(T1) > τ so that T2 > 0; see (11) above. It suffices to have

e−T1 < 1− τ or, equivalently, T1 > − loge (1− τ).

Combining (14) with (28) to obtain an expression for z1,2(Σ2)

z1,2(Σ2) = τe−µΣ2 . (29)

We can apply (16) to calculate qi(Σ2) to verify that qi(Σ2) > 0 for i = 1, 2, ensuring that Σq ≥ Σ2. If x(Σ2)

satisfies the conditions of x(0) in Assumption 2 but with the labels of the processes reversed, then we can
again apply (14) (with the labels reversed) to conclude that T3 < ∞. If T3 > 0, then T4 satisfies a similar
equation to (28), but with T3 replacing T1 and z1,2(T3) replacing z2,1(T1), provided that z1,2(T3) > τ .

4 Qualitative Analysis

Just as for the stochastic system, it is important to identify the possible equilibrium behavior of the fluid
models, as well as its long-run behavior. We start with formally defining the relevant equilibria for our fluid
model and then stating the main results regarding fluid model.

Recall that the state space of the fluid model is S in (7). For the general discussion regarding the long-run
behavior of the system, we consider all the possible initial conditions, and therefore Assumption 2 is not
enforced in this section. Specifically, any γ ∈ S is allowed to be an initial condition.

Definition 4.1. (stationary point) A point x∗ ∈ S is stationary for (17) if x(0) = x∗ implies that x(t) = x∗

for all t ≥ 0.

Definition 4.2. (periodic equilibrium) A non-constant solution u∗ ≡ {u∗(t) : t ≥ 0} to (17) is a (nontrivial)
periodic equilibrium, if there exists a time T > 0 such that u∗(t + T ) = u∗(t) for all t ≥ 0. The smallest
such T is called the period of u∗.

Note that a solution initialized at a stationary point x∗ satisfies x(t+ T ) = x(t) = x∗ for all t ≥ 0 and
all T > 0, which is why we require that u∗ is not a constant.
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Lyapunov Stability of a Stationary Point. We will show that for any set of parameters, the fluid model
in Definition 3.1 has a unique stationary point and that, in some cases, there also exists a unique periodic
equilibrium. We will then study the stability properties of the fluid model. There are three types of stability
notions corresponding to stationary points that are relevant for us.

For a stationary point x∗, let Sx∗ ⊆ S be the stability region of x∗, i.e., if x(0) ∈ Sx∗ , then x(t) → x∗

as t→∞. Note that, by the definition of x∗, Sx∗ is not empty because it contains x∗.

Definition 4.3. (Lyapunov stability) A stationary point x∗ is said to be

• unstable, if Sx∗ = {x∗};

• asymptotically stable, if Sx∗ contains an open neighborhood of x∗;

• globally asymptotically stable, if Sx∗ = S.

We note that for our system with the state space S in (7), subsets of S ( R6 are considered open in the
relative topology induced on S by the topology of R6. In particular, open subsets can contain points on the
boundary of S in R6.

Stability of a Periodic Equilibrium. When a periodic equilibrium u∗ exists, it is possible for the fluid
model to oscillate indefinitely, at least when the initial condition is taken to be on the periodic equilibrium
trajectory. However, we would like to know if the periodic equilibrium is also asymptotically stable in
some sense, namely, if there exists a set Su∗ ⊆ S such that, if x(0) ∈ Su∗ , then x(t) converges to the
periodic equilibrium. We note that convergence to periodic equilibrium cannot hold in the Lyapunov sense,
as in Definition 4.3, because there would typically be a time shift between the converging solution and the
periodic-equilibrium solution. We therefore say that a solution x converges to a periodic equilibrium u∗ if
its image “spirals” toward the image of u∗ as time increases. (By spiraling we mean that the image of x
keeps moving in the direction of u∗ and gets closer to it as time increases; see Lemma 6.6 below.)

Consider a switching dynamical system ẋ = fσ(x) (not necessarily (17)). The standard way of proving
that a periodic equilibrium u∗ (assuming one exists) with period T is stable, is to consider the intersection
point ũ of u∗ with a switching surfaceM, and show that any trajectory x that is initialized onM sufficiently
close to ũ, will reachM again after a time that is approximately equal to the period T of u∗. If, in addition,
the intersections of x withM converge to ũ, then u∗ is asymptotically stable; see, e.g., page 121 in [29].

To rigorously define the above asymptotic stability notion, and show that it indeed implies the “spiraling
motion” of solutions that are initialized sufficiently close to a periodic equilibrium, we first make a simple
observation: When there are N > 1 switching surfacesMi, 1 < i ≤ N , that are intersected by a stable
periodic equilibrium u∗, the intersections of xwithMi, as well as the values of x at those intersection points,
will converge to the intersection points of u∗ withMi and the values of u∗ at these epochs, respectively, for
each i ≤ N . Since this is the case for our system, we define asymptotic stability in term of all four switching
surfaces and the corresponding switching times. To avoid introducing more notation, the definition is given
for our system directly.
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To that end, let Pu∗ denote the image of a periodic equilibrium u∗ having period T ;

Pu∗ ≡ {γ ∈ S : γ = u∗(t), 0 ≤ t < T}.

Since u∗(0) = u∗(T ), the set Pu∗ is an invariant set, namely, if y0 ∈ Pu∗ and y is the unique solution to
ẏ = fσ(y) in (17) with initial condition y(0) = y0, then y(t) ∈ Pu∗ for all t > 0.

Let x be a solution to (17) with x(0) /∈ Pu∗ and Σq = ∞ (so that x oscillates indefinitely; we will
show in Theorem 5.5 below that such solutions exist). Note that if x is an oscillating solution to (17), then
there exists a t1 ≥ 0 such that x(t1) satisfies the conditions in Assumption 2. Due to the time-homogeneity
of x we can restart the ODE at the first time t1 ≥ 0 for which x(t1) satisfies Assumption 2 by taking
x(0) = x(t1). Then the solution {x(t) : −t1 ≤ t <∞} satisfies Assumption 2 at time 0.

For Ti and Σi in (8) and (9), let T (k)
i and Σ

(k)
i be the value of holding time Ti and switching time Σi,

respectively, in the kth cycle of x, where

Σ
(1)
0 ≡ t1 (so that x(Σ

(1)
0 ) ≡ x(0) by definition) and Σ

(k+1)
0 ≡ Σ

(k)
4 , k ≥ 1.

Let T ∗j denote holding time j, 1 ≤ j ≤ 4, and Σ
∗(k)
i denote switching time i, 0 ≤ i ≤ 4, in the kth cycle of

a periodic equilibrium u∗, with Σ
∗(0)
0 ≡ 0 and Σ

∗(k+1)
0 ≡ Σ

∗(k)
4 , k ≥ 1. Similarly, for an oscillating solution

x, let T (k)
j , denote holding time j, 1 ≤ j ≤ 4, and Σ

(k)
i denote switching time i, 0 ≤ i ≤ 4, in the kth cycle

of x, k ≥ 1, where Σ
(0)
0 ≡ 0 and Σ

(k+1)
0 ≡ Σ

(k)
4 , k ≥ 1.

Definition 4.4. (asymptotically stable periodic equilibrium) A periodic equilibrium u∗ having period T is
said to be asymptotically stable if there exists an open subset Su∗ of S which contains Pu∗ such that, if
x(0) ∈ Su∗ , then for 1 ≤ i ≤ 4 and any t > 0,

lim
k→∞

T
(k)
i = T ∗i and lim

k→∞
sup

0≤s≤t
‖x(Σ

(k)
0 + s)− u∗(Σ∗(k)

0 + s)‖ = 0. (30)

5 Asymptotic Behavior of the Fluid Model

In this section we establish results about the asymptotic behavior of the underloaded switching fluid model
in (17). We show that there always is the underloaded stationary point equilibrium, to which the fluid model
converges if it does not oscillate indefinitely. We show that there exists an overloaded periodic equilibrium
if it oscillates indefinitely, and provide sufficient conditions for endless oscillations. For the discussion of
equilibria, we no longer assume initial conditions in Assumption 2; we allow arbitrary initial conditions in
the state space S. We also consider the system after time Σq in (10).

5.1 Existence and Asymptotic Stability of a Unique Stationary Point

If there is no sharing actively taking place on an interval [0, T ], then the stochastic system decomposes into
two independent M/M/n+M (Erlang-A) queuing systems. Let Y n

i (t) := Qni (t) +Zni,i(t) denote the total
number of customers in each of these systems and Ȳ n

i := Y n
i /n, i = 1, 2. Then the fluid model for Ȳ n in
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the symmetric case we consider is the solution of the ODE

ẏi = λ− µ(1 ∧ yi)− θ(yi − 1)+, i = 1, 2,

where a+ ≡ max{a, 0}. In this case we have the following elementary, but important, result.

Theorem 5.1. If qi(0) ≤ κ, then no sharing will ever begin in the fluid model and x(t) → x∗0 as t → ∞,
where

x∗0 ≡ (q∗1, q
∗
2, z
∗
1,1, z

∗
1,2, z

∗
2,1, z

∗
2,2) = (0, 0, λ, 0, 0, λ). (31)

Hence, x∗0 is an asymptotically stable stationary point.

Proof. No sharing will ever occur because qi = (yi−1)+, and if yi(t) > 1, so that the queue is positive, then
yi(t) is decreasing at t, i = 1, 2. (Recall that λ < µ = 1.) Hence, even if di,j(0) = κ for (i, j) = (1, 2) or
(i, j) = (2, 1), then di,j(t) < κ for any t > 0 in some right-neighborhood of 0. It follows that, if zi,j(0) > 0,
i 6= j, then zi,j is strictly decreasing, which implies that the service capacity in pool j is increasing. In turn,
qj must keep decreasing as long as it is strictly positive. Finally, since yi is strictly decreasing as long as it
is larger than λ and is strictly increasing otherwise, we have

yi(t)→ λ as t→∞. (32)

Remark 5.1. Having x∗0 in (31) be an asymptotically stable stationary point depends critically on the as-
sumption that κ > 0. If, instead, κ = 0, then it is possible for x∗0 to be an unstable stationary point, so that x
oscillates indefinitely for any initial condition x(0) 6= x∗0. Instability of x∗0 has important consequences for
the stochastic system Xn, since stochastic fluctuations may trigger undesirable sharing even if the system
is initialized at the neighborhood of x∗0. Therefore, stochastic fluctuations can quickly lead to fluid-scaled
fluctuations, namely, to an oscillatory behavior. See the simulations in §7.4 below. The moral is that there
is a need to ensure that the activation thresholds in the (finite) stochastic system are large enough to be
considered positive in fluid scale. The size of the stochastic fluctuations of critically-loaded pools with no
sharing can be estimated from the established heavy-traffic limit approximations for the Erlang-A model in
[8].

Ideally, x∗0 in (31) would be a globally asymptotically stable stationary point for the fluid model, since
the system is underloaded (λ < 1) and we want no sharing to take place, and indeed that will be the case with
appropriate controls. However, here we are interested in fluid models with poorly chosen controls. Then
solutions to (17) need not converge to x∗0, so that Scx∗0 6= φ, where, for a set A, Ac denotes the complement
of A and φ denotes the empty set.

Let S∗ := {γ∗ ∈ S : γ∗ is a stationary point}. Of course, S∗ 6= φ because x∗0 ∈ S∗.

Theorem 5.2. S∗ = {x∗0} for x∗0 in (31); i.e., x∗0 is the unique stationary point of the switching fluid model
(17).
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Proof. Supppose that

γ∗ = (γ∗i , γ
∗
i,j ; i, j = 1, 2) ∈ S∗ such that γ∗ ∈ S1,2 ∪ S+

1,2,

so that γ∗1 ≥ κ. Consider the fluid model initialized at γ∗, i.e., x(0) = γ∗. If z2,1(0) = γ∗2,1 > 0, then by
the rules of FQR-ART, ż2,1(0) = −µ2,1z2,1(0) < 0, implying that z2,1 is strictly decreasing. It follows that
γ∗2,1 = 0, so that γ∗1,1 = 1 (because γ∗1 ≥ κ > 0). But then

q̇1(0) = λ− µ1,1γ
∗
1,1 − θq1(0) < λ− 1 < 0,

which contradicts the supposition that γ∗ is a stationary point. Hence, S∗ ∩ (S1,2 ∪ S+
1,2) = φ. Similar

arguments apply to S∗ ∩ (S2,1 ∪ S+
2,1). The same reasoning for γ∗ ∈ S∗ ∩ S−1,2 ∩ S−2,1 implies that γ∗1,2 =

γ∗2,1 = 0 and γ∗1 = γ∗2 = 0. Then the arguments leading to (32) show that γ∗ = x∗0. Hence, we conclude
that S∗ = {x∗0}.

Having established Theorem 5.2, We refer to x∗0 in (31) as the stationary point with no sharing, or simply
as the stationary point.

5.2 Only Two Possibilities

We now show that there are only two possibilities for the asymptotic behavior. Let O ⊂ S be the set of
points such that, if x(0) ∈ O, then the solution x to (17) switches infinitely often as t→∞, i.e., it oscillates
indefinitely.

Theorem 5.3. Oc = Sx∗0 for x∗0 in (31); i.e., if x(0) ∈ Oc, then x(t)→ x∗0 as t→∞.

Proof. Since x(0) ∈ Oc there exists a time t0 ≥ 0 such that x(t) /∈ S+
1,2 ∪ S+

2,1 for all t ≥ t0. If x(t) ∈ S−i,j
for all t ≥ t0, then

żi,j(t) = −µzi,j(t), so that zi,j(t) = zi,j(t0)e−µ(t−t0), t ≥ t0.

Then both z1,2 and z2,1 converge to 0, and it is easy to see from (3) (recall that there is no new sharing
taking place) that both queues will reach 0 in finite time. Then, after qi reaches 0, all arriving fluid moves
immediately into service, so that ż2,2 = λ− z2,2, and we see that z2,2(t)→ λ as t→∞.

Now suppose that x ∈ S1,2 over an interval I . If z2,1 > τ over I , then no fluid flows from q1 to pool 2,
so that both queues evolve independently according to (3). Since z1,2 and z2,1 are strictly decreasing over I ,
the same arguments given above apply in this case. Therefore, assume that z2,1 ≤ τ over an interval J ⊆ I

so that sharing is allowed. By Assumption 1, q1 is strictly decreasing on J , and the sliding motion implies
that q̇1(t)− q̇2(t) = 0, so that q2 is strictly decreasing as well (at exactly the same rate as q1). Now, some of
the service capacity of pool 2 is given to queue-1 fluid at any point, so that

q̇1(t) < λ− z1,1(t)− µz2,1(t)− θq1(t) and q̇2(t) > λ− z2,2(t)− µz1,2(t)− θq2(t), t ∈ J.
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Recalling that q1(t) = q2(t) + κ and zi,i(t) = 1− zj,i(t) for t ∈ J , we have

0 = q̇1(t)− q̇2(t) < (1− µ)(z2,1(t)− z1,2(t))− θκ < (1− µ)(z2,1(t)− z1,2(t)),

so that z1,2(t) < z2,1(t). It follows that z1,2(t) ≤ τ and is decreasing on J . In particular, both queues
continue decreasing after the sliding motion is over.

