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Abstract In previous papers we developed a deterministic fluid approxima-
tion for an overloaded Markovian queueing system having two customer classes
and two service pools, known in the call-center literature as the X model. The
system uses the fixed-queue-ratio-with-thresholds (FQR-T) control, which we
proposed as a way for one service system to help another in face of an un-
expected overload. Under FQR-T, customers are served by their own service
pool until a threshold is exceeded. Then, one-way sharing is activated with
customers from one class allowed to be served in both pools. The control aims
to keep the two queues at a pre-specified fixed ratio. We supported the fluid ap-
proximation by establishing a many-server heavy-traffic functional weak law
of large numbers (FWLLN) involving an averaging principle. In this paper
we develop a refined diffusion approximation for the same model based on a
many-server heavy-traffic functional central limit theorem (FCLT).

1 Introduction

In this paper we establish a many-server heavy-traffic functional central limit
theorem (FCLT) for an overloaded large-scale Markovian queueing system hav-
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ing two classes and two service pools, known as the X model [7], using the
fixed-queue-ratio with thresholds (FQR-T) routing, which we proposed in [21].

In particular, we consider a system in which each class has its own des-
ignated service pool, but with all agents, in both pools, capable of serving
customers from both classes. The control aims to prevent sharing of customers
(i.e., sending customers from one class to be served at the other class pool)
when both classes are normally loaded, and activate sharing when the sys-
tem unexpectedly experiences an overloaded, due to an unforseen shift in the
arrival rates.

When sharing is taking place, the control aims at keeping a pre-specified
fixed ratio between the two queues. This ratio is chosen according to a de-
terministic (“fluid”) optimization problem; see §5.3 in [21], where it is also
shown that sharing should not be allowed at both directions simultaneously,
i.e., at any time there should be at most one pool working with both classes.
In general there are two different ratios: If class 1 is overloaded, then an op-
timal ratio r1,2 should hold between the queues. If class 2 is overloaded, then
an optimal ratio r2,1 should hold between the queues. In [23] we showed that
the FQR-T control achieves the objectives above, asymptotically in the fluid
limit. Moreover, the FQR-T control produces a tractable fluid limit. Here we
establish a refined stochastic limit.

The FQR-T control here is a modification of the FQR control (without
the thresholds), which is a special case of the queue-and-idleness ratio (QIR)
controls suggested in [11]. These QIR and FQR controls were analyzed in
[10], [11] and [12] for critically loaded systems, operating in the quality and
efficiency driven (QED) many-server heavy-traffic regime; see [8,13]. Heavy-
traffic limits for networks having cyclic graphs, such as the X model, were
obtained under the condition that the service rates are class or pool dependent;
see Theorem 3.1 in [11]. In general, when the service rate depends on both the
class and the pool, FQR can perform badly in cyclic networks, creating severe
congestion even if each pool is not congested by itself; see §4.1 in [21] and
§EC.2 in [22].

We suggested the FQR-T control in [21], and analyzed the X model using
a heuristic stationary fluid approximation. In [22] we determined the transient
behavior of that same fluid model, based on a stochastic averaging principle
(AP), but that AP was introduced there as a heuristic engineering principle,
supported only by simulation. The purpose of our subsequent papers [23,24]
was to establish key mathematical properties of the fluid model, expressed
as an ordinary differential equation (ODE), and show that the fluid model,
heuristically derived in [21,22], arises as the many-server heavy traffic limit
of a sequence of X models in the many-server efficiency driven (ED) regime.
That FWLLN is challenging, because the fluid limit depends critically on the
AP. For each n, the system evolves as a 6-dimensional continuous-time Markov
chain (CTMC), but there is (a somewhat complicated) statistical regularity
associated with the many-server heavy-traffic limit. In particular, the limiting
fluid approximation is a deterministic function characterized by an ODE (and
an initial condition), which is driven by the time-varying instantaneous average
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behavior of a family of fast-time-scale stochastic processes (FTSP’s), which
produces the AP. See §1.3 of [24] for a discussion of the literature on AP’s;
notable contributions in the queueing literature are [4,15]. See [6] for a FCLT
involving an AP, building on [15].

