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Multiprocessor load balancing aims to improve performance by moving jobs from highly
loaded processors to more lightly loaded processors. Some schemes allow only migra-
tion of new jobs upon arrival, while other schemes allow migration of jobs in progress.
A difficulty with all these schemes, however, is that they require continuously maintain-
ing detailed state information. In this paper we consider the alternative of periodic load
balancing, in which the loads are balanced only at each T time units for some appro-
priate T . With periodic load balancing, state information is only needed at the balanc-
ing times. Moreover, it is often possible to use slightly stale information collected dur-
ing the interval between balancing times. In this paper we study the performance of pe-
riodic load balancing. We consider multiple queues in parallel with unlimited waiting
space to which jobs come either in separate independent streams or by assignment (ei-
ther random or cyclic) from a single stream. Resource sharing is achieved by periodi-
cally redistributing the jobs or the work in the system among the queues. The perfor-
mance of these systems of queues coupled by periodic load balancing depends on the
transient behavior of a single queue. We focus on useful approximations obtained by con-
sidering a large number of homogeneous queues and a heavy load. When the number of
queues is sufficiently large, the number of jobs or quantity of work at each queue im-
mediately after redistribution tends to evolve deterministically, by the law of large num-
bers. The steady-state (limiting) value of this deterministic sequence is obtained as the
solution of a fixed point equation, where the initial value is equal to the expected tran-
sient value over the interval between successive redistributions conditional on the ini-
tial value. A refined approximation based on the central limit theorem is a normal dis-
tribution, where the mean and variance are obtained by solving a pair of fixed-point
equations. With higher loads, which is natural to consider when load balancing is per-
formed, a heavy-traffic limit theorem shows that one-dimensional reflected Brownian mo-
tion can be used to approximately describe system performance, even with general ar-
rival and service processes. With these approximations, we show how performance de-
pends on the assumed arrival pattern of jobs and the model parameters. We do numerical
calculations and conduct simulation experiments to show the accuracy of the approxima-
tions.
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1. Introduction

There is now a substantial literature on dynamic multiprocessor load balanc-
ing; e.g., see Eager, Lazowska and Zahorjan [14], Hajek [20], Harchol-Balter and
Downey [21], Leland and Ott [28], Willebeck-LeMair and Reeves [49], Zhou [53] and
references therein. The basic scheme is to move jobs from a highly loaded originating
processor to another more lightly loaded processor. There can be significant overhead
associated with this load balancing, but it is nevertheless often worthwhile. There is a
tradition in multiprocessor load balancing of only moving entire jobs at the time they
originate, but migration of jobs in process is now beginning to be used as well, e.g.,
see Barak, Shai and Wheeler [8]. There is typically substantially more overhead with
migration of jobs in process, but it has been shown to yield significant performance
improvement by Harchol-Balter and Downey [21].

A difficulty with any form of dynamic load balancing, however, is that it involves
real-time control, requiring continuous maintenance of state information. It is thus
natural to consider whether it is possible to achieve much of the load balancing benefit
with less work. Hence, in this paper we study the alternative of periodic load balancing.
With periodic load balancing, no elaborate control is done for each arriving job or at
each time. Instead, the loads are balanced only periodically, at each T units of time
for some appropriate T .

Another motivation for the present paper is to lend support for a notion of light-
weight call setup, supporting connection and connectionless services in communication
networks; see Hjálmtýsson [22] and Hjálmtýsson and Ramakrishnan [23]. The main
idea is to quickly provide service to new connections at a low or moderate quality and,
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over time, gradually meet higher quality-of-service requirements as requested. In that
context, the periodic load balancing considered here is an abstraction of slower-time-
scale reconfiguring that might be done in the network instead of quality-of-service
routing immediately upon arrival.

In this paper we study the performance of periodic load balancing. Specifically,
we consider m queues in parallel with unlimited waiting space. Every T time units,
we redistribute the jobs or the remaining work in the system among the queues to
balance the loads. Like other forms of load balancing, periodic load balancing cor-
rects for systematic differences in the loads; e.g., when the arrival rates or service
requirements at some queues are greater than at other queues. Load balancing also can
significantly improve performance in a system with homogeneous queues. Then the
load balancing compensates for stochastic fluctuations which make the loads at some
queues temporarily greater than the loads at other queues. Here we primarily consider
the benefits of periodic load balancing with homogeneous queues, but we also consider
the case in which a proportion of the queues are temporarily down (arrivals come but
no service is provided); see section 10. Consistent with intuition, we show that load
balancing is even more important in unbalanced scenarios.

We consider two different redistribution schemes. In the first scheme, every T
time units the jobs in the system are redistributed among the queues, so that after each
redistribution the numbers of jobs in any two queues differ by at most one. We do
not focus on alternative ways to assign the jobs to the queues. In our simulations we
assign jobs to the queues in a round robin fashion in order of arrival times, with the
older job getting assigned first. When we redistribute jobs, we assume that the service
discipline for each separate queue is first-come first-served (FCFS), but our results for
the FCFS discipline may also serve as useful approximations for other disciplines such
as round robin (RR) or processor sharing (PS).

In the second redistribution scheme, every T time units we redistribute the re-
maining work (in service time) evenly among the queues. When we redistribute the
work, we assume that we know the remaining service requirements of all jobs in the
system and that the remaining work of each job can be divided up and assigned to
different queues. When we redistribute work, we assume that there is a general work-
conserving discipline. (There is never an idle server at a queue when there is work to
be done there.) There are many work-conserving disciplines; examples are FCFS, RR
and PS.

Dividing jobs into pieces is currently not possible in a non-parallel environment,
but may become so. As is, our analysis of redistribution of work describes a lower
bound which available alternatives can try to achieve. We believe that alternative
policies can be developed without job splitting and without knowledge of remaining
service requirements that nearly achieve this lower bound. The main idea is to focus
on work, since the work associated with different jobs may be very different. The
alternative policies can be based on estimates of the remaining service requirements
given available information, including elapsed service times. (We intend to discuss
such alternative periodic load balancing schemes in a subsequent paper.)
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Our main contributions are analytical models and formulas describing the per-
formance of periodic load balancing. Our goal is to describe the distribution of the
workload at each queue as a function of time, especially just before and just after each
reconfiguration (balancing). During the interval between reconfigurations, the degree
of inbalance and the likelihood of a larger workload at any one queue tends to in-
crease with time. The workloads after reconfiguring equal, at least approximately, the
average of the workloads before reconfiguring. From the workload distributions just
before and after balancing, we can determine the distribution of the number of jobs
and the amount of work that must be moved and, thus, the overhead associated with
periodic load balancing.

We also describe how the performance of periodic load balancing depends upon
the balancing interval T , the number of queues m and the other model parameters. We
show how the performance depends on the arrival pattern. We consider three possible
arrival patterns: Each queue may have its own arrival process or all arrivals may come
in a single arrival process, after which they are assigned to the queues either at random
or deterministically (in a cyclic or round robin order).

We obtain relatively tractable explicit formulas by considering the limiting case
in which the number of queues, m, and the traffic intensity (or server utilization), ρ,
are both large, i.e., as m → ∞ and ρ → 1, where ρ = 1 is the critical value for
stability. The case of large m is currently of great interest, e.g., for understanding
large computers constructed from many smaller computers. Moreover, the limit as
m → ∞ may serve as a useful approximation when m is not too large, e.g., when
m = 10. When there are many servers, higher utilizations tend to be more feasible.
We consider the limit as ρ → 1 to generate approximations for typical (not small)
utilizations.

In addition to the literature on dynamic multiprocessor load balancing, our work
is also related to the literature on resource sharing within general queueing theory. In
many situations multiple jobs must be processed on multiple resources. It is known
that greater efficiency usually (but not always) can be achieved if the resources can be
shared or pooled; e.g., see Smith and Whitt [36], Rothkopf and Rech [33], Laws [27],
Whitt [47] and Mandelbaum and Reiman [29]. For example, consider two separate
finite-server queues with infinite-waiting room, the FCFS discipline, all service times
i.i.d. and general stationary arrival processes that are independent of the service times.
Then the number of customers in the system at any time is stochastically smaller if
the two systems are combined into one, having the aggregate superposition arrival
process, the combined number of servers and the FCFS discipline; see theorem 6 of
Smith and Whitt [36], which draws on Wolff [51]. (As noted in [36], this result
depends critically on the service-time distributions being identical, or at least not too
different.)

Quantitatively, the (great) advantage of multi-server systems over a collection of
separate single-server systems with common total load is well described by approxima-
tion formulas for basic performance measures. For example, the simple heavy-traffic
approximation (limit after normalization) for the steady-state distribution of the wait-
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ing time before beginning service in a GI/GI/s queue (in which interarrival times
and service times each come from i.i.d. sequences) is an exponential distribution with
mean

EW ≈ ρ

s(1− ρ)
(c2

1 + c2
s)

2
, (1.1)

where the mean service time is taken to be 1, the traffic intensity (utilization of each
server) is ρ and the squared coefficient of variations (SCV, variance divided by the
square of the mean) of the interarrival and service times are c2

a and c2
s, respectively;

e.g., see Whitt [48, (2.13)]. (For supporting theory, see Iglehart and Whitt [24] and
Köllerström [26].) Formula (1.1) shows that the mean EW is inversely proportional
to s for fixed ρ.

A more refined approximation for the mean characterized by the parameter
quadruple (s, ρ, c2

a, c2
s) is

EW
(
s, ρ, c2

a, c2
s

)
=

(c2
a + c2

s)
2

EW
(
M/M/s

)
, (1.2)

where EW(M/M/s) is the mean in the associated M/M/s model (exponential in-
terarrival and service times with the same means), which can easily be calculated
numerically, and can be further approximated by the Sakasegawa [34] approximation

EW
(
M/M/s

)
=
ρ(
√

2(s+1)−1)

s(1− ρ)
; (1.3)

see [48, (2.12), (2.14)]. From (1.2) and (1.3), we see that the heavy-traffic formula (1.1)
actually underestimates the advantage of sharing. Numerical examples in [48] show
that these formulas accurately describe the way the mean waiting time depends on s
and the other parameters.

The expected number of jobs in the system, say EN, is the expected number of
jobs in service, sρ, plus the expected number of jobs in queue, λEW = sρEW (both by
Little’s law), so that the expected number of jobs in the system per server is ρ(1+EW).
The EW component exhibits the strong dependence on s shown above.

The advantage of multi-server systems over separate single-server systems is
also seen in other performance measures. For example, the probability of experiencing
delay before beginning service remains approximately constant as the number of servers
increases if the traffic intensity increases as well with (1 − ρ)

√
s held fixed; see

Whitt [47]. In other words, the utilization as a function of s is approximately

ρ ≈ 1− γ/
√
s (1.4)

for some constant γ, if we also hold the probability of delay fixed. Formula (1.4)
illustrates that the greater efficiency with multiple servers can be realized by higher
utilization for a given level of congestion instead of less congestion. Alternatively,
resource sharing can yield a combination of higher utilization and reduced de-
lays.
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Unfortunately, however, it is not always possible to fully share resources. In
this paper we consider partial-sharing schemes that yield performance in between
the single-server and multi-server cases in formulas (1.1)–(1.4). One way to partially
share resources when the queues are separate is to assign new jobs upon arrival to
the more lightly loaded queues. When the service-time distribution is exponential or
has increasing failure rate, if jobs must be assigned to queues upon arrival without
further intervention, then it is optimal to assign the job to the shortest queue; see
Winston [50] and Weber [41]. However, somewhat surprisingly, for other service-time
distributions, the shortest queue (SQ) rule need not be optimal; see Whitt [45]. More
generally, it is natural to assign each job to the queue that will minimize its expected
delay, although this rule is not always optimal either [45]. The advantage of the SQ
rule is illustrated by the heavy-traffic limit, which shows that SQ behaves as well as
the combined system as ρ→ 1; see Foschini and Salz [19], Reiman [32] and Zhang,
Hsu and Wang [52].

Instead of assigning jobs upon arrival, here we consider the alternative of peri-
odically redistributing the jobs to balance the queue lengths (number in system); i.e.,
so that they differ by at most 1 after redistribution. Periodic redistribution has two
potential advantages over dynamic assignment of arrivals. First, the periodic redis-
tribution gives an alternative way to balance the loads, which may be more robust.
Even with the SQ rule, after a rare period of high congestion (with very large queue
lengths), a few queues may remain very long after most queues have emptied (because
of especially long service times, e.g., when the servers at one queue are temporarily
unavailable). Then load balancing only through routing of new arrivals may be less
effective than periodically redistributing jobs. Second, with periodic redistribution, we
need not perform any control upon arrival. Dynamic assignment of arrivals may be
very costly, because we need to constantly maintain system state. In contrast, with
periodic load balancing, system state information is only needed at redistribution times.
Moreover, the most current state is often not actually needed. Under relatively heavy
loads, it is possible to determine the appropriate redistribution during a short interval
before the actual redistribution time. Under heavy loads, when processing system
state becomes difficult, the queue lengths tend to change relatively slowly (the snap-
shot principle; see Reiman [32]), so that little is lost if the system state is somewhat
stale. As shown by Foschini [18], even under heavy loads, the system state can be
communicated without significantly further increasing the loads.

