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Abstract

To better understand how to interpret birth-and-death (BD) processes fit to service system
data, we investigate the consequences of fitting a BD process to a multi-server queue with a
periodic time-varying arrival rate function. We study how this fitted BD process is related to
the original queue-length process. If a BD process is fit to a segment of the sample path of
the queue-length process, with the birth (death) rates in each state estimated by the observed
number of arrivals (departures) in that state divided by the total time spent in that state,
then under minor regularity conditions that BD process has the steady-state distribution of
the queue length process in the original Mt/GI/s queueing model as the sample size increases.
The steady-state distribution can be estimated efficiently by fitting a parametric function to the
observed birth and death rates.

Keywords: birth-and-death processes; grey-box stochastic models; fitting stochastic models to
data; queues with time-varying arrival rate; speed ratio; transient behavior.
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1 Introduction

A commonly applied queueing model to analyze the performance of service systems is theM/M/s+
M Erlang A model; see [16, 32] and references therein. It is a stationary birth-and-death (BD)
process with four parameters: the arrival rate λ, the service rate µ, the number of servers s and the
individual customer abandonment rate from queue θ. The familiar M/M/s/0 Erlang B (loss) and
M/M/s ≡ M/M/s/∞ Erlang C (delay) models are the special cases in which θ = ∞ and θ = 0.
These models are convenient because there are so few parameters. The arrival rate λ and service
rate µ can quickly be estimated as the reciprocals of the average interarrival time and service time,
respectively, but the abandonment rate is more complicated because of censoring; it is often better
to estimate the hazard rate; see [2].

For successful applications, it is important to investigate to what extent the model is consistent
with service system data. This is most often done by estimating the distributions of the interarrival
times and service times to see if they are nearly exponential, but there are many other ways the
system can differ from the model. Service systems typically have time-varying arrival rates and
there may be significant dependence among interarrival times and service times. The number of
servers may vary over time as well and the servers are often actually heterogeneous [15]. Indeed,
careful statistical analysis of service system data can be quite complicated, e.g., see [2, 21, 22, 23].

In this paper we investigate an alternative way to fit the Erlang A model to data: We may
do that by directly fitting a state-dependent BD process. Following common practice [37], we can
estimate the birth rate in state k from data over an interval [0, t] by λ̄k ≡ λ̄k(t), the number of
arrivals observed in that state, divided by the total time spent on that state, while the death rate
in state k is estimated by µ̄k ≡ µ̄k(t), the number of departures observed in that state, divided by
the total time spent on that state. For a BD process, those are the maximum likelihood estimators
of the actual birth and death rates.

Given that the data are from the Erlang A model, we will see simple linear structure in the
estimated birth and death rates. With enough data, we will see that

λ̄k = λ, k ≥ 0, and µ̄k = (k ∧ s)µ+ (k − s)+θ, k ≥ 1, (1)

where a ∧ b ≡ min {a, b} and (a)+ ≡ max {a, 0}. By this procedure, we can estimate all four
parameters and test if the model is appropriate. A direct BD fit of the form (1) may indicate that
the model should be effective even though some other tests fail. For example, experience indicates
that a good model fit can occur by this BD rate fit even though the servers are heterogeneous and
the service-time distribution is not exponential. Moreover, in those cases we may find that the
Erlang A model works well in setting staffing levels.

However, what do we conclude if the BD fit does not yield the birth and death rate functions
in (1)? Some insights are relatively obvious. For example, if we do not see death rates with two
linear pieces joined at some level s, then we can judge that the number of servers probably was
not constant during the measurement period. But it remains to carefully evaluate how to interpret
departures from the simple Erlang structure in (1).

We might also consider directly applying the fitted BD process even if we do not see the Erlang
A structure in (1), because BD processes are remarkably tractable. If we happen to find piecewise-
linear fits, then we may find diffusion approximations with large scale, as in [3], which is not limited
to the classical Erlang models in [16, 19]. It is well known that we can calculate the steady-state
distribution of a general BD process by solving local balance equations. Less well known is the fact
that we can efficiently calculate first passage time distributions in general BD processes [1]. But
we should remember that the actual process may not be a general BD process. Our purpose here
is to gain further insight into what the fitted BD rates do imply for the original process.
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We started in [10] by looking carefully at BD fits to the number in system in GI/GI/s queues.
We continue here by looking carefully at BD fits to the number in system in Mt/GI/s queues,
having nonhomogeneous Poisson processes (NHPP’s) as arrival processes with sinusoidal arrival
rate functions, paying especial attention to the case of s = ∞ servers.

1.1 The Steady-State Distribution

As usual, the steady-state distribution of the fitted BD model, denoted by ᾱe
k ≡ ᾱe

k(t) (with
superscript e indicating the estimated rates), is well defined (under regularity conditions [33]) and
characterized as the unique probability vector satisfying the local balance equations,

ᾱe
kλ̄k = ᾱe

k+1µ̄k+1, k ≥ 0. (2)

To obtain reasonable rate estimates for which ᾱe
k is indeed well defined and unique, we truncate

the state space to a region of states that are visited relatively frequently. Throughout this paper,
we assume that the limiting values of the rates as t → ∞ exist so we omit the t. We use large
sample sizes in our simulations to justify this assumption.

In [33] we cautioned against drawing unwarranted positive conclusions if the fitted BD steady-
state distribution {ᾱe

k : k ≥ 0} in (2) closely matches the empirical steady-state distribution,
{ᾱk : k ≥ 0}, where ᾱk ≡ ᾱk(t) is the proportion of total time spent in each state, because these
two distribution are automatically closely related. Indeed, as has been known for some time (e.g.,
see Chapter 4 of [13]), under regularity conditions, these two distributions coincide asymptotically
as t (and thus the sample size) increases, even if the actual system evolves in a very different way
from the fitted BD process. For example, the actual process {Q(t) : t ≥ 0} might be non-Markovian
(as in [10]) or have a time-varying arrival rate (as here). Stochastic comparisons between the two
distributions, depending on the beginning and ending states, were also derived in [33]. If the ending
state coincides with the initial state, then these two empirical distributions are identical for any
sample size!

1.2 Grey-Box Stochastic Modeling

Even though a close match between the empirical steady-state distribution, {ᾱk}, and the steady-
state distribution of the fitted BD model, {ᾱe

k}, does not nearly imply that the actual system
evolves as a BD process, we think that the fitted BD model has the potential to become a useful
modeling and analysis tool, providing insight into the actual system. Of course, if the actual system
can be well modeled by a standard BD model, such as one of the classical Erlang models, then
we will see a good fit to that model with enough data. Of primary interest here is to be able
to see deviations from classical models through the fitted birth and death rates. Actual service
systems may have complex time-dependence and stochastic dependence that may be difficult to
assess directly. Fitting a BD process may be a useful way to probe into system data. In [10] we
referred to this as “grey-box stochastic modeling.”