The same arguments give that, if x ever slides on S2,1, then both queues are strictly increasing to 0.
Hence, the processes z1,2 and z2,1 never increase above τ during sliding motion, so that both queues are
strictly decreasing to 0. After qi hits 0, zj,i decreases monotonically to 0 and zi,i converges to λ.

5.3 Existence of a Periodic Equilibrium

Theorem 5.3 shows that a solution x to (17) either converges to x∗0 or oscillates indefinitely. We now consider
what happens if the solution oscillates indefinitely.

Theorem 5.4. IfO 6= φ, then there exists a periodic equilibrium u∗ ≡ {u∗(t) : t ≥ 0} to (17). In particular,
if O 6= φ, then there exists a initial state vector x(0) satisfying Assumption 2 such that x(0) ∈ O and, for
that x(0), Σq > Σ2 and

(q1(Σ4), q2(Σ4), z2,1(Σ4)) = (q1(0), q2(0), z2,1(0)),

which implies that T3 = T1, T4 = T2, so that Σ4 = 2Σ2,

(q1(Σ4), q2(Σ4), z2,1(Σ4)) = (q1(2(T1 + T2)), q2(2(T1 + T2)), z2,1(2(T1 + T2)))

= (q2(T1 + T2), q1(T1 + T2), z1,2(T1 + T2))

= (q1(0), q2(0), z2,1(0)).

(33)

It is important that the condition in Theorem 5.4 can be satisfied. Hence, we also establish the following
result, which may be considered harder than Theorem 5.4.

Theorem 5.5. There exist parameter values for (4) and initial conditions satisfying Assumption 2 for which
O 6= φ.

5.4 Proofs of Theorems 5.4 and 5.5

To establish these results, we exploit an algorithm for efficiently computing a solution to the switching
model in (17) and efficiently calculating the periodic equilibrium if it exists. The algorithm improves on
the piecewise numerical solution of the piecewise ODE in (17) by exploiting the exact formulas in §3. We
can recursively calculate the values at the switching times Σi and then afterwards calculate the trajectory in
between. By iterating, we can easily determine numerically if the solution converges to the stationary point
or not. Numerical experience indicates that if the solution oscillates indefinitely, then it rapidly converges
to a periodic equilibrium. In particular, the algorithm identifies the periodic equilibrium. However, more is
required to provide a mathematical proof of existence, uniqueness and convergence.
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5.4.1 An Efficient Algorithm for The Periodic Equilibrium

A periodic equilibrium u∗ has an important closure property: If u∗(t) satisfies Assumption 2 for some t,
then u∗(t+ Σ4) = u∗(t). Due to the symmetry of our model, we can relate the system state at time t+ Σ2

to the system state at time t. The state at time t+ Σ2 should coincide with the state at time t with the labels
reversed. That is, we should have

q1(t+ Σ2) = q2(t) > 0, q2(t+ Σ2) = q1(t) > 0

z1,2(t+ Σ2) = z2,1(t) and z2,1(t+ Σ2) = z1,2(t) = τ. (34)

with the condition that the pools remain full throughout:

z1,1(s) + z2,1(s) = 1 and z2,2(s) + z1,2(s) = 1, 0 ≤ s ≤ t+ Σ2.

(Observe that the labels of the processes in the second equality in (33) are reversed.) If indeed we can
establish the closure property in (34), then we will have proved that there exists a periodic equilibrium.

It is natural to search for the equilibrium by iterating: We pick a candidate initial vector x3(0) ≡
(q1(0), q2(0), z2,1(0)), letting z1,2(0) = τ , so that Assumption 2 holds. We then solve for T1, T2, and
(q1(T1 +T2), q2(T1 +T2), z1,2(T1 +T2)), as indicated above. we then redefine (q1(0), q2(0), z2,1(0)) to be
(q2(T1 + T2), q1(T1 + T2), z1,2(T1 + T2)) and repeat the calculation.

If at some iteration we obtain an unreasonable value for x3, e.g., qi < 0, i = 1 or i = 2, or ∆ ≤ κ,
then the algorithm is stopped and we conclude that the solution corresponding to the initial condition we
chose converges to x∗0 (due to Theorem 5.3). However, a pathological case has ∆ > κ for all iterations, but
∆→ κ. Let ∆∗ and T ∗1 denote the limit of ∆ and T1 when the algorithm is iterated indefinitely. Observe that
∆∗ = κ implies T ∗1 = 0, so that the corresponding limiting solution u∗ is necessarily a constant function.
This case is clearly a pathology, due to the uniqueness of the stationary point x∗0. The following lemma
ensures that such a pathological behavior of the algorithm is not possible. In particular, if at some iteration
of the algorithm ∆ is too close to κ, then this is also the last iteration

Lemma 5.1. There exists εκ > 0 such that, if κ < ∆(0) < κ + εκ, then x(Σ2) > −κ. In particular
x(0) ∈ Oc, so that x(t)→ x∗0 as t→∞.

Proof. By Lemma 3.1, ∆ is bounded from above by the linear function −ΨL. Hence, for any δ1 > 0 we
can find ε1 > 0 such that, if κ < ∆(0) < κ + ε1, then 0 < T1 < δ1. The explicit expressions of z2,1 in
(11) and T2 in (28) show that, for any z2,1(0) and δ2 > 0, we can choose δ1 sufficiently small to ensure that
T2 < δ2 (even if T2 > 0). Hence, for any δ > 0, we can find ε > 0 such that, if κ < ∆(0) < κ + ε, then
Σ2 < δ, by first choosing δ2 and then an appropriate δ1 to ensure that δ1 + δ1 ≤ δ. The continuity of ∆

implies that there exists a δκ > 0 such that, if Σ2 < δκ, then ∆(Σ2) > −κ. It follows that for all t in some
right neighborhood of Σ2 both z1,2(t) and z2,1(t) are strictly less than τ , so that both queues are strictly
decreasing.

Now, if x ever hits Si,j , (i, j) = (1, 2) or (i, j) = (2, 1), after time Σ2, then it can not cross it to S+
i,j .

To see this, suppose for example that x hits S2,1 at some time t > Σ2. Since x evolves according to the
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ODE’s (11) - (12) when in S+
2,1, the derivative of ∆(t) ∈ S+

2,1 is strictly negative; see Lemma 3.1. Moreover,
sharing is allowed to start immediately because z1,2 < τ . Therefore, if ∆(0) < κ+ εκ, then x(0) ∈ Oc, so
that x(t)→ x∗0 as t→∞ by Theorem 5.3.

Let ∆(k) be the value of ∆ at the kth iteration of the algorithm. It follows from Lemma 5.1 that

Corollary 5.1. If x(0) ∈ O, then ∆(k) ∈ [κ+ εκ, λ/θ], k ≥ 1, for εκ > 0 in Lemma 5.1.

5.4.2 Proof Theorem 5.5

Proof. We first impose conditions on the model parameters and initial conditions so that the iterative algo-
rithm in §5.4.1 mapping the initial state vector x3(0) ≡ (q1(0), q2(0), z2,1(0)) into the state vector x3(Σ2) ≡
(q1(Σ2), q2(Σ2), z1,2(Σ2)) and then iterated again to map x3(0) into x3(Σ4) ≡ (q1(Σ4), q2(Σ4), z2,1(Σ4))

is a map of the convex compact subset Sε of the Euclidean space R3 into itself, where Sε is the subset
Sε ≡ [ε, λ/θ]× [ε, λ/θ]× [0, τ ] for some ε > 0.

For that purpose, we introduce lower and upper bounds on the initial queue difference ∆(0),

0 < κ < ∆L(0) ≤ ∆(0) ≡ q2(0)− q1(0) ≤ ∆U (0) <∞, (35)

and assume that the smaller queue length q1(0) is bounded below as well as above by

0 < qL1 (0) ≤ q1(0) ≤ qU1 (0) <
λ

θ
<∞, (36)

both consistent with Assumption 2.
We can apply (23) in Lemma 3.2 to establish upper and lower bounds on T1, as shown in Corollary B.1.

Those bounds are

TL1 ≡
(

1

θ

)
log

(
θ∆L(0) + ΨU

θκ+ ΨU

)
≤ T1 ≤ TU1 ≡

(
1

θ

)
log

(
θ∆U (0) + ΨL

θκ+ ΨL

)
(37)

where ∆L(0) and ∆U (0) come from (35) and ΨU and ΨL are upper bounds on Ψ in (20) and (21). We then
impose an upper bound on τ by requiring τ < 1− e−TL1 , which imposes an upper bound on T2, i.e.,

T2 ≤ TU2 ≡
loge (z2,1(TU1 )/τ)

µ
. (38)

If, in addition,

qL1 (T1 + T2) ≡
[
λ

θ
−
(
λ

θ
− qL1 (0)

)(
θκ+ 2

θ∆L(0) + 2

)]
e−θT

U
2 >

(
1− λ
θ

)
(1− e−θTU2 ), (39)

then the two queue lengths both remain positive throughout the interval [0, T1 + T2] and q1(T1 + T2) ≥
qL1 (T1 + T2) in (39), as shown in Lemma B.5. (If necessary, we redfine qL1 (0) so that qL1 (T1 + T2) ≥ qL1 as
well as (36).) Finally, if

0 < κ < ∆L(0) ≤ ∆(T1 + T2) ≡ q2(0)− q1(0) ≤ ∆U (0) <∞, (40)
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then we can iterate without limit, with Σq = ∞. Condition (40) can be checked after the first iteration.
However, sufficient conditions for (40) to hold without performing the first iteration are given in Lemma
B.5. Numerical examples confirm that all these conditions can be satisfied, thus proving Theorem 5.5.

5.4.3 Proof of Theorem 5.4

Proof. For a solution x with x(0) ∈ O, Σq = ∞, so that the algorithm can be iterated indefinitely. In each
iteration, the algorithm acts as a map of the vector x3(0) = (q1(0), q2(0), z2,1(0)) to x3(Σ4) (with x3(Σ4)

serving as the initial condition for the following iteration). Therefore, the algorithm maps the compact and
convex set [0, λ/θ]× [κ, λ/θ]× [0, τ ] into itself. As long as the solution oscillates, we can restrict attention
to the two-dimensional process x2 ≡ (∆, z2,1), because ∆(0) = ∆(Σ4) = κ. In particular, at each iteration
of the algorithm we compute ∆(Σ2) and use it as the initial condition for the next iteration.

Corollary 5.1 implies that for this two-dimensional process x2, the algorithm acts as a map from the
space Sκ ≡ [κ + εκ, λ/θ] × [0, τ ] into itself, where εκ > 0. The explicit solution to the ODE (17) over
[0,Σ4] and to ∆ in (22) and (26) shows that this map is continuous. Hence, by Brouwer’s fixed point
theorem (e.g., Theorem 5.28 in [26]) there exists a fixed point to this map in the set Sκ. That fixed point
cannot be also a fixed point of (17), due to Theorem 5.2, i.e., due to the uniqueness of x∗0. It follows that there
exists a solution to (17) satisfying (34) which is not a constant. Necessarily, such a solution is a non-trivial
periodic equilibrium.

5.5 Conjectured Bi-Stability

Recall that Sx∗0 is the stability set of x∗0 in Definition 4.3 and Su∗ denotes the stability set of the periodic
equilibrium u∗, when it exists, in Definition 4.4. By Theorem 5.3, Sx∗0 = Oc (the complement ofO), so that
any fluid solution that does not oscillate indefinitely must converge to x∗0, and it clearly holds that Su∗ ⊆ O.
We conjecture that Su∗ ⊇ O as well, so that Su∗ = O. Formally,

Conjecture 5.1. If x(0) ∈ O, then there exists a unique periodic equilibrium u∗ and x converges to u∗ as
in (30). Therefore, Sx∗0 ∪ Su∗ = S, namely the fluid model is bi-stable with all fluid trajectories converging
to one of the two equilibria as t→∞.

Extensive numerical trials, some of which are presented in §7 below, indicate that Conjecture 5.1 holds.
More importantly, we next derive an approximating dynamical switching system to (17) which is shown to
be bi-stable.

6 Approximating Dynamical System

Since we were unable to fully characterize the asymptotic behavior of our initial fluid model, we now
develop an approximating fluid model that can be analyzed more easily; i.e., for which we can establish
bistability and calculate the two equilibria. The approximating system is easier to analyze because it is
essentially a one-dimensional system at the switching times. However, there are discontinuities at some of
the switching times, so the approximating fluid model is a dynamical system with jumps (alternatively, it
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can be represented as a hybrid system with jumps); see [27] and [31]. The latter reference provides a general
framework for defining and analyzing solutions for dynamical systems with jumps (see §1.5 of [31]), but the
relative simplicity of our approximation obviates the need for a general theory. Numerical examples confirm
that the approximating system serves as a useful approximation for the original fluid model, allowing us to
rapidly compute a periodic equilibrium.

The approximation is obtained in five steps: First, we approximate the solution x to (17) by a solution
xa to

ẋa = fσ(xa, θa, τa), (41)

for a given initial condition xa(0), where we supplement the argument xa of fσ in (17) by the abandonment
rate θa and the control parameter τa of the approximating system. Second, we assume that there is no
abandonment, i.e., we let θa = 0. Third, approximate τ by 0 on the first and third subintervals, i.e.,

τa ≡

{
0 for 0 ≤ t < Σa

1 and Σa
2 ≤ t < Σa

3

τ for Σa
1 ≤ t < Σa

2 and Σa
3 ≤ t < Σa

4,
(42)

where the switching times Σa
i are defined analogously to (9), and are formally defined in (45) below. Fourth,

we let the initial condition for the approximating system be defined by

xa(0) = lim
τ→0

x(0), so that za1,2(0) = za2,1(0) = 0, (43)

where x(0) is the initial condition in Assumption 2. Fifth, and finally, we primarily focus on the three-
dimensional function xa3 ≡ (∆a, za1,2, z

a
2,1) that approximates the three-dimensional function x3 ≡ (∆, z1,2, z2,1)

obtained from (17), ignoring the queue lengths. We will be assuming that the queue lengths remain positive,
which can be checked at the end. In general, our analysis is valid until a queue length becomes 0. First, we
focus on the difference function because it is possible to do so and still have a bonafide dynamical system,
which is easier to analyze. Second, we are motivated to ignore the queue lengths because we have less
control over them without abandonment; e.g., they can easily explode (diverge to infinity). However, we
will also state some results for the full six-dimensional approximation xa.

Since the approximating queue lengths qa1 and qa2 can obtain any nonnegative value, the full state space
S ≡ [0, λ/θ]2× [0, 1]4 of the solutions to (17) is replaced with Sa ≡ [0,∞)2× [0, 1]4. Indeed Sa is obtained
from S directly because λ/θ → ∞ as θ → 0. The state space of xa3 is a-priori [0,∞) × [0, 1]4, but we will
show below that ∆ is bounded from above.