Even less state information is required if redistribution is done with a large
number of queues. Then the required number at each queue can be closely estimated
without actually looking at the queue lengths, provided one knows the queueing model
reasonably accurately. Even if the queueing model is not known, the average num-
ber after the last redistribution usually will be a good estimate for the number that
should be present after the next redistribution, because these averages tend to evolve
deterministically when there are many queues. Given that the target level is known
in advance, local adjustments can be made among the queues in a distributed man-
ner.
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Here is how the rest of this paper is organized. In section 2 we define the basic
stochastic processes and characterize the steady-state number of jobs after redistribut-
ing jobs when each queue is an M/M/s queue (has s servers, Poisson arrivals and
exponential service times). We also make stochastic comparisons showing that the
performance with periodic load balancing falls in between the single s-server queue
and the combined ms-server queue (showing that formulas (1.1)–(1.4) provide upper
and lower bounds).

In section 3 we consider the limiting behavior as m → ∞ in the M/M/s
setting, and show that, asymptotically, the total number of jobs evolves deterministi-
cally, having a limit characterized by a fixed-point equation. We also show that the
fixed-point equation has a unique solution for each redistribution interval, and that the
fixed-point level is a continuous strictly increasing function of the interval length. We
show how to calculate the fixed-point level and the queue performance between re-
distributions by exploiting previous transient results for M/M/s and M/M/1 queues.
We also show that for suitably large m the number of jobs per queue immediately
after load balancing tends to be normally distributed. The approximate steady-state
normal distribution can be obtained by solving a pair of equations for the mean and
variance.

In section 4 we establish a heavy-traffic diffusion approximation for the case of
general arrival and service processes (satisfying central limit theorems, e.g., i.i.d. se-
quences with finite second moments), which yields reflected Brownian motion (RBM)
as the model for the single-queue evolution between redistributions. The heavy-traffic
limit shows how the interval between redistributions and the level after redistributions
should scale with increasing load. Indeed by appropriate scaling, all cases are reduced
to the single case of canonical RBM (with drift −1 and diffusion coefficient 1). (See
Abate and Whitt [1] and Whitt [46] for further discussion.) We also show how ap-
proximate system performance can be described explicitly. Heavy-traffic limits seem
very appropriate in this setting, because when we couple m s-server queues, they can
usually operate at a higher server utilization; e.g., recall formula (1.4).

In section 5 we apply the new asymptotic results and previous ones to compare the
performance of load balancing to the performance of the two basic alternatives: (1) m
separate single-server queues and (2) one combined m-server queue. In section 6 we
make comparisons between the RBM approximation and simulations of M/G/1 queues
coupled by periodic load balancing. We consider exponential and Pareto service-time
distributions (with finite variance).

In section 7 we consider the redistribution of remaining work in single-server
queues using a work-conserving discipline. The resulting RBM heavy-traffic approx-
imation is the same as in section 4. In section 8 we show that the periodic load
balancing significantly reduces the likelihood of severe congestion by showing that the
tail probabilities with periodic load balancing decay much more rapidly than they do
without load balancing.

In section 9 we discuss the case of long-tail service-time distributions, which
Leland and Ott [28] and Harchol and Downey [21] have shown to be present in
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computer systems. We show that a heavy-traffic limit involving an extra jump process
can be used to approximate system behavior when the service-time distributions fail
to have finite second moments or even first moments. We provide both transient and
steady-state descriptions. With such high variability, transient descriptions tend to be
more useful.

In section 10 we consider the situation in which a proportion of the queues are
down, so that at these queues in the interval between redistributions jobs arrive but no
service is performed. The primary purpose of this section is to show how periodic load
balancing performs in unbalanced scenarios. It should be clear that load balancing is
even more important when the queues are not homogeneous. In an unbalanced envi-
ronment, queues will often be unstable, i.e., the processes will grow without bound,
when no form of load balancing is performed. The analysis in section 10 can also
be used to describe the effect of long-tail service-time distributions. The down times
can represent exceptionally long service times. When we focus on the jobs in each
queue, the few jobs with exceptionally long service time are themselves asymptoti-
cally negligible as ρ → 1, but their impact on the processing of other jobs can be
great.

2. Redistributing jobs in the Markov case

We start by considering the Markov special case, in which the service times are
exponential and the arrival processes to the queues are i.i.d. Poisson processes. Let
the mean service time be 1 and let the arrival rate at each queue be λ. We consider
s-server queues, but we are primarily interested in the case of relatively small s, e.g.,
s = 1. With m s-server queues, the overall traffic intensity (or server utilization) is

ρ =
λm

sm
=
λ

s
. (2.1)

In this context we redistribute the jobs in the system every T time units, so that
the numbers of jobs at any two queues differ by at most 1 after each redistribution.
In between redistributions, the queues evolve independently (conditional on the ini-
tial values after the last redistribution). Let Nin be the number of jobs at the ith
queue (waiting and in service) after the nth redistribution at time nT . Let Nn be
the total number of jobs at all m queues after the nth redistribution. Without loss of
generality, let the elements of the vector (Nin, 1 6 i 6 m) be ordered so that they
are nondecreasing in i. Let φm be the function that maps Nn into (N1n, . . . ,Nmn)
with this ordering; e.g., φ5(7) = (1, 1, 1, 2, 2). With the ordering imposed upon the
vectors (N1n, . . . ,Nmn), there is a one-to-one correspondence between the processes
{Nn: n > 1} and {(N1n, . . . ,Nmn): n > 1}; i.e.,

Nn = N1n + · · ·+Nmn (2.2)

and

(N1n, . . . ,Nmn) = φm(Nn). (2.3)
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We now characterize the stochastic process {Nn: n > 1}. Let
d
= denote equality

in distribution. Recall that a Markov chain is stochastically monotone if the conditional
distribution of Nn+1 given Nn = i is stochastically increasing as i increases, i.e., if

E
[
g(Nn+1) | Nn = i

]
6 E

[
g(Nn+1) | Nn = j

]
whenever i 6 j (2.4)

for all nondecreasing real-valued functions g for which the expectations are well de-
fined; e.g., see Stoyan [37] or Baccelli and Brémaud [7].

Theorem 1. For the Markov special case, the stochastic process {Nn: n > 1} is a
stochastically monotone, irreducible, aperiodic Markov chain with transition probabil-
ity

Pjk ≡P (Nn+1 = k | Nn = j)

=P

(
m∑
i=1

Qi(T ) = k | Q1(0) = `1, . . . ,Qm(0) = `m

)
, (2.5)

where (`1, . . . , `m) = φm(j) and {(Qi(t) | Qi(0) = `i): t > 0}, 1 6 i 6 m, are
independent M/M/s queue-length (number in system) stochastic processes. If ρ < 1,
then this Markov chain is positive recurrent with stationary random element N∞ char-
acterized by the equation

(N1∞, . . . ,Nm∞)
d
= φm

(
m∑
i=1

(
Qi(T ) | Qi(0) = Ni∞

))
, (2.6)

where (N1∞, . . . ,Nm∞) = φm(N∞) and {(Q1(t), . . . ,Qm(t)): t > 0} is independent
of (Q1(0), . . . ,Qm(0) = (N1∞, . . . ,Nm∞) on the right in (2.6).

Proof. The Markov property for {Nn: n > 1} follows immediately from the lack of
memory property associated with the exponential interarrival and service times. Since
it is possible to go from 0 to 0 in one step, the chain is aperiodic. Since it is possible
to get from any state to any other, the chain is irreducible. The stochastic monotonicity
follows from comparison results for the M/M/s queue; e.g., see Whitt [44] or Baccelli
and Bremaud [7]. If Qi(0) increases, then the distribution of Qi(T ) (and the entire
sample path Qi(t), t > 0) increases stochastically. The positive recurrence follows
from the mean drift criterion: As x increases,

E[Nn+1 −Nn | Nn = x]→ smT (ρ− 1) < 0 (2.7)

while

E[Nn+1 −Nn | Nn = x] 6 λmT for all x; (2.8)

see Meyn and Tweedie [31, p. 262]. Finally, the steady-state equation (2.6) corresponds
to the usual steady-state equation π = πP . �
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The overhead associated with the load balancing can also be described. The
number of jobs that must be moved from the ith queue in steady state, say Ji∞, is

Ji∞ =

[(
Qi(T ) | Qi(0) = Ni∞

)
− 1
m

m∑
j=1

(
Qj(T ) | Qj(0) = Nj∞

)]+

, (2.9)

where [x]+ = max{x1, 0}. The number of jobs moved in is described similarly. The
limiting case as m→∞ considered in the next section provides a convenient simple
approximation.

Because of the stochastic monotonicity property, we can deduce that the random
sequence {Nn: n > 1} increases stochastically as n increases when N0 = 0. Recall
that one random variable X1 is stochastically less than or equal to another X2, denoted
by X1 6st X2, if Eg(X1) 6 Eg(X2) for all nondecreasing real-valued functions g for
which the expectations are well defined.

Corollary 2. If N0 = 0 in the setting of theorem 1, then for all n > 0

Nn 6st Nn+1 6st N∞.

It is intuitively clear that periodic load balancing helps, i.e., that the steady-state
distribution is in some sense smaller with load balancing than for separate M/M/s
queues without load balancing. On the other hand, periodic load balancing should not
be as good as one combined queue with sm servers. We now establish supporting
stochastic comparisons. Let N (t) be the number of jobs at all queues in the m-queue
load balancing model at time t.

Theorem 3. With m M/M/s queues,(
N (t) | N (0) = n

)
>st

(
Q(t) | Q(0) = n

)
for all t, (2.10)

where {Q(t): t > 0} is the queue length process in a single combined M/M/ms
system with arrival rate λm.

Proof. As in Whitt [44], we can artificially construct the two processes on the same
probability space so that the sample paths are ordered with probability 1. Let the two
processes have the same arrival process. Since N (0) = Q(0), the departure rate in Q is
initially no smaller. At each transition, we maintain N (t) > Q(t) by having departures
in Q whenever N (t) = Q(t) and there is a departure in N . Whenever N (t) = Q(t), the
departure rates are ordered. There may be strict inequality because some servers are
idle with N but not Q. This special construction implies stochastic order as expressed
in (2.10). �

The stochastic process {N (t): t > 0} has a periodic structure. The variables
N (kT + t) for 0 6 t < T converge in distribution as k → ∞ to limits Nt(∞) by
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virtue of theorem 1. We can apply theorem 3 to obtain a stochastic comparison for
these periodic steady-state limits.

Corollary 4. In the M/M/s setting, the periodic steady-state variables are ordered by

Nt(∞) >st Q(∞), 0 6 t < T ,

where Q(∞) has the steady-state distribution of the combined M/M/sm system with
arrival rate λm.

Since the infinite-server M/M/∞ system is a lower bound to theM/M/s system,
we can obtain a further lower bound, which should be more useful when s and λ are
large.

Corollary 5. In the M/M/s setting,

P
(
Nt(∞) > k

)
>
∞∑
j=k

e−λm(λm)j

j!
, k > 1, (2.11)

so that

ENt(∞) > λm. (2.12)

Proof. Recall that the steady-state distribution of Q(t) in the M/M/∞ model is
Poisson with mean equal to the offered load, which here is λm. �

We now show that load balancing helps by making stochastic comparisons with m
separate queues. In this case we establish results only for the case s = 1. Recall that
one random variable X1 is less than or equal to another X2 in the (increasing) convex
stochastic order, denoted by X1 6c X2 (X1 6ic X2), if Eg(X1) 6 Eg(X2) for all
(increasing) convex real-valued functions g for which the expectations are well defined;
e.g., see Stoyan [37] and Baccelli and Bremaud [7].

We use the following result for the transient M/M/1 queue, which is analogous
to part of theorem 5.2.1 of Stoyan [37].

Theorem 6. Consider two M/M/1 queue length processes {Qi(t): t > 0} differing
only in their initial values. If Q1(0) 6ic Q2(0), then Q1(t) 6ic Q2(t) for all t > 0.

Proof. Note that

Q(t) = max
{
Q(0) +X(t), X(t)− inf

06s6t
X(s)

}
,

where X(t) = A(t)−S(t), t > 0, with {A(t): t > 0} and {S(t): t > 0} being indepen-
dent Poisson processes, so that Q(t) is an increasing convex function of Q(0). Hence
f (Q(t)) is an increasing convex function of Q(0) for each increasing convex f . �
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Theorem 7. Let N (t) be the total number of jobs at time t in the m M/M/1 queues
coupled by periodic load balancing. Then(

N (t) | N (0) =
n∑
i=1

ki

)
6ic

m∑
i=1

(
Qi(t) | Qi(0) = ki

)
for all t

and initial vectors (k1, . . . , km), where {(Qi(t) | Qi(0) = ki): t > 0}, 1 6 i 6 m, are
independent M/M/1 queue length processes.