In [10] we applied this analysis to various conventional GI/GI/s queueing models. We saw
how the fitted rates differ from the corresponding M/M/s model. We also saw that they differed
in systematic ways that enabled us to see a “signature” of the G/G/s model. Here we consider
many-server Mt/GI/s queueing models with sinusoidal periodic arrival rate functions. Now we find
significant differences in the fitted birth rates from what we saw before for the GI/GI/s models.
And we see a signature of the Mt/GI/s model with sinusoidal arrival rates. The results for the
basic stochastic model with periodic arrival rate functions here should be useful to compare to
similar analyses of service system data, such as hospital occupancy levels, where the arrival rates
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have periodic structure over the days of each week and over the hours of each day; see [36]. Indeed,
preliminary analysis of the hospital data shows striking differences, which should not be surprising,
because hospitals tend not to be well modeled as standard queueing models. Just as in [10], we see
telling structure in the fitted birth and death rates. From such empirical plots, we can recognize
both consistency and deviations from basic models, such as the M/M/s Erlang delay model, its
GI/GI/s extension and the associated Mt/GI/s model with a periodic time-varying arrival rate
function.

1.3 Operational Analysis

The present study is related to early work on operational analysis. In early performance analysis of
computer systems, Buzen and Denning [4, 5, 9] advocated working with BD processes fit directly
to data as part of a general operational analysis directly. The goal was to understand performance
empirically, directly from data, without using customary stochastic models. Key support for this
approach was provided by conservation laws that must hold among the statistics collected, as in
Little’s law.

However, we prefer to think of there actually being an underlying stochastic model. With that
in mind, the fitted BD process provides partial information about the underlying model. Problems
with a direct application of operational analysis are discussed in §§4.6-4.7 in [13]. In that context,
though, [10] and this paper provides the first comparison between an underlying stochastic process
model and the operational analysis BD model fit to data. For either to be useful in prediction,
the future system of interest should be like the current system being measured. To judge whether
candidate models are appropriate, we think that it is appropriate to apply statistical analysis to
analyze the measurements. Sound statistical analysis, as in [2, 22, 23], can strongly support an
underlying stochastic model, which will behave differently from the fitted BD model if the data are
inconsistent with the BD model, as we show here.

1.4 Periodic Queues

Our goal in the present paper is to consider many-server queues with periodic arrival rates. These
have been studied in [8, 11, 12, 14, 20, 24, 25, 27, 28, 34] and references therein. As in [10], we want
to understand how the fitted birth and death rates depend on the model structure. We find that
the fitted birth and death rates provide very useful information about the structure of the actual
model. In this paper we concentrate on Mt/GI/s multi-server queues, where the arrival process is
a nonhomogeneous Poisson process (NHPP) with a periodic arrival rate function, emphasizing the
tractable limiting case of the infinite-server (IS) model [11, 12]. For these models, there is a proper
steady-state distribution, which is the time average of the time-dependent distributions over each
periodic cycle. For the special case of the Mt/M/∞ model with a sinusoidal arrival rate function,
the steady-state distribution is studied in [35].

There are very few available results for actually computing the steady-state distribution in peri-
odic queues. For Markovian models, the steady-state distribution may be calculated by numerically
solving ordinary differential equations, possibly simplified by closure approximations [29], However,
simulation seems to be the only available method for non-Markovian models. Thus, a significant
contribution in this paper is to provide a new way to estimate the steady-state distribution; see
§2.8. We suggest fitting parametric functions to estimated birth and death rates and then solving
the local balance equations in (2). This approach has potential because the fitted birth rates and
death rates often have more elementary structure, such as linearity.

We start in §2 by reporting results of simulation experiments for Mt/GI/s queueing models
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with sinusoidal arrival rates, which are directly of interest and serve to modify theoretical results
that follow. In §3 and §4 we develop supporting theory. In §5 we draw conclusions.

2 Simulation Experiments

All the models considered in this paper will be Mt/GI/s queueing models, having a nonhomoge-
neous Poisson process (NHPP, the Mt) as an arrival process, independent of i.i.d. service times
distributed as a random variable S with mean E[S] = 1/µ = 1, s servers, 1 ≤ s ≤ ∞, and unlimited
waiting space. Moreover, we consider the stylized sinusoidal arrival rate function

λ(t) ≡ λ̄ (1 + β sin (γt)) , (3)

where the cycle is c = 2π/γ. There are three parameters: (i) the average arrival rate λ̄, (ii) the
relative amplitude β and (iii) the time scaling factor γ or, equivalently the cycle length c = 2π/γ.
Our base model is the Mt/M/∞ model, which is the special case of the Mt/GI/s model in which
s = ∞, S has an exponential distribution and β = 10/35.

2.1 Designing the Simulation Experiments

The simulation experiments were conducted much as in the prequel to this paper [10]. We generated
the NHPP arrival process by thinning a Poisson process with rate equal to the maximum arrival
rate over a sine cycle. Since we use relative amplitude β = 10/35, with λ̄ = 35 a proportion
10/(35+10) = 10/45 = 0.222 of the potential arrivals were not actual arrivals. The fitted birth and
death rates as well as the empirical mass function were estimated using 30 independent replications
of 1.5 million potential arrivals before thinning. Overall, that means about 35 million arrivals in
each experiment. Multiple i.i.d. repetitions were performed to confirm high accuracy within the
regions shown. In order to compare the transient behavior of the fitted BD process to the original
process, we simulated a separate version of the fitted BD process in a similar manner. To compute
the first passage times starting from steady state (see §2.6), the process is initialized in steady state
by choosing the initial state from the estimated steady-state distribution.

2.2 Comparing the Fitted Rates in the Mt/M/∞ and GI/M/∞ Models

Our main hypothesis is that the fitted birth and death rates can reveal features of the underlying
model. To compare the impact of predictable deterministic variability in the arrival process, as
manifested in a time-varying arrival rate function, to stochastic variability, we see how the fitted
birth rates differ in the Mt/M/∞ infinite-server (IS) model with a sinusoidal arrival rate function
and the stationary GI/M/∞ model with a renewal process having an interarrival time more variable
than the exponential distribution. (When the service-time distribution is exponential, the fitted
death rates coincide with the exact death rates in both cases, i.e., µ̄e

k(∞) = k; see Theorem 3.1 of
[10] and Theorem 3.3 here.) However, the fitted birth rates are revealing.

