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Abstract

If the number of customers in a queueing system as a function of time has a proper limiting
steady-state distribution, then that steady-state distribution can be estimated from system
data by fitting a general stationary birth-and-death process model to the data and solving for
its steady-state distribution by using the familiar local-balance steady-state equation for birth-
and-death processes, even if the actual process is not a birth-and-death process. We show
that this indirect way to estimate the steady-state distribution can be effective for periodic
queues, because the fitted birth and death rates often have special structure allowing them to
be estimated efficiently by fitting parametric functions with only a few parameters, e.g. 2. We
focus on the multi-serverMt/GI/s queue with a nonhomogeneous Poisson arrival process having
a periodic time-varying rate function. We establish properties of its steady-state distribution
and fitted birth and death rates. We also show that the fitted birth and death rates can be a
useful diagnostic tool to see if an Mt/GI/s model is appropriate for a complex queueing system.

Keywords: estimating steady-state distributions; periodic queues; birth-and-death processes;
fitting models to data; grey-box stochastic model
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1 Introduction

1.1 Steady-State Distributions and Birth-and-Death Processes

Let {Q(t) : t ≥ 0} be a stochastic processes taking values in the nonnegative integers, such as the
number of customers in a queueing system at each time t. The stochastic process {Q(t) : t ≥ 0}
has a proper (limiting) steady-state distribution if

lim
t→∞

P (Q(t) = k) = αk for all k ≥ 0, where

∞
∑

k=0

αk = 1. (1)

Given system data, i.e., a segment {Q(s) : 0 ≤ s ≤ t} of the sample path, a standard way to
estimate the steady-state probability vector α is to calculate the proportion of time spent in each
state; i.e., if Tk(t) is the total time spent in state k during [0, t], then we estimate αk by

ᾱk(t) =
Tk(t)

t
, k ≥ 0. (2)

It may be surprising, but there usually is also another quite different way to estimate the steady-
state probability vector α. The alternative way is to fit a general stationary birth-and-death (BD)
process to the same sample path in the obvious way, as if the stochastic process {Q(t) : t ≥ 0} were
a BD process, which we are not assuming.

In particular, let Ak(t) and Dk(t) be the number of arrivals and departures, respectively, ob-
served in state k over [0, t]. State-dependent birth and death rates can be estimated by

λ̄k(t) =
Ak(t)

Tk(t)
and µ̄k(t) =

Dk(t)

Tk(t)
. (3)

This is the natural way to estimate the rates when {Q(t) : t ≥ 0} is a BD process [3, 20, 37]. In
fact, these are the maximum likelihood estimators for these rates.

We then estimate the steady-state distribution by solving the local-balance equations for a BD
process; i.e., we let ᾱe(t) ≡ {ᾱe

k(t) : k ≥ 0} (where ≡means “equality by definition”) be the solution
to the equation

ᾱe
k(t)λ̄k(t) = ᾱe

k+1(t)µ̄k(t), k ≥ 0, (4)

with the additional property that
∞
∑

k=0

ᾱe
k(t) = 1. (5)

We use the superscript e to denote that the vector ᾱe
k(t) is obtained from the estimated BD rates

in (3) via (4).
It turns out that the two empirical steady-state probability vectors ᾱ(t) and ᾱe(t) are intimately

related. Indeed, if Q(0) = Q(t), i.e., if the initial state Q(0) coincides with the final state Q(t) of
the sample path, then the two probability vectors ᾱ(t) and ᾱe(t) are identical. More generally, they
are stochastically ordered; see Theorem 1 of [33]. Moreover, under minor regularity conditions,
ᾱe
k(t) is a consistent estimator of αk, i.e.,

αk ≡ lim
t→∞

ᾱk(t) = lim
t→∞

P (Q(t) = k) = lim
t→∞

ᾱe
k(t); (6)

see Chapter 4 of [11] and Corollary 4.1 of [33].
Thus fitting a stationary BD process by (3) and solving the local balance equation (4) is a

legitimate way to estimate the steady-state probability vector α, even though we are not assuming
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that the stochastic process {Q(t) : t ≥ 0} is a BD process. The fitted-BD approach to estimate
the steady-state distribution has the advantage that the birth-rate and death-rate functions tend
to have more structure, which makes the fitting easier. Thus, the structure in the fitted birth and
death rates helps us make reasonable estimates in the tails of the steady-state distribution, where
there tend to be relatively few data points.

We previously studied this indirect fitting approach for stationary non-Markovian GI/GI/s
models in [7]. We found that the fitted BD not only provides a way to calculate the steady-state
distribution but the fitted birth-rate and death-rate functions reveal important structural properties
of the original GI/GI/s model; see §6.2 for further discussion.

1.2 Steady-State Distributions for Periodic Queues

In this paper we examine this indirect BD approach for estimating the steady-state distribution of
a periodic queue, i.e., for a queue having a periodic arrival-rate function. Since the probabilities
P (Q(t) = k) should themselves be periodic functions of t, we first need to formulate the problem
carefully. To do so, suppose that the period is c. The stochastic process {Q(t) : t ≥ 0} has
a dynamic steady-state pmf α(t), 0 ≤ t < c (a family of pmf’s indexed by t), and an overall
steady-state pmf αc if the following limits are well defined probability vectors:

αk(t) ≡ lim
n→∞

P (Q(nc+ t) = k) = lim
n→∞

1

n

n
∑

j=1

1{Q(jc+t)=k}, 0 ≤ t < c, and

αc
k ≡

1

c

∫ c

0
αk(t) dt = lim

t→∞

1

t

∫ t

0
1{Q(s)=k} ds, k ≥ 0. (7)

Moreover, αc can be regarded as a special case of α in (1) if we randomize the initial state uniformly
over the interval [0, c].

Before proceeding, we note that both the dynamic steady-state pmf α(t) and the overall steady-
state pmf αc are of practical interest. For example, for a hospital emergency room, we may want to
know the likelihood of states such as large queues, both averaged over all time and at fixed times.
That is, we may want to know the average congestion or the average use of resources as well as the
peak congestion or the peak use of resources.

Thus, in this paper we focus on the BD approach to estimating the steady-state pmf αc. We
do so for the special case of the many-server Mt/GI/s queues with periodic arrival-rate functions,
focusing especially on the case of sinusoidal arrival-rate functions, which are often used in studies
of staffing algorithms for queues with time-varying arrival rates, e.g. see [16, 25].

The periodic Mt/GI/s queueing models here have a nonhomogeneous Poisson process (NHPP,
the Mt) as an arrival process, which is independent of independent and identically distributed
(i.i.d.) service times distributed as a random variable S with mean E[S] = 1/µ = 1 and a general
distribution, s servers, 1 ≤ s ≤ ∞, and unlimited waiting space. Moreover, in our simulation
examples we consider the stylized sinusoidal arrival rate function

λ(t) ≡ λ̄ (1 + β sin (γt)) , (8)

where the cycle is c = 2π/γ. There are three parameters: (i) the average arrival rate λ̄, (ii) the
relative amplitude β and (iii) the time scaling factor γ or, equivalently the cycle length c = 2π/γ.

1.3 The Indirect Fitting Approach

For these models, we find that the indirect BD fitting approach tends to be more efficient because
the fitted birth and death rates tend to have more structure than the steady-state distribution;
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e.g., the fitted birth and death rates typically are nondecreasing functions; e.g., see §4. The fitted
death rates are often very nearly piecewise-linear with

µ̄k ≡ µ̄k(∞) ≡ lim
t→∞

µ̄k(t) ≈ µmin {k, s}, (9)

where 1/µ is the mean service time, just as for the exact formulas in the corresponding M/M/s
model. The fitted birth rates

λ̄k ≡ λ̄k(∞) ≡ lim
t→∞

λ̄k(t) (10)

tend to be approximately linear in the most frequently visited states, but are more complicated
outside this region. Nevertheless, we find that they can be fit quite accurately by using a parametric
function with only two parameters; see §5. In contrast, the direct steady-state distribution tends to
be quite complicated. (Henceforth, we use µ̄k and µ̄k(∞) interchangeably when we are concerned
with the limiting values or values for very large t, and similarly for other variables.)

For the stationary M/M/s model, the shape of the steady-state probability mass function (pmf)
can be understood from heavy-traffic limits for the M/M/s model in [17] and properties of BD and
diffusion steady-state distributions discussed in [5]. The steady-state pmf of the number in system
is approximately a normal pdf (where all servers are not busy) connected to an exponential pdf
(where all servers are busy) joined at s. For associated non-stationary models, the steady-state
pmf is even more complicated, e.g., see the lefthand plot in Figure 9.