Paralleling (8), the switching and holding times, and the intervals between switching times, are defined
via

T a1 ≡ inf {t ≥ 0 : qa2(t)− qa1(t) ≤ κ} and T a2 ≡ inf{t ≥ 0 : za2,1(Σa
1 + t) ≤ τ},

T a3 ≡ inf{t ≥ 0 : qa1(Σa
2 + t)− qa2(Σa

2 + t) ≤ κ} and T a4 ≡ inf{t ≥ 0 : za1,2(Σa
3 + t) ≤ τ},

(44)
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where, with T a0 ≡ Σa
0 ≡ 0,

Σa
k ≡

k∑
i=0

T ai and Iai ≡ [Σa
i−1,Σ

a
i ), k = 1, 2, 3, 4. (45)

Paralleling (10), we let
Σa
q ≡ inf{t > 0 : qa1(t) ∧ qa2(t) = 0}. (46)

Our analysis will be valid for the full six-dimensional system on the interval [0,Σa
q ], but we will not examine

Σa
q until the end. In particular, we will show that the system quickly converges to the (unique) periodic

equilibrium, when it exists, for any initial condition that is associated with an oscillating solution. We can
therefore initialize the queues (which are unbounded) at large values so that there is no time for them to
reach 0 by the time convergence to the periodic equilibrium is observed.

In examples we see that the approximating system approximates our original system very well when
the parameters θ and τ are suitably small. For this approximating system, we establish the following result.
Let Σ

a,(k)
4 and ∆a,(k) be the values of the kth iteration, where we apply the approximation above in the kth

subinterval after making Σ
a,(k−1)
4 equal to time 0.

Theorem 6.1. Consider the approximating system defined above.

(a) The unique stationary point x∗0 in (31) for the fluid model in §3 is also the unique stationary point in
R6 for the approximating system.

(b) If ∆a(0) ≤ κ or if ∆a,(k)(0) ≤ κ for some k ≥ 1, then xa(t)→ x∗0 in R6 for x∗0 in (31).

(c) Whenever xa(t)→ x∗0 in R6 for x∗0 in (31), xa3(t) = (0, 0, 0) for all sufficiently large t.

(d) If ∆a,(k)(0) > κ for all k, then ∆a,(k)(0) → ∆a,(∞)(0) ∈ [κ + εaκ, (1 − µ)(1 − τ)/µ] as k → ∞,
where εaκ ≡ − log(1− τ) > 0.

(e) If the condition in part (d) holds, and if Σa
q =∞, then (i) there exists a unique periodic equilibrium

ua∗3 to the three-dimensional approximating system and (ii) the approximating system is bistable: There are
initial conditions for which xa(t)→ x∗0 in R6 for x∗0 in (31) (which may include having Σa

q <∞); there are
other initial conditions for which Σa

q =∞ and xa(t) fails to converge in R6 in the usual sense of pointwise
convergence, but xa3(t)→ ua∗3 in R3 in the sense of Definition 4.4; and there are no other possibilities.

(f) For any given pair of control parameters (κ, τ), there exists µ∗ ≡ µ∗(κ, τ) such that, for any service
rate µ ∈ (0, µ∗), the condition in part (d) holds with ∆a,(∞)(0) > κ, so that the conclusions of part (e)
hold, provided that Σa

q =∞.

The condition Σa
q = ∞ is easy to check directly by solving the simple equations for the full six-

dimensional equation (41). However, in §6.8 below we show that, whether or not this condition holds can
be determined a posteriori by a simple calculation that depends only on the periodic equilibrium, and does
not depend on the transient behavior of the fluid model.

In §6.1 and §6.2 we derive the solution to the approximating system over the first and second intervals,
[0,Σa

1) and [Σa
1,Σ

a
2), respectively. In §6.3 we construct the solution after Σa

2. In §6.4, §6.5 and §6.6,
respectively, we prove Theorem 6.1 (a)-(c), (d)-(e) and (f). In §6.7 we consider a simple heuristic to provide
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an approximate explicit formula for the switching time T a1 to facilitate computations. We conclude in §6.8
by showing how to apply the explicit formula in §6.7 to determine if there will be congestion collapse.
We establish conditions for a stronger geometric rate of convergence and exponential stability in §C in the
appendix.

6.1 The Approximation Over the First Interval Ia1 = [0,Σa
1)

The ODE’s for xa over [0,Σa
1) are just as in (11)-(12), but with θ = τ = 0. Just as in §3.1.1, qa1 is increasing

while qa2 ≥ qa1 + κ, so Σa
q > Σa

1.
It follows from (11) that, for xa(0) in (43),

z1,2(t) = 0 and z2,1(t) = 1− e−t, so that z1,1(t) = e−t and z2,2(t) = 1, 0 ≤ t < Σa
1. (47)

The value of T a1 is determined by the process ∆a ≡ qa2−qa1 , approximating the corresponding difference
process ∆. Taking θ = τ = 0 and z2,1(0) = 0 in (19)-(20), we have

∆̇a(t) = −(1+µ)−(1−µ)e−t so that ∆a(t) = ∆a(0)−(1+µ)t+(1−µ)(1−e−t), 0 ≤ t < Σa
1. (48)

Since ∆a(T a1 ) = κ by definition, it follows that

T a1 =
∆a(0)− 1 + µ− κ

1 + µ
+

1− µ
1 + µ

e−T
a
1 . (49)

Lemma 6.1. For any fixed ∆a(0) > κ there exists a unique T a1 > 0 satisfying (49). Furthermore, T a1 is
strictly increasing in ∆a(0).

Proof. Define the function F : B → R+, where

B ≡ (κ,∞)× (0,∞) and F (∆, T ) ≡ ∆− 1 + µ− κ
1 + µ

+
1− µ
1 + µ

e−T − T, (50)

and the function
h(T ) ≡ ∆− 1 + µ− κ+ (1− µ)e−T − (1 + µ)T.

Note that h(0) > 0 and h(T ) → −∞ as T → +∞. Furthermore, h′(T ) < 0, so that h(T ) is strictly
decreasing.

It follows that for any fixed ∆ > κ, there exists a unique T > 0, such that (∆, T ) ∈ B and F (∆, T ) = 0.
In addition, it clearly holds that ∂F∂∆ and ∂F

∂T exist in B and are continuous, and that ∂F∂T 6= 0 for all real T .
Then by the implicit-function theorem there exists a unique continuously-differentiable function T (∆), such
that F (∆, T (∆)) = 0 over the domain B, and

dT

d∆
= −

∂
∂∆F
∂
∂T F

=
1

(1− µ)e−T + (1 + µ)
> 0,

so that T is strictly increasing in ∆.
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In passing we note that the point (∆0, T0) ≡ (1 − µ + κ, 0) satisfies F (∆0, T0) = 0. However, this
point is not in B, so there is no contradiction to the claim that there exists a function T (∆) as in the proof
of Lemma 6.1.

It follows from (47) that for Σa
1 ≡ T a1 ,

xa3(Σ1) = (κ, 0, 1− e−Ta1 ), (51)

which is well-defined by Lemma 6.1.

6.2 The Approximation Over the Second Interval Ia2 = [Σa
1,Σ

a
2)

The equations for the service process over [Σa
1,Σ

a
2) are obtained from (14), but with T a1 replacing T1 and

zai,j(T
a
1 ) replacing zi,j(T1), i, j = 1, 2. As in §3.1.2, it is possible to have Σa

1 < Σa
q ≤ Σa

2, but we do not
check that now.

Since the process z1,2 in (14) keeps decreasing and za1,2(T a1 ) = 0, it follows from (51) and (14) that

za1,2(T a1 + t) = 0 and za2,1(T a1 + t) = (1− e−Ta1 )e−µt, 0 ≤ t < T a2 . (52)

Taking θ ↓ 0 and inserting the values of za1,2(T a1 ) and za2,1(T a1 ) from (51) in (24), we see that

∆̇a(Σa
1 + t) = −za2,1(T a1 )(1− µ)e−µt = −(1− e−Ta1 )(1− µ)e−µt, 0 ≤ t < T a2 , (53)

where ∆a(Σa
1) = κ.

By (44), T a2 is the first time after Σa
1 that za2,1 hits τ , so that, paralleling (28),

T a2 =
log(za2,1(T a1 )/τ)

µ
=

log((1− e−Ta1 )/τ)

µ
. (54)

Clearly, if τ ↓ 0 then T a2 →∞, which is why we cannot replace τ with 0 over the second interval [Σa
1,Σ

a
2).

Inserting the value of T a2 into the solution to (53) we obtain

∆a(Σa
2−) = κ− z2,1(T a1 )(1− µ)

µ

(
1− τ

za2,1(T a1 )

)
= κ− 1− µ

µ
(1− e−Ta1 − τ),

where y(t−) ≡ lims↑t y(s) denotes the left limit at time t of a function y. Hence,

xa3(Σa
2−) =

(
κ− 1− µ

µ
(1− e−Ta1 − τ), 0, τ

)
. (55)

6.3 Continuing Beyond Σa
2

As before, we can use the symmetry of xa3 and take xa3(Σa
2) to be the “initial condition” by reversing the

labels. This means that, as in (43), we take τ ↓ 0 in xa3(Σa
2). It follows immediately from (55) that

limτ↓0 x
a
3(Σa

2) 6= xa3(Σa
2−). Hence, the approximation xa3, and therefore xa, has a jump at time Σa

2, since
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the values of ∆a(Σa
2−) and z2,1(Σa

2−) both depend on τ . However, we can easily avoid having jumps in
the process ∆a, which we want to avoid because it causes ambiguities about the behavior of the queues at
the jump times. To that end, we simply define

∆a(Σa
2) ≡ ∆a(Σa

2−) = κ− 1− µ
µ

(1− e−Ta1 − τ) and z2,1(Σa
2) = lim

τ↓0
z2,1(Σa

2) = 0,

so that we have
xa3(Σa

2) =

(
κ− 1− µ

µ
(1− e−Ta1 − τ), 0, 0

)
. (56)

As a consequence, only z2,1 jumps at the second switching time Σa
2. That discontinuity makes our fluid

model a switching dynamical system with jumps, as mentioned at the beginning of the section.
If ∆a(Σa

2) > κ, then T a3 > 0, and paralleling (49) and Lemma 6.1, T a3 is the unique strictly positive
solution to

T a3 =
∆a(Σa

2)− 1 + µ− κ
1 + µ

+
1− µ
1 + µ

e−T
a
3 .

Furthermore, paralleling (54),

T a4 =
log((1− e−Ta3 )/τ)

µ
,

so that
∆a(Σa

4−) =
1− µ
µ

(1− e−Ta3 − τ)− κ, za1,2(Σa
4−) = τ and za2,1(Σa

4−) = 0.

If ∆a(Σa
4−) > κ we define ∆a(Σa

4) ≡ ∆a(Σa
4−) and za1,2(Σa

4) = limτ↓0 z
a
1,2(Σa

4−) = 0 and start over.
The preceding shows that, just as for the original system, we can exploit the symmetry of the model and

consider only the half cycle [0,Σa
2). In particular, for a given initial condition ∆a(0) we solve up to time Σa

2

and take
−xa3(Σa

2) =

(
1− µ
µ

(1− e−Ta1 − τ)− κ, 0, 0
)

(57)

to be a new initial condition to solve beyond time Σa
2. It immediately follows that

Lemma 6.2. ∆a is bounded over [0,Σa
q). In particular, if Σa

4 < Σa
q , then ∆a(Σa

4) < ∆a
bd ≡

1−µ
µ (1− τ).

It is significant that at the switching times, xa3 depends only on the known control parameters (κ, τ) and
the one unknown T a1 . Therefore, the approximating system is reduced to an essentially one-dimensional
system at the switching times.

The Approximating Three-Dimensional System. From the above, xa3 = (∆a, z1,2, z2,1) is the unique
solution over [0,Σa

q), for Σa
q in (46), to

ẋa3 = f3
σ(xa3)(x

a
3, θ, τ

a) = f3
σ(xa3)(x

a
3, 0, τ

a), σ(xa3) = 1, 2, 3, 4, (58)

with initial condition (43) and τa in (42), where f3
1 is defined in (11) and (48), f3

2 is defined in (14) and
(53), f3

3 satisfies the equations of f3
1 , but with the labels reversed, and f3

4 satisfies the equations of f3
2 , with

the labels of the processes reversed.
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6.4 Proof of Theorem 6.1 (a)-(c)

Recall that the ODE (58) is solved until time Σa
4, and can then be continued beyond that time by taking

xa3(0) ≡ xa3(Σa
4) to be a new initial condition provided that xa3(Σa

4) satisfies (43), i.e. if ∆a(Σa
4) > κ.

However, if ∆a(Σa
4) ≤ κ, then the ODE does not follows the switching pattern in (58). The next lemma

shows that, in this case, the solution will converge to x∗0 and will therefore cease to oscillate.

Lemma 6.3. If ∆a(0) ≤ κ, but all other conditions in (43) hold, then xa(t)→ x∗0 for x∗0 in (31).

Note that the lemma considers the full six-dimensional approximation xa, and not only the three-
dimensional restriction xa3.

Proof. The initial condition has za1,2(0) = za2,1(0) = 0, so that za1,1(0) = za2,2(0) = 1. Hence, both pools
serve only their own fluid queues, as long as qi(t) − qj(t) < κ, for both (i, j) = (1, 2) and (i, j) = (2, 1).
Therefore (see (3))

q̇1(t) = q̇2(t) = λ− 1 < 0, 0 ≤ t < Σa
q ,

so that ∆̇a(t) = 0 on [0,Σa
q), and no sharing can begin during that interval. At time Σa

q at least one of the
queues hits 0, say qai . If the other queue is still positive at that time, then it continues to decrease at the same
constant rate as before. Since |qai (Σa

q) − qaj (Σa
q)| = qaj (Σa

q) < κ, j 6= i, the difference between the two
queues can never become larger than κ, so that the positive queue must also hit 0 at a finite time after Σq.
Therefore, letting tj denote the time at which queue j hits 0, i = 1, 2, we have

qi(t) = 0 and żi,i(t) = λ− zi,i(t), for all t > tj ≥ Σa
q . Furthermore, tj <∞.

It follows that zi,i(t)→ λ as t→∞, so that xa(t)→ x∗0 as stated.

It follows from (57) and Lemma 6.3 that, if at the end of cycle we have −∆a(Σa
2) ≤ κ, then Σa

q < ∞
and xa(t) → x∗0 as t → ∞. In addition, ∆a(t) was just shown to reach 0 in finite time, and za1,2 and za2,1
each reach 0 in finite time by construction. Therefore, xa3(t) reaches (0, 0, 0) in finite time. Using similar
arguments to those in Theorem 5.2, we can prove that

Lemma 6.4. x∗0 in (31) is the unique stationary point of the approximating system. Furthermore, if xa3 does
not oscillate indefinitely, then xa3(t) = (0, 0, 0) for all large enough t, so that xa(t)→ x∗0 as t→∞.

Lemmas 6.3 and 6.4 together complete the proof of Theorem 6.1 (a)-(c).

6.5 Proof of Theorem 6.1 (d) and (e)

To study possible oscillatory behavior of the approximating system in (58) we use an iterative algorithm,
similar to the one in §5.4.1, based on the arguments in §6.3.

An Iterative Algorithm for the Approximating System. In the iterative algorithm each (half) cycle of
xa corresponds to an iteration. We use a superscript (k) denote the kth iteration of the algorithm, and drop
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the superscript “a” for ease of notation, e.g., T (1)
1 is the value of T a1 in (49) in the first cycle of xa, or

equivalently, the first iteration of the algorithm.
We start by choosing a value ∆(0) ≡ ∆(0) > κ and use it to numerically compute T (1)

1 via (49). The
obtained value of T a1 is then used to compute ∆(1) ≡ ∆a(Σa

4) = −∆a(Σa
2) via (56). We continue iterating

this way until one of two things occur: either we see ∆(k) > κ for all k or else we observe ∆(k) ≤ κ for
some k ≥ 1, in which case the algorithm is stopped.