In [10] we found that, when the actual arrival rate is n (provided that n is not too small), with
the service rate fixed at µ = 1, the fitted birth rates in state k, denoted by λn,k, tended to have
the form

λ̄e
n,k = (n+ b(k − n)) ∨ 0, (4)

where b is a constant such that −1 < b < 1 and

b ≈ 1−
2

1 + c2a
, (5)
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with c2a being the squared coefficient of variation (scv, variance divided by the square of the mean)
of the interarrival-time distribution of the renewal arrival process. This is illustrated in Figure
1, which shows the fitted birth rates and death rates in five GI/M/∞ models with arrival rate
λ = 39 and service rate µ = 1. The five interarrival-time distributions are Erlang E4, E2, M , and
hyperexponential, H2 with c2a = 2 and c2a = 4.

Figure 1 shows that the fitted birth rates tend to be approximately linear (over the region
where the process visits relatively frequently, so that there are ample data for the estimation), with
λn,n = n and slope increasing as the variability increases. This is consistent with greater variability
in the arrival process leading to a a larger steady-state number in system. For c2a < 1, the slope is
negative; for c2a > 1, the slope is positive. As c2a increases to ∞, the slope approaches 1.
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Figure 1: Fitted birth rates and death rates for five G/M/∞ models with λ = 39 and µ = 1.

We now consider the Mt/M/∞ IS model with the sinusoidal arrival rate function in (3). Very
roughly, we expect the predictable variability of a nonhomogeneous Poisson arrival process with a
periodic arrival rate function to correspond approximately to a stationary model with a renewal
arrival process having an interarrival-time distribution that is more variable than an exponential
distribution [26]. That means we expect to see something like the fitted birth rates with increasing
linear slopes in Figure 1. And indeed that is exactly what we do see, but restricted to a subinterval
centered at the long-run average λn,n = n, as illustrated in Figure 2.
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Figure 2: Fitted birth rates (left) and fitted death rates (right) for the Mt/M/∞ model with the
sinusoidal arrival rate function in (3) having parameters λ̄ = 35 and βλ̄ = 10 and 7 values of γ
ranging from 1/8 to 8.

The evolution of a BD queue primarily depends on the birth and death rates λk and µk through
their difference, the drift δk ≡ λk − µk, k ≥ 0. Thus, we plot the drift functions associated with
the G/M/∞ and Mt/M/∞ models in Figures 1 and 2 in Figure 3. These show that there is drift
toward the overall mean in all cases, which is stronger when there is less variability.
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Figure 3: The estimated drift functions (birth rates minus death rates) for the G/M/∞ model in
Figure 1 (left) and the Mt/M/∞ model in Figure 2 (right).

Similar results hold for models with finitely many servers. We show the results paralleling
Figure 2 for the case of 40 servers in Figure 4.
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Figure 4: Fitted birth rates (left) and fitted death rates (right) for the Mt/M/40 queue with the
sinusoidal arrival rate function in (3) having parameters λ̄ = 35 and βλ̄ = 10 and 7 values of γ
ranging from 1/8 to 8.

Figure 4 shows the piecewise-linear death rates, with two linear components, joined at the
number of servers, that are characteristic of multi-server queues. Figure 2 of [10] displays similar
plots for GI/GI/s queues. However, the estimated birth rates in Figures 2 and 4 are unlike those
of any GI/GI/s queue. Theorems 4.4 and 4.5 establish finite bounds and heavy-traffic limits for
the fitted birth rates, consistent with these figures.

2.3 The Steady-State Distribution of the Mt/M/∞ Model

The estimated birth and death rates in §2.2 yield corresponding estimates of the steady-state
distribution by solving the local balance equation (2). The estimated steady-state distributions for
the Mt/M/∞ model with the sinusoidal arrival rate function in (3) having parameters λ̄ = 35 and
β = 10/35 for different ranges of γ are shown in Figure 5. On the left (right) is shown different
cases varying in a power of 10 (2). Many of the plots on the left coincide, so that we see convergence
as γ ↑ ∞ and as γ ↓ 0. Indeed, the relevant ranges for intermediate behavior can be said to be
1/8 ≤ γ ≤ 8 for these parameters λ̄ = 35 and β = 10/35, with the limits serving as effective
approximations outside this interval.

The steady-state distribution of the number in system in the Mt/M/∞ IS model with the
sinusoidal arrival rate function in (3) is analyzed in [35] by applying [11]. By §5 of [11], the number
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Figure 5: the estimated steady state number in the Mt/M/∞ model with the sinusoidal arrival
rate function in (3) having parameters λ̄ = 35 and β = 10/35 for different ranges of γ.

of customers in the system (or the number of busy servers), Q(t), starting empty in the distant
past, has a Poisson distribution at each time t with mean

m(t) ≡ E[Q(t)] = λ̄(1 + s(t)), s(t) =
β

1 + γ2
(sin(γt)− γ cos(γt)) . (6)

Moreover,

sU ≡ sup
t≥0

s(t) =
β

√

1 + γ2
(7)

and

s(tm0 ) = 0 and ṡ(tm0 ) > 0 for tm0 =
cot−1 (1/γ)

γ
. (8)

The function s(t) increases from 0 at time tm0 to its maximum value sU = β/
√

1 + γ2 at time
tm0 + π/(2γ). The interval [tm0 , tm0 + π/(2γ)] corresponds to its first quarter cycle.

Let Z be a random variable with the steady-state probability mass function (pmf) of Q(t); its
pmf is a mixture of Poisson pmf’s. In particular,

P (Z = k) =
γ

2π

∫ 2π/γ

0
P (Q(t) = k) dt, k ≥ 0, (9)

The moments of Z are given by the corresponding mixture

E[Zk] =
γ

2π

∫ 2π/γ

0
E[Q(t)k] dt, k ≥ 1, (10)

so that E[Z] = λ̄.

2.4 Transient Behavior

It should be evident that the transient behavior of the fitted BD process and the original process
have significant differences. In particular, there is no periodicity in the fitted BD process. The
differences are particularly striking with small γ, i.e., for long cycles c(γ) = 2π/γ. That is dramat-
ically illustrated in Figure 6, which compares the sample paths of the number in system of the two
processes for the Mt/M/∞ queue with the sinusoidal arrival rate function in (3) having parameters
λ̄ = 100 and β = 10/35 and γ = 0.01. Since γ = 0.01, the cycle length is 628. Hence in the time
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Figure 6: sample paths of the number in system for the original process (left) and the fitted BD
process (right) for the Mt/M/∞ queue with the sinusoidal arrival rate function in (3) having
parameters λ̄ = 100 and β = 10/35 and γ = 0.01.

interval [0, 4000] we see a bit more than six cycles, but there is no periodic behavior in the fitted
BD process.