1.4 Organization

We start in §2 by establishing structural results for the fitted birth and death rates and the steady-
state distribution in the Mt/GI/s queue. We have separate subsections for the Mt/M/s and
Mt/GI/∞ special cases. Then in §3 we establish additional structural results for the special case
of the sinusoidal arrival rate functions in (8).

We follow in §4 by showing the results of simulation experiments investigating what these fitted
rates and steady-state distributions look like. In doing so, we confirm and illustrate the theoretical
results in §2 and §3. From the special structure of the fitted rates, we see that it should not be
difficult to fit parametric functions to the data. In §5 we show that the steady-state distribution of
Mt/M/s queues can be efficiently estimated by fitting parametric functions to the fitted birth and
death rates; often only two parameters are needed.

Afterwards, in §6 we discuss how the fitted birth and death rates are promising to help diagnose
what model is appropriate for a complex queueing system, as suggested in [7]. To illustrate how
the present analysis can be used, we show that data from an emergency department are consistent
with a periodic arrival-rate function (not a surprise), but are inconsistent with a sequence of i.i.d.
length-of-stay random variables. It is natural to postulate the Mt/GI/∞ model with i.i.d. length-
of-stay random variables under the assumption that the length of stay should only depend on the
patient’s medical condition. The fitted death rates show that the length-of-stay distribution should
be regarded as time-varying, which is consistent with the conclusions reached in [2, 29, 36]. In §6.4
we advocate the fitted BD process as a statistical test of the much-used Mt/M/s + M Erlang-A
model. We draw conclusions in §7.

2 The Periodic Mt/GI/s Queueing Model

We start by develop supporting theory. Let A(t) count the number of arrivals in the interval [0, t].
We assume that the arrival rate function λ(t) is a periodic continuous function with periodic cycle
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of length c. Let λ̄ be the long-run average arrival rate, with

λ̄ ≡
1

c

∫ c

0
λ(s) ds = lim

t→∞

A(t)

t
. (11)

Let the service times be distributed as a random variable S with cumulative distribution function
(cdf) G and mean E[S] ≡ 1/µ < ∞. Let the (long-run) traffic intensity be defined by ρ̄ ≡
λ̄E[S]/s = λ̄/sµ.

Let Q(t) denote the number of customers in the system at time t and let P (Q(t) = k), k ≥ 0,
be its time-dependent pmf. As indicated for the periodic Mt/M/s model in §3 of [18], because of
the NHPP arrival process, the stochastic process {Q(nc + t) : n ≥ 0} is a regenerative stochastic
process for any fixed t, 0 ≤ t < c, with the events {Q(nc + t) = 0}, n ≥ 1, being regenerative
events. For applications of this regenerative structure, we also require that the interval between
such emptiness epochs has finite mean. That was proved for M service in §3 of [18] and for various
other service distributions in §6 of [18]. In this paper, we make the assumption for the general GI
service that the interval between such emptiness epochs has finite mean. Under this assumption, we
have a well defined periodic steady-state distribution when ρ̄ < 1.

Theorem 2.1 (periodic steady-state distribution) If ρ̄ < 1 in the regenerative periodic Mt/GI/s
queueing model, then a dynamic steady-state pmf α(t), 0 ≤ t < c, and an overall steady-state pmf
αc are well defined probability vectors as in (7).

Let λ̄k(t) and µ̄k(t) be the fitted birth rate and death rate in state k from data over [0, t],
obtained as indicated in §1. Our theoretical results will be for the limits λ̄k(∞) and µ̄k(∞) obtained
by letting t → ∞. In the Mt/GI/s model, the arrival rate actually depends only on time, not the
state. Hence, we can obtain the following explicit expressions for the fitted rates with ample data.

Theorem 2.2 (fitted birth and death rates with ample data) In the regenerative periodic Mt/GI/s
queueing model with ρ̄ < 1,

λ̄k(∞) =

∫ c
0 αk(t)λ(t) dt
∫ c
0 αk(t) dt

=

∫ c
0 αk(t)λ(t) dt

cαc
k

(12)

and

µ̄k+1(∞) =
αc
kλ̄k(∞)

αc
k+1

=

∫ c
0 αk(t)λ(t) dt

cαc
k+1

. (13)

for αk(t) and αc
k in (7).

Proof. We use the regenerative structure to focus on (i) the expected number of arrivals in state
k per regenerative cycle divided by the expected length of a regenerative cycle and (ii) the expected
time spent in state k per regenerative cycle divided by the expected length of a regenerative cycle.
We get (12) involving a single periodic cycle by looking at the ratio. Since the arrival rate depends
only on time, we have (12). We then can apply the detailed balance equation in (4) to get (13).

Theorems 2.1 and 2.2 can be applied in two ways. First, we can apply these theorems to learn
about the fitted birth and death rates. They pose a strong constraint on the fitted birth and death
rates because the detailed balance equation in (4) must hold. As a consequence, if we know either
the fitted birth rates or the fitted death rates, then the others are determined as well. We will
illustrate in our specific results below.
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Second, we can apply the estimated birth and death rates to estimate the steady-state prob-
ability vector αc in Theorem 2.1. Let ᾱe ≡ ᾱe(∞) be the steady-state probability vector of the
fitted BD process obtained from (4). Since ᾱe coincides with αc in (7), we can use the fitted BD
model to calculate the steady-state distribution αc in (7). To do so, we estimate the birth and
death rates and then apply the detailed balance equation in (4). Moreover, by developing analyti-
cal approximations for the fitted birth and death rates, we succeed in developing an approximation
for αc.

We can immediately apply Theorem 2.2 to obtain bounds on the fitted birth rates. Since formula
(12) expresses λ̄k(∞) as an average of the arrival rate function over one cycle, we can immediately
deduce

Corollary 2.1 (bounds on the fitted birth rates) In the periodic Mt/GI/s queueing model starting
empty in the distant past,

λL ≡ inf
0≤t<c

λ(t) ≤ λ̄k(∞) ≤ sup
0≤t<c

λ(t) ≡ λU . (14)

2.1 The Periodic Mt/M/s Model

For the special case of an exponential service-time distribution, i.e., for the Mt/M/s model, the
stochastic process {Q(t) : t ≥ 0} is Markov and more convenient explicit formulas are available.

We first observe that an analog of Theorem 3.1 of [7] also holds for the fitted death rates in the
present time-varying case.

Theorem 2.3 (explicit death rates) For the periodic Mt/M/s model with ρ̄ < 1,

µ̄k(∞) = min {k, s}µ, k ≥ 0, (15)

so that

λ̄k(∞) =
αc
k+1 min {k + 1, s}µ

αc
k

, k ≥ 0, (16)

for αc
k in (7).

Proof. As for Theorem 3.1 of [7], (15) follows from the lack of memory property of the exponential
distribution. We then apply (4) to get (16). However, we now show that it is also possible to
directly apply Theorem 3.1 of [7] here. We use the fact that the Mt/M/s model has a proper
dynamic periodic steady-state distribution with a period equal to the period of the arrival process,
cf. [18]. For that model we can convert the arrival process to a stationary point process by simply
randomizing where we start in the first cycle. If the period is of length d, then we start the arrival
process at time t, where t is uniformly distributed over the interval [0, d]. That randomization
converts the arrival process to a stationary point process, so that we can apply Theorem 3.1 of [7]
(a). But then we observe that the randomization does not alter the limit (15).