Similar to Lemma 5.1 and Corollary 5.1 we can show that there exists εaκ > 0 such that, if the algorithm
can be iterated indefinitely, then ∆(k) > κ + εaκ for all k ≥ 1. Of course, for the approximating system we
can characterize εaκ explicitly, and its value can serve as an approximation for the value of εκ in Corollary
5.1.

Lemma 6.5. A necessary condition for endless oscillation is that, for all k ≥ 1, ∆(k) > κ + εaκ, where
εaκ ≡ − log(1− τ). In particular, if κ < ∆(k) < κ− log(1− τ) for some k ≥ 1, then ∆(k+1) < 0, so that
the algorithm is stopped.

Proof. For εaκ in the statement of the lemma, assume that κ < ∆(k) ≤ κ+ εaκ, for some k ≥ 1. Then by (49)

T
(k+1)
1 ≤ κ+ εaκ − 1 + µ− κ

1 + µ
+

1− µ
1 + µ

e−T
(k+1)
1 <

εaκ − 1 + µ

1 + µ
+

1− µ
1 + µ

<
εaκ

1 + µ
.

Therefore, T (k+1)
1 < εaκ ≡ − log(1− τ). It follows from (57) that ∆(k+1) < 0.

As was mentioned above, the approximating fluid model is a switching dynamical system with jumps.
In this new setting, the approximating fluid solutions are elements in the space D ≡ D[0,∞) of real-valued
right-continuous functions with limits everywhere, which we endow with the Skorohod J1 topology, which
we denote by dt. Specifically, we consider the topological space (D, J1), as in §3.3 of [37]. We have xk → x

in (D,J1) as k →∞ if, for each t that is a continuity point of x,

dt(xk, x) ≡ ||xk(λk(·))− x||t ∨ ||λk − e||t → 0 as n→∞,

where e : [0, t] → [0, t] is the identity function e(s) ≡ s, 0 ≤ s ≤ t, λk is a homeomorphism of [0, t]

and || · ||t is the uniform norm applied to functions on the finite interval [0, t]. Note that convergence in J1

reduces to uniform convergence over bounded intervals whenever the limit function is continuous, as is the
case for all the solutions of (17).

We generalize Definition 4.4 by replacing the uniform metric in (30) with the Skorohod metric. We
then say that a solution xa spirals towards ua∗ if (30) holds for xa and ua∗, but with the Skorohod J1 metric
replacing the uniform metric. In our application we will let λk(Σ

(k)
0 ) = Σ

∗(k)
0 . After making that small

perturbation of the switching times, so that they are aligned, we have uniform convergence over [0, t].
The next lemma shows that spiraling of a solution xa to ua∗ follows from the first limit in (30) and

convergence of xa to ua∗ at the four switching times. Its elementary proof is omitted.

Lemma 6.6. Suppose that a periodic equilibrium ua∗, having period T , exists for (58). If

(I) lim
k→∞

T
(k)
i = T ∗i and (II) lim

k→∞
‖x(Σ

(k)
i )− u(Σ

∗(k)
i )‖ = 0, 1 ≤ i ≤ 4,
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for some solution xa 6= ua∗, then xa spirals towards ua∗. In particular,

lim
k→∞

dt(x(Σ
(k)
0 + ·), ua∗(Σ

(k)
∗ + ·)) = 0, for each continuity point t of x(Σ

(k)
0 + ·).

We are now prepared to prove Theorem 6.1 (d) and (e).

Proof of Theorem 6.1 (d) and (e). Lemma 6.5 implies that a solution to the approximating system that os-
cillated indefinitely is bounded away from κ. Together with Lemma 6.2, this implies that ∆(k) is confined to
the compact interval I∆ ≡ [κ+ εaκ, (1−µ)(1− τ)/µ]. Moreover, ∆(k) is strictly monotone in T (k)

1 by (57),
which is itself strictly monotone in ∆(k−1) by Lemma 6.1, k ≥ 1. Hence, the sequence {∆(k) : k ≥ 0} is
monotone and bounded, and therefore converges to a limit ∆a,(∞) ∈ I∆. Since x∗0 is the unique stationary
point of the approximating system and ∆a,(∞) > κ cannot be part of a stationary solution, the limit ∆a,(∞)

must be a point on a periodic equilibrium, which is clearly unique. This proved (d). Part (e) of the theorem
follows from Lemma 6.6, together with Lemma 6.5 and parts (a)-(c) of the theorem.

6.6 Proof of Theorem 6.1 (f)

It remains to show that the conditions of part (e) can be satisfied, i.e., there exist parameters for which
∆(k) > κ for all k ≥ 0 and ∆(k) → ∆(∞) > κ. To prove this, consider ∆(k−1) > 1 − µ + κ and observe
that, since (1− µ)/(1 + µ) < 1, (49) implies that

0 <
∆(k−1) − 1 + µ− κ

1 + µ
< T

(k)
1 <

∆(k−1) − 1 + µ− κ
1 + µ

+ 1, k ≥ 1. (59)

By Lemma 6.2, ∆(k−1) is bounded from above by ∆a
bd ≡ (1 − µ)(1 − τ)/µ. Therefore, consider ∆(0) ∈

[∆m
µ ,∆

M
µ ], where

∆m
µ ≡ 1− µ+ κ and ∆M

µ ≡ ∆a
bd ≡ (1− µ)(1− τ)/µ. (60)

Note that ∆m
µ > κ+ εaκ for εaκ in Lemma 6.5 if τ is small, as we assume, and 1−µ > εaκ, which we require.

The requirement that ∆m
µ < ∆M

µ , gives rise to quadratic equation in µ whose roots are

µ1 =
2 + κ− τ −

√
(κ− τ)2 + 4κ

2
and µ2 =

2 + κ− τ +
√

(κ− τ)2 + 4κ

2
, (61)

which are easily seen to satisfy 0 < µ1 < 1 < µ2. Therefore, we henceforth consider µ ∈ (0, µ1) such that
1− µ > εaκ ≡ − log(1− τ), so that µ < 1 + log(1− τ).

Next, we introduce a mapping taking ∆(0) = ∆ into a function of T a1 , where T a1 ≡ T a1 (∆) is the unique
positive solution to (49); specifically, let

T : ∆ 7→ −κ− 1− µ
µ

e−T
a
1 +

1− µ
µ

(1− τ), (62)

so that T (∆(k−1)) = ∆(k), k ≥ 1.
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For fixed µ ∈ (0, µ1) and 0 < δµ < ∆M
µ −∆m

µ to be specified below, let

Sµ ≡ [∆M
µ − δµ,∆M

µ ]. (63)

Note that the end points of Sµ depend on µ, and that
⋃
µ Sµ = [1 + κ,∞), where the union is taken over

all the values of µ ∈ (0, µ1), for µ1 in (61). In particular, the left end point of Sµ is bounded from below
whereas its right end point is unbounded as µ ↓ 0. Nevertheless, Sµ is compact for any fixed µ ∈ (0, µ1).

Lemma 6.7. (sufficient condition for endless iterations) For a given pair of control parameters (κ, τ) and
µ1 in (61), there exists µ∗ ∈ (0, µ1) such that T : Sµ → Sµ for all µ ≤ µ∗.

Proof. Observe that by (59) and (62)

T (∆) = −κ− 1− µ
µ

e−T
a
1 +

(1− µ)(1− τ)

µ

> −κ+
1− µ
µ

(1− τ − e−
∆−1+µ−κ

1+µ ),

(64)

so that T (∆) > ∆m
µ if and only if

ξ(∆) ≡ e−
∆−1+µ−κ

1+µ < 1− τ + µ(1− 2κ/(1− µ)). (65)

Note that ξ(∆) decreases to 0 as ∆ increases to ∞ and that the right-hand side of (65) is bounded from
below by 1 − τ as µ decreases to 0. Since ∆m

µ → 1 + κ and ∆M
µ → ∞ as µ ↓ 0, we can find µ∗ small

enough and ∆ large enough such that, for all µ ≤ µ∗, ∆m
µ < ∆ < ∆M

µ and (65) holds for that ∆.
Choose c > 0 such that 1 − τ − c > 0 and fix 0 < ε < c. Take µ∗ smaller if needed, so that for any

µ ∈ (0, µ∗), it holds that ξ(∆) < ε whenever ∆ > 1−µ
µ (1− τ − c)− κ. Then by (64)

T (∆) >
1− µ
µ

(1− τ − ε)− κ > 1− µ
µ

(1− τ − c)− κ.

The statement of the theorem follows by taking

δµ ≡
1− µ∗
µ∗

c+ κ, (66)

where we take µ∗ sufficiently small to have ∆M
µ − δµ > ∆m

µ , i.e., 1−µ
µ (1− τ − c)− κ > 1− µ+ κ, which

clearly holds for all sufficiently small µ for any fixed c < 1− τ .

Lemma 6.7 and its proof can be used to show that, for a range of values of µ, the iterative algorithm in
§6.5 converges geometrically fast to the point ∆a

∗ on the periodic equilibrium, when ua∗ ∈ Sµ; see §C. We
also prove a stronger result, stating that the rate of convergence to the periodic equilibrium (in continuous
time) is exponential. Rapid convergence to the equilibrium is seen in the numerical experiments in §7.
Finally, by Lemma 6.6, the three-dimensional solution xa3 to (58) “spirals” toward ua∗.
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6.7 A Simple Heuristic Approximation for Computation

The approximating system we have developed in this section has been useful to estalbish the strong theo-
retical results in Theoreem 6.1, which supports what we see for the original system in numerical examples.
However, it is still not easy to compute the periodic equilibrium of the approximating system. We must
either numerically solve the ODE’s or numerically solve for T a1 in (49) in order to evaluate the values of xa

at the switching times.
Hence, in the present section we develop a simple heuristic approximation for T a1 in (49). In particular,

our approximation is obtained by simply omitting the second exponential term on the right in (49), which
produces the approximation

T a1 ≈
∆− 1 + µ− κ

1 + µ
. (67)

Approximation (67) can be justified by observing that equation (49) can be expressed abstractly as
T a1 = A+Be−T

a
1 for A > 0 and 0 < B < 1. Since T a1 > A and T a1 −A < Be−A, T a1 ≈ A whenever B is

suitably small or A is suitably large. In particular, the error is asymptotically negligible as A increases. We
remark that approximation (67) also coincides with − log (ξ) ξ ≡ ξ(∆) in (65), which can provide another
way to derive the approximation. We can combine (51) and (67) ot obtain an associated approximation for
za2,1(T a1 ).

With this heuristic approximation for za2,1(T a1 ), we have by (54) that

T a2 ≈
log ((1− ξ)/τ)

µ
, (68)

so that (55) and (56) are respectively approximated by

xa(Σa
2−) ≈

(
κ− 1− µ

µ
(1− ξ − τ) , 0, τ

)
and xa(Σa

2) ≈
(
−κ+

1− µ
µ

(1− ξ − τ) , 0, 0

)
, (69)

and xa(Σa
2) serves as the initial condition for the following cycle.

We can use this heuristic approximation to easily approximate whether a periodic equilibrium exists,
and to approximate its values at the switching times, using the iterative algorithm described in §6.5. We start
by choosing a value ∆(0) such that ξ(1) ≡ ξ in (65) is sufficiently small (e.g., ξ(1) < 0.05) and T (1)

1 in (67)
is strictly positive. Given ξ(1), we compute ∆(1)(Σ

(1)
2 ) in (69), and take ∆(1)(0) = −∆(1)(Σ

(1)
2 ) in order to

compute ξ(2) via (65). As before, we continue iterating until we see convergence to a legitimate value, i.e.,
∆(k) converges to some ∆a

∗ > κ and ξ(k) converges to a value ξ∗ < 1, or we obtain an illegitimate value at
some iteration, i.e., ∆(k) < κ or ξ(k) > 1 for some k ≥ 1. In the latter case, the algorithm is stopped. The
latter case indicates that the solution xa converges to x∗0. If the initial condition for the algorithm is extreme,
i.e., ∆(0) is taken to be very large, then stopping the algorithm suggests that a periodic equilibrium does not
exist.
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6.8 Checking For Congestion Collapse

When there is no abandonment, we cannot expect that the queues in an oscillating system will remain finite
as time increases. Indeed, if

lim
t→∞

1

t

∫ t

0
(zi,i(s) + µzi,j(s))ds < λ, i, j = 1, 2, (70)

then the queues are not rate stable, i.e., the long-run average input rate λ is larger than the long-run average
throughput rate, so that the queues will increase without bound. We now show how to estimate whether (70)
holds.

In particular, we now show that the simplified heuristic approximation in §6.7 facilitates verification of
(70) for a system that is known to converge to the unique periodic equilibrium. Let Σ∗i and T ∗i denote the
switching and holding times of the periodic equilibrium, 1 ≤ i ≤ 4. Without loss of generality, consider
pool 1. (Due to the symmetry, it is sufficient to check whether (70) holds for one of the pools.) Then, for

ζ(s) ≡ za1,1(s) + µza2,1(s) = 1− (1− µ)za2,1(s),

(70) becomes

L ≡ lim
t→∞

1

t

∫ t

0
ζ(s)ds =

1

Σ∗4

∫ Σ∗4

0
ζ(s)ds =

1

Σ∗4

[∫ T ∗1

0
ζ(s)ds+ ζ(T ∗1 )

∫ T ∗2

0
ζ(s)ds+ (Σ∗4 − Σ∗2)

]
,

where the first equality follows from the asymptotic periodicity of the solution, and the second equality
follows from the symmetry of the model. Recall also that za2,1 ≡ 0, so that za1,1 = 1 over [Σ∗2,Σ

∗
4], which

gives the last term in the square brackets. We can use the last value of ξ(k) obtained from the algorithm above
to serve as our approximation for ξ∗ ≡ ξ(∆a

∗), for ξ(·) in (65), together with (47) and (52) to approximate
L.

Using the fact that Σ∗4 = 2Σ∗2, we have (since Σ∗4 − Σ∗2 = Σ∗2)

L = 1− 1− µ
2Σ∗2

[∫ Σ∗2

0
za2,1(s)ds+ Σ∗2

]

≈ 1 + µ

2
− 1− µ

2[− log (ξ∗) + log ((1− ξ∗)/τ)/µ]

∫ − log (ξ∗)

0
(1− e−s)ds+ (1− ξ∗)

∫ log

(
1−ξ∗
τ

)
µ

0
e−µsds


=

1 + µ

2
− (1− µ)[− log (ξ∗) + ξ∗ − 1 + (1 + ξ∗ − τ)/µ]

2[− log (ξ∗) + log ((1− ξ∗)/τ)/µ]
,

(71)

with the approximation following by, first noting that Σ∗2 = T ∗1 +T ∗2 and, second, replacing T ∗1 and T ∗2 with
(67) and (68), respectively.