However, the sample paths are not always so strikingly different. Indeed, the sample paths get
less different as γ increases. Figures 7 and 8 illustrate by showing the sample paths for γ = 1 and
γ = 10 over the interval [0, 40]. For γ = 1, there are again 6.28 sine cycles, but for γ = 10, there
are 62.8 cycles. In these cases, the sample paths look much more similar. From Figures 7 and 8,
we conclude that we might well use the fitted BD process to describe the transient behavior as well
as the steady-state behavior for γ ≥ 1, i.e., for relatively short cycles. Periodic arrival rates with
short cycles often arise in practice in appointment-generated arrivals, where the actual arrivals are
randomly distributed about the scheduled appointment times.

Figure 7: sample paths of the number in system for the original process (left) and the fitted BD
process (right) for the Mt/M/∞ queue with the sinusoidal arrival rate function in (3) having
parameters λ̄ = 100 and β = 10/35 and γ = 1.0.
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Figure 8: sample paths of the number in system for the original process (left) and the fitted BD
process (right) for the Mt/M/∞ queue with the sinusoidal arrival rate function in (3) having
parameters λ̄ = 100 and β = 10/35 and γ = 10.

2.5 Limits for Small and Large γ

The behavior of the fitted BD process can be better understood by limits for the steady-state
distribution of the Mt/M/∞ model as γ ↑ ∞ and as γ ↓ 0. First, as γ ↑ ∞, even though
the arrival rate function oscillates more and more rapidly, the cumulative arrival rate function
Λ(t) ≡

∫ t
0 λ(s) ds converges to the linear function λ̄t. Consequently, the arrival process converges

to a stationary Poisson process (M) with the average arrival rate λ̄ and the steady-state number
in system converges to the Poisson steady state distribution in associated the stationary M/M/∞
model with mean λ̄. That follows from Theorem 1 of [30] and references therein. As a consequence,
as γ ↑ ∞ we must have the fitted birth rates in the fitted BD process converge to the constant
birth rates of a Poisson process, and that is precisely what we see as γ increases in Figure 2.

Second, as γ ↓ 0, the cycles get longer and longer, so that the system behaves at each time
as a stationary model with the instantaneous arrival rate at that particular time. That is the
perspective of the pointwise stationary approximation for queues with time-varying arrival rates
[18], which is asymptotically correct for the Mt/M/∞ model as γ ↓ 0. That follows from Theorem
1 of [31]. As a consequence, as γ ↓ 0 we must have the fitted birth rates in the fitted BD process
converge to a proper limit, and that is precisely what we see as γ increases in Figure 2.

The limit Z0 of the steady-state variable Z ≡ Zγ as γ ↓ 0 is the mixture of the steady-state
distributions. That is, by combining the PSA limit with (9), we see that

P (Z0 = k) =
γ

2π

∫ 2π

0
P (Q0(t) = k) dt, k ≥ 0, (11)

where Q0(t) has a Poisson distribution with mean m0(t) = λ1(t), where we let γ = 1. In particular,
this limit as γ ↓ 0 becomes independent of γ.

These two limits can be seen by comparing the sample paths of the fitted BD processes for
different γ. This is especially interesting for the long-cycle case. Figure 9 illustrates by showing the
sample paths of the number in system for the fitted BD process in the Mt/M/∞ queue with the
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sinusoidal arrival rate function in (3) having parameters λ̄ = 100 and β = 10/35 and γ = 0.1 (left)
and γ = 0.01 (right). The plots of different interval lengths show that the fitted BD processes are
very similar.

Figure 9: sample paths of the number in system for the fitted BD process in the Mt/M/∞ queue
with the sinusoidal arrival rate function in (3) having parameters λ̄ = 100 and β = 10/35 and
γ = 0.1 (left) and γ = 0.01 (right).

2.6 Speed Ratios: Very Different Limits for the Finite-Server Models

The stationary Poisson limit as γ ↑ ∞ is the same in Mt/GI/s models with s servers and general
service times, but the limit as γ ↓ 0 can be very different. Indeed, the limiting behavior will be
very different if the finite-server model is overloaded with instantaneous traffic intensity ρ(t) > 1
at some time within its periodic cycle. If ρ(t) > 1 for some values of t and if we make γ very small,
then these overload periods extend for longer and longer times, so that there can be a significant
queue buildup. Indeed, proper limits as γ ↓ 0 can only be obtained by adding additional scaling.
This phenomenon is discussed in [7].
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Figure 10: plots of the speed ratios in the Mt/M/∞ (left) and Mt/M/40 models with the sinusoidal
arrival rate function in (3) having parameters λ̄ = 35 and β = 10/35 as a function of the parameter
γ.

The great difference as γ ↓ 0 is illustrated by Figure 10, which plots the speed ratios for
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the Mt/M/∞ (left) and Mt/M/40 models with the sinusoidal arrival rate function in (3) having
parameters λ̄ = 35 and β = 10/35 as a function of the parameter γ. The speed ratios were
introduced in [10] to approximately characterize the transient behavior. Let T (p, q) be the first
passage time from the pth percentile of the steady-state distribution to the qth percentile of the
steady-state distribution in the original process, and let Tf (p, q) be the first passage time from the
pth percentile of the steady-state distribution to the qth percentile of the steady-state distribution
in the fitted BD process. These first passage times are fully specified for the fitted BD process
because it is a Markov process, but they are not completely specified in the original model, because
the stochastic process {Q(t) : t ≥ 0} is in general not Markov. Thus we need to specify the
initial conditions. We understand the system to be in steady-state, so the initial condition is the
steady-state distribution of the process conditional on starting at percentile p.

We in fact estimate the expected first passage times for the original process from simulations,
by considering successive alternating visits to the pth and qth percentiles of the steady-state distri-
bution. As an approximation, which we regard as reasonable as long as p is not too close to q, we
will assume that these successive first passage times are i.i.d. We estimate the expected values of
these first passage times by sample averages and estimate 95% confidence intervals under the i.i.d.
assumption. The rate at which these transitions occur can be defined by

r(p, q) ≡
1

E[T (p, q)]
and rf (p, q) ≡

1

E[Tf (p, q)]
. (12)

The associated (p, q)-speed ratio can be defined by

ω(p, q) ≡
r(p, q)

rf (p, q)
=

E[Tf (p, q)]

E[T (p, q)]
. (13)

To obtain further simplification, we assume that q = 1−p with 0 < p < 1/2 and consider round
trips, so that

T (p) = T (p, 1− p) + T (1− p, p) and Tf (p) = Tf (p, 1− p) + Tf (1− p, p), (14)

r(p) ≡
1

E[T (p)]
and rf (p) ≡

1

E[Tf (p)]
(15)

and the p-speed ratio can be defined by

ω(p) ≡
r(p)

rf (p)
=

E[Tf (p)]

E[T (p)]
. (16)

Consistent with our previous discussion, Figure 10 shows that the speed ratios approach 1 as
γ increases, but we see very different behavior as γ ↓ 0. The finite limit for the Mt/M/∞ model
confirms the limit of the steady-state distributions, whereas the divergence for the Mt/M/40 model
shows the divergence of the 40-server models, due to the persistent overload over long time intervals.