Proof. Each load balancing makes the vector of m queue lengths, after permuting the
queues randomly, smaller (no larger) in the convex stochastic order (6c). This initial
convex order implies that increasing stochastic order (6ic) is maintained throughout
the interval between redistributions by theorem 6. Thus the result follows by induction
on the redistribution times. �

Corollary 8. Let Nt(∞) have the periodic steady-state distribution of N (t) in the
setting of theorem 7. Then

Nt(∞) 6ic
m∑
i=1

Qi(∞),

where Qi(∞), 1 6 i 6 m, are i.i.d. with P (Qi(∞) = k) = (1− ρ)ρk, k > 0.

Proof. Increasing convex order is inherited by the limits with convergence in distri-
bution. �

We close this section by pointing out that an interesting open problem is to
describe customer waiting times. Within one cycle, the waiting time of a new arrival
is just the random sum of exponential service times, where the random number is the
number of customers in the queue. Thus the waiting-time distribution will depend on
the arrival time within a cycle. When we consider times extending beyond one cycle,
we must properly take account of the way jobs are assigned to queues at redistribution
points, which introduces considerable potential complexity. In the heavy-traffic limit
in seciton 5, we will observe that jobs tend to get served in the same cycle in which
they arrive, so that this extra complexity does not arise.

3. Many queues and exponential service times

The system behavior simplifies when there are many queues. First, suppose that
there is random assignment to the queues from a single general stationary arrival
process, where by random assignment we mean that each queue is selected with equal
probability and that successive assignments are mutually independent and indepen-
dent of the service times. Then, as m → ∞, the arrival processes to the queues
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approach independent Poisson processes; e.g., see Çinlar [12], Serfozo [35] and ref-
erences therein. Hence, we have additional justification for considering independent
Poisson arrival processes.

Second, with exponential service times, as the number m of queues gets large,
the redistribution tends to put the constant, expected value at each queue. In the limit
m → ∞, the only deviation from this expected value is due to the requirement that
the initial number of jobs at each queue must be an integer. Hence, a proportion of the
queues will have n jobs, while the remainder of the queues will have n+ 1 for some
deterministic n. We now state this property as a theorem. Let N (m)

n denote the random
total number of jobs just after the nth redistribution in the model with m queues. For
x > 0, let bxc be the integer part of x.

Theorem 9. Consider the m-queue model with periodic load balancing at times nT
for n > 1. Let the queues be M/M/s queues. If N (m)

0 /m → x0 w.p.1 as m → ∞,
then

N (m)
n

m
→ xn w.p.1 as m→∞ for each n > 0, (3.1)

where {xn: n > 1} is a deterministic sequence evolving as

xn+1 = fT (xn), n > 0, (3.2)

for a function fT independent of n with fT (xn) = M (T ,xn) and

M (t,x) =
(
x− bxc

)
E
[
Q(t) | Q(0) = bxc+ 1

]
+
(
1− x+ bxc

)
E
[
Q(t) | Q(0) = bxc

]
, (3.3)

where {Q(t): t > 0} is an M/M/s queue-length process.

Proof. Note that(
m−1N (m)

n+1 | N (m)
n = mj + k

)
→ pE

[
Q(T ) | Q(0) = j + 1

]
+ (1− p)E

[
Q(T ) | Q(0) = j

]
w.p.1

as m → ∞ with k/m → p, by virtue of the strong law of larger numbers. Apply
mathematical induction on n. �

We propose the limiting case as m → ∞ as an approximation, i.e., the de-
terministic sequence {xn: n > 0} specified by (3.2). Clearly, for large finite m,
the state variable xn means that a proportion (xn − bxnc) of the m queues will be
assigned bxnc + 1 jobs, while the remainder of the queues are assigned bxnc jobs.
The central limit theorem can be used to describe deviations from the limiting be-
havior for finite m. Let N (a, b) denote a normally distributed random variable with
mean a and variance b. Let ⇒ denote convergence in distribution; e.g., see Billings-
ley [9].
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Theorem 10. In the setting of theorem 9,

(N (m)
n+1 −mxn+1 | N (m)

n = mxn)
√
m

⇒ N (0, vn+1) as m→∞, (3.4)

where vn+1 = V (T ,xn) with

V (t,x) = (x− bxc)Var
[
Q(t) | Q(0) = bxc+ 1

]
+
(
1− x+ bxc

)
Var
[
Q(t) | Q(0) = bxc

]
. (3.5)

Proof. We can apply the central limit theorem after noting that the quantity on the left
in (3.4) is the sum of m independent random variables, where m(xn−bxnc) have one
distribution, while m(1− xn + bxnc) have another distribution. The second moments
are finite, being bounded above by the second moments of a constant (the initial value)
plus the Poisson number of arrivals. �

We now draw implications for the distribution at n steps. For this purpose, we
use the following elementary lemma.

Lemma 11. Suppose that X
d
= N (Y ,σ2

1), where Y
d
= N (m,σ2

2). Then

X
d
= N

(
m,σ2

1 + σ2
2

)
.

Proof. Note that

E eitX =E
[
EeitX | Y

]
= E exp

(
itY + t2σ2

1/2
)

= exp
(
itm+ t2

(
σ2

1 + σ2
2

)
/2
)
. �

We now apply theorem 10 and lemma 11 with mathematical induction to obtain
the asymptotic distribution of N (m)

n .

Corollary 12. In the setting of theorem 9,

N (m)
n −mxn√

m
⇒ N

(
0,

n∑
k=1

vk

)
as m→∞

for each n, where vk is defined in (3.5).

We remark that theorem 10 and corollary 12 imply that the standard devia-
tion of the number assigned to each queue after load balancing with m queues is of
order 1/

√
m. Since Var[Q(t) | Q(0) = j] becomes small as t decreases, the deter-

ministic approximation tends to be more accurate when m is larger and when T is
smaller.
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Intuitively, it is apparent that the limiting case as m→∞ is optimistic (serves a
a lower bound). This can be made precise by a stochastic comparison. The following
is proved by a minor modification of the proof of theorem 7.

Theorem 13. In the setting of theorem 9, if s = 1 and N (m)
0 = x0m, then

Eg
(
N (m)
n /m

)
> g(xn) for all n > 1

and all nondecreasing convex real-valued functions g, where {xn} satisfies (3.2).

We now want to describe the evolution of the limiting deterministic sequence
{xn: n > 0} defined by (3.2).

Theorem 14. The function fT in (3.2) characterizing the evolution of {xn} is strictly
increasing and continuous. If ρ < 1, then there is a unique fixed point x∗(T ) of the
equation fT (x) = x for each T and xn → x∗(T ) as n→∞ for each x0.

Proof. First fix T . From (3.2) it is immediate that xn+1 = f (xn) for a function
f ≡ fT independent of n. Continuity of f follows from the M/M/s model structure;
i.e., changes in state in an interval of length h occur with probability of order O(h) as
h→ 0; we omit the details. Monotonicity of f can be shown by artificially constructing
two M/M/s processes on the same sample space so that the sample paths are ordered
strictly until they couple, as in theorem 3. This is achieved by letting the two processes
have the same arrival process. The higher process has the same departures as the
lower one plus possibly additional ones until they couple (the sample paths coincide).
This yields (Q(t) | Q(0) = n) stochastically increasing in n for each t. Hence,
E[Q(t) | Q(0) = n] is strictly increasing in n for each t, so that f is strictly increasing.
Since f (0) > 0, successive iterates f (n)(x) ≡ f (f (n−1)(x)) increase as n → ∞ to a
limit x∗ starting in 0. Since f is continuous as well, f (n)(x∗) = f (f (n−1)(x∗))→ f (x∗)
as n → ∞, so that x∗ is a fixed point of f . For all x with 0 < x < x∗, f (n)(0) <
f (n)(x) < f (n)(x∗) = x∗, so that f (n)(x) → x∗ as n → ∞ too. As x increases,
f (x)− x approaches (λ− s)T . Since ρ < 1, (λ− s)T < 0. Hence, for all sufficiently
large x, f (x) < x. Hence, for such x, f (n)(x) decreases to a limit x̂ as n → ∞.
Since f is continuous, x̂ must also be a fixed point of f . Since coupling is always
possible in the special construction above, we must have f (x̂) − f (x∗) < x̂ − x∗ if
x̂ > x∗. Hence, we must have x̂ = x∗, so that there is a unique fixed point. Moreover,
f (n)(x) → x∗ as n → ∞ for all x. (Monotonicity can be used for x > x∗, just as it
was for x < x∗.) �

As a consequence of theorem 13, we can deduce that the fixed point x∗(T ) is a
lower bound for the steady-state random variable N (m)

0 /m in the increasing convex
stochastic order.

Corollary 15. In the setting of theorem 13, N (m)
∞ >ic mx∗(T ) for each m.
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We now describe how the fixed point x∗(T ) depends on upon T .

Theorem 16. The fixed point x∗(T ) of the equation x = fT (x) for fT in theorem 9
is a strictly increasing continuous function of T with x∗(T ) → xU as T → ∞ and
x∗(T )→ xL as T → 0, where

EQ(∞) 6 xU 6
⌊
EQ(∞)

⌋
+ 1, (3.6)

while

bxZc 6 xL 6 xZ , (3.7)

where xZ is the unique value of x such that M ′(0,x) = 0 for M (t,x) in (3.3).

Proof. Note that

M ′(0,x) =
(
x− bxc

)(
λ− bxc+ 1

)
+
(
1− x+ bxc

)(
λ− bxc

)
.

Hence M ′(0,x) so can be 0 only if bxc < λ < bxc + 1. Suppose that is the case.
Since M ′(0, bxc) > 0 and M ′(0, bxc + 1) < 0 and since M ′(0,x) is continuous and
monotone, there is one and only one x for which M ′(0,x) = 0; let it be denoted
by xZ . For each x satisfying xZ < x < EQ(∞), M (t,x) initially decreases and then
eventually converge to EQ(∞). Since x < EQ(∞) and M (t,x) is continuous in t,
there must be an intermediate T yielding a fixed point. Thus, each of these x is a fixed
point for some T , denoted by x∗(T ). By the coupling construction used in theorems 3
and 14 if x1 < x2, then M (t,x2)−M (t,x1) must be strictly decreasing in t. Thus, if
x < x∗(T ), then

M
(
T ,x∗(T )

)
−M (T ,x) < x∗(T )− x

or, since M (T ,x∗(T )) = x∗(T ), M (T ,x) > x, which implies that the time yielding the
fixed point for x, denoted by T ∗x , must be less than T . Hence, the fixed point times Tx
must be strictly increasing in x. (The strict order is also implied by theorem 13.) By
continuity of M (t,x) in x, T ∗x must be continuous in x as well, which implies that the
inverse of T ∗x , x∗(T ), is continuous and strictly increasing as well. Let xU and xL be
the limiting fixed points, which must be defined, since a fixed point x∗(T ) exists for
all positive T . We have noted that xL 6 xZ and xU > EQ(∞). We now show that
xL > bxZc and xU 6 bEQ(∞)c + 1, as in (3.6) and (3.7). For this step, we exploit
known properties of the mean function M (t,n) ≡ E[Q(t) | Q(0) = n] in M/M/s
queues, as given in lemma 9.4.1 (ii) and theorem 9.4.3 (ii) of van Doorn [40]: First if
M ′(t,n) > 0, then M ′(t+ u,n) > 0 for all u > 0. Second if M ′(t,n) 6 0, then also
M ′′(t,n) > 0. By the first property, no integer n can be a fixed point if n > EQ(∞),
because M (t,n) must first decrease and then eventually increase to EQ(∞). It cannot
go above EQ(∞), because it must converge to EQ(∞) and remain nondecreasing after
it first becomes nondecreasing. Similarly, no integer n 6 xZ can be a fixed point,
because M (t,n) is always increasing, again by the first property. �
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Remark. We conjecture that the limiting fixed points in theorem 16 are xU = EQ(∞)
and xL = xZ , but that remains to be proven. The difficulty is in treating non-integer x.
It is not clear whether the properties of the mean function in van Doorn [40] used in
the proof extend to convex combinations pM (t,n + 1) + (1 − p)M (t,n). However,
we can cover a subset of cases: Let n = bEQ(∞)c and let Tn be the fixed point time.
If M ′(Tn,n + 1) > 0, then xU = EQ(∞). This is so, because if M ′(Tn,n + 1) > 0,
then M (t,n+ 1) must go below EQ(∞) and increase to it. Hence M (t,x) < EQ(∞)
for all t > Tn, but we must have Tx > Tn for x > n. Hence there can be no fixed
point x for x > EQ(∞).