We next observe that a geometric tail holds for the Mt/M/s model with the same decay rate
as for the associated stationary M/M/s model with arrival rate λ̄. Recall that a probability vector
α has a geometric tail with decay rate σ if

αk ∼ ζσk as k → ∞, (17)

for positive constants σ and ζ, i.e., if the ratio of the two sides in (17) converges to 1 as k → ∞;
see §3.3 of [7].
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Theorem 2.4 (geometric tail) For the Mt/M/s model with s < ∞ and λ̄ < sµ, the periodic steady-
state pmf’s αk(t) and αc

k in (7) possess a geometric tail as in (17) with the same decay rate as in
the associated stationary M/M/s model with arrival rate λ̄; i.e.,

αk(t) ∼ ζtσ
k
t as k → ∞ for each t, 0 ≤ t < c, (18)

and
αc
k ∼ ζcσk

c as k → ∞, (19)

where

σc = σt = σ = ρ ≡
λ̄

sµ
, ζt ≥ ζ ≥ (1− ρ) and ζc ≥ ζ ≥ (1− ρ) (20)

with (ζ, σ), (ζt, σt) and (ζc, σc) denoting the asymptotic parameter pairs for M/M/s, α(t) and αc.
As a consequence,

λ̄k(∞) → λ̄ as k → ∞. (21)

Proof. For each t in a cycle [0, c], the tail behavior can be deduced by considering bounding
discrete-time processes, looking at the system at times t + kc, k ≥ 0. Both systems are bounded
below by the discrete-time model that has all arrivals in each interval at the end of the interval
and all departures at the beginning of the interval, while both systems are bounded above by the
discrete-time model that has all arrivals in each interval at the beginning of the interval and all
departures at the end of the interval. These two-discrete time systems are random walks with
steady-state distributions satisfying (17) with common decay factor σ = ρ. A step in the random
walk is the difference of two Poisson random variables U−D, where EU = λ̄c and ED = sµc, which
have ratio EU/ED = λ̄/sµ, which in turn determines the decay rate. A stochastic comparison [6]
then implies that βt ≥ β. For the final inequality in (20), we can compare the M/M/s system to
the corresponding M/M/1 model with a fast server, working at rate sµ. The two systems have the
same birth rate, while the M/M/1 system has death rates that are greater than or equal to those
in the M/M/s model. Hence, the steady-state distributions are ordered stochastically. Finally, the
final limit in (21) follows from Theorem 2.3 and (19), where here sµσ = sµρ = λ̄.

We remark in closing this section that the periodic Mt/M/∞ has different tail behavior; hence
the assumption that s < ∞. We next start considering the IS model.

2.2 The Periodic Infinite-Server Model

We now consider the special case of the periodic Mt/GI/∞ IS model, because it admits many
explicit formulas, as shown in [9, 10, 27]. If we let the model start empty in the indefinite past with
a fixed periodic arrival-rate function, then it can be regarded as in periodic steady-state at time 0.
However, to directly show the convergence to a periodic steady state (prove Theorem 2.1) in this
case, we assume it starts empty at time 0.

By Theorem 1 of [10], the number in system has a Poisson distribution for each t with mean
function m(t), where

m(t) = E[S]

∫ t

0
λ(t− s)dGe(s), t ≥ 0, (22)

and Se is a random variable with the stationary-excess cdf Ge associated with the service-time cdf
G, i.e.,

Ge(t) ≡ P (Se ≤ t) ≡
1

E[S]

∫ t

0
(1−G(s)) ds, t ≥ 0. (23)
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Moreover, the departure process in the Mt/GI/∞ model is a Poisson process with rate function
where

δ(t) =

∫ t

0
λ(t− s)dG(s), t ≥ 0. (24)

For a periodic arrival-rate function with period c, we have

m(nc+ t) = E[S]

∫ nc+t

0
λ(nc+ t− s)dGe(s) = E[S]

∫ nc+t

0
λ(c+ t− s)dGe(s) (25)

and

δ(nc + t) =

∫ nc+t

0
λ(nc+ t− s)dG(s) =

∫ nc+t

0
λ(c+ t− s)dG(s), t ≥ 0, (26)

Because these integrals are nondecreasing functions of n, they converge to limits as n → ∞, thus
directly proving Theorem 2.1. The periodic steady state is obtained directly by starting empty in
the indefinite past. As stated in Theorem 1 of [10], the number in system has a Poisson distribution
for each t with periodic mean function m(t), with the same period c, where

m(t) = E[λ(t− Se)]E[S] = E[S]

∫ ∞

0
λ(t− s)dGe(s), t ≥ 0, (27)

Moreover, the departure process in the Mt/GI/∞ model is a Poisson process with periodic rate
function δ(t), with the same period c, where

δ(t) = E[λ(t− S)] =

∫ ∞

0
λ(t− s)dG(s), t ≥ 0. (28)

For the special case of a sinusoidal arrival rate function, an explicit expression for m(t) is given in
Theorem 4.1 of [9].

As a consequence, we have the following corollary.

Corollary 2.2 (periodic steady-state distribution in the IS model) In the periodic Mt/GI/∞ queue-
ing model starting empty in the distant past, α(t), 0 ≤ t < c and αc are well defined probability
vectors with

αk(t) = πk(m(t)), 0 ≤ t < c, and αc
k =

1

c

∫ c

0
πk(m(t)) dt, (29)

for m(t) in (27), where πk(m) be the Poisson distribution with mean m, i.e.,

πk(m) ≡
e−mmk

k!
, k ≥ 0.

We now consider the fitted death rates estimated with ample data, i.e., µ̄k(∞). To obtain
the departure rate conditional on the number of busy servers, we use the following consequence
of Theorem 2.1 of [14], which characterizes the time-varying distributions of the remaining service
times in an Mt/GI/∞ model, conditional on the number of busy servers, extending the classical
result for the M/GI/∞ model.

Theorem 2.5 (remaining service times conditional on the number) Consider the periodic Mt/GI/∞
queueing model starting empty in the distant past, where the service-time cdf G has pdf g. Con-
ditional on Q(t) = k, the remaining service times at time t are distributed as k i.i.d. random
variables with pdf

gk,t(x) =

∫∞
0 λ(t− u)g(x + u) du
∫∞
0 λ(t− u)Gc(u) du

, x ≥ 0,

which is independent of k.
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We now apply Theorem 2.5 to obtain the following general result about the fitted death rates.

Theorem 2.6 (fitted death rates) Consider the Mt/GI/∞ queue with a periodic arrival rate func-
tion in the setting of Theorem 2.5. Conditional on Q(t) = k, the departure rate at time t is

δk(t) = kδ1(t) = kgk,t(0) =
kµE[λ(t− S)]

E[λ(t− Se)]
=

kδ(t)

m(t)
. (30)

Hence, paralleling the fitted birth rate in (12),

µ̄k(∞) =

∫ c
0 αk(t)δk(t) dt

cαc
k

=
k
∫ c
0 αk(t)(δ(t)/m(t)) dt

cαc
k

, k ≥ 1, (31)

where αk(t), α
c
k, m(t) and δ(t) are given in (29), (27) and (28).

Proof. First, we get (30) directly from Theorem 2.5 and formulas (27) and (28). The first term
in (31) can be taken as a definition. Then we apply (30).

Paralleling Corollary 2.1, Theorem 2.6 implies bounds for the fitted death rates.

Corollary 2.3 (bounds on the fitted death rates) In the periodic Mt/GI/∞ queueing model starting
empty in the distant past,

µL ≡ inf
0≤t<c

{δ(t)/m(t)} ≤
µ̄k(∞)

k
≤ sup

0≤t<c
{δ(t)/m(t)} ≡ µU . (32)

for m(t) in (27) and δ(t) in (28).

Proof. Theorem 2.6 expresses µ̄k(∞)/k as an average of δ(t)/m(t) over one cycle.
We get equality of the upper and lower bounds in (32), recovering (15) for s = ∞, if S is

exponential, because then δ(t) = m(t)µ since Se is distributed the same as S. Indeed, we also get
an associated negative result, because it is known that Se is distributed the same as S if and only
if S is exponential. Thus, we have the following consequence.

Corollary 2.4 (direct proportionality of the fitted death rates) In the periodic Mt/GI/∞ queueing
model with service-time S having mean E[S] = 1/µ,

µ̄k = kµ for all k ≥ 0 (33)

and for all periodic arrival-rate functions λ if and only if S is exponential.

We now apply Theorem 2.5 to deduce a rate conservation property for this Mt/GI/∞ model
in each state over a periodic cycle.

Theorem 2.7 (arrival and departure rates over a cycle) For the periodic Mt/GI/∞ queueing
model starting empty in the distant past,

∫ c

0
αk(t)λ(t) dt =

∫ c

0
αk(t)δ(t) dt for each k ≥ 0 (34)

for αk(t) in (29), so that
∫ c

0
λ(t) dt =

∫ c

0
δ(t) dt. (35)
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Proof. Since the arrival rate at time t is λ(t), independent of the state k, we can apply first (4)
and then (30) to obtain

∫ c

0
αk(t)λ(t) dt = cαc

kλ̄k(∞) = cαc
k+1µ̄k+1(∞) =

∫ c

0
αk+1(t)δk+1(t) dt

=

∫ c

0
αk+1(t)(k + 1)[δ(t)/m(t)] dt =

∫ c

0
αk(t)δ(t) dt, (36)

as in (34). We add over k to get (35).