2.7 Different Service Distributions

We have also conducted corresponding simulation experiments for the Mt/GI/∞ model with non-
exponential service-time distributions. Figure 11 shows the fitted rates for the H2 service distribu-
tions with scv c2 = 2 just as in §2 of [10]. The corresponding plots for the E2 distribution are in
the appendix; they look very similar. Figure 12 shows the associated steady-state mass functions
for H2 and E2 service times.

Figure 13 shows that there are discernible differences among the speed ratios for the three
service distributions, but the differences are not great.
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Figure 11: Fitted birth rates (left) and fitted death rates (right) for the Mt/H2/∞ model with the
sinusoidal arrival rate function in (3) having parameters λ̄ = 35 and βλ̄ = 10 and 7 values of γ
ranging from 1/8 to 8. (The service scv is c2 = 2.)
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Figure 12: Fitted steady-state mass functions for the Mt/H2/∞ model (left) and the Mt/E2/∞
model (right) for with the sinusoidal arrival rate function in (3) having parameters λ̄ = 35 and
βλ̄ = 10 and 7 values of γ ranging from 1/8 to 8.

2.8 Estimating the Steady-State Distribution

In this section we investigate how we may efficiently estimate the steady-state distribution by
fitting parametric functions to the estimated birth and death rates and then solve the local balance
equation (2). First, for IS model we do not need to consider the death rates, because we have
µ̄k = k throughout. Hence, we concentrate on the birth rates. For larger values of γ, a linear
function works well, but not for smaller values of γ. As our parametric function, we choose

λp
k = a arctan b(k − c) + d, (17)

which is nondecreasing in k with finite limits as k increases and decreases, and has the parameter
four-tuple (a, b, c, d). We let c = d = λ̄, so that leaves only the two parameters a and b.

Figures 14, 15 and 16 show the fitted mass function and birth rates for the three gamma values:
γ = 1/8, 1/2 and 2, respectively. These were constructed using the Matlab curve fitting toolbox,
which fits by least squares. The figures show that the special arctangent function in (17) does much
better than a linear fit for small γ, but a simple linear fit works well for large γ. The parameter
pairs in the three cases were (a, b) = (7.541, 0.125), (6.682, 0.1253) and (3.577, 0.0744), respectively.
The main point is that a parametric fit based on only two parameters yields an accurate fit to a
mass function that can be quite complicated.
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3 Supporting Theory: The Periodic Mt/GI/s Queueing Model

We now develop supporting theory. Let A(t) count the number of arrivals in the interval [0, t]. We
assume that the arrival rate function λ(t) is a periodic continuous function with periodic cycle of
length c. Let λ̄ be the long-run average arrival rate, with

λ̄ ≡
1

c

∫ c

0
λ(s) ds = lim

t→∞

A(t)

t
. (18)

Let the service times be distributed as a random variable S with cumulative distribution function
(cdf) G and mean E[S] ≡ 1/µ < ∞. Let the (long-run) traffic intensity be defined by ρ̄ ≡ λ̄E[S] =
λ/µ.

Let Q(t) denote the number of customers in the system at time t and let P (Q(t) = k), k ≥
0, be its time-dependent probability mass function. As indicated in [20], the stochastic process
{Q(t) : t ≥ 0} is a regenerative processes, with the events {Q(nc + t) = 0}, n ≥ 1, for any fixed t,
0 ≤ t < c, being regeneration times. As a consequence, we have a well defined periodic steady-state
distribution when ρ̄ < 1.

Theorem 3.1 (periodic steady-state distribution) If ρ̄ < 1 in the periodic Mt/GI/s queueing model,

then α(t), 0 ≤ t < c and αc are well defined probability vectors with

αk(t) ≡ lim
n→∞

P (Q(nc+ t) = k) = lim
n→∞

1

n

n
∑

j=1

1{Q(jc+t)=k}, k ≥ 0, and

αc
k ≡

1

c

∫ c

0
αk(t) dt = lim

t→∞

1

t

∫ t

0
1{Q(s)=k} ds, k ≥ 0. (19)
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Figure 14: Fitted mass function (left) and birth rates (right) for the Mt/M/∞ model with the
sinusoidal arrival rate function in (3) having parameters λ̄ = 35, βλ̄ = 10 and γ = 0.125

Figure 15: Fitted mass function (left) and birth rates (right) for the Mt/M/∞ model with the
sinusoidal arrival rate function in (3) having parameters λ̄ = 35, βλ̄ = 10 and γ = 0.5

Let λ̄e
k(t) and µ̄e

k(t) be the estimated birth rate and death rate in state k from data over [0, t].
In the Mt/GI/s model, the arrival rate actually depends only on time, not the state. Hence, we
can obtain the following explicit expressions for the asymptotic values as the sample size increases,
λ̄k(∞) and µ̄k(∞).

Theorem 3.2 (estimated birth and death rates with ample data) In the periodic Mt/GI/s queueing

model with ρ̄ < 1,

λ̄e
k(∞) =

∫ c
0 αk(t)λ(t) dt
∫ c
0 αk(t) dt

=

∫ c
0 αk(t)λ(t) dt

cαc
k

(20)

and

µ̄e
k+1(∞) =

αc
kλ̄

e
k(∞)

αc
k+1

=

∫ c
0 αk(t)λ(t) dt

cαc
k+1

. (21)

for αk(t) and αc
k in (19).
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Figure 16: Fitted mass function (left) and fitted birth rates (right) for the Mt/M/∞ model with
the sinusoidal arrival rate function in (3) having parameters λ̄ = 35, βλ̄ = 10 and γ = 2.0

Proof. Since the arrival rate depends only on time, we have (20). We then can apply the detailed
balance equation in (2) to get (21).

Theorems 3.1 and 3.2 can be applied in two ways. First, we can apply these theorems to learn
about the fitted birth and death rates. They pose a strong constraint on the fitted birth and death
rates because the detailed balance equation in (2) must hold. As a consequence, if we know either
the fitted birth rates or the fitted death rates, then the others are determined as well. We will
illustrate in our specific results below.