Given a desired level after redistribution, x, or a desired redistribution interval T ,
we can find the associated fixed point Tx = x∗(T ) by solving the fixed point equation
fT (x) = x for the free variable. Computation is aided by the monotonicity of the
function x∗(T ). To compute M (t,x) as a function of t, we need to compute the
transient mean E[Q(t) | Q(0) = n] in the M/M/s model. We can do so numerically
by imposing a suitably large finite waiting room and solving a finite system of ordinary
differential equations, as in Taaffe and Ong [38]. A related alternative algorithm is
given in Davis, Massey and Whitt [13]. It is applied for the M/M/s delay model
with time-dependent arrival rate in Massey and Whitt [30].

For the special case of s = 1, it is especially convenient to use numerical integra-
tion with integral representations, as indicated in Abate and Whitt [3]. For example,
for s = 1, the mean function is given by

M (t,n) =
ρ

1− ρ −
2ρ−n/2

π

∫ π

0

e−γ(y)t sin y(sin(n+ 1)y − ρ−1/2 sin(ny))
γ(y)2 dy, (3.8)

where

γ(y) = 1 + ρ− 2
√
ρ cos y; (3.9)

see Takács [39, p. 27]. (Formula (3.8) is expressed slightly differently in [39].)
Alternatively, for s = 1, the mean can be calculated by numerical transform

inversion. For the M/M/1 model, the Laplace transform of the conditional mean
E[Q(t) | Q(0) = n] with respect to time t is given explicitly in Abate and Whitt [2,
p. 162] (see also pp. 148 and 157 there). For example, the Fourier-series method for
numerically inverting Laplace transforms can be applied; see Abate and Whitt [4,5].
In [2] time is scaled, so that the normalized mean M (t,n)/M (∞) converges to a
nondegenerate limit as ρ → 1. This nondegenerate limit is the RBM limit discussed
in the next section. For further discussion about the connection between M/M/1 and
RBM characteristics, see [2, section 10]. As indicated after theorem 1 on p. 148 of [2],
the transform of the second moment function can be obtained in the same way.

By corollary 15, the normalized fixed point mx∗(T ) is a lower bound in the
increasing convex stochastic order for the steady-state quantity N (m)

∞ for finite m. The
quantity mx∗(T ) also serves as a first order approximation to N (m)

∞ for finite m. As
in theorem 10, we can invoke the central limit theorem to generate a refinement, in
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particular, the normal distribution. Assuming that the steady-state number of jobs in
the system at redistribution times is approximately normally distributed, we can solve a
pair of equations to calculate the mean and variance. (Recall that a normal distribution
is fully characterized by its mean and variance.) Let µ and σ2 denote the approximating
steady-state mean and variance of the number of jobs in each queue after balancing.
Let φ(x | µ,σ2) and Φ(x | µ,σ2) denote the probability density function (pdf) and
cumulative distribution functions (cdf) of a N (µ,σ2) random variable, i.e., normally
distributed with mean µ and variance σ2. Then, for any balancing interval T and any
number of queues m, the parameter µ and σ2 can be obtained as the solution to the
pair of equations

µ = Φ
(
0 | µ,σ2)M (T , 0) +

∫ ∞
0

φ
(
x | µ,σ2)M (T ,x) dx (3.10)

and

σ2 = m−1
[

Φ
(
0 | µ,σ2)M2(T , 0) +

∫ ∞
0

φ
(
x | µ,σ2)M2(T ,x) dx− µ2

]
, (3.11)

where M2(T ,x) is the second moment, i.e.,

M2(T ,x) = V (T ,x) +M (T ,x)2 (3.12)

for M (T ,x) and V (T ,x) in (3.3) and (3.5). The approximate distributions just before
and after load balancing are thus N (µ,mσ2) and N (µ,σ2), respectively.

In words, we calculate the mean and second moment as normal mixtures over
the initial state x of the means M (T ,x) and second moments M2(T ,x). The first
terms on the right in (3.10) and (3.11) account for the possibility that the normal
approximation can have positive mass at negative values. The factor m−1 in (3.11) is
present because the variance of an average of m i.i.d. terms is 1/m times the variance
of one term. (We act as if the terms are identically distributed even though they are
not quite because of the integrality condition.) The equations (3.10) and (3.11) can
be solved iteratively for the desired pair (µ,σ2). We apply this approximation scheme
with the RBM approximation in the next section.

The deterministic fixed point x∗(T ) serves as a convenient approximation for
the mean µ in the normal iteration above. When m is large, the variance σ2 should
be reasonably well approximated by the variance in one interval starting from x∗(T )
divided by m; i.e., we can use the simple approximation

N
(
µ,σ2) ≈ N(x∗(T ),V

(
T ,x∗(T )

)
/m
)

(3.13)

for V (t,x) in (3.5).
The performance is only partly determined by the random quantity N (m)

∞ . Thus,
even in the limit as m → ∞, the performance is only partly determined by the fixed
point function x∗(T ). The queues evolve randomly in each redistribution interval.
Thus, to describe the performance, we also want to calculate the probability distrib-
ution of the queue length in between redistribution points and appropriate summary
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statistics. We can calculate the transition probability function by similar methods. For
the M/M/1 case, we can use either integral representations or numerical transform
inversion. The time-dependent cumulative distribution function is readily calculated
by two-dimensional numerical inversion, as in Choudhury, Lucantoni and Whitt [11].
For the M/M/1 case, the busy-period transform is available explicitly, so it is not
necessary to obtain it by iterating the Kendall functional equation for the busy period
as in [11].

The random number of jobs that must be moved from one queue becomes more
elementary as m→∞. Considering the worst case in which we start with bx∗(T )c+1
and end with bx∗(T )c, this random number is

Ji∞ =
[(
Q(T ) | Q(0) =

⌊
x∗(T )

⌋
+ 1
)
−
⌊
x∗(T )

⌋]+
. (3.14)

We can calculate the distribution of Ji∞ by first solving for the deterministic fixed
point x∗(T ) and then calculating the cdf of (Q(T ) | Q(0) = bx∗(T )c+ 1), as indicated
above.

4. A heavy-traffic diffusion approximation

We now see how the balancing interval T and the fixed-point function x∗(T )
developed in section 3 should scale with the traffic intensity ρ. We also develop more
tractable approximations for both the M/M/s case considered before and the G/GI/s
case with more general arrival and service processes. A major simplification resulting
from the scaling as ρ ↑ 1 is the elimination of the integrality constraint; i.e., the queue
lengths no longer need be integers. Thus formulas such as (3.3) and (3.5) simplify.

For each ρ with 0 < ρ < 1, let a queueing model with traffic intensity ρ be
defined by scaling a rate-1 arrival process {A(t): t > 0} by Aρ(t) = A(ρt), t > 0.
Let {A(t): t > 0} denote an arrival process to any one queue. Assume that the arrival
processes to different queues are mutually independent. Assume that each arrival
process satisfies a functional central limit theorem (FCLT), i.e.,

A(nt)− λnt√
nλc2

a

⇒ B(t) in D as n→∞, (4.1)

where {B(t): t > 0} is standard (drift 0, diffusion coefficient 1) Brownian motion
(BM) and ⇒ denotes weak convergence (convergence in distribution) in the function
space D ≡ D[0,∞); see Billingsley [9], Ethier and Kurtz [15] and Whitt [43]. If
{A(t): t > 0} is a renewal process, then to satisfy (4.1) it is necessary and sufficient
for the time between renewals to have a finite second moment. Then its SCV is c2

a

in (4.1). The form of (4.1) allows dependence among successive arrivals. We assume
that the service times are independent of the arrival process, coming from an i.i.d.
sequence with a general distribution having mean 1 and finite second moment. Let c2

s

denote the SCV of a service time. The independence assumed for the service times is
not strictly needed. It would suffice for the partial sums of the service times at each
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queue to satisfy a FCLT; see Iglehart and Whitt [24]. Then c2
s should be determined by

the normalization in the FCLT as in (4.1). It is important is recognize that dependence
can influence the parameters c2

a and c2
s. In general there could even be a term c2

as

reflecting the dependence between arrival times and service times, see Fendick, Saksena
and Whitt [17], but we assume that c2

as = 0.
In this setting, the normalized queue length process in the standard G/GI/s

model converges to RBM as ρ → 1 by Iglehart and Whitt [24]. In particular, as
reviewed in Whitt [46], if Qρ(t) denotes the queue length (number in system) at time t
in a standard G/GI/s system indexed by ρ, then

(1− ρ)
ρ(c2

a + c2
s)
Qρ
(
t
(
c2
a + c2

s

)
/s(1− ρ)2)⇒ R(t) in D as ρ→ 1, (4.2)

where {R(t): t > 0} is canonical (drift −1 and diffusion coefficient 1) RBM. We insert
the extra ρ in the denominator of the initial multiplicative factor in (4.2) as a heuristic
refinement to make the formula exact for the M/M/1 steady-state mean ρ/(1 − ρ).
(The steady-state RBM variable R(∞) is exponentially distributed with mean 1/2.) Of
course, the ρ is asymptotically negligible as ρ → 1. As a consequence of the limit
in (4.2), we have the associated approximation

Qρ(t) ≈
ρ(c2

1 + c2
s)

1− ρ R
(
s(1− ρ)2t/

(
c2
a + c2

s

))
. (4.3)

We now state the analog for periodic load balancing. We will only sketch the
proof since the heavy-traffic limit follows by essentially the same argument as in
Iglehart and Whitt [24] and Kella and Whitt [25]. Let N (m)

iρ (t) denote the queue length
in the ith queue at time t with m queues and traffic intensity ρ. Let Φ be the cdf
of the standard (mean 0 and variance 1) normal distribution and let φ be its density.
Let Φc be the complementary cdf, i.e., let Φc(x) = 1−Φ(x).

Theorem 17. Consider m G/GI/s queues controlled by periodic load balancing.
Make the assumptions above on the arrival and service processes. If ρ → 1 with
the redistribution intervals ρ satisfying

s(1− ρ)2Tρ
(c2
a + c2

s)
→ T (4.4)

and the initial queue lengths x0ρ satisfying

(1− ρ)
ρ(c2

a + c2
s)
x0ρ → x0, (4.5)

then the queue-length processes converge to load-balanced RBM, i.e.,

(1− ρ)
ρ(c2

a + c2
s)

(
N (m)
iρ

(
t
(
c2
a + c2

s

)
/s
(
1− ρ

)2)
: 1 6 i 6 m

))
⇒
(
Xi(t): 1 6 i 6 m

)
in Dm, (4.6)
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where {Xi(t): t > 0} are conditionally i.i.d. processes given {(X1(nT ), . . . ,Xm(nT )):
n > 0}, Yn ≡ X1(nT ) + · · ·+Xm(nT ), n > 0, is a stochastically monotone, irreduc-
ible, aperiodic Markov process on R with transition probabilities

P (Yn+1 6 y | Yn = x) = P

(
m∑
i=1

Ri(T ) 6 y | Ri(0) = x/m, 1 6 i 6 m
)

(4.7)

and conditional Laplace transform

E
(
e−sYn+1 | Yn = x

)
=
(
E
(
e−(s/m)R(T ) | R(0) = x/m

))m
, (4.8)

and {Ri(t): t > 0} are m i.i.d. canonical RBMs, with

P
(
R(t) > y | R(0) = x

)
= Φ

(
−y + x− t√

t

)
+ e−2yΦ

(
−y − x+ t√

t

)
, (4.9)

and

Xi(nT + t)
d
=
(
R(t) | R(0) = Yn/m

)
, 0 6 t < T. (4.10)

Proof. Proceed by induction over successive redistribution intervals. At each re-
distribution point the residual interarrival times and service times are asymptotically
negligible. For the arrival times this follows from the FCLT (4.1). That FCLT im-
plies a corresponding FCLT for the inverse partial sum process and the normalized
maximum jump in it over any interval is 0. The remaining argument follows Iglehart
and Whitt [24]. The result is a Markov process as in theorem 1 with the individual
queues evolving as canonical RBM instead of the M/M/s queue length process. The
conditional complementary cdf in (4.9) is standard; see [1, (1.1)]. �

The evolution of the limiting stochastic process {(X1(t), . . . ,Xm(t): t > 0} in
theorem 17 can be described by first calculating the distribution of the variables Yn
and then applying (4.10). The Markov chain kernel (transition probability density
function) giving the conditional density of Yn+1 given Yn can be found by numeri-
cally inverting the transform in (4.8), exploiting the two-dimensional Laplace trans-
form

ψ̂(s,σ|x) ≡
∫ ∞

0
e−stE

(
e−σR(t) | R(0) = x

)
dt, (4.11)

which is given explicitly in [1, (9.3)]. The numerical transform inversion algorithm
in Choudhury, Lucantoni and Whitt [11] can be used to calculate the transition ker-
nel. The steady-state distribution of the Markov chain {Yn} can be calculated by
making a finite-state approximation. However, we will use other approximations be-
low.