3 The IS Model with a Sinusoidal Arrival-Rate Function

We now consider the special case of the periodic Mt/GI/∞ IS model with the sinusoidal arrival
rate function in (8). For this model we draw on previous results established in [9].

3.1 A General Service-Time Distribution

We can apply Corollary 2.1 to obtain explicit bounds on the fitted birth rates.

Corollary 3.1 (bounds on the fitted birth rates) For the Mt/GI/∞ model with sinusoidal arrival
rate function in (8) having 0 < β < 1, starting empty in the distant past,

0 < (1− β) ≤
λ̄k(∞)

λ̄
≤ (1 + β) < 2 for all k ≥ 0. (37)

We now establish asymptotic results for the extreme cases in which the cycles are very long
(γ ↓ 0) or are very short (γ ↑ ∞). We directly show the dependence on γ; e.g., by writing λ̄k(∞; γ).
The following result is consistent with the known results that the arrival process converges to a
stationary Poisson process, and the steady-state distribution converges to a Poisson distribution
with mean λ̄/µ as γ ↓ 0; see Theorem 1 of [30].

Theorem 3.1 (short cycles) For the Mt/GI/∞ model with sinusoidal arrival rate function in (8),

λ̄k(∞; γ) → λ̄ and µ̄k+1(∞; γ) → (k + 1)µ as γ ↑ ∞ for all k ≥ 0. (38)

Proof. First, it is helpful to rewrite (12) so that the integrals are over a fixed interval, independent
of γ. By making a change of variables s = γt, we obtain

λ̄k(∞; γ) =

∫ 2π/γ
0 αk(t)λ(t) dt
∫ 2π/γ
0 αk(t) dt

=

∫ 2π
0 αk(s/γ)λ(s/γ) ds
∫ 2π
0 αk(s/γ) ds

(39)

The conclusion follows in two steps. First, λ(s; γ) → λ̄ as γ ↑ ∞, uniformly in s over [0, 2π]. (Recall
that λ(0; γ) = λ̄ because sin (0) = 0 and that sin (t) → 0 as t ↓ 0.) Second, by Theorem 4.5 of
[9], m(t; γ) → λ̄/µ as γ ↑ ∞, uniformly in t. Hence, αk(t; γ) → αk(t;∞) as γ ↑ ∞, uniformly in t,
where αk(t;∞) is the Poisson pmf with mean λ̄/µ, independent of t. For the fitted death rates, we
apply (4) to write

µ̄k+1(∞; γ) =
λ̄k(∞; γ)αc

k;γ

αc
k+1;γ

→
λ̄αc

k;∞

αc
k+1;∞

= (k + 1)µ as γ ↑ ∞, (40)

10



because αk(t;∞) is the Poisson pmf with mean λ̄/µ independent of t.
We now turn to the case of long cycles, where the PSA is appropriate. Thus, the steady-state

pmf αc is the average of the individual steady-state pmf’s for each t in the cycle; see Theorem 1 of
[31]

Theorem 3.2 (long cycles) For the Mt/GI/∞ model with sinusoidal arrival rate function in (8),

λ̄k(∞; γ) →
(k + 1)µαc

k+1;0

αc
k;0

and µ̄k+1(∞; γ) → (k + 1)µ as γ ↓ 0 (41)

for all k ≥ 0, where αc
k;0 is the time average of αc

k(t; 0) which is the Poisson pmf with mean

λ̄λ1(t)/µ, where λ1(t) = 1 + β sin(t), 0 ≤ t ≤ 2π.

Proof. By Theorem 4.4 of [9], m(t/γ) → λ(t)/µ as γ ↓ 0 uniformly in t. Hence, αk(t; γ) → αk(t; 0)
uniformly in t. We then apply this starting from (39), getting

λ̄k(∞) =

∫ 2π/γ
0 αk(t)λ(t) dt
∫ 2π/γ
0 αk(t) dt

=

∫ 2π
0 αk(s/γ)λ(s/γ) ds
∫ 2π
0 αk(s/γ) ds

→

∫ 2π
0 αk(s; 0)λ(s; 0) ds
∫ 2π
0 αk(s; 0) ds

=

∫ 2π
0 (k + 1)µαk+1(s; 0) ds

∫ 2π
0 αk(s; 0) ds

=
(k + 1)µαc

k+1;0

αc
k;0

,

because αk(s; 0) is the Poisson pmf with mean λ(s; 0)/µ at time s.

3.2 The Mt/M/∞ Model with Sinusoidal Arrival Rate

In this section we determine tight bounds for the fitted birth rates for the Mt/M/∞ model with
sinusoidal arrival rate. Tightness is verified by showing that these bounds are approached in the
heavy-traffic limit.

As shown in [9], the Mt/M/∞ model with sinusoidal arrival rate function in (8) is especially
tractable. From (15) of [9], the number in system, Q(t), has a Poisson distribution for each t with
mean

m(t) ≡ E[Q(t)] = λ̄(1 + s(t)), s(t) =
β

1 + γ2
(sin(γt)− γ cos(γt)) . (42)

Moreover,

sU ≡ sup
t≥0

s(t) =
β

√

1 + γ2
(43)

and

s(tm0 ) = 0 and ṡ(tm0 ) > 0 for tm0 =
cot−1 (1/γ)

γ
. (44)

The function s(t) increases from 0 at time tm0 to its maximum value sU = β/
√

1 + γ2 at time
tm0 + π/(2γ). The interval [tm0 , tm0 + π/(2γ)] corresponds to its first quarter cycle.

Let Z be a random variable with the steady-state probability mass function (pmf) of Q(t); its
pmf is a mixture of Poisson pmf’s. In particular,

P (Z = k) =
γ

2π

∫ 2π/γ

0
P (Q(t) = k) dt, k ≥ 0, (45)

11



The moments of Z are given by the corresponding mixture

E[Zk] =
γ

2π

∫ 2π/γ

0
E[Q(t)k] dt, k ≥ 1,

so that E[Z] = λ̄. For more details, see [34].
We use (42) to improve the bounds in Corollary 3.1 and obtain a simple proof of Theorem 3.1

in this case.

Theorem 3.3 (bounds for the fitted birth rates for the Mt/M/∞ model with sinusoidal arrival
rate function) In the Mt/M/∞ IS queueing model with the sinusoidal arrival rate function in (8),
starting empty in the distant past,

λ̄

(

1−
β

√

1 + γ2

)

≤ λ̄k(∞) ≤ λ̄

(

1 +
β

√

1 + γ2

)

for all k ≥ 0. (46)

and
λ̄k(∞) → λ̄ as γ → ∞ for all k ≥ 0. (47)

Proof. We apply (4) to obtain the expression

(k + 1)λ̄k(∞)

µ̄k+1(∞)
=

αc
k+1

αc
k

, k ≥ 0. (48)

Since we have M service, µ̄k+1(∞) = (k + 1)µ. Hence we can write

λ̄k(∞) =
(k + 1)µαc

k+1

αc
k

, k ≥ 0. (49)

Since the integrand in the integral representation of αc
k+1 in (29) differs from the the integrand in

the integral representation of αc
k by an extra factor of m(t)/(k + 1), we can insert the bounds on

m(t) in (18) of [9] to obtain (46). Clearly, (47) follows from (46).
We conclude by deriving a heavy-traffic limit showing that the lower and upper bounds estab-

lished in Theorem 3.3 are attained in the heavy-traffic limit. This limit involves λ̄, which is both
the long-run average arrival rate and the long-run average number of busy servers. In the limit
λ̄ → ∞, any fixed state k, independent of λ̄, will thus be a small state in the limit, so we should
expect to see the minimum value of the increasing fitted birth rate function in the first limit in (50)
below. To have a relatively large state compared to λ̄ asymptotically in the limit λ̄ → ∞, we let
the state index be ⌊mλ̄⌋+ k for suitably large m in the second limit. That yields the upper bound.