We now build on the FWLLN and the AP to describe the distribution
of the stochastic fluctuations about the fluid path; i.e., we establish the cor-
responding FCLT, which is Theorem 4 here. There is technical novelty in
properly treating the FTSP’s alluded to above. The limit process involves an
independent Brownian motion term with deterministic time scaling involving
the asymptotic variance of the FTSP; see §4.1 and L̂2, Î, γ2 and γ3 in Theorem
4. A key step in establishing the main result – the FCLT in Theorem 4 – is a
FCLT for the family of FTSP’s, Theorem 6, which is of independent interest.
This challenging step proves a FCLT for a sequence of CTMC’s having time-
varying parameters depending on the fluid limit. The new methods developed
here should prove useful for analyzing related problems.

From an engineering perspective, Corollary 1 is especially useful for under-
standing the performance of the FQR-T control. It describes the stochastic-
process limit once the fluid has stabilized (i.e. when the fluid is stationary).
With a constant fluid state, the key limit process becomes the well-studied bi-
variate Ornstein-Uhlenbeck (BOU) process, which has a Gaussian distribution
for each t; see Corollary 1 below. Consequently, the approximating steady-
state distribution during the overload is a Gaussian distribution, with mean
values equal to the stationary fluid point in Theorem 2 multiplied by n, and
variance and covariance terms in (24) multiplied by

√
n.

The FCLT extension is essential for truly understanding the system per-
formance under overloads, because the actual performance is not nearly deter-
ministic, as described by the fluid approximation, unless the scale is extremely
large. This phenomenon is well illustrated by the example here in §11. For
that example, the standard deviations of the queue lengths are about equal to
(half of) the mean queue lengths when the number of servers in each pool is
25 (100).

Here is how the paper is organized: After preliminaries in §2, we briefly state
the FWLLN and the associated WLLN for the stationary distributions in §3.
We state the FCLT and our other main results in §4. We prove the FCLT in
§5 except for Lemma 6, establishing joint convergence of the driving processes.
We give the proof of Lemma 6 in §6 except for two supporting results. The key
supporting result is a FCLT for the FTSP with time-varying parameter state
function in Theorem 6. We prove Theorem 6 in §7. Our proof of Lemma 14 to
prove Theorem 6 exploits the martingale FCLT for triangular arrays. We state
these supporting martingale results in §8. We then prove five remaining lemmas
in §9. A key technical step in the proofs is approximating the given process with
time-varying parameters over appropriate subintervals by associated frozen
processes, where the parameters are fixed (frozen) at designated values. Those
approximation steps are justified in §10 by using coupling constructions. In
particular, we prove Lemmas 8 and 12 there. Finally, we evaluate the quality
of the approximations by making comparisons with simulations in §11.
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2 Preliminaries

2.1 Notation

Let R, Z and N denote the real numbers, integers and nonnegative integers,
respectively. Let ≡ denote equality by definition. For a subinterval I of [0,∞),
let D ≡ D(I) ≡ D(I,R) be the space of all right-continuous R-valued functions
on I with limits from the left everywhere, endowed with the familiar Skorohod
J1 topology [32]. Let C be the subset of continuous functions in D. Let a
subscript k appended to one of these spaces denote the set of all k-dimensional
vectors with components from the space, endowed with the corresponding
product topology, e.g., Rk and Dk.

Let dJ1 denote a metric on Dk(I) inducing the convergence. Since we will
be considering continuous limits, the topology is equivalent to uniform conver-
gence on compact subintervals of I. Let e be the identity function in D ≡ D1;
i.e., e(t) ≡ t, t ∈ I. Let ◦ be the composition function, i.e., (x◦y)(t) ≡ x(y(t)).
Let ⇒ denote convergence in distribution [32].

We use the familiar big-O and small-o notation for deterministic functions:
For two real functions f and g, we write

f(x) = O(g(x)) whenever 0 < lim sup
x→∞

|f(x)/g(x)| <∞,

f(x) = o(g(x)) whenever lim sup
x→∞

|f(x)/g(x)| = 0.

(Note that our definition of O(g(x)) deviates from the standard definition
which allows for the lim sup in the right-hand side to be equal to 0.) For a
function x : [0,∞) → R and 0 < t <∞, let ∥x∥t ≡ sup0≤s≤t |x(s)|.

For a stochastic process Y ≡ {Y (t) : t ≥ 0} and a deterministic function
f : [0,∞) → [0,∞), we say that Y is oP (f(t)) if ∥Y ∥t/f(t) ⇒ 0 as t→ ∞.