A more elementary approximation can be obtained by considering the double
limit as ρ→ 1 and then m→∞. An attractive feature of the following RBM limit is
the explicit form for the mean function in (4.13) below.
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Theorem 18. In the setting of theorem 17, if m→∞ after ρ → 1, then (4.6) holds,
xn ≡ X1(nT ) evolves deterministically as

xn+1 = fT (xn), (4.12)

where

fT (x) ≡M (t,x) ≡ E
[
R(t) | R(0) = x

]
=

1
2

+
√
tφ

(
t− x√

t

)
−
(
t− x+

1
2

)
Φc

(
t− x√

t

)
− 1

2
e2xΦc

(
t+ x√

t

)
, (4.13)

{R(t): t > 0} is canonical RBM, and

Xi(nT + t)
d
=
(
R(t) | R(0) = xn

)
, 0 6 t < T , i > 1. (4.14)

Proof. The additional limiting argument for m → ∞ is as in theorem 9. The mean
function in (4.13) comes from [1, theorem 1.1]. �

The approximation based on theorem 17 is load-balanced canonical RBM using an
redistribution interval T . By (4.4) and (4.6), the associated approximate redistribution
interval Tρ and levels xρn in the queueing system with traffic intensity ρ are

Tρ ≈
(c2
a + c2

s)T
s(1− ρ)2 (4.15)

and

xρn ≈
ρ(c2

a + c2
s)xn

1− ρ . (4.16)

Theorem 18 implies that we can study periodic load balancing for canonical RBM and
apply the results to generate approximations for the general G/GI/s queueing model,
provided that ρ and m are suitably large. The limit (4.6) generates the approximation

N1ρ(t) ≈
(
ρ(c2

a + c2
s)

1− ρ

)
X1
(
s(1− ρ)2t/

(
c2
a + c2

s

))
, (4.17)

where (X1(t), . . . ,Xm(t)) is controlled canonical RBM, as indicated in theorem 17.
Thus, invoking theorem 18 as well, the queue length just before and after the nth
redistribution has the approximate form

N1ρ(nTρ−) ≈ ρ(c2
a + c2

s)
1− ρ X1(nT−)

d
=
ρ(c2

a + c2
s)

1− ρ
(
R(T ) | R(0) = xn−1

)
(4.18)

and

N1ρ(nTρ) ≈
ρ(c2

a + c2
s)

1− ρ X1(nT ) =
ρ(c2

a + c2
s)

1− ρ xn (4.19)

for {xn} in (4.12). For ease of application, it is significant that the conditional mean
function for RBM, M (t,x) in (4.13), and the conditional complementary cdf, P (R(t) >
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y | R(0) = x) in (4.9), are available explicitly. Unlike with section 3 and theorem 17,
no numerical integration or numerical transform inversion is needed. The standard
normal cdf Φ is usually available on computers often via the error function. It can be
computed directly using rational approximations for the error function; see Abramowitz
and Stegun [6, p. 299].

Remark. Theorem 17 and approximations (4.15)–(4.19) also have important implica-
tions for customer waiting times. Since the cycle lengths are of order (1− ρ)−2 while
the queue lengths and waiting times are of order (1 − ρ)−1 as ρ → 1, we see that
arrivals will tend to be served in the same cycle they arrive in. The waiting time
can thus be approximated by a random sum of i.i.d. service times, where the random
numer at time t is N1ρ(t) in (4.17). The expected waiting time is thus just EN1ρ(t).

By theorem 18, the transient behavior of the approximate system at (just after)
balancing points for any balancing interval T is described by the conditional RBM
mean M (T ,x) in (4.13). We display the mean function M (t,x) as a function of t
for several x in figure 1. We can see that M (t,x) approaches the steady-state mean
ER(∞) = 1/2 as t → ∞. We also see that M ′(0,x) = −1 for all x > 0, because
canonical RBM behaves initially like canonical BM with drift −1, since it starts at the
point x away from the reflecting barrier at 0.

Figure 1. The conditional mean of RBM, M (t,x) ≡ E[R(t) | R(0) = x], as a function of t for several
values of x ≡M (0, x).
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Theorems 17 and 18 allow us to describe the impact of the arrival pattern. If
each queue has its own arrival process initially, then the parameter c2

a in (4.1) is just
the one associated with the arrival process. On the other hand, suppose that there is a
single arrival process to the system (with stationary increments), with jobs assigned to
the queues upon arrival. As noted before, if the assignment is random, then c2

a = 1,
because the split processes to individual queues become independent Poisson processes
as m→∞. On the other hand, if the assignment is round robin, then c2

a = 0, because
the split processes to individual queues become deterministic as m→∞. For finite m,
we would let c2

a(m) ≈ c2
a/m, because that is what happens with a renewal arrival

process. (The new interarrival time is the sum of m i.i.d. original interarrival times.)
Hence, the three possible arrival patterns are reflected by the single parameter c2

a.
Since the total impact of the variability of the arrival and service processes is reflected
by the term (c2

a+c2
s), the arrival pattern makes a bigger (relative) difference when c2

s is
small. When c2

a = c2
s = 0, the normalized queue lengths are asymptotically negligible

in the limit. (It is an open problem to determine if there is a nondegenerate limit with
a different normalization.)

The limit (4.4) in theorem 17 and the approximate formula (4.15) show how the
redistribution interval Tρ should grow with ρ in order to obtain a nondegenerate RBM
limit. If Tρ grows more slowly, then the normalized queue lengths are asymptotically
negligible. Similarly, if Tρ grows more quickly, then the queue reaches steady state
before the redistribution. We formalize this behavior below.

Corollary 19. Consider the setting of theorem 18. If, instead of (4.4), (1−ρ)2Tρ ⇒ 0
as ρ→ 1, then

(1− ρ)N (m)
1ρ (t)⇒ 0 as ρ→ 1 for each t. (4.20)

On the other hand, if (1− ρ)2Tρ ⇒∞ as ρ→ 1, then

(1− ρ)
ρ(c2

a + c2
s)
N (m)

1ρ (kTρ−)⇒ R(∞) as ρ→ 1 (4.21)

and then m→∞ for each k, where

P
(
R(∞) > y

)
= e−2y , y > 0. (4.22)

We now state an analog of corollary 12, providing a normal distribution refine-
ment to the deterministic sequence {xn}.

Theorem 20. In the setting of theorem 17,

√
m
(
η(ρ)N (m)

1ρ (nTρ)− xn
)
→ N

(
0,

n∑
k=1

vk

)
(4.23)
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as ρ → 1 and then m → ∞ for each n, where η(ρ) = (1 − ρ)/ρ(c2
a + c2

s), xn
satisfies (4.12),

vk ≡ V (T ,xk−1) ≡ Var
(
R(t) | R(0) = xk−1

)
, k > 1. (4.24)

V (t,x) = M2(t,x)−M (t,x)2, M (t,x) as in (4.13) and

M2(t,x) =
1
2

+
(
(x− 1)

√
t− t3/2)φ(t− x√

t

)
+

(
(t− x)2 + t− 1

2

)
Φc

(
t− x√

t

)
+ e2x

(
t+ x− 1

2

)
Φc

(
t+ x√

t

)
. (4.25)

Proof. The argument is essentially the same as for theorem 10 and corollary 12.
Indeed, with the scaling in (4.6) RBM is contained as a special case of M/M/1 with
ρ = 1; see Abate and Whitt [1,2] for further discussion. The conditional second
moment function in (4.25) comes from Abate and Whitt [1, theorem 1.1]. �

To show the form of the conditional RBM variance V (t,x), we display it as
a function of t for several values of x in figure 2. To show different regions, we
display it in two scales, over the intervals [0, 5] and [0, 0.25]. Note that V (t,x) →
VarR(∞) = 1/4 as t → ∞. Note that V (t,x) ≈ t, for suitably small t, which is the
variance of ordinary BM, B(t). A crude upper bound is V (t,x) 6 min{t, 1/4}.

Paralleling theorem 14, there is a unique fixed point for the RBM function fT
in (4.12). Indeed, results for RBM can be obtained directly from previous M/M/1
results by regarding RBM as the limit (after scaling) as ρ→ 1. Here are properties of
the RBM fixed point function x∗(T ).

Theorem 21. The function fT in (4.12) is strictly increasing and continuous. There
is a unique fixed point x∗(T ) of the equation x = fT (x) for each T and xn → x∗(T )
as n → ∞. The fixed point x∗(T ) is a strictly increasing continuous function of T
with x∗(T )→ 1/2 as T →∞ and x∗(T )→ 0 as T → 0.

Proof. The proof is essentially the same as for theorems 14 and 16. By-taking the
heavy traffic limit after scaling in theorem 16, we obtain xU = ER(∞) = 1/2 and
xL = 0. The shape of the RBM first moment function was previously established in
Abate and Whitt [1, section 8]. �

From figure 1, we can see that for each x with 0 < x < 1/2 = ER(∞), there is
a unique T such that x is a fixed point, i.e., x = M (T ,x), and we can see how this
fixed point x∗(T ) depends upon x or T . We display the RBM fixed point x∗(T ) as a
function of T and x in figure 3. Parts (a) and (b) of figure 3 give separate displays
over the intervals [0, 4] and [0, 0.5]. The longer interval shows that the fixed point
x∗(T ) gets quite close to the limit 1/2 occurring as T → ∞ for 1 6 T 6 4. The
shorter interval [0, 0.5] shows that the region where x∗(T ) ranges from 20% to 80% of
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Figure 2. The conditional RBM variance, V (t,x) ≡ Var (R(t) | R(0) = x), as a function of t for several
values of x (in two scales).
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Figure 3. The RBM fixed point x∗(T ) as a function of the balancing interval T (in two scales).
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the limit 1/2 is about 0.01 6 T 6 0.5. The cases of T = 1.0 and 0.1 are highlighted
because we use them in our simulation experiments in section 6.

We can also combine theorems 18 and 21 to describe the asymptotic behavior
of the fixed point equation. We need to have the means converge to the mean of the
limit in (4.6). This holds under an additional uniform integrability assumption; see
Billingsley [9, p. 32]. (We regard this as a minor technical regularity condition.)

Theorem 22. If, in addition to the conditions of theorem 17, the normalized queue-
length variables N (m)

1ρ (t) are uniformly integrable, then the associated fixed-point levels
satisfy

(1− ρ)x∗ρ(Tρ)

ρ(c2
a + c2

s)
→ x∗(T ) as ρ→ 1.

Proof. By (4.6) in theorem 17 the transient mean functions converge, implying that
the normalized fixed points converge as well. �

The first order approximation for the level in one queue after balancing in the
RBM model is x∗(T ) computed from the fixed point equation associated with fT
in (4.12) and (4.13). Just as in equations (3.10)–(3.12), a refined approximation is a
normal distribution, where the mean and variance σ2 are the solutions of a pair of

Figure 4. The approximate variance for RBM with load balancing, V (T ,x∗(T )) ≡ Var (R(T ) | R(0) =
x∗(T )), as a function of the balancing interval T .
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equations. With RBM, the equations are still (3.10)–(3.12) but with RBM the mean
and second-moment functions M (T ,x) and M2(T ,x) are greatly simplified, being as
in (4.13) and (4.25). Just as in (3.13), an approximation for this stochastic normal
fixed point is the normal distribution N (x∗(T ),V (T ,x∗(T ))/m), which is the normal
distribution we obtain after balancing at the end of a single interval of length T , start-
ing at x∗(T ). The simple normal approximation N (x∗(T ),V (T ,x∗(T ))/m) motivates
displaying V (T ,x∗(T )), the variance function starting at the fixed point x∗(T ). We do
so in figure 4.

We compare these approximation schemes in tables 1 and 2. In table 1 we
compare the deterministic fixed point x∗(T ) to the mean µ ≡ µ(T ) in the pair
(µ,σ2) obtained from the normal iteration in (3.10)–(3.12) for RBM for six values
of T (T = 0.01, 0.05, 0.10, 0.50, 1.00, 5.00) and four values of m (m = 2, 4, 16, 64).
The equations (3.10) and (3.11) were solved iteratively using numerical integration
with (4.13) and (4.25) to calculate the integrals. The iteration tended to converge
relatively quickly (3–20 iterations), starting from an initial pair (µ,σ2) = (0, ε) for a
small positive ε.

Table 1
A comparison between µ, the approximation for the steady-state mean content of each queue
just before (and after) load balancing with m independent RBM processes, using the normal

iteration, and the deterministic fixed point x∗(T ).

T µ from normal iteration x∗(T )

m = 2 m = 4 m = 16 m = 64

0.01 0.1756 0.1526 0.1358 0.1347 0.1336
0.05 0.2850 0.2504 0.2314 0.2274 0.2260
0.10 0.3321 0.2999 0.2812 0.2771 0.2758
0.50 0.4159 0.4139 0.4035 0.4009 0.4000
1.00 0.4638 0.4547 0.4484 0.4469 0.4464
5.00 0.4985 0.4982 0.4979 0.4979 0.4979
∞ 0.5000 0.5000 0.5000 0.5000 0.5000

Table 2
A comparison between

√
mσ, the approximate standard deviation of the steady-state content

of each queue just before load balancing with m independent RBM processes, using the
normal iteration, and the approximation

√
V (T ,x∗(T )).