Theorem 3.4 (heavy-traffic limits) In the Mt/M/∞ IS queueing model with periodic arrival rate
function, starting empty in the distant past,

λ̄k(∞)

λ̄
→ 1−

β
√

1 + γ2
as λ̄ → ∞ and

λ̄⌊mλ̄⌋+k(∞)

λ̄
→ 1 +

β
√

1 + γ2
as λ̄ → ∞ for m > 1/ loge 2 ≈ 1.44. (50)

12



Proof. We expand (49), writing

λ̄k(∞) =
αc
k+1(k + 1)µ

αc
k

=
µ
∫ c
0 e−m(t)m(t)k+1 dt
∫ c
0 e−m(t)m(t)k dt

(51)

In each case of (50), we apply Laplace’s method to the numerator and denominator of (51), after
pre-multiplying both by the same appropriate term (so this term cancels). Let x ≡ λ̄/µ and consider
the first expression. In particular, After multiplying the numerator and denominator by ex/xk, we
can express the denominator as

∫ c

0
e−xs(t)(1 + s(t))k dt ∼

√

2π

x|s′′(x0)|
(1 + s(x0))

kexs(x0) as x → ∞,

where ∼ means that the ratio of the two sides converges to 1, s(t) ≡ m1(t) − 1 for m1(t) in (42),
where c = 2π/γ and x0 = c−cot−1(1/γ))/γ and m(x0) = (λ̄/µ)(1−β/(

√

1 + γ2)), by virtue of (16)
and (18) in [9]. (The minus sign in the exponent of e−xs(t) means that we look for the most negative
value of s(t).) We have used the fact that the integral is dominated by an appropriate modification
of the integrand at a single point when x becomes large. The ratio in (51) thus approaches 1+s(x0).

For the second expression, after multiplying the numerator and denominator by ex/xx+k, we
can express the denominator as

∫ c

0
e−xs(t)(1 + s(t))mx+k dt =

∫ c

0
e+x[m log

e
{1+s(t)}−s(t)](1 + s(t))k dt

∼

√

2π

x|f ′′(x0)|
(1 + s(x0))

kexf(x0) as x → ∞,

where f(t) ≡ m loge {1 + s(t)} − s(t), so that x0 = (c/4) + cot−1(1/γ))/γ and m(x0) = (λ̄/µ)(1 +
β/(
√

1 + γ2)), again by (16) and (18) in [9]. (The plus sign in the exponent of e+x[m log
e
{1+s(t)}−s(t)]

with m > 1/ log2 2 means that we look for the most positive value of s(t).) The ratio in (51) again
approaches 1 + s(x0).

4 Simulation Experiments

We now investigate whtat the fitted birth rates, death rates and steady-state distributions look like
in these Mt/GI/s models by conducting simulation experiments. In doing so, we illustrate and
confirm the theoretical results in §2 and §3.

4.1 Designing the Simulation Experiments

Our base model is the Mt/M/∞ model with the sinusoidal arrival-rate function in (8), which is
the special case of the Mt/GI/s model in which s = ∞, S has an exponential distribution and
β = 10/35. We generated the NHPP arrival process by thinning a Poisson process with rate equal
to the maximum arrival rate over a sine cycle. Since we use relative amplitude β = 10/35, with
λ̄ = 35 a proportion 10/(35+10) = 10/45 = 0.222 of the potential arrivals were not actual arrivals.
The fitted birth and death rates as well as the empirical mass function were estimated using 30
independent replications of 1.5 million potential arrivals before thinning. Overall, that means about
45× (35/45) = 35 million arrivals in each experiment. Multiple i.i.d. repetitions were performed to
confirm high accuracy within the regions shown. In order to compare the transient behavior of the
fitted BD process to the original process, we simulated a separate version of the fitted BD process
in a similar manner.
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4.2 The Mt/M/s Models

Figures 1 and 2 show the estimated birth and death rates for the Mt/M/s models with s = ∞ and
s = 40, respectively.
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Figure 1: Fitted birth rates (left) and fitted death rates (right) for the Mt/M/∞ model with the
sinusoidal arrival rate function in (8) having parameters λ̄ = 35 and βλ̄ = 10 and 7 values of γ
ranging from 1/8 to 8.
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Figure 2: Fitted birth rates (left) and fitted death rates (right) for the Mt/M/40 queue with the
sinusoidal arrival rate function in (8) having parameters λ̄ = 35 and βλ̄ = 10 and 7 values of γ
ranging from 1/8 to 8.

The estimated BD rates yield corresponding estimates of the steady-state distribution by solving
the local balance equation (4). The estimated steady-state distributions for the Mt/M/∞ model
with the sinusoidal arrival rate function in (8) having parameters λ̄ = 35 and β = 10/35 for different
ranges of γ are shown in Figure 3. On the left (right) is shown different cases varying in a power
of 10 (2). Many of the plots on the left coincide, so that we see convergence as γ ↑ ∞ and as
γ ↓ 0. Indeed, the relevant ranges for intermediate behavior can be said to be 1/8 ≤ γ ≤ 8 for these
parameters λ̄ = 35 and β = 10/35, with the limits serving as effective approximations outside this
interval.

4.3 Different Service Distributions: Near Insensitivity

We have also conducted corresponding simulation experiments for Mt/GI/s models with non-
exponential service-time distributions. Figures 4 and 5 show the fitted rates for the Mt/GI/∞
model with H2 and E2 service distributions with scv c2 = 2 and c2 = 1/2, respectively, just as in
§2 of [7]. Figure 6 shows the associated steady-state mass functions for H2 and E2 service times,
which also look similar.
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Figure 3: the estimated steady-state number in the Mt/M/∞ model with the sinusoidal arrival
rate function in (8) having parameters λ̄ = 35 and β = 10/35 for different ranges of γ.
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Figure 4: Fitted birth rates (left) and fitted death rates (right) for the Mt/H2/∞ model with the
sinusoidal arrival rate function in (8) having parameters λ̄ = 35 and βλ̄ = 10 and 7 values of γ
ranging from 1/8 to 8. (The service scv is c2 = 2.)

Indeed, the agreement is so good for these infinite-server models that it is natural to wonder
whether the fitted birth rate, fitted death rate and steady-state pmf with s = ∞ have an insen-
sitivity property, i.e., depend on the service-time distribution only through its mean. However,
closer examination show that it is not so. We do see that the insensitivity property does hold
asymptotically as γ ↓ 0 for s = ∞, which is to be expected. In that limit the PSA approximation
is valid [32], so that at time t the model has a time-varying distribution equal to the steady-state
distribution of the stationary M/GI/∞ model with constant arrival rate equal to λ(t).

Figures 7-9 illustrate the full range of possibilities by showing the estimated birth rates, death
rates and steady-state pmf’s for the Mt/GI/∞ model with the sinusoidal arrival rate function in
(8) having parameters λ̄ = 100 and β = 10/35 and 4 different service-time distributions for γ = 1/2
(left) and γ = 2 (right). For γ = 1/2, we again see near-insensitivity, but for γ = 2, we see
significant dependence upon the service-time distribution. Further study shows that the difficulty
primarily arises for large values of γ, which are not so common in applications. We also see that
changing only the service-time pmf can affect the estimated birth rates as well as the estimated
death rates, and then the final steady-state pmf. The interesting bimodal form of the steady-state
pmf in some cases is investigated in [34]. The two modes roughly correspond to the two extremes
of the pmf; the process Q(t) tends to spend more time near these extremes.
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Figure 5: Fitted birth rates (left) and fitted death rates (right) for the Mt/E2/∞ model with the
sinusoidal arrival rate function in (8) having parameters λ̄ = 35 and βλ̄ = 10 and 7 values of γ
ranging from 1/8 to 8.
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Figure 6: Fitted steady-state mass functions for the Mt/H2/∞ model (left) and the Mt/E2/∞
model (right) for with the sinusoidal arrival rate function in (8) having parameters λ̄ = 35 and
βλ̄ = 10 and 7 values of γ ranging from 1/8 to 8.

4.4 Transient Behavior

It should be evident that the transient behavior of the fitted BD process and the original process
have significant differences. In particular, there is no periodicity in the fitted BD process. The
differences are particularly striking with small γ, i.e., for long cycles c(γ) = 2π/γ. That is dra-
matically illustrated in Figure 10, which compares the sample paths of the number in system of
the two processes for the Mt/M/∞ queue with the sinusoidal arrival rate function in (8) having
parameters λ̄ = 100 and β = 10/35 and γ = 0.01. Since γ = 0.01, the cycle length is 628. Hence
in the time interval [0, 4000] we see a bit more than six cycles, but there is no periodic behavior in
the fitted BD process.