For a sequence of stochastic processes or random variables, {Y n : n ≥ 1},
we denote its fluid-scaled version by Ȳ n ≡ Y n/n. We let Y̆ n ≡ Y n/

√
n be

the
√
n-scaled processes without the centering about the fluid limit, and Ŷ n

denote the diffusion-scaled processes centered about the fluid limit, as in (15)
below.

2.2 A Sequence of Overloaded Markovian X Models

We consider a sequence of overloaded Markovian X models, indexed by su-
perscript n. There are two customer classes and two service pools. We are
looking at these models during the overload incident, after the arrival rates
have changed. The arrival rates are considered fixed, but the system is typi-
cally not yet in its new steady-state during the overload (assuming that the
overload would persist). For each n and i = 1, 2, there is a class-i Poisson ar-
rival process with rate λni . Customers have limited patience, and may abandon
when waiting in queue. The times to abandon are i.i.d. exponential variables
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with rate θi for each class-i customer in queue. Service pool j has mn
j homoge-

neous agents (servers). Service times of class-i customers by pool-j agents are
mutually independent and exponentially distributed with rate µi,j , i, j = 1, 2.
The abandonment and service rates are independent of n.

Since we are considering an overload incident, we will scale to achieve an
efficiency-driven (ED) many-server heavy-traffic regime.

Assumption 1 (many-server heavy-traffic scaling) For λi,mi > 0, i = 1, 2,

λni − nλi√
n

→ 0 and
mn

i − nmi√
n

→ 0 as n→ ∞.

We could instead obtain a modified, more general, FCLT if there were nonde-
generate limits in Assumption 1, but we consider our choice natural, because
the system operates in an overload regime. (The modified limit includes a
deterministic term ct in the diffusion limit, but there is no difference in the
variability of the limit process, as can be seen from (30). For the FWLLN, it
is sufficient that λni /n→ λi and m

n
i /n→ mi as n→ ∞, i = 1, 2.)

Let

ρi ≡
λi

miµi,i
and qai ≡ (λi − µi,imi)

+

θi
, i = 1, 2,

where, for y ∈ R, y+ ≡ max{0, y}. Then ρi is the traffic intensity for pool
i and qai is the stationary class-i fluid-limit queue, when both pools operate
independently. We say that pool i is overloaded if ρi > 1. However, with
sharing allowed, pool i can be overloaded even if ρi < 1 provided that enough
class j customers are routed to be served there, j ̸= i. The next assumption
makes precise our notion of system overload.

Assumption 2 (system overload, with class 1 more overloaded)
The rates in the system are such that
(I) θ1q

a
1 > µ1,2m2(1− ρ2)

+ and (II) qa1 > r1,2q
a
2 .

Clearly, ρ1 > 1 by Condition (I), so that class 1 is overloaded. However,
Condition (I) also ensures that pool 2 is overloaded if sharing is taking place.
That is so because, even if ρ2 < 1, there is not enough extra service capacity
in pool 2 to take care of all the class-1 customers that pool 1 cannot serve.
Condition (II) in the assumption implies that even if pool 2 is overloaded by
itself (i.e., if ρ2 > 1), then class 1 is the one that should receive help from pool
2.

2.3 The FQR-T Control

We now describe the FQR-T control for each system n. The purpose of the
FQR-T control is: (i) to prevent sharing under normal loads, (ii) to activate
sharing as soon as an overload incident begins, and (iii) to keep close to the
desired ratio between the two queues, making sure that sharing takes place in
the needed direction only. The control is based on two positive thresholds, kn1,2
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and kn2,1, and the two ratio parameters discussed above, r1,2 and r2,1, which
satisfy r1,2 ≥ r2,1; see Proposition EC.2 and Equation (EC.11) in [21].

Let Qn
i (t) be the number of customers in the class-i queue and let Zn

i,j(t)
be the number of class-i customers being served in service pool j, at time t,
i, j = 1, 2 (in the nth system). The FQR-T routing is based on the queue-
difference stochastic processes

Dn
1,2(t) ≡ Qn

1 (t)− kn1,2 − r1,2Q
n
2 (t), and

Dn
2,1(t) ≡ r2,1Q

n
2 (t)− kn2,1 −Qn

1 (t), t ≥ 0.
(1)

As long as Dn
1,2(t) ≤ 0 and Dn

2,1(t) ≤ 0, no sharing of customers is allowed,
i.e., a server in pool j takes only class j customers, j = 1, 2. It follows from
[8] that thresholds of order larger than O(

√
n) will prevent sharing in such

circumstances, asymptotically as n → ∞. Once one of the queue-difference
processes in (1) becomes strictly positive (so that one of the thresholds is
crossed) sharing is initiated. It follows from the Corollary 2.1 in [33], that
thresholds of size o(n) will detect an overload relatively quickly (instantly,
asymptotically as n → ∞). We thus choose the thresholds according to the
following assumption.