Note that, unlike the original system (17), in the approximating system we can first compute the peri-
odic equilibrium, when it exists, via the iterative algorithm, and then check whether the system goes through
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congestion collapse. The heuristic approximation given here facilitates this inspection, via the computation
in (71). More specifically, if a periodic equilibrium of (58) is found, and if this periodic equilibrium is
associate with congestion collapse, then the queues necessarily increase to infinity as time increases, pro-
vided that xa3 converges to ua∗ before either queue hits 0. We can then make sure that Σa

q = ∞ simply by
initializing the two queues of the six-dimensional vector xa(0) at sufficiently large values, so that either
queue does not reach state 0 during the first few cycles (i.e., before xa3 is sufficiently close to ua∗). Here,
congestion collapse means that the queues will have an increasing trend in the sense that each queue will be
larger at the beginning of a cycle than its value at the beginning of the previous cycle. On the other hand, if
the periodic equilibrium is not associated with congestion collapse, i.e., the total average service rate during
the periodic cycle is smaller than the arrival rate, then the queues will have a decreasing trend, so that they
must eventually reach 0, regardless of their initial condition. We conclude that there is no need to actually
determine the exact values of the initial queue lengths, or to check wether Σa

q =∞, but only to check wether
a periodic equilibrium is associated with congestion collapse.

7 Numerical Examples

In this section we report the results of numerical experiments based on numerical algorithms (numerical so-
lutions of the dynamical systems) and simulations. Throughout this section we consider symmetric systems
with parameters as in (4). In all our examples, λ = 0.98, τ = 0.01 and κ = 0.1, but we vary the parameters
θ and µ. The initial condition in the numerical examples is taken in accordance with Assumption 2.

We emphasize at the outset that µ in our numerical examples is taken to be extremely small. (We
also consider systems with no abandonment, or with very small abandonment rate, but this is prevalent in
modeling.) However, as our simulation experiments below demonstrate, the oscillating fluid models for
systems with extreme parameters suggest possible bad oscillatory dynamics in systems with more realistic
parameters. In these more realistic setting the behavior cannot be predicted analytically, since the stochastic
system is too complicated. Moreover, oscillations may even be overlooked in practice, because sufficient
abandonment keep the queues relatively small, so that congestion collapse may fail to be noticed. Thus, we
obtain important practical insights by rigorously studying extreme cases.

The rest of this section is organized as follows. In §7.1 we consider a system with no abandonment (θ =

0) and compare the results to the heuristic approximating model in §6.7. We consider a similar system in §7.2
but increase µ to show that x∗0 is globally asymptotically stable, thus showing the dependence on µ of the
long-run behavior of the fluid model, as was established in §6. We add abandonment in §7.3 in comparison
to the system in §7.1 to numerically support the reasoning for the development of the approximating system
in §6. Finally, in §7.4 we present simulations of stochastic systems for which the fluid limit has no oscillatory
solutions, and show that stochasticity may lead to substantial oscillations.

7.1 A System with No Abandonment

We start with a system that has no abandonment, i.e., θ = 0. The other parameters are λ = 0.98, τ = 0.01,
κ = 0.1 and µ = 0.1. The initial condition is q1(0) = 1 and q2(0) = 1.2, so that ∆(0) = 0.1. We further
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take z1,2(0) = τ and z2,1(0) = τ/2 = 0.005.
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Figure 3: ∆ process; no abandonment and
µ = 0.1.
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Figure 4: spiraling of (z2,1,∆) outward to-
wards the periodic equilibrium; no aban-
donment and µ = 0.1.

The time-dependent behavior of ∆ is shown in Figure 3, whereas Figure 4 plots the image of (z2,1,∆)

(with time suppressed). As can be easily seen from Figure 3, there are ten full cycles plotted in this example.
However, there are four loops visible in Figure 4, with each loop being a full cycle, where a full cycle begins
at a time t0 when z1,2(t0) hits τ from above, such that Assumption 2 is satisfied at that hitting time. In this
example, the two variables (∆, z2,1) spiral outward to the periodic equilibrium, namely, the first cycle is the
inner (smallest) loop, the second cycle is the second smallest loop, etc. The fact that only four cycles are
clearly visible in Figure 4 suggests that convergence to the periodic equilibrium is extremely fast in terms
of the number of periods. The fast convergence is also visible by in Figure 3 itself. Theoretical support for
the fast convergence is given in §C.

Of course, the stability of (∆, z1,2, z2,1) does not imply stability of system. Indeed, Figure 5 suggests
that q1 increases without bound, and by symmetry, so is q2. Figure 6 shows that a substantial proportion
of each pool has fluid from the other class for a non-negligible amount of time, which is the cause for the
congestion collapse observed in Figure 5. See §6.8.

Finally, in Table 1 we compare the numerical solution to the iterative algorithm in §5.4.1 (in the “original
sys.” row), to the heuristic approximations developed in §6.7. We note that L ≈ 0.44 < λ = 0.98 for L in
(71).

∆(0) z(T1) T1 T2

approximation 8.802 0.9992 7.093 46.044

original sys. 8.663 0.9992 7.270 46.044

Table 1: comparisons of the values obtained from the iterative algorithm for the approximating system in
§6, to those of the iterative algorithm in §5.4.1 for the original system.
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Figure 5: Trajectory of q1, no abandon-
ment.
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Figure 6: The sharing in both pools, no
abandonment.

7.2 Bifurcation: µ = 0.3

The term “bifurcation” refers to a change in the equilibrium behavior of a dynamical system as the value
of one of its parameters varies, while all other parameters remain unchanged. Following the analysis in
§6, we now take the same system considered in §7.1 but change the value of µ. We do not carry out a full
bifurcation analysis to find the bifurcation point in which the equilibrium behavior of the system changes,
but instead consider a single value µ = 0.3. To see how the system converges to the stationary point with
no sharing, we change the initial condition in §7.1 and take ∆(0) = 20. The trajectory of ∆ is shown in
Figure 7. (Note however, that we cut the vertical axis in this figure at the value 3 to make the oscillations
more apparent.) Figure 8 shows the spiraling towards that equilibrium point in the (z2,1,∆) plane. Unlike
the case depicted in Figure 4, now spiraling is “inward”, i.e., the largest loop corresponds to the first cycle,
and each of the four cycles is shorter than the previous one. we remark that the heuristic approximation in
§6.7 was stopped in the fifth iterations since ∆(5) < 0.
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Figure 7: ∆ process, µ = 0.3.
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Figure 8: spiraling inward to x∗0, µ = 0.3.

Observe that even though the convergence to the stationary point is fast in terms of the number of
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oscillations, it is very slow in continuous time. In particular, the system oscillates for more than a hundred
time units before it ceases to oscillate.

7.3 Adding Abandonment

For a numerical depiction of the approximating solution, we now consider a system with µ = 0.1 as in
§7.1 but add abandonment, taking θ = 0.01. As can be seen by comparing Figures 9 and 10 to Figures 3
and 4, the system with no abandonment serves as a reasonable approximation for the a system with a small
abandonment rate, but the oscillations are smaller, as is intuitively expected.
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Figure 9: ∆ process; µ = 0.1 and θ =
0.01.
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Figure 10: the image of (z2,1,∆) spiraling
outward to the periodic equilibrium; µ =
0.1 and θ = 0.01.

7.4 Simulations of Systems with non-oscillating Fluid Limits

So far we considered the fluid model (limit) alone. The numerical examples above show that congestion
collapse can occur for very extreme parameter values µ and θ. In this section we show that the extreme
examples provide important insights for cases for which the fluid limit never oscillates.

It is significant that for a given stochastic system Xn which is approximated by a fluid model x, there
is freedom in how to choose the limiting thresholds. For example, if n = 100, then activation thresholds
kni,j = 10 can be considered as being

√
n or as 0.1n. In the latter case, the stochastic fluctuations are

considered negligible with respect to the activation thresholds, and κ = 0.1. However, in the first case,
κ = 0, and so the stochastic fluctuations are significant. Specifically, if κ = 0, then oscillations are much
more likely to occur because S1,2 = S2,1 in that case; see Remark 5.1.

System with a Practically Unstable Stationary Point

We simulated a system with similar parameters to those in §7.1 taking n = 100, so that there are 100 agents
in each pool and λn = 98. As above, θ = 0.01. Since κn = 0.1n, we take κn = 10, which we can also
think of as being

√
n, i.e., κ = 0.
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Figures 11 and 12 show a single sample path of the Qn1 process and the shared-customers processes
for a system starting empty. Due to symmetry of the parameters and the initial condition of the two pools,
the fluid model will unambiguously move through x∗0. Once x∗0 is hit, and since there is no sharing at that
hitting time, the fluid model must remain at that point. However, random noise in the stochastic system
causes sharing to begin, leading to extreme oscillations. From the fluid model perspective, this suggests that
random fluctuations (that are negligible in fluid scale) quickly push the fluid limit from x∗0 to a state γ ∈ O,
leading to fluid-scaled fluctuations.
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Figure 11: Qn1 when κn = 10, θ = 0.01,
µ = 0.1

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Shared Customers

Time

 

 

Z
2,1
Z
1,2

Figure 12: Shared customers in service
when x∗0 is unstable; κn = 10, θ = 0.01,
µ = 0.1.

System with no Oscillating Solutions (O = φ)

The fluid model gives important insight that cannot be obtained analytically even for systems with O = φ,
i.e., systems that do not have oscillating fluid limits. We now take
n = 100: λn = 98, µ = 0.5, θ = 0.5, τn = 1 and kni,j = 10,
with the rest of the parameters being the same as in §7.1. The parameters θ and µ here are more likely in a
practical call-center setting than the parameters in the examples above.

To show thatO = φ we solve the fluid model for an extreme example with q1(0) = 1 and q2(0) = 1000,
z1,2 = τ and z2,1 = 0. In the simulation however, we have Zn2,1 = 20 and Zn1,2 = 0, which is a likely initial
condition for a system recovering from an overload in queue 2. (The initial conditions of the stochastic
system and the fluid model do not match because we want to show that the fluid model does not oscillate,
and has no periodic equilibrium.)

Figure 13 shows a single sample path of the shared-customers processes from a single simulation run,
and Figure 14 shows the fluid model of the system with the initial condition specified above. We only show
figures of the shared customers service process, because both queues monotonically decrease to 0 in the
fluid model, whereas customer abandonment make the oscillations of the queue processes unobservable in
the simulation. From the practical point of view, this means that oscillations may be hard to detect in real
time, unless one knows to look for them.
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We note that Figure 13 shows only the time interval [0, 100] for clarity, but that the oscillations continued
for the full run time of the simulation, which lasted 1500 time units. (As before, time here is measured in
service time units µi,i = 1, i = 1, 2.)

In ending we remark that the bad behavior shown here can be easily avoided by increasing kni,j , as was
discussed in Remark 5.1. A numerical example, related to the one given here, is given in Section 4.1 in [23];
see Figure 9 in that reference.
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Figure 13: Simulation when O = φ; θ =
µ = 0.5
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Figure 14: Fluid model when O = φ; θ =
µ = 0.5

8 Summary

In this paper we considered the FQR-ART overload control applied to the cyclic X model, when the control
parameters are badly chosen. For the dynamical-system (fluid) limit, the purpose of the control is to attract
any fluid trajectory to one of two sliding manifolds during overload periods, so as to maintain a pre-specified
ratio between the two queues.

Switching Fluid Limit. We have shown that possible delays in activation and release of the control can
lead to chattering and resulting oscillations, which translates to fluid-scaled fluctuations in the underlying
stochastic system. The pathological oscillatory behavior can be analyzed via a switching dynamical system,
as in Definition 3.1, within the framework of the many-server heavy-traffic FWLLN (Theorem D.1 in §D.2).
Theorems 5.2 and 5.4, respectively, prove that the fluid limit has a unique stationary point and a non-
trivial periodic equilibrium that is associated with the oscillatory motion. Sufficient conditions for endless
oscillations were provided in Theorem 5.5.

Fluid Stability. In Theorem 5.3 it was shown that any fluid trajectory that ceases to oscillate must
converge to the unique stationary point. A convenient approximating dynamical system to the fluid limit
was developed and shown to be bi-stable in §6. Specifically, all the trajectories of the approximating system
were shown to converge to one of the two equilibria – the stationary point x∗0 in (31), or a unique non-trivial
periodic equilibrium. Finally, a simple heuristic construction in §6.7 can be used to approximate the values
of the solutions to (17) at the switching times, and in particular, the values of the periodic equilibrium at the
switching times, when it exists.
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Implications. Numerical examples in §7 show the effectiveness of the approximating system. The simu-
lation experiment in §7.4 demonstrates that our fluid model provides important insights into the untractable
behavior of the underlying stochastic system, even when the fluid approximation itself is not oscillating.
Further implications of the results to the stochastic system are considered in the appendix.

From the practical perspective, the most important conclusion is that the control parameters must be
chosen with caution. For example, the bad oscillatory behavior presented in §7.4 (which may be hard to
detect in real time) can be avoided by choosing appropriate activation thresholds. We again refer to [23] for
further a discussion.
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APPENDIX

This appendix contains supplementary material for the main paper. First, in §A we give notation for sets
used in the paper. In §B we establish bounds on the component functions in the state vector x to guarantee
oscillating behavior. In §C we establish stronger forms of convergence of solutions to the approximating
system to their equilibrium behavior. In particular, we show that the iterative algorithm in §6.5 converges
geometrically fast, and conclude that the approximating solutions converge exponentially fast to equilibrium.
In §D we show that the fluid model we considered in the main paper arises as the fluid limit in a many-server
heavy-traffic fluid limit of the underlying model. The proof of the FWLLN is given in §D.2, after a brief
expansion on the stochastic model and many-server scaling in §D.1. Finally, in §E we discuss implications
of our results here for the control of the stochastic system.

A Notation of Sets

Below is a list of the different sets that appear in the paper. Their first appearance is in parenthesis.

• S∗ – the set of all stationary points (§5.1).

• M – switching (or sliding) manifold in a general system (§1).

• O – the invariant set of oscillating solution, i.e., if x(0) ∈ O, then x oscillates indefinitely (§5.1).

• Pu∗ – the image of the periodic equilibrium u∗ (§4).

• S ≡ [0, λ/θ]2 × [0, 1]4 – the state space of the fluid model (§2.2).

• Si,j – the sliding manifold where di,j = κ (§2.2)

• Su∗ – the stability region of the periodic equilibrium u∗ (§4).

• Sx∗ – the stability region of a stationary point x∗ (§5.1).

• Sx∗0 – the stability region of the stationary point x∗0 in (31) (Theorem 5.2).

• Sε ≡ [ε, λ/θ]2 × [0, τ ], ε > 0 – the state space of of solutions in O (§5.4.2)

• Sκ ≡ [κ+ εκ, λ/θ]× [0, τ ], where εκ > 0 (Proof of existence part of Theorem 5.4)

• Sa ≡ [0,∞)2 × [0, 1]4 – the state space of the approximating system (§6).