Second, we can apply the estimated birth and death rates to estimate the steady-state proba-
bility vector αc in Theorem 3.1. Let ᾱe(∞) be the steady-state probability vector of the fitted BD
process obtained from (2). Since ᾱe coincides with αc in (19), we can use the fitted BD model to
calculate the steady-state distribution αc in (19). To do so, we estimate the birth and death rates
and then apply the detailed balance equation in (2). Moreover, by developing analytical approxi-
mations for the fitted birth and death rates, we succeed in developing an analytical approximation
for αc.

3.1 The Periodic Mt/M/s Model

For the special case of an exponential service-time distribution, i.e., for the Mt/M/s model, the
stochastic process {Q(t) : t ≥ 0} is Markov and more convenient explicit formulas are available.

We first observe that an analog of Theorem 3.1 of [10] also holds for the fitted death rates in
the present time-varying case.

Theorem 3.3 (asymptotically correct death rates) For the periodic Mt/M/s model with ρ̄ < 1, the
fitted death rates are asymptotically correct as the sample size increases, i.e.,

µ̄k(∞) = min {k, s}µ, k ≥ 0. (22)

Hence, the fitted birth rates can be expressed as

λ̄k(∞) =
αc
k+1 min {k + 1, s}µ

αc
k

, k ≥ 0, (23)

for αc
k in (19).
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Proof. As for Theorem 3.1 of [10], (22) follows from the lack of memory property of the expo-
nential distribution. However, we show that it is possible to directly apply Theorem 3.1 of [10]
here. We use the fact that the Mt/M/s model has a proper dynamic periodic steady-state distri-
bution with a period equal to the period of the arrival process, cf. [20]. For that model we can
convert the arrival process to a stationary point process by simply randomizing where we start in
the first cycle. If the period is of length d, then we start the arrival process at time t, where t is
uniformly distributed over the interval [0, d]. That randomization converts the arrival process to a
stationary point process, so that we can apply Theorem 3.1 of [10] (a). But then we observe that
the randomization does not alter the limit (22). We then apply (2) to get (23).

For the Mt/M/s model, we are primarily interested in the fitted arrival rates λ̄e
k(t), where the

run length t is sufficiently long that we can regard them as essentially the limiting values λ̄e
k(∞).

We want to compare the fitted arrival rates in the Mt/M/s model to the associated fitted arrival
rates in the corresponding M/M/s and H2/M/s models, where the average arrival rates and other
parameters are hold fixed. We want to see if the fitted birth rates allow us to distinguish between
extra stochastic variability, as illustrated by having an H2 renewal arrival process instead of an M
Poisson arrival process, and extra time-variability, as illustrated by having an Mt NHPP arrival
process instead of an M Poisson arrival process. Both of these can be contrasted with the constant
arrival rate λ with an M arrival process.

We next observe that a geometric tail holds for the Mt/M/s model with the same decay rate
as for the associated stationary M/M/s model with arrival rate λ̄. Recall that a probability vector
α has a geometric tail with decay rate σ if

αk ∼ βσk as k → ∞, (24)

i.e., if the ratio of the two sides converges to 1 as k → ∞; see §3.2 of [10].

Theorem 3.4 (geometric tail) For the Mt/M/s model with s < ∞ and λ̄ < sµ, the periodic

steady-state distribution has a geometric tail as in (24) with the same decay rate as in the associated

stationary M/M/s model with arrival rate λ̄; i.e.,

ᾱk(∞) ∼ βtσ
k
t as k → ∞, (25)

where

σt = σ = ρ ≡
λ̄

sµ
and βt ≥ β ≥ (1− ρ) (26)

with (β, σ) and (βt, σt) denoting the asymptotic parameter pairs for the M/M/s and Mt/M/s
models, respectively. As a consequence,

λ̄k(∞) → λ̄ as k → ∞. (27)

Proof. The tail behavior can be deduced by considering bounding discrete-time processes, looking
at the system at times t0 + kc. Both systems are bounded below by the discrete-time model that
has all arrivals in each interval at the end of the interval and all departures at the beginning of the
interval, while both systems are bounded above by the discrete-time model that has all arrivals in
each interval at the beginning of the interval and all departures at the end of the interval. These
two-discrete time systems are random walks with steady-state distributions satisfying (24) with
common decay factor σ = ρ. A step in the random walk is the difference of two Poisson random
variables U −D, where EU = λ̄c and ED = sµc, which have ratio EU/ED = λ̄/sµ, which in turn
determines the decay rate. A stochastic comparison [6] then implies that βt ≥ β. For the final
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inequality in (26), we can compare the M/M/s system to the corresponding M/M/1 model with
a fast server, working at rate sµ. The two systems have the same birth rate, while the M/M/1
system has death rates that are greater than or equal to those in the M/M/s model. Hence, the
steady-state distributions are ordered stochastically. Finally, the final limit in (27) follows from
Theorem 3.3 and (25), where here sµσ = sµρ = λ̄.

We remark in closing this section that the periodic Mt/M/∞ has different tail behavior; hence
the assumption that s < ∞. We next start considering the infinite-server model.

3.2 The Periodic Infinite-Server Model

We now consider the special case of the periodic Mt/GI/∞ infinite-server (IS) model, because it
admits many explicit formulas, as shown in [11, 12, 25]. We let the model start in the indefinite
past, so that it can be regarded as in periodic steady-state at time 0. This is achieved by assuming
an explicit form for the arrival rate function, as in (3), and then assuming that the system started
empty in the indefinite past.

By Theorem 1 of [12], the number in system has a Poisson distribution for each t with periodic
mean function m(t), with the same period c, where

m(t) = E[λ(t− Se)]E[S] = E[S]

∫ ∞

0
λ(t− s)dGe(s), t ≥ 0, (28)

and Se is a random variables with the stationary-excess cdf Ge associated with the service-time cdf
G, i.e.,

Ge(t) ≡ P (Se ≤ t) ≡
1

E[S]

∫ t

0
(1−G(s)) ds, t ≥ 0. (29)

Moreover, the departure process in the Mt/GI/∞ model is a Poisson process with periodic rate
function δ(t), with the same period c, where

δ(t) = E[λ(t− S)] =

∫ ∞

0
λ(t− s)dG(s), t ≥ 0. (30)

For the special case of a sinusoidal arrival rate function, an explicit expression for m(t) is given in
Theorem 4.1 of [11].

As a consequence, we have the following corollary to Theorem 3.1.