T
√
mσ from normal iteration

√
V (T ,x∗(T ))

m = 2 m = 4 m = 16 m = 64

0.01 0.1105 0.0964 0.0881 0.0864 0.0858
0.05 0.2076 0.1842 0.1713 0.1686 0.1677
0.10 0.2597 0.2354 0.2213 0.2182 0.2172
0.50 0.3810 0.3719 0.3608 0.3581 0.3572
1.00 0.4383 0.4271 0.4194 0.4176 0.4170
5.00 0.4967 0.4962 0.4957 0.4956 0.4956
∞ 0.5000 0.5000 0.5000 0.5000 0.5000
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As illustrated by the cases with m = 64 in table 1, µ ≈ x∗(T ) when m is
suitably large. The agreement in these cases also confirms that both calculations can
be performed with sufficient accuracy. When m is not large, x∗(T ) underestimates µ.

In table 2 we compare the corresponding approximations for the standard devi-
ation of the steady-state queue content just before load balancing with m indepen-
dent RBM processes. In particular, we compare

√
mσ from the normal iteration to√

V (T ,x∗(T )). As with the mean, when m is suitably large, e.g., when m = 64,√
mσ ≈

√
V (T ,x∗(T )), but the more elementary approximation

√
V (T ,x∗(T ) under-

estimates
√
mσ when m is small.

From our numerical experience, we conclude that for large m (e.g., m > 64), it
suffices to use the simple normal approximation based on x∗(T ) in (3.13); for moder-
ate m it is preferable to use the normal fixed point pair (µ,σ2) based on (3.10)–(3.12);
and for very small m (e.g., for m 6 4), it may be better not to use the normal approx-
imation. We can interpolate from tables 1 and 2 to obtain good estimates of the pair
(µ,
√
mσ) for any m and T .
Given the explicit RBM cdf formula in (4.9), it is also possible to approximately

describe the distribution of the number of jobs that must be moved away from any
one queue, say J1ρ, when ρ and m are suitably large:

P

(
J1ρ >

ρ(c2
a + c2

s)x
1− ρ

)
≈ P

(
R(T ) > x∗(T ) + x | R(0) = x∗(T )

)
, (4.26)

with the right side being computed by (4.9) after obtaining the fixed point x∗(T ).
We now show that the second moment grows during the interval between bal-

ancing.

Theorem 23. For periodic load balancing of RBM with m → ∞, in steady state
(starting from a fixed point x∗(T ), the second moment M2(t,x∗(T )) is increasing in t
in the interval (0,T ). The derivative of the variance as a function of time is

V ′(t,x) = 1−M (t,x)g(0; t,x), (4.27)

where g(0; t,x) is the density of the cdf in (4.9) evaluated at 0, i.e.,

g(0; t,x) =
1√
t
φ

(
x− t√

t

)
+ 2 e−2yΦ

(
−x+ t√

t

)
+

e−2y
√
t
φ

(
−x+ t√

t

)
. (4.28)

Proof. By [1, theorem 8.3], M2(t,x∗(T )) is strictly increasing in the interval (0,T )
because x(T ) < 1/2. Combining theorems 8.1 and 8.3 of [1], we obtain

V ′(t,x) =M ′2(t,x)− 2M (t,x)M ′(t,x)

= 1− 2M (t,x)
(
1 +M ′(t,x)

)
= 1−M (t,x)g(0; t,x). �

We now give the asymptotic form for the RBM fixed-point x∗(T ) as T → ∞.
We write f (x) ∼ g(x) as x→∞ if f (x)/g(x)→ 1 as x→∞.
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Theorem 24. For periodic load balancing with canonical RBM,

1
2
− x∗(T ) ∼ e(1−T )/2

√
2πT 3

as T →∞. (4.29)

Proof. This follows directly from the asymptotic form of the mean given in Abate
and Whitt [1, corollary 1.1.2(a)], in particular,

1
2
−M (t,x) ∼ 2(1− x)√

2πt3
ex−t/2 as t→∞, (4.30)

noting that x∗(T )→ 1/2 as T →∞. �

5. Performance comparisons

In this section we apply the diffusion approximation in section 4 to make compar-
isons between load balancing and two natural alternatives: m separate s-server queues
and 1 combined ms-server. For simplicity, we now focus on the case of M/M/1
queues, so that s = 1. (The advantage of resource sharing is larger when the systems
being combined have fewer servers.) We develop approximations for the distribution of
the steady-state number of jobs in the system per server with each scheme. We display
our conclusions in table 3. As indicated in section 1, the differences can be great.

Intuitively, it is evident that load balancing can achieve both alternatives as well
as a range of performance behavior in between. Clearly, if the balancing interval Tρ is
very short, then load balancing is the same as the combined M/M/m system. Indeed,
for sufficiently small Tρ, periodic load balancing outperforms joining the shortest
queue. On the other hand, if the balancing interval Tρ is very large, then except after the
infrequent balancing times, the queues behave like separate M/M/1 queues. We focus
on the intermediate case, which can be characterized by the scaling in (4.4) as ρ→ 1.

Using heavy-traffic diffusion approximations, as described at the beginning of
section 4, we conclude that the steady-state number of jobs in a single M/M/1 queue

Table 3
Approximations for the distribution of the steady-state number of jobs in the system per server

just after load balancing. (The parameters γ1 and γ2 are constants less than 1.)

Scheme Distribution Mean Standard
deviation

m separate

M/M/1 queues exponential
ρ

1− ρ
ρ

1− ρ
A single

M/M/m queue normal ρ
ρ√
m

m M/M/1 queues

with load balancing normal γ1
ρ

1− ρ
γ2√
m

ρ

1− ρ
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for suitably high traffic intensity ρ has approximately an exponential distribution with
mean (and thus also standard deviation) ρ/(1− ρ).

For any fixed ρ, when m is suitably large, a single M/M/m queue behaves like
an infinite-server queue. Thus the steady-state number of jobs in an M/M/m queue
with traffic intensity ρ and suitably large m has approximately a Poisson distribution
with mean (and thus variance) mρ. (More elaborate approximations were described
in section 1.) The Poisson distribution in turn can be approximated by a normal
distribution. The steady-state number of jobs per server in an M/M/m queue is the
steady-state number in the system divided by m. Thus, the steady-state number of jobs
per server in an M/M/m system is approximately normally distributed with mean ρ
and standard deviation ρ/

√
m.

From the above analysis, we see that under heavy loads the multi-server system
has a much smaller mean per server than the simple-server queue because of the factor
1 − ρ in the denominator (ρ versus ρ/(1 − ρ)). The chance of large values above
the mean is also much smaller in the multi-server queue. First, the tail of a normal
distribution decays more rapidly than the tail of an exponential distribution. Second,
the standard deviation in the multi-server queue has the extra factor

√
m > 1 in the

denominator, while the standard deviation in the single-server queue has the extra
factor (1− ρ) < 1 in the denominator.

Now we consider the case of load balancing, where the balancing intervals Tρ
in the queues are chosen consistently with the scaling in (4.4) for some reasonable T ,
e.g., with 0.02 < T < 2. Our analysis in section 4 leads us to conclude that the
steady-state number of jobs in one queue after load balancing has approximately a
normal distribution with mean γ1ρ/(1 − ρ) and standard deviation γ2ρ/(1 − ρ)

√
m

for some constants γ1 and γ2. We draw this conclusion because the scaling in the
heavy-traffic limit theorem in (4.6) is the same as in the heavy-traffic limit theorem
for a single M/M/1 queue. For a single M/M/1 queue, the steady-state number
after normalization is approximated by the exponentially-distributed random variable
R(∞). Thus the constant γ1 is the ratio of the realized mean, approximately x∗(T ),
to the mean ER(∞) = 1/2; i.e., γ1 = 2x∗(T ) < 1. Similarly, the variance after
normalization is approximately V (T ,x∗(T ))/m instead of V (∞,x) = 1/4, so that
γ2 = 2

√
V (T ,x∗(T )) < 1 (see figure 4).

More formally, we can conclude that the ratio of the two steady-state means in the
load-balancing case to the separate-single-server case converges to 2x∗(T ) as ρ → 1,
when the balancing intervals Tρ grow as in (4.4). In contrast, if the load balancing
intervals Tρ were fixed independent of ρ, then the ratio would converge to 0, as noted
in (4.20). Indeed if T is suitably small, then the constants γ1 and γ2 can be 1− ρ, so
that load balancing can perform just as well as the multi-server queue. On the other
hand, if T is large, then there remains a benefit for load balancing in the standard
deviation. However, the distribution just before load balancing is then approximately
the same as in a single-server queue.

In summary, in what we regard as the typical case (consistent with the scaling
in (4.4) with high ρ and large m), load balancing provides a modest gain over separate
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M/M/1 queues in the mean by a factor 2x∗(T ) and a substantial gain in the standard
deviation by a factor of 2

√
V (T ,x∗(T ))/

√
m ≈ 1/

√
m and in the distribution – going

from exponential to normal. Thus, we conclude that load balancing should be very
effective for reducing the likelihood of large queue lengths. This conclusion will be
substantiated by the simulation results in the next section.

6. Comparisons with simulations

In this section we compare the RBM approximations developed in section 4 to
simulations. We first simulated m M/M/1 queues coupled by periodic load balanc-
ing for a range of values of m and ρ. To dramatically show the advantage of the
heavy-traffic limit and associated scaling in section 4, we scale so that each is to be
approximated by canonical RBM (drift −1, diffusion coefficient 1).

For the results we will display, we start by picking a single time point for canon-
ical RBM, T = 1.0. We then choose balancing times Tρ as a function of ρ to
satisfy (4.15). Since we are considering M/M/1 queues, s = c2

a = c2
s = 1 and

Tρ =
2T

(1− ρ)2 =
2

(1− ρ)2 . (6.1)

Figure 5. A comparison between the RBM approximations and histograms of the normalized queue
lengths after load balancing, (1− ρ)N (m)

iρ (nTρ)/2ρ, in 64 M/M/1 queues for ρ = 0.80, 0.90 and 0.95
and Tρ scaled from T = 1.0.
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We first consider the case m = 64 for three values of ρ : ρ = 0.8, 0.9 and 0.95.
For ρ = 0.8, 0.9 and 0.95, Tρ = 50, 200 and 800, respectively. For each value
of ρ, the simulation was based on three independent replications of 64 × 106 ar-
rivals (106 arrivals per queue). The histograms of the normalized queue lengths
just after redistribution, (1 − ρ)N (m)

iρ (nTρ)/2ρ, are displayed for ρ = 0.8, 0.9 and
0.95 in figure 5. (When plotted, the histograms for the three replications were
barely distinguishable, demonstrating that the run length was more than adequate to
achieve high statistical precision.) Since the scaling was applied, the RBM fixed point
x∗(1) = 0.446 becomes the initial approximation to the normalized number at each
queue after balancing. A second refined approximation is the normal approxima-
tion

(1− ρ)
2ρ

N (m)
iρ (nTρ) ≈ N

(
x∗(T ),V

(
T ,x∗(T )

)
/m
)
. (6.2)

These two approximations are also shown in figure 5. From figure 5, we see that the
two RBM approximations perform quite well, with both slightly overestimating the
true distributions. Convergence toward the approximations as ρ → 1 is also evident.
For smaller values of ρ, the queue lengths tend to be very small, and the heavy-traffic
approximation is not very accurate.

Figure 6. A comparison between the RBM approximations and histograms of the centered and normalized
queue lengths after load balancing,

√
m[(1 − ρ)N (m)

iρ (nTρ)/2ρ − n̄(m)
iρ ], in m M/M/1 queues with

ρ = 0.95 for m = 4, 16 and 64 and Tρ scaled from T = 1.0. The approximating normal density, for the
RBM approximation is N(0, V (1.0, x∗(1.0))).
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A third approximation is the normal approximation N (µ,σ2), where the pair
(µ,σ2) are obtained by iteratively solving the equations (3.10)–(3.11) using the
RBM conditional mean and variance functions M (t,x) and V (t,x) in (4.13), (3.12)
and (4.25). However, as shown in tables 1 and 2, the fixed point (µ,σ2) of the normal
iteration agrees closely with the pair (x∗(T ),V (T ,x∗(T ))/m) in this case. The differ-
ences present in figure 5 thus seem to primarily represent the error in the heavy-traffic
approximation.

Next, to describe the dependence upon m, we consider the cases of m = 4, 16
and 64 with ρ = 0.95 for the same case T = 1.0. The deterministic fixed point x∗(T )
is again 0.446. The sample means of the normalized queue lengths after load balancing
when m = 4, 16 and 64 were 0.4274, 0.4210 and 0.4209, respectively.