• Sµ ≡ [∆M
µ − δµ,∆M

µ ], where ∆M
µ is defined in (60) and δµ in (66) (Equation (63) in §6.6).
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B Bounds to Guarantee Oscillations

We now provide supporting details for the proof of Theorem 5.5, providing sufficient conditions for endless
oscillations of solutions to (17) and congestion collapse. In §§B.1 and B.2 we construct simple bounds on
T1 and x(T1), and bounds on T2 and the values of x over [Σ1,Σ2), respectively. Universal bounds on the
solution x and the holding times, and a numerical example, are given in §B.3. Finally, in §B.4 we show that,
after ensuring that a solution oscillates indefinitely, we can apply Theorem 5.5 to obtain tighter bounds on
the values of ∆ at switching epochs.

B.1 Bounds on T1 and x(T1)

We can apply (23) to obtain bounds on T1.

Corollary B.1. (bounds on T1) Under the initial conditions in Assumption 2, the interval end time T1 is
bounded above and below by

0 <
θκ+ ΨL

θ∆(0) + ΨL
≤ e−θT1 ≤ θκ+ ΨU

θ∆(0) + ΨU
< 1, (72)

for ΨL and ΨU in (21), from which we deduce that

1 <
θ∆(0) + ΨU

θκ+ ΨU
≤ eθT1 ≤ θ∆(0) + ΨL

θκ+ ΨL
<∞,

and
0 < log

(
θ∆(0) + ΨU

θκ+ ΨU

)
≤ θT1 ≤ log

(
θ∆(0) + ΨL

θκ+ ΨL

)
<∞.

The associated bounds on T1, denoted by TL1 ≡ TL1 (∆(0)) and TU1 ≡ TU1 (∆(0)), are both strictly increas-
ing functions of ∆(0), both approaching 0 as ∆(0) ↓ κ and∞ as ∆(0) ↑ ∞. In particular,

TL1 ≡
(

1

θ

)
log

(
θ∆(0) + ΨU

θκ+ ΨU

)
=

(
1

θ

)
log

(
1 +

∆(0)− κ
(ΨU/θ) + κ

)
≤ ∆(0)− κ

ΨU + θκ

and

TU1 ≡
(

1

θ

)
log

(
θ∆(0) + ΨL

θκ+ ΨL

)
=

(
1

θ

)
log

(
1 +

∆(0)− κ
(ΨL/θ) + κ

)
≤ ∆(0)− κ

ΨL + θκ

so that

0 < TU1 − TL1 =

(
1

θ

)(
log

(
1 +

∆(0)− κ
(ΨL/θ) + κ

)
− log

(
1 +

∆(0)− κ
(ΨU/θ) + κ

))
=

(
1

θ

)(
log

(
θ∆(0) + ΨL

θκ+ ΨL

)(
θκ+ ΨU

θ∆(0) + ΨU

))
.

Proof. Exploit (23) with the equation ∆(T1) = κ characterizing T1.

The bounds we have just obtained on T1 can be used to obtain bounds on q1(T1). Recall that κ < ∆(0)
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and ΨL < ΨU < 0. Applying (72) with (13), we immediately obtain

Corollary B.2. (bounds on q1(T1)) q1(t) is bounded from below by qL1 and from above by qU1 , where, for
ΨL and ΨU in (21),

0 < qL1 (T1) ≡ λ

θ
−
(
λ

θ
− q1(0)

)(
θκ+ ΨL

θ∆(0) + ΨL

)
≤ q1(T1) ≤ λ

θ
−
(
λ

θ
− q1(0)

)(
θκ+ ΨU

θ∆(0) + ΨU

)
≡ qU1 (T1) <∞.

Similarly, Applying (11), we have

Corollary B.3. (bounds on z2,1(T1))

0 < zL2,1(T1)) ≡ 1− e−T1 < z2,1(T1)) < 1− (1− τ)e−T1 ≡ zU2,1(T1)) < 1.

B.2 Bounds on T2 and {x(t) : T1 ≤ t ≤ T1 + T2)

For bad oscillatory behavior, we will want to see that q2(T1 + t) remains positive and, furthermore that
d2,1 < 0. to ensure that the initial conditions in Assumption 2 hold at the switching time Σ2 ≡ T1 +T2 with
the index labels reversed. From Corollary B.2, we obtain the following

Corollary B.4. (lower bounds on the queue lengths on [T1, T1 + T2))

q2(T1)− κ = q1(T1) ≥ qL1 (T1) =
λ

θ
−
(
λ

θ
− q1(0)

)(
θκ+ 2

θ∆(0) + 2

)
,

so that, for i = 1, 2,

qi(T1 + t) ≥ qL1 (T1)e−θt −
(

1− λ
θ

)
(1− e−θt)

=

(
λ

θ
−
(
λ

θ
− q1(0)

)(
κ+ 2

∆(0) + 2

))
e−θt −

(
1− λ
θ

)
(1− e−θt),

which is a strictly decreasing function of t. As a consequence, a sufficient condition for both q1(t) and q2(t)

to remain positive throughout [T1, T1 + T2] is for(
λ

θ
−
(
λ

θ
− q1(0)

)(
θκ+ 2

θ∆(0) + 2

))
e−θT2 >

(
1− λ
θ

)
(1− e−θT2),

for which a sufficient condition is(
λ

θ
−
(
λ

θ
− q1(0)

)(
θκ+ 2

θ∆(0) + 2

))
e−θT

U
2 >

(
1− λ
θ

)
(1− e−θTU2 ),

where

TU2 ≡
loge ([1− (1− z2,1(0))e−T

U
1 ]/τ)

µ
≤ loge ([1− (1− τ)e−T

U
1 ]/τ)

µ
.
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for TU1 in Corollary B.1.

B.3 Universal Bounds

We now consider the performance over a range of initial conditions. First, we introduce lower and upper
bounds on the initial difference ∆(0) ≡ q2(0)− q1(0). We assume that

0 < κ < ∆L(0) ≤ ∆(0) ≤ ∆U (0) <∞ (73)

uniformly enforcing Assumption 2. We also assume that the smaller queue length is bounded below and
above by

0 < qL1 (0) ≤ q1(0) ≤ qU1 (0) <
λ

θ
<∞, (74)

again uniformly enforcing Assumption 2.
Now let TL∗1 be the lower bound TL1 for T1 in Corollary B.1 when ∆(0) = ∆L(0) and let TU∗1 be the

lower bound TU1 for T1 in Corollary B.1 when ∆(0) = ∆U (0).

Lemma B.1. (universal bounds on T1) For all initial conditions satisfying (73) and (74),

0 < TL∗1 ≤ T1 ≤ TU∗1 <∞.

Proof. Apply Corollary B.1.

Lemma B.2. (universal bounds on z2,1(T1) and T2) If, together with (73) and (74),

1− e−TL∗1 > τ, (75)

then
1− e−T1 > τ, τ < z2,1(TL∗1 ) ≤ z2,1(T1) ≤ z2,1(TU∗1 )

and

TL∗2 ≡ loge (z2,1(TL∗1 )/τ)

µ
≤ T2 ≤

loge (z2,1(TU∗1 )/τ)

µ
≡ TU∗2 (76)

for all initial conditions satisfying (73) and (74).

Proof. Apply (11) and (28) together with Lemma B.2.

If a periodic equilibrium exists, then the value of z1,2(Σ2) will equal to z2,1(σ2) on that equilibrium, as
explained below (9) in §3. See also (33) in Theorem 5.4. We put the results above together to obtain bounds
on z1,2(T1 + T2), which will serve as the new value of z2,1(0) in a continuation of the algorithm beyond
time Σ2 = T1 + T2.

Lemma B.3. (universal bounds on z1,2(Σ2) If conditions (73), (74) and (75) hold, then

0 < zL∗1,2(T1 + T2) ≡ e−µTU∗1 z2,1(TU∗1 ) ≤ z1,2(T1 + T2) ≤ e−µTL∗1 z2,1(TL∗1 ) ≡ zU∗1,2(T1 + T2) < τ
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for all initial conditions satisfying (73) and (74).

Proof. Apply (29) together with the lemmas above.

Next we consider the queue lengths at time T1 + T2.

Lemma B.4. (universal lower bounds on the queue lengths at time T1 + T2) If (73), (74) and (75) hold,
then

q2(T1)− κ = q1(T1) ≥ qL∗1 (T1) ≡ λ

θ
−
(
λ

θ
− qL1 (0)

)(
θκ+ 2

θ∆L(0) + 2

)
,

for all initial conditions satisfying (73) and (74), where qL1 (0) and ∆L(0) are given in (73) and (74). If, in
addition,

qL∗1 (T1 + T2) ≡ qL∗1 (T1)e−θT
U∗
2 >

(
1− λ
θ

)
(1− e−θTU∗2 ), (77)

then the two queue lengths q1(t) and q2(t) remain positive throughout [T1, T1 +T2] for all initial conditions
satisfying (73) and (74).

Proof. Apply Corollary B.4 and (76).

Finally, we obtain lower and upper bounds on the queue difference at time T1 + T2.

Lemma B.5. (universal bounds on the queue difference at time T1 + T2) If conditions (73), (74) and (75)
hold, then

∆L(T1 + T2) ≡ κe−θT
U∗
2 −AU

(
e−θT

L∗
2 − e−µTU∗2

µ− θ

)

≤ ∆(T1 + T2) ≤ ∆U (T1 + T2) ≡ κe−θTL∗2 −AL

(
e−θT

U∗
2 − e−µTLU∗2

µ− θ

)
(78)

for all initial conditions satisfying (73) and (74), where TL∗2 and TU∗2 are given in (76) and

AL ≡ (1− µ)(zL∗1,2(T1)− zU∗2,1(T1)) ≤ A ≤ (1− µ)(zU∗1,2(T1)− zL∗2,1(T1)) ≡ AU

for A in (25).

A Numerical Example. Consider the bounds in Lemma B.5. Since κ is taken to be relatively small,

∆L(T1 + T2) ≈ AU

(
e−θT

L∗
2 − e−µTU∗2

µ− θ

)
.

In addition, AU ≤ (1 − µ)(τ − 1), so that, for given µ and τ , A in this lemma is bounded from above by
a constant. These observations help to determine an initial value ∆L(0) for which (40) will be satisfied.
For the same parameters in §7 µ = 0.1, λ = 0.98, τ = 0.01, κ = 0.1 and θ = 0.01, the constant bound
of AU is −0.891 and ∆L(T1 + T2) ≥ 6.21. Hence, (40) holds for some values of ∆(0) in the interval
(κ, 6.21). For example, taking ∆L(0) = 4, ∆U (0) = 7 and qL1 (0) = 1, we obtain ∆L(Σ1) ≈ 6 > ∆L(0)

and qL1 (Σ1) = 1.8 > qL1 (0).
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B.4 Tighter Bounds

We can apply Theorem 5.5 to obtain tighter bounds on the queue difference associated with each successive
iteration. Let ∆(n)(0) be q2(0) − q1(0) at the beginning of the nth iteration, so that we start with ∆1(0) =

∆(0). Let ∆n
L and ∆n

U be the lower and upper bound on ∆(n)(0), respectively, so that ∆
(1)
L = ∆L and

∆
(1)
U = ∆U .

We exploit the fact that, under the conditions of Theorem 5.5, we can let ∆
(2)
L = ∆Le and ∆

(2)
U = ∆Ue.

We can thus apply mathematical induction to deduce the following corollary.

Corollary B.5. (nested bounds) Under the conditions of Theorem 5.5,

∆
(n)
L ≤ ∆(n)(0) ≤ ∆

(n)
U for all n ≥ 1,

where {∆(n)
L : n ≥ 1} is a strictly increasing sequence with finite upper limit ∆∞L and {∆(n)

U : n ≥ 1} is a
strictly decreasing sequence with limit ∆∞U such that, for n > 2,

∆Le ≡ ∆
(2)
L < ∆

(n)
L < ∆∞L ≤ ∆∞U < ∆

(n)
U < ∆

(2)
L ≡ ∆Ue.

Hence the queue difference ∆(0) associated with any periodic equilibrium and all limit points of the se-
quence ∆(n)(0) necessarily lie in the interval [∆∞L ,∆

∞
U ].

We cannot expect that ∆∞L = ∆∞U because the bounds were created by ignoring some terms.

C Stronger Notions of Convergence and Stability

In Lemma 6.7 we showed that for any κ and τ we can find µ∗, such that the iterative algorithm for the
approximating system acts as a map from the space Sµ in (63) into itself, thus ensuring that the algorithm
can be iterated indefinitely. We now use Lemma 6.7 and its proof to show that the iterative algorithm in §6.5
converges geometrically fast to the point ∆a

∗ on the periodic equilibrium, when ua∗ ∈ Sµ. The fast monotone
convergence to equilibrium is seen also in the numerical experiments in §7.

Theorem C.1. (geometric rate of convergence). Fix c ∈ (0, 1− τ) and consider µ ≤ µ∗, for µ∗ in Lemma
6.7. Consider the solution xa to the approximating system for a given initial condition ∆(0) = ∆(0) ∈ Sµ.
Then for any ρ ∈ (0, 1) there exists a µ∗∗ ≤ µ∗ such that, for all µ ≤ µ∗∗ and δµ in (66),

|∆(k) −∆a
∗| ≤

ρk

1− ρ
|∆(1) −∆(0)| ≤ δµ

ρk

1− ρ
.

In particular, xa3 converges to ua∗ geometrically fast in the number of cycles.

Note that the statement of the theorem implies that there exists a unique asymptotically-stable periodic
equilibrium in Sµ, as we already know.

Proof. For any µ ≤ µ∗, T maps Sµ into itself by Lemma 6.7, in which case, for any ∆1,∆2 ∈ Sµ, (62)
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gives

|T (∆1)− T (∆2)| = 1− µ
µ

e
1−µ+κ

1+µ |e−∆1/(1+µ) − e−∆2/(1+µ)|

≤ 1− µ
µ

e
1−µ+κ

1+µ e
− 1−µ

µ
(1−c)+κ 1

1 + µ
|∆1 −∆2|.

(79)

The inequality follows because, for g(∆) ≡ e−∆/(1+µ),

|ġ(∆)| ≤ K ≡ 1

1 + µ
e
− 1−µ

µ
(1−c)+κ

, ∆ ∈ Sµ ≡ [∆M
µ − δµ,∆M

µ ],

for δµ in (66), implying that g(·) is Lipschitz continuous with a best Lipschitz constant that is no larger than
K over the domain Sµ.

The RHS of the inequality in (79) clearly decreases to 0 as µ ↓ 0 for any two fixed ∆1 and ∆2. Hence,
for any ρ ∈ (0, 1) we can find µ∗∗ small enough, such that |T (∆1)−T (∆2)| < ρ|∆1−∆2| for all µ ≤ µ∗∗.
In particular, if µ ≤ µ∗∗, then T is a contraction mapping from the compact interval Sµ into itself.

Let T (k) denote the kth iteration of the map (62), i.e., T (k) ≡ T ◦ · · · ◦ T , where the composition map
◦ is taken k times. Then T (k)(∆(0)) = ∆(k), k ≥ 1, and the claim follows from the Banach fixed point
theorem.

By Lemma 6.6, the three-dimensional solution xa3 to (58) “spirals” toward ua∗. Using Theorem C.1, we
next prove a stronger result, stating that the rate of convergence of an oscillating solution to the approximat-
ing system (in continuous time) is exponential.

Let Pa∗ denote the image of the periodic equilibrium ua∗;

Pa∗ ≡ {γ ∈ Sa : γ = ua∗(t), 0 ≤ t < Σ∗4},

where Sa in §6 is the state space of the approximating system. Recall that the convergence of xa3 to ua∗ holds
under the Skorohod metric defined in §6.5.