However, the sample paths are not always so strikingly different. Indeed, the sample paths get
less different as γ increases. Figures 11 and 12 illustrate by showing the sample paths for γ = 1 and
γ = 10 over the interval [0, 40]. For γ = 1, there are again 6.28 sine cycles, but for γ = 10, there
are 62.8 cycles. In these cases, the sample paths look much more similar. From Figures 11 and 12,
we conclude that we might well use the fitted BD process to describe the transient behavior as well
as the steady-state behavior for γ ≥ 1, i.e., for relatively short cycles. Periodic arrival rates with
short cycles often arise in practice in appointment-generated arrivals, where the actual arrivals are
randomly distributed about the scheduled appointment times; see [23, 24] and references therein.
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Figure 7: Estimated death rates for the Mt/GI/∞ model with the sinusoidal arrival rate function
in (8) having parameters λ̄ = 100 and β = 10/35 and 4 different service-time distributions for
γ = 1/2 (left) and γ = 2 (right).

Figure 8: Estimated birth rates for the Mt/GI/∞ model with the sinusoidal arrival rate function
in (8) having parameters λ̄ = 100 and β = 10/35 and 4 different service-time distributions for
γ = 1/2 (left) and γ = 2 (right).

4.5 Limits for Small and Large γ

The behavior of the fitted BD process can be better understood by limits for the steady-state
distribution of the Mt/M/∞ model as γ ↑ ∞ and as γ ↓ 0. First, as γ ↑ ∞, even though
the arrival rate function oscillates more and more rapidly, the cumulative arrival rate function
Λ(t) ≡

∫ t
0 λ(s) ds converges to the linear function λ̄t. Consequently, the arrival process converges

to a stationary Poisson process (M) with the average arrival rate λ̄ and the steady-state number
in system converges to the Poisson steady-state distribution in associated the stationary M/M/∞
model with mean λ̄. That follows from Theorem 1 of [30] and references therein; [35]. As a
consequence, as γ ↑ ∞ we must have the fitted birth rates in the fitted BD process converge to the
constant birth rates of a Poisson process, and that is precisely what we see as γ increases in Figure
1.

Second, as γ ↓ 0, the cycles get longer and longer, so that the system behaves at each time t
as a stationary model with the instantaneous arrival rate at that particular time t. That is the
perspective of the pointwise stationary approximation (PSA) for queues with time-varying arrival
rates [15], which is asymptotically correct for the Mt/M/∞ model as γ ↓ 0. That follows from
Theorem 1 of [31]. As a consequence, as γ ↓ 0 we must have the fitted birth rates in the fitted BD
process converge to a proper limit, corresponding to an appropriate average of the birth rates seen
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Figure 9: Estimated steady-state pmf’s for the Mt/GI/∞ model with the sinusoidal arrival rate
function in (8) having parameters λ̄ = 100 and β = 10/35 and 4 different service-time distributions
for γ = 1/2 (left) and γ = 2 (right).
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Figure 10: sample paths of the number in system for the original process (left) and the fitted
BD process (right) for the Mt/M/∞ queue with the sinusoidal arrival rate function in (8) having
parameters λ̄ = 100 and β = 10/35 and γ = 0.01.

at each time t for t in a sinusoidal cycle, and that is precisely what we see as γ increases in Figure
1. In particular, the limit Z0 of the steady-state variable Z ≡ Zγ as γ ↓ 0 is the mixture of the
steady-state distributions. That is, by combining the PSA limit with (45), we see that

P (Z0 = k) =
1

2π

∫ 2π

0
P (Q0(t) = k) dt, k ≥ 0, (52)

where Q0(t) has a Poisson distribution with mean m0(t) = λ1(t), where we let γ = 1. In particular,
this limit as γ ↓ 0 becomes independent of γ.

These two limits as γ ↑ ∞ and as γ ↓ 0 can be seen by comparing the sample paths of the
fitted BD processes for different γ. This is especially interesting for the long-cycle case. Figure 13
illustrates by showing the sample paths of the number in system for the fitted BD process in the
Mt/M/∞ queue with the sinusoidal arrival rate function in (8) having parameters λ̄ = 100 and
β = 10/35 and γ = 0.1 (left) and γ = 0.01 (right). The plots of different interval lengths show that
the fitted BD processes are very similar.
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Figure 11: sample paths of the number in system for the original process (left) and the fitted
BD process (right) for the Mt/M/∞ queue with the sinusoidal arrival rate function in (8) having
parameters λ̄ = 100 and β = 10/35 and γ = 1.0.

Figure 12: sample paths of the number in system for the original process (left) and the fitted
BD process (right) for the Mt/M/∞ queue with the sinusoidal arrival rate function in (8) having
parameters λ̄ = 100 and β = 10/35 and γ = 10.

5 Estimating the Steady-State Distribution

In this section we investigate how we can efficiently estimate the steady-state distribution by fitting
parametric functions to the estimated birth and death rates and then solve the local balance equa-
tion (4). We illustrate what should be possible in applications by considering the base Mt/M/∞
IS model with a sinusoidal arrival-rate function. Figures 1-6 in §4.2 show what to expect. In ap-
plications it is likely to be appropriate to use different fitting functions, but the general approach
should be the same.
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Figure 13: sample paths of the number in system for the fitted BD process in the Mt/M/∞ queue
with the sinusoidal arrival rate function in (8) having parameters λ̄ = 100 and β = 10/35 and
γ = 0.1 (left) and γ = 0.01 (right).

5.1 The Base Infinite-Server Model with Sinusoidal Arrival Rate Function

First, for Mt/GI/∞ IS model with E[S] = 1, we do not need to consider the death rates, because
we have µ̄k ≈ k throughout; for M service, we have equality by Theorem 2.3. Hence, we concentrate
on the birth rates, initially using the same large sample as before. For larger values of γ, a linear
function works well for the fitted birth rate, but not for smaller values of γ. As our parametric
function, we choose

λp
k = a arctan b(k − c) + d, (53)

which is nondecreasing in k with finite limits as k increases and decreases, and has the parameter
four-tuple (a, b, c, d). We let c = d = λ̄, so that leaves only the two parameters a and b.

Figures 14, 15 and 16 show the fitted mass function and birth rates for the three gamma values:
γ = 1/8, 1/2 and 2, respectively. These were constructed using the Matlab curve fitting toolbox,

Figure 14: Fitted mass function (left) and birth rates (right) for the Mt/M/∞ model with the
sinusoidal arrival rate function in (8) having parameters λ̄ = 35, βλ̄ = 10 and γ = 0.125
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Figure 15: Fitted mass function (left) and birth rates (right) for the Mt/M/∞ model with the
sinusoidal arrival rate function in (8) having parameters λ̄ = 35, βλ̄ = 10 and γ = 0.5

Figure 16: Fitted mass function (left) and fitted birth rates (right) for the Mt/M/∞ model with
the sinusoidal arrival rate function in (8) having parameters λ̄ = 35, βλ̄ = 10 and γ = 2.0

which fits by least squares. The figures show that the special arctangent function in (53) does much
better than a linear fit for small γ, but a simple linear fit works well for large γ. The parameter
pairs in the three cases were (a, b) = (7.541, 0.125), (6.682, 0.1253) and (3.577, 0.0744), respectively.
The main point is that a parametric fit based on only two parameters yields an accurate fit to a
mass function that can be quite complicated. The regular structure of the birth and death rates
make it possible to obtain relatively good (at least reasonable) estimates of the steady-state in
distribution in the tails where there tend to be few data points.

We make some further comments about Figures 14-16. As γ → ∞, the cycles become very short,
so that the arrival-rate function oscillates very rapidly, but the cumulative arrival rate function
approaches the function λ̄t, and so the arrival process approaches a stationary Poisson process as
observed in §4.5. Accordingly, the steady-state distribution is asymptotically Poisson, which is
approximately normal. We see that already in Figure 16 for γ = 2. The distributions with smaller
γ (longer cycles) are the average of Poisson distributions, but Figure 14 show that they are more
complicated; see [34].
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5.2 Small Samples

To illustrate the advantages of the arctan BD fit, we also conducted experiments evaluating the
estimators with smaller sample sizes. Figures 17 and 18 illustrate for the model with γ = 0.125 in
Figure 14, but with the sample size greatly reduced.
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Figure 17: A comparison of the arctan BD fit to a small-sample direct fit of the steady-state
probability mass function (left) and birth rates (right) for the Mt/M/∞ model with the sinusoidal
arrival rate function in (8) having parameters λ̄ = 35, βλ̄ = 10 and γ = 0.125. Data are collected
from 10 cycles as indicated. The previous large-sample fit is used to represent the “true value.”
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Figure 18: A comparison of the arctan BD fit to a small-sample direct fit of the steady-state tail
probabilities (left) and (right) for the Mt/M/∞ model in Figure 17. The large-sample fit is used
to represent the “true value.”