Corollary 3.1 (periodic steady-state distribution in the IS model) In the periodic Mt/GI/∞ queue-

ing model starting empty in the distant past, α(t), 0 ≤ t < c and αc are well defined probability

vectors with

αk(t) = πk(m(t)), 0 ≤ t < c, and αc
k =

1

c

∫ c

0
πk(m(t)) dt, (31)

for m(t) in (28), where πk(m) be the Poisson distribution with mean m, i.e.,

πk(m) ≡
e−mmk

k!
, k ≥ 0. (32)

We now consider the estimated death rates with ample data, i.e., µ̄e
k(∞). To obtain the de-

parture rate conditional on the number of busy servers, we use use the following consequence of
Theorem 2.1 of [17].
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Theorem 3.5 (remaining service times conditional on the number) Consider the periodic Mt/GI/∞
queueing model starting empty in the distant past, where the service-time cdf G has pdf g. Con-

ditional on Q(t) = k, the remaining service times at time t are distributed as k i.i.d. random

variables with pdf

gk,t(x) =

∫∞
0 λ(t− u)g(x + u) du
∫∞
0 λ(t− u)Gc(u) du

, x ≥ 0, (33)

which is independent of k. Hence, conditional on Q(t) = k, the departure rate at time t is

δk(t) = kδ1(t) =
kµgk,t(0)

E[λ(t− Se)]
=

kµE[λ(t− S)]

E[λ(t− Se)]
=

kδ(t)

m(t)
. (34)

From Theorem 3.5, we can recover the result that δk(t) = kµ for theMt/M/∞model, because Se

is distributed the same as S if and only if S is exponential. That in turn implies that µe
k(∞) = kµ

as well, as implied by Theorem 3.3. We now apply Theorem 3.5 to deduce a rate conservation
property for this Mt/GI/∞ model in each state over a periodic cycle. We also deduce alternative
expressions for the estimated death rates.

Theorem 3.6 (arrival and departure rates over a cycle) For the periodic Mt/GI/∞ queueing

model starting empty in the distant past,

∫ c

0
αk(t)λ(t) dt =

∫ c

0
αk(t)δ(t) dt for each k ≥ 0 (35)

for αk(t) in (31), so that
∫ c

0
λ(t) dt =

∫ c

0
δ(t) dt. (36)

In addition, for each k ≥ 0,

µ̄e
k+1(∞) =

∫ c
0 αk+1(t)δk+1(t) dt
∫ c
0 αk+1(t) dt

=

∫ c
0 αk(t)δ(t) dt

cαc
k+1

=

∫ c
0 αk(t)λ(t) dt

cαc
k+1

=
λ̄e
k(∞)αc

k

αc
k+1

(37)

for δk(t) in (34), αk(t) and αc
k in (31)and δ(t) in (30).

Proof. Since λk(t) = λ(t), independent of k, we can apply first (2) and then (34) to obtain

∫ c

0
αk(t)λ(t) dt = cαc

kλ̄
e
k(∞) = cαc

k+1µ̄
e
k+1(∞) =

∫ c

0
αk+1(t)δk+1(t) dt

=

∫ c

0
αk+1(t)(k + 1)[δ(t)/m(t)] dt =

∫ c

0
αk(t)δ(t) dt, (38)

as in (35). We add over k to get (36). The first expression in (37) is the direct rate expression for
µ̄e
k(∞). Then we apply (34), (35) and (2).

4 The IS Model with a Sinusoidal Arrival-Rate Function

We now consider the special case of the periodic Mt/GI/∞ model with a sinusoidal arrival rate
function, as in [11, 25]; i.e., now we consider arrival rate functions of the form (3). By Theorem
4.1 of [11], the mean function is as in (6). We first exploit bounds on the mean m(t) in (6) from §4
of [11] and (37) to obtain upper and lower bounds on the ratio (k + 1)λ̄e

k(∞)/µ̄e
k+1(∞).
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Theorem 4.1 (bounds on the ratio) For the Mt/GI/∞ model with sinusoidal arrival rate function

in (3),
(k + 1)λ̄e

k(∞)

µ̄e
k+1(∞)

=
(k + 1)αc

k+1

αc
k

, (39)

where
∣

∣

∣

∣

(k + 1)αc
k+1

αc
k

−
λ̄

µ

∣

∣

∣

∣

≤

(

βλ̄

µ

)

(

E[cos(γSe)]
2 + E[sin(γSe)]

2
)1/2

≤
βλ̄

µ
. (40)

Proof. We obtain (39) directly from (37). We bound the term (k + 1)m(t) above and below by
exploiting (12) of [11]. After removing this term from the αc

k+1, that term coincides with αc
k.

We now establish asymptotic results for the extreme cases in which the cycles are very long
(γ ↓ 0) or are very short (γ ↑ ∞). We directly show the dependence on γ; e.g., by writing λ̄k(∞; γ).

Theorem 4.2 (short cycles) For the Mt/GI/∞ model with sinusoidal arrival rate function in (3),

λ̄k(∞; γ) → λ̄ and µ̄k+1(∞; γ) → (k + 1)µ as γ ↑ ∞ for all k ≥ 0. (41)

Proof. First, it is helpful to rewrite (20) so that the integrals are over a fixed interval, independent
of γ. By making a change of variables s = γt, we obtain

λ̄e
k(∞) =

∫ 2π/γ
0 αk(t)λ(t) dt
∫ 2π/γ
0 αk(t) dt

=

∫ 2π
0 αk(s/γ)λ(s/γ) ds
∫ 2π
0 αk(s/γ) ds

(42)

First, λ(t; γ) → λ̄ as γ ↑ ∞, uniformly in t. By Theorem 4.5 of [11], m(t; γ) → λ̄/µ as γ ↑ ∞,
uniformly in t. Hence, αk(t; γ) → αk(t;∞) as γ ↑ ∞, uniformly in t, where αk(t;∞) is the
Poisson pmf with mean λ̄/µ, independent of t. The bounded convergence theorem then implies the
convergence of the integrals in (18). We then can apply (37) to deduce that

µ̄e
k+1(∞; γ) =

λ̄k(∞; γ)αc
k;γ

αc
k+1;γ

→
λ̄αc

k;∞

αc
k+1;∞

= (k + 1)µ as γ ↑ ∞, (43)

because αk(t;∞) is the Poisson pmf with mean independent of t.

Theorem 4.3 (long cycles) For the Mt/GI/∞ model with sinusoidal arrival rate function in (3),

λ̄k(∞; γ) →
(k + 1)µαc

k+1;0

αc
k;0

and µ̄k+1(∞; γ) → (k + 1)µ as γ ↓ 0 (44)

for all k ≥ 0, where αc
k;0 is the time average of αc

k(t; 0) which is the Poisson pmf with mean

λ̄λ1(t)/µ, where λ1(t) = 1 + β sin(t), 0 ≤ t ≤ 2π.