Theorem C.2. (exponential stability) Under the conditions of Theorem C.1 ua∗ is exponentially stable, i.e.,
there exist constants ϑ, β > 0 such that

inf
u∈Pa∗

‖xa3(λ(t))− u‖ < ϑe−βt, t ≥ 0,

where λ(·) is a homeomorphism of [0, t] satisfying λ(Σ
(k)
0 ) = Σ

∗(k)
0 for all k ≥ 1 such that the kth cycle

falls in [0, t].

Proof. It follows from Lemma 6.6 and Theorem C.1 that, for all k ≥ 1 and t > Σ
(k)
∗ ,

‖xa3(λ(t))− ua∗(t)‖ < ‖xa3(λ(Σ
(k)
0 ))− ua∗(0)‖ ≤ ‖x

a
3(Σ

(0)
0 )− ua∗(0)‖
1− ρ

ek log (ρ).

Since xa3 and ua∗ are uniformly bounded from above by ∆M
µ in (60), the upper bound in (59) together with
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(54) give

Σ
(k)
2 − Σ

(k)
0 = T

(k)
1 + T

(k)
2 <

∆M
µ − 1 + µ− κ

1 + µ
+ 1 +

log(1/τ)

µ
≡ R,

so that Σ
(k)
4 − Σ

(k)
0 < 2R, for all k ≥ 1. In particular, the length of any full cycle of any possible solution,

including the periodic equilibrium, is smaller than 2R. Since ‖xa3(Σ
(0)
0 ) − ua∗(0)‖ ≤ δµ, for δµ in (66), the

statement of the theorem follows by taking

ϑ ≡ δµ/(1− ρ) and β ≡ − log(ρ)/2R.

In ending we remark that the exponential bound on the rate of convergence to ua∗ should in general
depend on the initial condition, as seen in the proof of Theorem C.2. In particular, exponential stability
should in general be defined via ‖xa3(t) − ua∗(t)‖ < ϑ‖xa3(0) − ua∗(0)‖e−βt for β, ϑ > 0. However, we
obtain the bound in the statement of the theorem since all the solutions we consider have values in Sµ, and
are therefore uniformly bounded.

D Asymptotic Results for the Stochastic Model

The focus of the paper is on a fluid approximation for the stochastic X model under FQR-ART. In this section
we prove that the switching fluid model arises as a many-server heavy-traffic fluid limit when a fluid-scaled
sequence of these stochastic systems is considered. The proof of the functional weak law of large numbers
(FWLLN) is given in §D.2, but we first expand on the stochastic model and many-server scaling in §D.1.
We emphasize that, unlike the fluid limit proved in [22], the proof of the FWLLN here is standard because
it does not include the stochastic averaging principle.

D.1 More on the Stochastic Model and Heavy-Traffic Scaling

We now briefly expand on the review of the stochastic model, which was described in §2, and the heavy-
traffic scalings. We consider a Markovian model, i.e., we assume that both arrival processes are independent
(time-homogeneous) Poisson processes, and that service times, as well as patience times of customers wait-
ing in queue, are exponentially distributed. Specifically, we assume that the class-i arrival rate in system n

is λni , a class-i customer receives an exponentially-distributed service time in pool j with mean 1/µi,j , and
a class-i customer has exponentially distributed patience with mean 1/θi, i, j = 1, 2. Customers who do not
enter service before running out of patience will abandon the queue. (There is no abandonment from ser-
vice.) All random variables are independent of each other and of the two arrival processes. Since FQR-ART
is a Markovian control, in that the routing and scheduling decisions are a function of the state of the system
and are independent of its history, it is easy to see that Xn in (2) is a six-dimensional time-homogeneous
CTMC.

Due to abandonment of waiting customers, defining overloads is not entirely straightforward because
a service pool can be considered normally loaded even if the traffic intensity to that pool is larger than
1. Our definition of overloads is taken from an asymptotic perspective. In particular, pool i is considered
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overloaded if ρi > 1, where

ρi ≡ lim
n→∞

ρni ≡ lim
n→∞

λni /(µi,im
n
i ), i = 1, 2.

On the other hand, we can have ρi ≤ 1 with class i overloaded because there are many shared customers in
pool i. This latter type of overload may be intentional, if sharing is deemed beneficial and is employed to
alleviate an overload in the other class, or it may be caused by a harmful execution of the control, namely it
is due to congestion collapse.

For any fixed nwe must take kn1,2 to be sufficiently large so as to ensure that sharing begins only when the
corresponding pool is genuinely overloaded due to a high arrival rate. In addition, τn1,2 should be sufficiently
small to ensure that there is only a negligible amount of simultaneous two-way sharing. (Simultaneous
sharing can occur because the direction of overload switches.) On the other hand, τn1,2 must be sufficiently
large to be hit in a reasonable time. We refer to §§2.2 and 3.2 in [23] for elaborations on the reasonings
behind the way we choose the thresholds. For our purposes here we simply enforce the following scaling
assumption:

Assumption 3. (scaling parameters) For strictly positive numbers mi, λi, ki,j and τi,j , i, j = 1, 2,

mn
i /n→ mi, λni /n→ λi, kni,j/n→ ki,j and τni,j/n→ τi,j as n→∞.

Note that the first two limits in this assumption put us in the many-server heavy-traffic framework. The
assumption that τi,j > 0 will be relaxed for the approximating system for the fluid limit. See also E.1 below.

D.2 The FWLLN

Paralleling (8), we define for each n ≥ 1

T n1 ≡ inf{t ≥ 0 : Qn2 (t)− rQn1 (t) ≤ κn} and T n2 ≡ inf{t ≥ 0 : Zn2,1(T n1 + t) = τn}.

We also defined stopping times Tn3 , Tn4 and Σn
i , 1 ≤ i ≤ 4 corresponding to the remaining holding times

and switching times in (9).
Let

Σn
q := inf{t ≥ 0 : min{Qn1 (t), Qn2 (t)} = 0} and Σq := inf{t ≥ 0 : min{q1(t), q2(t)} = 0}.

As before, inf(φ) ≡ ∞. Since FQR-ART is non-idling, there cannot be any idleness in the system as long
as both queues are strictly positive, i.e., if both queues are initially positive, then

Zn1,1(t) + Zn2,1(t) = Zn2,2(t) + Zn1,2(t) = n for all t ≤ Σn
q .

Notation. To present our results, we need to introduce some basic notation and refer to [37] for back-
ground. For d ≥ 1, let Dd[0, t] denote the space of real-valued and right continuous Rd-valued functions
on an interval [0, t] ⊆ R+ that have limits from the left everywhere, endowed with the usual J1 Skoro-
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hod topology. Let Cd[0, t] ⊂ Dd[0, t] denote the (sub)space of Rd-valued continuous functions defined on
[0, t]. Recall that the J1 topology is equivalent to the uniform topology in Cd(I) for any compact interval
I . We use ⇒ to denote convergence in distribution. We let e denote the identity function, e(t) = t, and
a ∧ b ≡ min{a, b}. Finally, we add a ‘bar’ to any fluid-scaled element (process or random variable), e.g.,
X̄n ≡ Xn/n.

Theorem D.1. (FWLLN) If X̄n(0) ⇒ x(0) in R6 for some deterministic element x(0) ∈ R6 satisfying
Assumption 2, then

X̄n ⇒ x in D6[0,Σ4 ∧ Σq ∧ t] as n→∞, for all t ≥ 0,

where x is a deterministic element of C6 and is the unique solution to the switching ODE ẋ = fσ(x), for fσ
in (17). Moreover,

n−1(T ni ,Σn
i ,Σ

n
q ; 1 ≤ i ≤ 4)⇒ (Ti,Σi,Σq; 1 ≤ i ≤ 4) in R9 as n→∞,

with +∞ being a possible value as a limit of these stopping times.

By +∞ being a possible value, e.g., Σn
q ⇒ +∞, we mean that P (Σn

q > M) → 1 as n → ∞ for all
M > 0.

Note that, if x(0) satisfies Assumption 2, then necessarily Σq > 0. If, in addition, the fluid model is
in the invariant set O, then the convergence can be extended in an obvious way to any compact interval of
[0,∞) because Σq ≡ ∞. Otherwise, Σq < ∞ and since λ < 1, class-i fluid will stop flowing to pool j,
i 6= j. Since P (|Σn

q − Σq| > ε) → 0 as n → ∞ (recall that convergence in distribution is equivalent to
convergence in probability when the limit is deterministic), this show that sharing of customers will end at
approximately time Σq in a large stochastic system.

The proof of Theorem D.1 follows standard pre-compactness arguments, combined with applications of
the continuous-mapping theorem. We again refer to [37] for the general framework. We therefore start by
representing the sample paths of Xn in terms of independent Poisson processes; see [18].

To simplify notation, let

An1,2(s) ≡ {{Dn
1,2(s) > 0} ∩ {Zn2,1(s) ≤ τn}} and An2,1(s) ≡ {{Dn

2,1(s) > 0} ∩ {Zn1,2(s) ≤ τn}},

Lemma D.1. (martingale representation of Xn) If min{Qn1 (0), Qn2 (0)} > 0, then on the random interval
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[0,Σn
q ],

Qn1 (t) = Mn
1 (t) + λt−

∫ t

0
θQn1 (s)ds−

∫ t

0
1An1,2(s)

(
Zn1,1(s) + µZn1,2(s) + µZn2,1(s) + Zn2,2(s)

)
ds

−
∫ t

0
(1− 1An1,2(s) − 1An2,1(s))

(
Zn1,1(s) + µZn2,1(s)

)
ds,

Qn2 (t) = Mn
2 (t) + λt−

∫ t

0
θQn2 (s)ds−

∫ t

0
1An2,1(s)

(
Zn1,1(s) + µZn1,2(s) + µZn2,1(s) + Zn2,2(s)

)
ds

−
∫ t

0
(1− 1An1,2(s) − 1An2,1(s))

(
Zn2,2(s) + µZn1,2(s)

)
ds,

Zn1,2(t) = Mn
1,2(t) +

∫ t

0
1An1,2(s)Z

n
2,2(s)ds−

∫ t

0
(1− 1An1,2(s))µZ

n
1,2(s)ds,

Zn2,1(t) = Mn
2,1(t) +

∫ t

0
1An1,2(s)Z

n
1,1(s)ds−

∫ t

0
(1− 1An2,1(s))Z

n
2,1(s))ds,

Zn1,1(t) = n− Zn2,1(t),

Zn2,2(t) = n− Zn1,2(t),

(80)

where Mn
i and Mn

i,j , i, j = 1, 2, are square-integrable martingales.

The expressions for all martingale terms in (80) can be inferred from (81) below. They are not presented
explicitly since, as will be argued in the proof of Theorem D.1 below, they are asymptotically negligible
under fluid scaling, and therefore play no role in the fluid limit.

Proof. We use independent unit-rate Poisson processes to represent each of the component processes in
(80). For example, the representation of Qn1 over [0,Σn

q ] is

Qn1 (t) = Na
1 (λn1 t)−Nu

1

(
θ1

∫ t

0
Qn1 (s)ds

)
−N+

1

(∫ t

0
1An1,2(s)

(
µ1,1Z

n
1,1(s) + µ1,2Z

n
1,2(s) + µ2,1Z

n
2,1(s) + µ2,2Z

n
2,2(s)

)
ds

)
−N−1

(∫ t

0
(1− 1An1,2(s) − 1An2,1(s))

(
µ1,1Z

n
1,1(s) + µ2,1Z

n
2,1(s)

)
ds

)
,

where Na
1 , N

u
1 , N

+
1 and N−1 are mutually independent unit rate (homogeneous) Poisson processes.

Next, we exploit the fact that each of the Poisson processes in (80) minus its random intensity function
constitutes a square-integrable martingale by Lemma 3.2 in [18], e.g.,

Mn,u
1 ≡ Nu

1

(
θ1

∫ t

0
Qn1 (s)ds

)
− θ1

∫ t

0
Qn1 (s)ds (81)

is a square-integrable martingale. Thus, subtracting and then adding all the random intensities of the Poisson
processes, and using the fact that a sum of martingales is again a martingale, we achieve the representation
in the statement for Qn1 over the said interval. The representations for the other processes follow similar
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arguments.

Proof of Theorem D.1. Minor adjustments to the proof of Theorem 5.2 (and Corollary 5.1) in [22] give that
{X̄n : n ≥ 1} is C-tight in D6 with all limits being almost-everywhere differentiable. Those modifications
to the aforementioned proof are straightforward, and are therefore omitted.

Next, by Doob’s martingale inequality, the fluid-scaled martingales in (80) are asymptotically negligible,
namely, M̄n

i ⇒ 0e and M̄n
i,j ⇒ 0e in D, i, j = 1, 2, since these martingales are square integrable.

Given the initial condition, we have 1An1,2(s) = 0 and 1An2,1(s) = 1 over the interval [0, T n1 ∧ Σn
q ). Since

any limit point of X̄n is continuous, we must have that P (T n1 ∧ Σn
q > ε) → 1 for some ε > 0. Therefore,

it is easy to see from the representation of X̄n with the indicator functions being constants over the interval
[0, ε), that any limit point of X̄n satisfies to the integral version of the ODE’s in (11) and (12), whose unique
solution implies that X̄n converges to that solution x over [0, ε).

If T1 < Σq, then the initial interval of convergence can be extended to [0, T1), and by Theorem 13.6.4
in [37], it holds that T n1 ⇒ T1 in R as n → ∞. Moreover, we have X̄n(T1) ⇒ x(T1), so that 1An1,2(s) =

1An2,1(s) = 0 over the interval [T n1 , (T n1 + T n2 ) ∧ Σn
q ) implies that

lim
n→∞

P (1An1,2(s) = 1An2,1(s) = 0 ; s ∈ (T1,Σ2 ∧ Σq) = 1.

Once again, plugging the constant values of the indicator functions to the representation (80) shows that
any limit point of X̄n satisfies the integral version of the ODE’s in (14) and (15), whose unique solution on
[T1, (T1 +T2)∧Σq) implies convergence of the sequence X̄n to x. Moreover, we again have T n2 ⇒ T2 in R
as n → ∞. Since T1 and T2 are deterministic, joint convergence of (T n1 , T n2 ) to (T1, T2) holds in R2 (e.g.,
Theorem 11.4.5 in [37]), so that T n1 + T n2 ≡ Σn

2 ⇒ Σ2 in R as n→∞.
The weak convergence of X̄n to x and Σn

i to Σi can be extended to any compact subinterval of [0,Σ4 ∧
Σq] by exactly the same arguments. If Σq > Σ4 we can then take x(Σ4) as a new initial condition and
continue the proof inductively for all compact subinterval of [0,Σq).

D.3 WLLN for Stationary Distributions

Since for each fixed n ≥ 1 Xn is clearly an irreducible and positive recurrent CTMC, it possesses a unique
stationary distribution which is also its limiting distribution. Hence, for some random variable Xn(∞) with
values in R6

Xn(t)⇒ Xn(∞) as t→∞.