Now we consider a smaller experiment with about 25,000 potential arrivals instead of the 45
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million potential arrivals (resulting in about 35 million actual arrivals) in our previous experiments.
In particular, we simulate 10 replications of the model over a full cycle. Since γ = 1/8, a cycle
length is 2π/γ ≈ 50. Since the average arrival rate is λ̄ = 35, there are about 35 × 50 = 1750
arrivals per cycle.

We first take measures to ensure that the system starts approximately in dynamic periodic
steady state. To do that, we extract our data from a longer run that has already reached steady
state, which for our γ = 1/8 and all γ not too large, is in the first cycle, after starting empty. we
start the data collection at the first time t such that Q(t) = 15 after a time t0 for which Q(t0) = 45
and we terminate the first time that condition is repeated, which invariably is approximately a full
cycle after the data collection began. (We remark that the sampling procedure is similar to the
way that the speed ratios were estimated in [7].)

That procedure satisfies three requirements: (i) the system starts approximately in dynamic
periodic steady state; (ii) the terminal state coincides with the initial state, so that the two empirical
mass functions ᾱ and ᾱe constructed from the directly estimated BD rates coincide, as indicated
in §1.1, and (iii) we average over roughly a full cycle (or more generally, multiple full cycles). In
addition, we get a smoother fit by fitting the parametric function in (53) to the estimated birth
rates.

Figure 17 shows that both estimated steady-state pmf’s are quite good considering the small
sample size. Our sampling procedure clearly helps for both the direct estimation and the arctan
BD fit. The advantage of the arctan fit is perhaps most evident in Figure 18, which shows the
estimated tail probabilities. Evidently, the arctan BD fit can “extrapolate” reasonably to regions
where there are few data points or none at all. However, as in all such extrapolations, caution is
required. Justification of such extrapolations may in part depend on extra information about what
we know about the system.

The observations above are amplified by considering even smaller sample sizes. To illustrate,
we now repeat the experiment using the data from only a single cycle. (The sample size is now
further reduced by a factor of 10.) Figures 19 and 20 show the analogs of Figures 17 and 18.
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Figure 19: A repeat of the experiment in 17 with data from one cycle instead of ten cycles. Estimates
are shown of the steady-state probability mass function (left) and birth rates (right)

23



0 2 4 6 8 10 12 14 16 18 20
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
Comparison of Estimated Left Tail Probabilities, γ =0.125

 

 
Small Sample
Arctan Fit
Large Sample

50 52 54 56 58 60 62 64 66 68 70
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
Comparison of Estimated Right Tail Probabilities, γ =0.125

 

 
Small Sample
Arctan Fit
Large Sample

Figure 20: A comparison of the arctan BD fit to a small-sample direct fit of the steady-state tail
probabilities (left) and (right) with data from one cycle instead of ten cycles.

6 Stochastic Grey-Box Modeling of Queueing Systems

In addition to investigating an alternative way to estimate a steady-state distribution from data,
as illustrated by §5, this paper further explores how fitting a BD process to queueing system data
can be used as a grey-box model, which was begun in [7].

6.1 A Diagnostic Tool to Determine What Model Is Appropriate

The goal is to have a diagnostic tool to help evaluate what stochastic queueing model is appropriate
for complex queueing systems. Actual service systems may have complex time-dependence and
stochastic dependence that may be difficult to assess directly. Fitting a BD process may be a
useful way to probe into system data. In [7] we referred to this as grey-box stochastic modeling. In
[7] we applied this analysis to various conventional GI/GI/s queueing models. We saw how the
fitted rates {λ̄k, µ̄k} differ from the corresponding M/M/s model, for given overall arrival rate λ
and individual service rate µ. We saw that they differ in systematic ways that enabled us to see a
signature of the GI/GI/s model.

Here we have considered many-server Mt/GI/s queueing models with sinusoidal periodic arrival
rate functions. We find that the fitted death rates usually have the same simple linear structure as
seen for GI/GI/s models, but we find significant differences in the fitted birth rates. Overall, we
see a signature of the Mt/GI/s model with sinusoidal arrival rates.

6.2 Comparing the Fitted Rates in the Mt/M/∞ and GI/M/∞ Models

Our main hypothesis is that the fitted birth and death rates can reveal features of the underlying
model. To compare the impact of predictable deterministic variability in the arrival process, as
manifested in a time-varying arrival rate function, to stochastic variability, we see how the fitted
birth rates differ in the Mt/M/∞ IS model with a sinusoidal arrival rate function and the sta-
tionary GI/M/∞ model with a renewal process having an interarrival time more variable than
the exponential distribution. (When the service-time distribution is exponential with mean 1, the
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fitted death rates coincide with the exact death rates in both cases, i.e., µ̄k = k; see Theorem 3.1
of [7] and Theorem 2.3 here.) However, the fitted birth rates are revealing.

In [7] we found that, when the actual arrival rate is n (provided that n is not too small), with
the service rate fixed at µ = 1, the fitted birth rates in state k, denoted by λn,k, tended to have
the form

λ̄n,k ≈ (n+ b(k − n)) ∨ 0, (54)

where b ≈ 1 − 2/(1 + c2a), a constant in the interval [−1, 1], with c2a being the squared coefficient
of variation (scv, variance divided by the square of the mean) of the interarrival-time distribution
of the renewal arrival process. This is illustrated in Figure 21, which shows the fitted birth rates
and death rates in five GI/M/∞ models with arrival rate λ = 39 and service rate µ = 1. The five
interarrival-time distributions are Erlang E4, E2, M , and hyperexponential, H2 with c2a = 2 and
c2a = 4.

Figure 21 shows that the fitted birth rates tend to be approximately linear (over the region
where the process visits relatively frequently, so that there are ample data for the estimation), with
λn,n = n and slope increasing as the variability increases. This is consistent with greater variability
in the arrival process leading to a larger steady-state number in system. For c2a < 1, the slope is
negative; for c2a > 1, the slope is positive. As c2a increases to ∞, the slope approaches 1.
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Figure 21: Fitted birth rates and death rates for five G/M/∞ models with λ = 39 and µ = 1.

Figure 21 should be compared to Figure 1 in §4.2, which shows the fitted rates for the Mt/M/∞
IS model with the sinusoidal arrival rate function in (8). Very roughly, we expect the predictable
variability of a nonhomogeneous Poisson arrival process with a periodic arrival rate function to cor-
respond approximately to a stationary model with a renewal arrival process having an interarrival-
time distribution that is more variable than an exponential distribution [28]. That means we expect
to see something like the fitted birth rates with increasing linear slopes in Figure 21. And indeed
that is exactly what we do see in Figure 1, but restricted to a subinterval centered at the long-run
average λn,n = n.

The evolution of a BD queue primarily depends on the birth and death rates λk and µk through
their difference, the drift δk ≡ λk − µk+1, k ≥ 0. To see the relevance of the drift, note that

αk+1

αk
> (=<)1 if and only if δk > (− <)0. (55)

Hence we see the modes of α through the zeroes of δ.
We plot the drift functions associated with the G/M/∞ and Mt/M/∞ models in Figures 21

and 1 in Figure 22. These show that there is drift toward the overall mean in all cases, which is
stronger when there is less variability.
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Figure 22: The estimated drift functions (birth rates minus death rates) in (55) for the G/M/∞
model in Figure 21 (left) and the Mt/M/∞ model in Figure 1 (right).

Similar results hold for models with finitely many servers. We show the results paralleling
Figure 1 for the case of 40 servers in Figure 2. Figure 2 shows the piecewise-linear death rates,
with two linear components, joined at the number of servers, that are characteristic of multi-server
queues. Figure 2 of [7] displays similar plots for GI/GI/s queues. However, the estimated birth
rates in Figures 1 and 2 are unlike those of any GI/GI/s queue. Theorems 3.3 and 3.4 establish
finite bounds and heavy-traffic limits for the fitted birth rates, consistent with these figures.

6.3 An Emergency Room Example

To illustrate how the results here can be applied, we show the fitted BD rates obtained from 25
weeks of data from an Israeli emergency department studied in [36]. Figure 23 shows the estimated
birth rate (left), death rate (center) and death rate divided by the state (right) for the ED over a
25-week period. The ED is the same as studied in §3 of [2]. The data used in [36] included about
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Figure 23: The fitted state-dependent birth rate λ̄k (left), death rate µ̄k (center) and death rate
divided by the state, µ̄k/k (right) obtained from arrival and departure data in an Israeli emergency
department over 25 weeks, taken from [36]

25, 000 patient visits to the internal unit of the ED over a 25 week period from December 2004 to
May 2005.