To describe the rest of the distribution beyond the mean, we display in figure 6
histograms of the normalized and centered variables,

√
m
[
(1− ρ)N (m)

iρ (nTρ)/2ρ − n̄(m)
iρ

]
,

where n̄(m)
iρ is the sample mean of (1−ρ)N (m)

iρ (nTρ)/2ρ given above. We add the fac-
tor
√
m so that three cases should have approximately the same variance V (T ,x∗(T ))

using the normal approximation in (6.2). The estimated sample standard devia-

Figure 7. A comparison between the RBM approximation and histograms of the normalized queue lengths
after load balancing, (1− ρ)N (m)

iρ (nTρ)/(1 + c2
s)ρ, in 64 M/G/1 queues with ρ = 0.95 and T = 1 for

exponential (c2
s = 1) and Pareto (α = c2

s = 3) service-time distributions.
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tions for m = 4, 16 and 64 were 0.4440, 0.4279 and 0.4434, respectively, while√
V (1,x∗(1)) = 0.4170.

Finally to consider non-Markovian queues, we consider M/G/1 queues with a
Pareto service-time distribution. We let the service-time complementary cdf have the
specific form

Gc(t) = (1 + bt)−α, t > 0, (6.3)

where b = 1/(α − 1) to give the distribution mean 1. The associated SCV is

c2
s = 1 + 2

(
(α− 1)2

α− 2
− α

)
. (6.4)

To keep within the heavy-traffic limit framework in section 4, we need α > 2, so that
c2
s < ∞. In particular, we choose α = 3, which makes c2

s = 3. We then scale as
in (4.15), so that

Tρ =
(c2
a + c2

s)T
(1− ρ)2 =

4
(1− ρ)2 . (6.5)

When we balance, we do not move the customers in service, so that all customers have
their original service times. We then consider the normalized queue lengths just before

Figure 8. A comparison between the RBM approximation and histograms of the normalized queue lengths
after load balancing, (1 − ρ)N (m)

iρ (nTρ)/(1 + c2
s)ρ, in 4 M/G/1 queues with ρ = 0.95 and T = 1 for

exponential (c2
s = 1) and Pareto (α = c2

s = 3) service-time distributions.
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redistribution, (1 − ρ)N (m)
iρ (nTρ−)/4ρ, as in (4.6). We compare the M/G/1 Pareto

and exponential service-time-distribution cases with ρ = 0.95, T = 1.0, and m = 64
and 4 in figures 7 and 8. The Pareto and exponential cases were scaled differently,
so that the approximation for both involves canonical RBM. In figures 7 and 8 we
include the normal approximation N (µ,mσ2) ≈ N (x∗(1),V (1,x∗(1))). As should be
expected, the normal approximation is more accurate for m = 64 than for m = 4. The
close agreement between the exponential and Pareto simulation results in both cases
shows the remarkable power of the heavy-traffic scaling.

7. Redistributing work with a work-conserving discipline

In sections 2–4 we assumed that each queue has s-servers and uses the FCFS
service discipline. However, for computer system applications it is usually more ap-
propriate to assume a single server with the round robin (RR) or processor-sharing
(PS) discipline. Indeed, these disciplines are traditionally used in the dynamic load
balancing literature, e.g., see Harchol-Balter and Downey [21] and references cited
there. In this section we discuss periodic load balancing with such alternative service
disciplines.

First, one might use the results in sections 2–4 as approximations for these other
service disciplines. This can be motivated by the fact that the PS discipline has the
insensitivity property. In particular, in the M/G/1 (PS) model the steady-state queue
length distribution has the same geometric distribution as in the M/M/1 (FCFS) model
(with the same interarrival time and service time means). However, with periodic
load balancing, we apply the transient distribution over intervals of length T , not the
steady-state distribution. Unfortunately, the transient distributions do not have this
insensitivity property. Nevertheless, as a rough approximation, it should be reasonable
to use the M/M/1 (FIFO) model as an approximation for periodic load balancing
with M/G/1 (PS) queues. For the RBM approximation in section 4, the resulting
variability parameters are c2

a = c2
s = 1. Using the insensitivity logic, we would apply

the M/M/1 FIFO results to any service-time distribution having a finite mean.
It is also of interest to consider redistribution of remaining work (in required

service time) instead of jobs. Work redistribution is directly applicable in systems
where the full service requirements are known in advance, and jobs can be split up
with pieces sent to different queues. More generally, a work redistribution model is
interesting as a lower bound on what can be achieved by other periodic load balancing
algorithms.

If we focus on periodic redistributions of work in single-server queues, then
the behavior is the same for any work-conserving discipline. In particular, then the
behavior is the same for RR, PS and FCFS. Moreover, it is known that the heavy-traffic
limit for the workload process in a G/GI/s queue coincides with the heavy-traffic
limit for the queue-length process, providing that the mean service time is 1. By
similar reasoning, the same limit involving RBM with periodic load balancing holds
for the workload process. Hence, the approximation in section 4 applies directly to the
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workload process with periodic load balancing of remaining work in G/GI/1 queues
with a work-conserving service discipline. Direct heavy-traffic limits for the workload
process in a single-server queue are contained in Whitt [42]. We state a workload limit
theorem in section 9 that also covers additional extra long service times.

8. Reducing the likelihood of severe congestion

One of the main goals of load balancing is to reduce the likelihood of large queue
lengths or large workloads. To show that periodic load balancing achieves this goal,
we show that the tail probabilities of conditional RBM P (R(t) > y | R(0) = x) decay
more rapidly than the exponential steady-state. (Recall that P (R(∞) > y) = e−2y .)
In fact, we show that the RBM conditional tail probability is of order e−y

2/2t as
y →∞.

Theorem 25. The RBM conditional tail probability satisfies

P
(
R(t) > y | R(0) = x

)
∼ α(y,x, t) e−(y2/(2t)+y(1−(x/t))) as y →∞, (8.1)

where

α(y,x, t) =
1√
2π

e−(x−t)2/2t
( √

t

y − x+ t
+ e−2yx/t

√
t

y + x− t

)
∼ 1
y

√
t

2π
e−(x−t)2/2t for x > 0, (8.2)

so that (
logP

(
R(t) > y | R(0) = x

)
− y2

2t

)
∼ y
(

1− x

t

)
as y →∞. (8.3)

Proof. Use (4.9) with the asymptotic relation Φ(−y) ∼ y−1φ(y) as y → ∞; see
Feller [16, p. 175]. �

Formulas (8.1)–(8.3) show that the RBM conditional tail probability decays
rapidly (of order e−y

2/2t) if x and t are not large. We have seen that the fixed
points must satisfy x∗(T ) < ER(∞) = 1/2, so that x∗(T ) will not be large. However,
T ∗x increases as x→ 1/2, so that T ∗x can be large. If we keep x∗(T ) well below 1/2,
then we will not encounter large values of t, and the system behavior should be well
described by theorem 25.

However, if T is allowed to grow, then the control of large queue lengths and
workloads weakens. To describe the behavior for larger t, we consider the limit as
y →∞ and t→∞ with y = ct or (y−t)/

√
t→ c. The following theorem shows that

conditional tail probabilities decay more slowly in this regime (but still more rapidly
than the steady-state tail probabilities).
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Theorem 26. (a) If t→∞ with y = ct for c > 1, then

P
(
R(t) > y | R(0) = x

)
∼ α(x, t) e−((c+1)2/2)t, (8.4)

where

α(x, t) =
1√
2π

e−(x2/(2t)−(c+1)x)
( √

t

(c+ 1)t− x + e−2cx

√
t

(c− 1)t+ x

)
∼ 1√

2πt

(
e(c+1)x

c+ 1
+

e(1−c)x

c− 1

)
. (8.5)

(b) If t→∞ with y = ct for c < 1, then

P
(
R(t) > y | R(0) = x

)
∼ e−2y. (8.6)

(c) If t→∞ with (y − t)/
√
t→ c, then

P
(
R(t) > y | R(0) = x

)
∼ e−2yΦ(−c). (8.7)

Proof. As in theorem 25, we apply the asymptotic relation Φ(−y) ∼ y−1φ(y) as
y → ∞. To have Φ(−y) with y → ∞ in both terms of (4.9), we need y = ct with
c > 1. Cases (b) and (c) of theorem 26 follow directly from (4.9). �

In this section we have considered the limits ρ → 1 and y → ∞ in that order.
If instead we fixed ρ < 1 and let y → ∞, then the asymptotic behavior depends on
more of the fine structure of the queueing system. The transient workload will have a
tail decaying no more rapidly than the service-time distribution. (Consider the case of
a single arrival in the interval (0, t).)

9. Exceptionally long service times

In addition to requiring heavy loads, the RBM approximation requires that the
job arrival and service processes be not too bursty. The RBM approximation depends
critically on the sums of the interarrival times and service times converging to standard
normal distribution after the usual

√
n normalization, e.g., as in (4.1). For i.i.d. service

times, this means that the service-time distribution must have a finite second moment.
However, measurements of computer systems by Leland and Ott [28] and

Harchol-Balter and Downey [21] indicate that service requirements may often come
from long-tail distributions, without a finite second moment. Indeed, Harchol-Balter
and Downey found that the cdf 1 − c/t is often appropriate. As they indicate, this
distribution has no mean. We first point out that such a distribution rules out con-
ventional steady-state queueing analysis, with or without load balancing. With the
standard models having unlimited waiting room, a service time with an infinite mean
implies that the queue length and workload processes will diverge to +∞ with prob-
ability one as time evolves, e.g., see Borovkov [10, theorem 8, p. 18]. Hence, in that
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context it makes no sense to talk about long-run average performance. Thus, there
can be no counterpart to the fixed-point equations in sections 3 and 4. However, it
is of course possible to use transient analysis, but then some care should be given to
formulating realistic initial conditions.

In this section we briefly indicate some possible approaches to represent unusually
long service times. First, a similar heavy-traffic limit theorem can be obtained when
the arrival and service processes are bursty. Then these processes may converge to
other processes, such as stable processes, with a different normalization. For example,
instead of (4.1) we might have

A(nt)− λnt
n1/α

⇒ Sα(t) as n→∞,

where 0 < α < 2 and {S(t): t > 0} is a stable process with index α. As indicated in
Whitt [43] the heavy-traffic limit theorems easily extend to these different normaliza-
tions. The difficulty for our application to periodic load balancing is obtaining useful
descriptions of the transient behavior of these alternative limit processes, i.e., analogs
of (4.9) and (4.13) here.

A promising alternative approach to rare exceptionally long service times is to
apply the reasoning used to establish the heavy-traffic limit for queues with rare long
server vacations in Kella and Whitt [25]. The limit here as ρ → 1 also applies
with such additional long service times. Instead of the limit process in section 4,
we obtain a limit process that is a reflection of Brownian motion plus an extra jump
process.

We now present the framework for this alternative limit theorem. We do so for
the workload in the setting of section 7. After the theorem, we indicate how it can be
applied to generate alternative approximations, which do not require that the service
times have finite second moments.

We modify the setting of section 4 to allow for additional rare long service times.
Consider a single queue. Let the arrival time of the nth special service time in the
system with traffic intensity ρ occur at time Uρn, where

(1− ρ)2(Uρ1, . . . ,Uρn)⇒ (U1, . . . ,Un) in Rn as ρ→ 1 for each n. (9.1)

Let {Cρ(t): t > 0} and {C(t): t > 0} be the counting processes associated with {Uρn}
and {Un}, e.g.,

Cρ(t) = max{n: Uρn 6 t}, t > 0, (9.2)

where Uρ0 = 0. Let the nth special service time in system ρ be Vρn, where

(1− ρ)(Vρ1, . . . ,Vρn)⇒ (V1, . . . ,Vn) in Rn as ρ→ 1 for each n. (9.3)
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The scaling in (9.1) and (9.2) is explained by the fact that time is scaled by (1 − ρ)2

while space is scaled by (1−ρ) in the usual heavy-traffic limit theorem, i.e., as in (4.2).
The associated total input process of special work in system ρ is

Iρ(t) =

Cρ(t)∑
i=1

Vρi, t > 0. (9.4)

We are now ready to state a limit theorem.