The uniform convergence over compact intervals of X̄n to x in Theorem D.1 implies that, if the fluid
limit of X̄n experiences oscillations, then Xn will itself oscillate for a long time intervals when n is large.
Only after the oscillations end will Xn start approaching its stationary distribution. It follows that the
convergence to stationarity of large systems with oscillating fluid limits can be exceptionally slow, as we
rigorously show §E.2 below.

We now prove a weak law of large numbers (WLLN) for the sequence {X̄n(∞) : n ≥ 1}. regardless
of the initial condition and the possible fluid limits. In particular, the sequence of “fluid-scaled” stationary
distributions converges to the stationary point x∗0 with no sharing, even if O 6= φ, i.e., the fluid limit may
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not converge to its stationary point x∗0.

Theorem D.2. (WLLN for stationary distributions) X̄(∞) ⇒ x∗0, i.e., for each continuous and bounded
function f : R6 → R,

lim
n→∞

lim
t→∞

E[f(X̄n(t))] = f(x∗0).

Note that taking the limits in Theorem D.2 in the reverse order, namely, first taking n → ∞ and then
taking t → ∞, is not possible when O is not empty, because the limit of x(t) as t → ∞ does not exist for
all initial conditions. We therefore cannot prove Theorem D.2 using standard arguments, as were laid out in
the proof of Theorem 4 in [11].

Proof. For each n ≥ 1 consider the CTMC Xn initialized with its stationary distribution, namely, Xn(0)
d
=

Xn(∞), n ≥ 1. The sequence Xn(∞) is tight in R6 because each sequence of elements in the vector X̄n

is tight in R. This follows immediately for Z̄ni,j(0), which are bounded from below by 0 and from above
by some c > 1, i, j = 1, 2. Tightness of Q̄n1 (0) and Q̄n2 (0) follows from the infinite-server stochastic-
order bound on the queues in Lemma A.5 in [22]. In particular, Q̄ni ≤st Q̄ni,bd pathwise, where Qni,bd is the
number-in-system process in an M/M/∞ queue with arrival rate λni and service rate θ. See also the proof
of Theorem E.1 where a similar bound is constructed.

By Theorem D.1, the sequence of processes {X̄n : n ≥ 1} is tight in D6, and we can therefore consider
a converging subsequence of processes, whose initial conditions X̄n′(0)

d
= X̄n′(∞) also converge to some

limit
X̄(0) ≡ (Q̄i(0), Z̄i,j(0); i, j = 1, 2) in R6.

Since the initial condition is distributed according to the stationary distribution of X̄n, each of the
CTMC’s in the prelimit is stationary, and it follows that any limit of X̄n must also be stationary process. In
particular,

Z̄i,j(t)
d
= Z̄i,j(0) for all t ≥ 0 and (i, j) = (1, 2) or (i, j) = (2, 1).

First observe that, if Z̄1,2(0) = Z̄2,1(0) = 0 and Q̄i(0) < κ w.p.1, then the two pools and their associ-
ated queues operate as two independent underloaded M/M/mi systems and therefore X̄(0) = x∗0 w.p.1,
implying that X̄n(∞)⇒ x∗0.

It follows from the routing rules of FQR-ART that for any sample path for which both Z̄1,2(0) and
Z̄2,1(0) are strictly positive, at least one of these processes must be strictly decreasing over some interval
(0, ε), ε > 0, contradicting the stationarity of X̄ . Therefore, if Z̄i,j(0) > 0, then Z̄j,i(0) = 0, i 6= j w.p.1.

Assume, for example, that P (Z̄1,2(0) > 0) > 0. Then there exists a measurable set B1,2 in the under-
lying probability space, such that all the sample paths in B1,2 have Z̄1,2(0) > 0 and Z̄2,1(0) = 0. Now, if
d1,2(0) 6= 0, where

d1,2(t) ≡ Q̄1(t)− rQ̄2(t)− κ,

then Z̄1,2 is strictly increasing or strictly decreasing over some right neighborhood of 0, because d1,2 is
necessarily continuous by Theorem D.1. Hence, d1,2(t) = 0, so that q1(t) ≥ κ w.p.1 for all t ≥ 0. In
turn, Z̄1,1(t) = m1 w.p.1 for all t ≥ 0. However, this is impossible, because λ1 < µ1,1m1, so that Q̄1(t)

must be strictly decreasing if Q̄1(0) > 0. It follows that P (B1,2) = 0. Symmetric arguments give that
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P (Z̄2,1(0) > 0) = 0 as well.
It follows that, if Q̄i(0) > 0, then Q̄i must be strictly decreasing on some right neighborhood of 0,

because Z̄i,i(0) = mi. Hence, Q̄i(0) = 0. Then the X model is asymptotically two independent M/M/n+

M systems with service rate equals to 1 and arrival rate λn < n. Paralleling (32), we conclude that X̄(0) =

x∗0 w.p.1, so that X̄n′(∞)⇒ x∗0 as n′ →∞. The statement of the theorem follows because the converging
subsequence we considered was arbitrary.

E Implications for the Control of the Stochastic System

E.1 Rescaling the Thresholds

Implications to the Activation Thresholds. As indicated in Assumption 3, the activation thresholds are
asymptotically positive in fluid scale. This requires us to consider extreme cases with small abandonment
rates and service rates for shared customers. In the worst case (leading to the biggest buildup of queues) the
abandonment rate is strictly smaller than the service rate of shared customers (and both are small). Formally,

For a given stochastic system there is freedom in choosing how to model the scaling of the thresholds. It
is important that this freedom leads to ambiguities that must be accounted for. For example, if for n = 100,
mn

1 = mn
2 = 100 and we take kn1,2 = kn2,1 = 10, then we can think of the activation thresholds as being

equal to 0.1n or
√
n. From the fluid perspective, there are important difference between the two scalings.

If the latter holds, then κ = 0 so that S1,2 = S2,1 and the fluid model can cross from S−1,2 to S+
2,1, and vice

versa, in zero time. In this case, chattering and oscillations, as defined above, coincide, and are clearly more
likely to occur. In particular, this suggests that oscillations can occur in the stochastic system even if a fluid
approximation with κ > 0 does not oscillate at all, because a more appropriate approximation for the given
system would be to assume that κ = 0; see Remark 5.1 below.

Implications to the Release Thresholds. There are important inconsistencies regarding the rescaling of
the release thresholds. For example, in a system having 100 agents in each pool and arrival rate λn = 98, we
may take τni,j = 3. With these parameters, and regardless of the value of µ, pool j is clearly not overloaded
at time t if Zni,j(t) ≤ τn, and the fluctuations of the queue must therefore be considered to be of order o(n).
However, the fluctuations of the queue will often be larger than τn, which is considered to be asymptotically
positive under fluid scaling. Specifically, whereas

‖Qn‖T /τn ⇒ 0 as n→∞, for all T > 0, where ‖Qn‖T ≡ sup
0≤t≤T

Qn(t),

we have ‖Qn‖T >> τn for any reasonable value of n (which is not unrealistically large) and over intervals
[0, T ], with T = O(1) (e.g, T ≈ 1/µ1,1.) It follows that, relative to the stochastic fluctuations, it is
appropriate to think of the release thresholds as being o(n) (even O(1)!). On the other hand, from a fluid-
limit perspective, τn must satisfy Assumption 3, namely be strictly positive asymptotically in fluid scale,
since otherwise Z̄ni,j := Zni,j/n will not be hit this threshold in finite time when it is strictly decreasing; see
§3.2 in [23].
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We can think of the release thresholds as having a duality property in the fluid model: When zi,j ≤ τ

their affect on the system’s performance is negligible, and we can consider them to be 0, i.e., τni,j = o(n).
Whenever zi,j > τ and is decreasing, we must think of τ as being strictly positive, so that τn is as in
Assumption 3, to ensure that zi,j can hit τ in finite time. We take advantage of this duality property when
constructing an approximation for the fluid model in §6.7.

E.2 Other Implications of the Results to Stochastic Systems

We now provide rigorous results that show the implications of the fluid analysis to the prelimit processes.
Theorems 5.5, D.1 and D.2 suggest that the state space of the irreducible CTMCXn is nearly decomposable
into two regions whenO 6= φ. In particular, the chain may spend a long time in one region before eventually
moving to the second region. For example, if X̄n(0) ≈ x(0) ∈ O for n large, then Xn will approximately
track the fluid trajectory with that initial condition. The oscillations of X̄n can continue for arbitrarily large
time periods as n increases.

On the other hand, if Xn is initialized with no sharing and no queues, then hitting the activation thresh-
olds is a rare event asymptotically, and oscillations will not begin for a long time. However, the chain being
irreducible, must eventually visit a state in an “oscillating region” for the CTMC, triggering oscillations that,
as explained in the paragraph above, will take a long time before finally ending, if n is large.

To make this discussion rigorous, consider a sequence of initial conditions {Xn(0) : n ≥ 1} such that
X̄n(0)⇒ x(0) ∈ O as n→∞. Since X̄n ⇒ x uniformly over compact intervals, and x is oscillating, we
see that for any fixed t > 0 we can find N large enough, such that

‖X̄n(t)− X̄n(∞)‖tv > ε, for all n > N and for some ε > 0, (82)

where ‖ · ‖tv denotes the total-variation norm (here given in terms of the random variables instead of their
distributions); see, e.g., [5]. In particular, despite the fact that X̄n(t)⇒ X̄n(∞) as t→∞ for any given n,
and moreover, the convergence rate to stationarity is exponentially fast as we show below, the convergence
rate to stationarity can be arbitrarily slow for a sufficiently large system.

To see that (82) indeed holds for all n large enough, note that convergence in total variation implies
convergence in distribution (the two notions of convergence are in fact equivalent on countable state spaces).
We can use the Lévy metric to measure distances between random variables corresponding to convergence
in distribution. Specifically, we let the distance between two random variables X and Y with respective
cumulative distribution functions FX and FY , be

dL(X,Y ) ≡ dL(FX , FY ) ≡ inf{ε > 0 : FX(x− ε)− ε ≤ FY (x) ≤ FX(x+ ε) + ε for all x}.

Then, for random variables Y and {Y n : n ≥ 1}, Y n ⇒ Y is equivalent to dL(Y n, Y ) → 0, and as
mentioned above, if ‖Y n − Y ‖tv → 0, then dL(Y n, Y )→ 0 as n→∞.

Now, take the contradictory assumption to (82), namely assume that there exists a time t > 0, such that

‖X̄n(t)− X̄n(∞)‖tv < ε for all n ≥ 1 and ε > 0.
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Then for this specific time t and for all n large enough, we have by the triangular inequality that

dL(x(t), x∗0) ≤ dL(x(t), X̄n(t)) + dL(X̄n(t), X̄n(∞)) + dL(X̄n(∞), x∗) < 3ε.

where the second inequality follows from Theorem D.1, our contradictory assumption and Theorem D.2,
and the above holds for any fluid trajectory, regardless of the initial condition. Hence, x∗0 is globally asymp-
totically stable, in contradiction to the assumption that x(0) ∈ O.

The fact that Xn may converge extremely slowly to stationarity for large n is not entirely straightfor-
ward, because Xn is an exponentially ergodic CTMC, for each n ≥ 1, and therefore considered to converge
“fast”.

Theorem E.1. Fix n ≥ 1. Then for any initial condition k ∈ Z6
+, there exist positive constants Mk and α

(where Mk depends on the initial state k and α does not), such that

‖Xn(t)−Xn(∞)‖tv ≤Mke
−αt (83)

Proof. Consider the queue process Qnbd := {Qnbd(t) : t ≥ 0} in an M/M/∞ system that has arrival rate
2λn and service rate θ. Then Qnbd is distributed the same as the sum of the two queues in the X system in
which the service process is “shut off” so that all the output from the two queues is due to abandonment.
Specifically, we construct the X model and the M/M/∞ system on the same probability space by giving
both the same initial condition and the same Poisson arrival processes (exploiting the fact that a superposition
of two independent Poisson processes is a Poisson process with the sum of the rates). If QnΣ(t) = Qnbd(t)

and there is an abandonment from QnΣ, then we can generate an abandonment from Qnbd; see, e.g., [36].
Therefore, Qnbd is never below QnΣ.

It is well-known that the Markovian infinite-server queue is exponentially ergodic, see, e.g., Proposition
7.2 in [25]. However, we need to show that this implies that the same holds for Xn. We thus use the
exponential drift condition on the generator of Xn whose state space is

Ξ ≡ Z2
+ × {0, 1, . . .mn}4.

For x ∈ Ξ, let V (x) := (1 + γ)x1+x2 , for some γ > 0 which is characterized below. For Qnbd we consider
the corresponding function U(q) = (1 + γ)q, q = x1 + x2. Then V : R6 → [1,∞) is a norm-like function,
namely V (x) → ∞ as ‖x‖ → ∞ (we use the standard norm on R6). Similarly, U : R → [1,∞) is a
norm-like Lyapunov function for the generator of Qnbd.

Due to the sample-path stochastic order relation between QnΣ and Qnbd, we have QV ≤ QbdU , where Q
denotes the generator matrix of Xn and Qbd denotes the generator matrix of Qnbd. Now, if we show that, for
some compact set C ⊂ Ξ, the following exponential drift condition holds

QbdU ≤ −cV + d1C ,

for strictly positive constants c and d and γ, then the statement of the theorem will follow from Theorem 2.5
in [13], because QV ≤ QbdU.
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To that end, we recall that the off-diagonal components of Qbd are given by

qi,i+1 = 2λn, qi,i−1 = kθ, and qi,j = 0 for |i− j| > 1, i ≥ 1.

Then for k ≥ 1

(QbdU)(k) = −θkγ[(1 + γ)k−1 − (1 + γ)k] + 2λn[(1 + γ)k+1 − (1 + γ)k]

= −γ(1 + γ)k−1(θk − 2λn(1 + γ)).

The RHS in the above display is negative for all states k satisfying θk − 2λn(1 + γ) > 0, or equivalently,

k >
2λn

θ
(1 + γ). (84)

If 2λn/θ /∈ Z+, then we can always choose γ > 0 small enough such that (84) holds for all k /∈ C ≡
{0, 1, . . . , d2λn/θe}. Otherwise, if 2λn/θ is an integer, we can simply make C larger, e.g., take C ≡
{0, 1, . . . , 2λn/θ + 1}, so that (84) holds for any state k /∈ C if γ < θ/2λn.

Remark E.1. In general, the exponential drift condition in the above proof should hold for a “small set” C;
see, e.g., [13]. In a discrete state space, as is the case here, any compact set is small.

Remark E.2. Instead of working with Xn we can prove Theorem E.1 for all n simultaneously by bounding
the fluid-scaled sequence {X̄n : n ≥ 1} by a single M/M/∞ queue having arrival rate a := 2λ + ξ,
for some ξ > 0 such that 2λn/n < a for all n ≥ 1. With that proof, we show that X̄n, and therefore
Xn, are all exponentially ergodic. One would then hope that, due to the uniform bound on all CTMC’s,
{X̄n : n ≥ 1} are also uniformly ergodic in n, i.e., that there exist constants M and α, such that (83) holds
with those constants for all n. However, {X̄n : n ≥ 1} is clearly not uniformly ergodic due to (82). The
uniform ergodiciy fails to hold because the small set C in the proof is increasing with n and is therefore not
uniformly small as in Definition 8.1 in [22].

62