It is well known that the arrivals to an ED vary strongly over time, just as in most service
systems; see Figure 9 of [16]. Thus, a natural candidate rough aggregate model for an ED is the
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Mt/GI/∞ queue, which has a nonhomogeneous Poisson process (NHPP) as its arrival process,
i.i.d. service (length-of-stay, LoS) times with some general (non-exponential, perhaps lognormal)
distribution, s servers, unlimited waiting space and service in order of arrival. The assumption that
the length-of-stay random variables are i.i.d. might be postulated under the assumption that the
length of stay should only depend on the patient’s medical condition.

The fitted BD process is important as a diagnostic tool because it shows that the data are
inconsistent with the Mt/GI/∞ model. The present paper is essential for interpreting Figure 23.
First, Figures 1, 2 and 4 in §6.2 and §4.3 provide strong support for two conclusions: First, as
anticipated, the fitted birth rates are roughly consistent with an NHPP (Mt) arrival process having
a periodic arrival rate function. Second, the fitted death rates are inconsistent with i.i.d. service
times. This second negative conclusion may be easier to see by looking at the state-dependent
death rate divided by the state, so that is why we display that as the third plot in Figure 23.
Extensive simulations show that the fitted death rates are approximately proportional to the state
k in an Mt/GI/∞ model with a periodic arrival rate function, and approximately piecewise-linear
with finitely many servers.

These tentative conclusions about the ED based on the analysis of Mt/GI/s queues in this
paper are strongly supported by further data analysis in [36]. The data analysis in [36] supports
an Mt/Gt/∞, where there is strong time-dependence in the service-time distribution as well as the
arrival rate function. That conclusion in turn is consistent with other observations, e.g., see [2, 29]
and references there. The fitted BD is convenient because it quickly exposes the difficulty with a
model using i.i.d. service times.

6.4 Fitting the Erlang-A Model to Data

Perhaps the most frequently applied stochastic queueing model is the M/M/s+M Erlang-A model.
The Erlang-A model is a stationary birth-and-death (BD) process with four parameters: the arrival
rate λ, the service rate µ, the number of servers s and the individual customer abandonment rate
from queue θ; see [13, 26] and references therein. The familiar M/M/s/0 Erlang B (loss) and
M/M/s ≡ M/M/s/∞ Erlang C (delay) models are the special cases in which θ = ∞ and θ = 0.

The fitted BD process may provide a useful statistical test of the classical M/M/s+M Erlang-
A model in settings where it may be applied. The Erlang-A model is typically fit within an
assumed GI/GI/s + GI model framework, assuming that the interarrival times, service times
and patience times come from mutually independent i.i.d. sequences of i.i.d. random variables.
Assuming this framework, the Erlang-A model is typically fit by estimating the distributions of the
interarrival times and service times to see if they are nearly exponential. It has been recognized
that abandonment is more complicated because of censoring; thus other estimation methods have
been proposed for estimating the customer patience distribution via the hazard rate of the customer
patience distribution; see [4].

However, the assumed GI/GI/s + GI framework need not hold. Service systems typically
have time-varying arrival rates and there may be significant dependence among interarrival times
and service times. The number of servers may vary over time as well and the servers are often
actually heterogeneous [12]. Indeed, careful statistical analysis of service system data can be quite
complicated, e.g., see [2, 4, 19, 21, 22].

Thus, the fitted birth and death rates provides another framework to test and fit the Erlang-A
model to data, which we propose doing in addition to the standard fitting procedure, to check
consistency. Given that the data are from the Erlang-A model, we will see approximately the
simple linear structure in the estimated birth and death rates. With enough data, we will see that

λ̄k ≈ λ, k ≥ 0, and µ̄k ≈ (k ∧ s)µ+ (k − s)+θ, k ≥ 1, (56)
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where a ∧ b ≡ min {a, b} and (a)+ ≡ max {a, 0}. By this procedure, we can estimate all four
parameters and test if the model is appropriate. A direct BD fit of the form (56) may indicate that
the model should be effective even though some other tests fail. For example, experience indicates
that a good model fit can occur by this BD rate fit even though the servers are heterogeneous and
the service-time distribution is not exponential. Moreover, in those cases we may find that the
Erlang-A model works well in setting staffing levels.

6.5 When the Erlang-A Model Does Not Fit

However, what do we conclude if the BD fit does not yield the birth and death rate functions in
(56)? Some insights are relatively obvious. For example, if we do not see death rates with two
linear pieces joined at some level s, then we can judge that the number of servers probably was
not constant during the measurement period. But it remains to carefully evaluate how to interpret
departures from the simple Erlang structure in (56).

We may also consider directly applying the fitted BD process even if we do not see the Erlang-A
structure in (56), because BD processes are remarkably tractable. If we happen to find piecewise-
linear fits, then we may find diffusion approximations with large scale, as in [5], which is not limited
to the classical Erlang models in [13, 17]. It is well known that we can calculate the steady-state
distribution of a general BD process by solving local balance equations. We also can efficiently
calculate first-passage-time distributions in general BD processes [1].

7 Conclusions

After observing that the steady-state distribution of any stochastic process on the integers with
only unit-step transitions can be estimated from data by fitting birth and death rates and solving
the BD local-balance equations in (4), we investigated the application of this approach to the
Mt/GI/s queueing model with a periodic arrival-rate function, primarily focusing on the case of
the sinusoidal arrival-rate function in (8). In §2 and §3 we established structural results for the
steady-state distribution and the fitted rates in this model.

In §4 we conducted simulation experiments showing the results of the fitting procedure. Figures
4-6 show near insensitivity to the service-time distribution beyond its mean in the Mt/GI/∞ model
for some cases with moderate scale (average arrival rate λ̄ = 35), but Figures 7-9 show significant
deviations from insensitivity at larger scale λ̄ = 100). As expected, we see that the transient
behavior of the fitted BD process can be very different from the original process, but we see that
the difference decreases as the cycle length of the periodic function decreases (relative to the mean
service time). Figure 10 shows great differences in the sample paths for the long cycles with γ = 0.01
in (8), but Figures 11 and 12 show striking similarities with shorter cycles based on γ = 1.0 and
10 in (8).

In §5 we showed that estimating the fitted rates and then solving the local-balance equations
in (4) can be an efficient way to estimate the steady-state distribution because the birth-rate and
death-rate functions tend to be more elementary functions. We found that good estimates of the
steady-state distribution in the Mt/M/∞ model can be obtained in this way by fitting only two
parameters in the four-parameter arctangent function in (53).

Finally, in §6 we see how the fitted BD model can serve as a grey-box model to help diagnose
what is an appropriate queueing model for complex queueing applications, as suggested in [7]. In
§6.2 we compared the BD models fit to stationary GI/GI/s models in [7] to the BD models fit to
the Mt/GI/s models in this paper. For large s, we see that the fitted death rates have the same
piecewise-linear structure found in the M/M/s model, but there are significant differences in the
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fitted birth rates. However, the birth rates have the same linear structure around the steady-state
mean number of busy servers.

In §6.3 we illustrated how the grey-box modeling approach can be applied. Figure 23 dsplaying
the fitted birth and death rates in an Israeli emergency department from [2, 36] show that the
ED data are roughly consistent with the arrival process being a nonhomogeneous Poisson process
(NHPP) with a periodic arrival rate function, but are inconsistent with i.i.d. service (length-of-stay)
times. Instead, the length-of-stay distribution should be time-varying, consistent with observations
in [2, 29, 36]. In §6.4 we observed that this provides an alternate fitting procedure for the classical
Erlang-A model, which can usefully supplement the standard fitting procedure, and thus provide
an additional statistical test.

There are many directions for future research. As indicated before Theorem 2.1 in §2, it
remains to prove that the interval between successive emptiness epochs in the stochastic process
{Q(nc + t) : n ≥ 0} have finite mean for any periodic Mt/GI/s model with E[S] < ∞ and ρ̄ < 1.
It also remains to derive explicit formulas and asymptotic approximations for the fitted rates in
these and other models. In forthcoming [8], we establish many-server heavy-traffic limits for the
fitted birth rates and death rates in the Mt/GI/∞ model.
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