Theorem 27. Consider m G/GI/1 queues with work-conserving service disciplines,
controlled by periodic redistribution of remaining work, as in section 7. Let the
basic arrival and service processes satisfy the assumptions of theorem 4.1. Assume
that the redistribution intervals satisfy (4.4). Assume that the initial workloads sat-
isfy (4.5). Assume that extra long service times arrive independently according to
the input process Iρ(t) in (9.4), satisfying (9.1)–(9.3). Then the individual workload
processes satisfy

(1− ρ)
(c2
a + c2

s)
W (m)

1ρ

(
t
(
c2
a + c2

s

)
/(1− ρ)2)⇒ X(t) in D (9.5)

as first ρ→ 1 and then m→∞, where xn ≡ X(nT ) evolves deterministically as

xn+1 = fT (xn) (9.6)

with fT (x) = M (T ,x), where

M (t,x) =E
[
Y (t) | Y (0) = x

]
, (9.7)

Y (t) =Rx(Z)(t), (9.8)

Z(t) =B(t)− t+

C(t(c2
a+c2

s))∑
i=1

Vi/
(
c2
a + c2

s

)
, (9.9)

{B(t): t > 0} is standard (drift 0, diffusion coefficient 1) Brownian motion and Rx is
the reflection map, defined by

Rx(z)(t) = max
{
x+ z(t), z(t)− inf

06s6t
z(s)

}
. (9.10)

If in addition Vn, n > 1, are i.i.d. and {C(t): t > 0} is a Poisson process, then

X(nT + t)
d
=
(
Y (t) | Y (0) = xn

)
, 0 6 t 6 T. (9.11)

Proof. First, it is elementary (using basic properties of the function space D [9,43])
that

(1− ρ)
c2
a + c2

s

Iρ
(
t
(
c2
a + c2

s

)
/(1− ρ)2)⇒ C(t(c2

a+c2
s))∑

i=1

Vi/
(
c2
a + c2

s

)
in D as ρ→ 1,
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because the limit process has finitely many jumps in a bounded interval and, by (9.1)
and (9.3), the normalized times and sizes of the jumps converge. The rest of the
proof is a workload analog of that in theorem 18, closely paralleling theorem 3.1 of
Kella and Whitt [25]. (The result here is actually somewhat more elementary. Since
there is a single jump at each discontinuity point, it is not necessary to use the M1

topology here.) The limiting net input process between redistributions in (9.9) is
Brownian motion minus t plus the jump process, just as in (3.3) of Kella and Whitt [25].
Finally, (9.11) holds under the extra conditions, because then the net input process
{Z(t): t > 0} has stationary independent increments. �

We now indicate how we can apply theorem 27 to generate approximations for
long-tail service-time distributions. If the service times are i.i.d. with c.d.f. G, then we
can truncate the distribution at some large value z. We then let a new basic service-
time distribution have cdf H(x) = G(x)/G(z), 0 6 x 6 z. Then with probability
Gc(z) each arrival has a special service time with cdf F (x) = G(x)/Gc(z), x > z
and F (z) = 0, and with probability G(z) there is no extra service time. The ex-
tra arrival process of additional service times is a thinned version of the original
arrival process. As the truncation point z increases, the selection probability Gc(z)
decreases and the thinned process approaches a Poisson process independent of the
original arrival process, e.g., see Çinlar [12] or Serfozo [35]. Even if the original
service time cdf G had no finite moments, the truncated cdf H has all moments
finite.

Based on (9.5), we can use the approximation

W (m)
1ρ (t) ≈ (c2

a + c2
s)

1− ρ X(1− ρ)2t/
(
c2
a + c2

s

)
, (9.12)

for X characterized in (9.6)–(9.11), where ρ and c2
s are the traffic intensity and service-

time SCV based on the truncated cdf H .
It remains to specify the jump process. At traffic intensity ρ, each interarrival time

has mean 1/ρ. The number of arrivals between each special arrival is geometrically
distributed with mean 1/Gc(z). Hence, EUρ1 = 1/ρGc(z), so that with (9.1) we let

EU1 =
(1− ρ)2

ρGc(z)
. (9.13)

The rate of the Poisson process {C(t): t > 0} is 1/EU. Thus, the rate of the Poisson
process {C(t(c2

a + c2
s)): t > 0} is ρ(c2

a + c2
s)G

c(z)/(1 − ρ)2. Similarly, the limiting
special service time can be obtained from the cdf F , making appropriate adjustments
for the scaling in (9.2). By (9.2), we let P (V 6 x) = P (Vρ 6 x/(1− ρ)). Hence

P

(
V

c2
a + c2

s

6 x
)

= F
((
c2
a + c2

s

)
x/(1− ρ)

)
. (9.14)
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As a consequence of (9.13) and (9.14), the limiting jump process

C(t(c2
a+c2

s))∑
i=1

Vi
(c2
a + c2

s)

has drift ρGc(z)m(F )/(1−ρ), where m(F ) is the mean of the cdf F . (We require that
m(F ) < ∞ to have finite drift.) Thus, the net input process {Z(t): t > 0} in (9.9)
has drift

EZ(1) =
ρGc(z)m(F )

1− ρ − 1. (9.15)

It is elementary to show that a proper steady state exists for the approximating process
{X(t): t > 0} if and only if EZ(1) < 0.

The remaining problem for applications is to compute the mean function M (t,x)
in (9.7). We suggest an approximation based on choosing the Poisson rate to be
small compared with the redistribution interval length T . (This is achieved in the
approximation following theorem 27 by making the truncation point z sufficiently
high.) As an approximation, we can then assume that there is at most one special
service time in each redistribution interval. To be more specific, let γ be the rate of
the Poisson process, which is ρ(c2

a+ c2
s)G

c(z)/(1−ρ)2 with the truncation at z. Let V̂
be distributed as V/(c2

a + c2
s), which has the cdf F ((c2

a + c2
s)x/(1 − ρ)) as in (9.14)

with the truncation at z. Then

M (T ,x) = e−γT M̃ (T ,x) +
(1− e−γT )

T

∫ T

0

∫ ∞
0

∫ ∞
0

M̃ (T − y, z + v) dP
(
V̂ 6 v

)
× P

(
R(y) = dz | R(0) = x

)
dy, (9.16)

where M̃ (t,x) is the RBM mean function in (4.13). The first term in (9.16) corre-
sponds to no special arrival, while the second term corresponds to at least one special
arrival, which we treat as exact one. Conditional on one Poisson arrival, it is uniformly
distributed over [0,T ]. Note that, by (4.13) and (4.9), the integrand in the second term
of (9.16) can be expressed in closed form. Hence, the calculation in (9.16) can be
performed. We suggest applying (9.16) to analyze the behavior with long-tail service-
time distributions. Recall that the drift EZ(1) in (9.15) must be negative in order for a
proper steady state to exist (and the fixed point equation x = fT (x) to have a solution).

If V̂ is large compared to T , we might use the alternate approximate

M (T ,x) ≈ e−γT M̃ (T ,x) + (γT )EV (9.17)

for

γ =
ρGc(z)(c2

a + c2
s)

(1− ρ)2 and EV̂ =
(1− ρ)
c2
a + c2

s

m(F ). (9.18)

Approximation (9.17) ignores the RBM component in the second term.
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10. Periodic load balancing in unbalanced systems

In our analysis so far, we have assumed that the queues are homogeneous. How-
ever, in practice, the arrival processes and service-time distributions may be different
at different queues. As an extreme case, service may be temporarily unavailable at
some queues, e.g., because of queue failure. Periodic load balancing provides a way
to address this problem without having to know which queues are down.

In this section we consider periodic load balancing when a proportion p of the
queues are down during each redistribution interval. We assume that we do not know
which queues are down. We thus redistribute to all queues. Down queues generate
substantial congestion, because we assume that arrivals come to all queues in i.i.d.
arrival processes. Thus there are arrivals but no service completions at down queues.

During the interval between redistributions, the number of jobs at a down queue
grows like the arrival process there. Given that the arrival process satisfies a FCLT
as in (4.1), that FCLT describes the growth of the queue length process as the length
of the redistribution interval grows. If we consider a sequence of models in which
the redistribution intervals grow, then the FCLT for the arrival process describes the
behavior at the down queue.

It is significant that the presence of down queues alters the form of the heavy-
traffic limit theorems in section 4. Even as ρ → 1 in the up queues, the growth of
jobs or work within each redistribution interval tends to be dominated by the queues
that are down. A limit holds with the law-of-large-numbers scaling instead of the
central-limit-theorem scaling.

Theorem 28. Consider the setting of theorem 17 modified by having a proportion p
of the queues down (for all time). Let 1 index an up queue and 2 index a down queue.
If ρ→ 1 and m→∞ with (4.4) and (4.5) holding, then

(1− ρ)2

c2
a + c2

s

N (m)
iρ

(
t
(
c2
a + c2

s

)
/s(1− ρ)2)⇒ Xi(t) in D for i = 1, 2, (10.1)

where xn ≡ X1(nT ) = X2(nT ) evolves deterministically as xn+1 = fT (xn) with

fT (x) = p(x+ T ), (10.2)

while

X1(kT + t) = 0, 0 < t < T , (10.3)

and

X2(kT + t) = xk + t, 0 < t < T. (10.4)

Proof. Given (4.1) and (4.4), it follows that

(1− ρ)2

(c2
a + c2

s)
Aρ(Tρ−)⇒ T as ρ→ 1. (10.5)
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Given the space normalization by (1− ρ)2 in (10.1) instead of by (1− ρ) in (4.5), the
queue lengths in the up queues are asymptotically negligible. �

The behavior of the function fT in (10.2) is elementary.

Theorem 29. The function fT in (10.2) has a unique fixed point x∗(T ) = pT/(1− p)
and f (n)

T (x0)→ x∗(T ) as n→∞ for each x0.

In this unbalanced scenario the approximation is quite simple; we would approx-
imate the normalized queue length after balancing, (1 − ρ)2N (kTρ)/(c2

a + c2
s) by the

fixed point pT/(1 − p). Note that a large proportion of the jobs must be moved in
each balancing though.

More interesting limiting behavior occurs if we assume that the proportion of
down queues decreases with ρ, in particular, if pρ = (1− ρ)α. Then both the up and
down queues contribute to the limit behavior as ρ→ 1.

Theorem 30. In the setting of theorem 28, if the proportion p of down queues is a
function of ρ satisfying pρ = (1− ρ)α, then

(1− ρ)
c2
a + c2

s

N (m)
1ρ

(
t
(
c2
a + c2

s

)
/s(1− ρ)2)⇒ X1(t) in D for i = 1, 2, (10.6)

where xn ≡ X1(nT ) evolves deterministically as xn+1 = fT (xn) with

fT (x) = M (T ,x) + αT (10.7)

for M (t,x) in (4.13) and

X1(nT + t)
d
=
(
R(t) | R(0) = xn

)
(10.8)

as in (4.14).

Remark. In the scaling of (10.6), the content of the individual down queues explodes
in the limit. The nondegenerate limit in (10.6) is obtained because the proportion of
down queues is asymptotically negligible.

Proof. Given that pρ = (1− ρ)α,

pρ(1− ρ)
(c2
a + c2

s)
Aρ(Tρ)⇒ αT as ρ→ 1

by (10.5). (However, as noted in the Remark above, the left side diverges for individual
down queues.) Given that the initial level satisfies (4.5), after normalization, the
totality of down queues maps x0 into αT at time T . The up queues behave just as in
theorem 4.1. Given that pρ = (1− ρ)α, the proportion of up queues approaches 1. �

We now characterize when the function (10.7) has a fixed point.
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Theorem 31. The function fT in (10.7) has a proper fixed point x∗(T ) if and only if
α < 1. If α > 1, then f (n)

T (x0) → ∞ for all x0. If α < 1, then equation x = fT (x)
has a unique solution x∗(T ) and f (n)

T (x0)→ x∗(T ) as n→∞ for all x0.

Proof. If α > 1, then fT (x) > x for all x, so that there can be no fixed point. To
see this, note that M (T ,x) > x − T . Hence fT (x) > x − (1 − α)T . Now suppose
that α < 1. For any ε with 0 < ε < (1 − α)T , there is an x sufficiently large that
M (T ,x) < x− T + ε, so that

fT (x) < x− (1− α)T + ε < x. (10.9)

Moreover, the inequality holds for all higher x. Since fT is continuous with fT (0) > 0,
there necessarily is a fixed point. The argument of theorem 14 can be applied to derive
the remaining properties. �
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[12] E. Çinlar, Superpositions of point processes, in: Stochastic Point Processes: Statistical Analysis,

Theory and Applications, ed. P.A.W. Lewis (Wiley, New York, 1972) pp. 549–606.
[13] J.L. Davis, W.A. Massey and W. Whitt, Sensitivity to the service-time distribution in the nonsta-

tionary Erlang loss model, Managm. Sci. 41 (1995) 1107–1116.
[14] D.L. Eager, E.D. Lazowska and J. Zahorjan, Adaptive load balancing in homogeneous distributed

systems, IEEE Trans. Software Engrg. 12 (1986) 662–675.
[15] S.N. Ethier and T.G. Kurtz, Characterization and Approximation of Markov Processes (Wiley, New

York, 1986).
[16] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I (Wiley, New York,

1968).
[17] K.W. Fendick, V.R. Saksena and W. Whitt, Dependence in packet queues, IEEE Trans. Commun.

37 (1989) 1173–1183.



G. Hjálmtýsson, W. Whitt / Periodic load balancing 249

[18] G.J. Foschini, Unobtrusive communication of status in a packet network in heavy traffic, AT&T
Tech. J. 64 (1985) 463–479.

[19] G.J. Foschini and J. Salz, A basic dynamic routing problem and diffusion, IEEE Trans. Commun.
26 (1978) 320–327.

[20] B. Hajek, Performance of global load balancing by local adjustment, IEEE Trans. Inform. Theory
36 (1990) 1398–1414.

[21] M. Harchol-Balter and A.B. Downey, Exploiting process lifetime distributions for dynamic load
balancing, in: Proc. SIGMETRICS ’96 (1996).
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