Proof. By Theorem 4.4 of [11], m(t/γ) → λ(t)/µ as γ ↓ 0 uniformly in t. Hence, αk(t; γ) →
αk(t; 0) uniformly in t. We then apply this starting from (42), getting

λ̄e
k(∞) =

∫ 2π/γ
0 αk(t)λ(t) dt
∫ 2π/γ
0 αk(t) dt

=

∫ 2π
0 αk(s/γ)λ(s/γ) ds
∫ 2π
0 αk(sγ) ds

→

∫ 2π
0 αk(s; 0)λ(s; 0) ds
∫ 2π
0 αk(s; 0) ds

=

∫ 2π
0 (k + 1)µαk+1(s; 0) ds

∫ 2π
0 αk(s; 0) ds

=
(k + 1)µαc

k+1

αc
k

, (45)
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because αk(s; 0) is the Poisson pmf with mean λ(s; 0)/µ at time s. Finally,

µ̄k+1(∞; γ) =
λ̄k(∞; γ)αc

k;γ

αc
k+1;γ

→
λ̄k(∞; 0)αc

k;0

αc
k+1;0

= (k + 1)µ as γ ↓ 0.

4.1 The Mt/M/∞ Model with Sinusoidal Arrival Rate

For the Mt/M/∞ model with sinusoidal arrival rate function in (3), the mean has an especially
tractable from. From (15) of [11], the number in system, Q(t), has a Poisson distribution for each
t with mean in (6).

In addition to the regularity in the estimated death rates exposed in Theorem 3.3, we have
the following result for the estimated birth rates, which includes an explicit expression, upper and
lower bounds, and an asymptotic result for short cycles (large γ).

Theorem 4.4 (estimated rates for the Mt/M/∞ model with sinusoidal arrival rate function) In

the Mt/M/∞ IS queueing model with periodic arrival rate function, starting empty in the distant

past,

µ̄k+1(∞) = (k + 1)µ and λ̄k(∞) =
αc
k+1(k + 1)µ

αc
k

=
µ
∫ c
0 e−m(t)m(t)k+1 dt
∫ c
0 e−m(t)m(t)k dt

(46)

for k ≥ 0, so that

λ̄

(

1−
β

√

1 + γ2

)

≤ λ̄k(∞) ≤ λ̄

(

1 +
β

√

1 + γ2

)

for all k ≥ 0. (47)

and

λ̄k(∞) → λ̄ as γ → ∞ for all k ≥ 0. (48)

Proof. The death rate expression and the first birth rate expression in (46) are immediate con-
sequences of Theorem 3.3 and (2). The bounds then follow from Theorem 4.1, using the explicit
expression from (18) of [11].

4.2 Heavy-Traffic Limits for the Fitted Birth Rates

We conclude by deriving a heavy-traffic limit for the constant vales at large and small arguments.

Theorem 4.5 (heavy-traffic limits) In the Mt/M/∞ IS queueing model with periodic arrival rate

function, starting empty in the distant past,

λ̄k(∞)

λ̄
→ 1−

β
√

1 + γ2
as λ̄ → ∞ and

λ̄⌊mλ̄⌋+k(∞)

λ̄
→ 1 +

β
√

1 + γ2
as λ̄ → ∞ for m > 1/ loge 2 ≈ 1.44. (49)
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Proof. In each case, we apply Laplace’s method to the numerator and denominator of (46),
after pre-multiplying both by the same appropriate term (so this term cancels). Let x ≡ λ̄/µ and
consider the first expression. In particular, After multiplying the numerator and denominator by
ex/xk, we can express the denominator as

∫ c

0
e−xs(t)(1 + s(t))k dt ∼

√

2π

x|s′′(x0)|
(1 + s(x0))

kexs(x0) as x → ∞, (50)

where ∼ means that the ratio of the two sides converges to 1, s(t) ≡ m1(t)−1 for m1(t) in (6), where
c = 2π/γ and x0 = c− cot−1(1/γ))/γ and m(x0) = (λ̄/µ)(1− β/(

√

1 + γ2)), by virtue of (16) and
(18) in [11]. (The minus sign in the exponent of e−xs(t) means that we look for the most negative
value of s(t).) We have used the fact that the integral is dominated by an appropriate modification
of the integrand at a single point when x becomes large. The ratio in (46) thus approaches 1+s(x0).

For the second expression, after multiplying the numerator and denominator by ex/xx+k, we
can express the denominator as

∫ c

0
e−xs(t)(1 + s(t))mx+k dt =

∫ c

0
e+x[m log

e
{1+s(t)}−s(t)](1 + s(t))k dt

∼

√

2π

x|f ′′(x0)|
(1 + s(x0))

kexf(x0) as x → ∞, (51)

where f(t) ≡ m loge {1 + s(t)} − s(t), so that x0 = (c/4) + cot−1(1/γ))/γ and m(x0) = (λ̄/µ)(1 +
β/(
√

1 + γ2)), again by (16) and (18) in [11]. (The plus sign in the exponent of e+x[m log
e
{1+s(t)}−s(t)]

with m > 1/ log2 2 means that we look for the most positive value of s(t).) The ratio in (46) again
approaches 1 + s(x0).

5 Conclusions

We have conducted extensive simulation experiments to study the potential of fitting general state-
dependent birth-and-death (BD) processes to queueing system data. As indicated in §1, this can be
an effective way to simultaneously fit and test the classical Erlang A model. Here we have studied
the consequence of fitting a BD process to other models. In particular, here we focused on the
BD processes fit to multi-server queues with NHPP arrival processes having periodic arrival rate
functions. We fit BD processes to the sample path of the number in system in an Mt/M/∞ model
and related Mt/GI/s models with s = 40 and non-exponential service times. These models have
the sinusoidal arrival rate function in (3) with relative amplitude β = 10/35. In the experiments
we considered arrival rates λ̄ = 35 and 100 (moderately large scale) for a range of scaling factors
γ, yielding a range of sine cycles of length 2π/γ.

From these experiments, we see that the death rates have the same linear structure as for the
many-server GI/GI/s models studied in [10], but we see significantly different fitted birth rates,
as can be seen by comparing Figures 1 and 2. Theorems 4.4 and 4.5 establish finite bounds and
heavy-traffic limits for the fitted birth rates, consistent with these figures. The simulation results
in §§2.3-2.8 indicate that (i) for larger γ (shorter cycles) such as γ ≥ 1, the fitted BD process may
serve as a useful direct approximation for the original queue-length process, but (ii) for smaller γ
(longer cycles) such as γ ≤ 0.1, the transient behavior of the fitted BD process is very different.
However, consistent with the theory in [33], we see that the fitted BD process consistently describes
the steady-state distribution. In §2.8 we showed that a relatively simple two-parameter parametric
function can be fit to the estimated birth rates in order to efficiently estimate first the fitted birth
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rate and then the steady-state distribution of the original system. The results here for known
stochastic models should help interpret similar fitting to data from complicated service systems, as
in work in progress [36].
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