Assumption 3 (scaling of the thresholds) For k1,2, k2,1 > 0 and a sequence of
positive numbers {cn : n ≥ 1}, where cn/n→ 0 and cn/

√
n→ ∞ as n→ ∞,

kn1,2/cn → k1,2 and kn2,1/cn → k2,1 as n→ ∞.

Finally, only one-way sharing is allowed at any time. For example, a newly
available pool-2 agent at time t serves a class-1 customer if Dn

1,2(t) > 0, pro-
vided no class-2 customers are served in pool 1 at that same time t; otherwise
he serves a class-2 customer.

2.4 Dimension Reduction

For the X model operating under FQR-T, the six-dimensional process

Xn
6 ≡ (Qn

1 , Q
n
2 , Z

n
1,1, Z

n
1,2, Z

n
2,1, Z

n
2,2) (2)

is a CTMC for each n ≥ 1. However, there is an important dimension reduction
established in §6 of [24]. It was shown, under the assumptions above and with
appropriate initial conditions, that asymptotically the two service pools remain
fully occupied with no pool-1 servers serving class 2; i.e., for each T > 0,

P (Zn
1,1(t) = mn

1 , Z
n
2,1(t) = 0, Zn

1,2 + Zn
2,2 = mn

2 , 0 ≤ t ≤ T ) → 1 as n→ ∞.

Thus, the system is characterized by an essentially three-dimensional process

Xn,∗
6 ≡ (Qn

1 , Q
n
2 ,m

n
1 , Z

n
1,2, 0,m

n
2 − Zn

1,2), (3)

having the vector of essential components

Xn ≡ (Qn
1 , Q

n
2 , Z

n
1,2), (4)
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whose evolution is directly specified, and will be specified here in Theorem 1.
Theorem 1 concludes that X̄n,∗

6 and X̄n
6 are asymptotically equivalent, so that

X̄n is sufficient to characterize the FWLLN and, in turn, to prove the FCLT.
That implies that X̄n

6 ⇒ x6 in D6 if and only if X̄n ⇒ x in D3 as n → ∞,
with x(t) ∈ S ≡ [0,∞)2 × [0,m2], for t ≥ 0; see Theorem 1 below. We thus
restrict attention to the space S.

2.5 The Fast-Time-Scale Process

Given that the system is overloaded with class 1 needing help from pool
2, as determined by Assumptions 1 and 2, the FQR-T control is driven by
the process Dn

1,2 in (1). Since the queue lengths are asymptotically of order
O(n), the queue-difference process Dn

1,2 has transitions at rate O(n). However,
Theorem 4.5 in [24] shows that, under regularity conditions, the sequence
{Dn

1,2(t) : n ≥ 1} is stochastically bounded in R, so that the difference process
should be analyzed without any spatial scaling. On the other hand, Theorem
4.4 in [22] also shows that this sequence is not D-tight. Thus, these difference
processes do not converge to nondegenerate limits in D as n → ∞ without
spatial scaling. Nevertheless, both the FWLLN and FCLT depend heavily on
the asymptotic behavior of functionals of that driving queue-difference process
and on the analysis of a related family of fast time scale process (FTSP’s).

Fix t0 ≥ 0 and consider the time expanded queue-difference process

{Dn
e (Γ

n, s) : s ≥ 0} ≡ {Dn
1,2(t0 + s/n) : s ≥ 0}, (5)

where Γn is a random vector in R3, representing a possible state of Xn, and we
condition on Xn(t0) = Γn. Theorem 4.4 in [24] shows, under the assumptions
of the FWLLN in Theorem 1 below, that

{Dn
e (Γ

n, s) : s ≥ 0} ⇒ {D(γ, s) : s ≥ 0} in D as n→ ∞ (6)

if Γn/n⇒ γ ∈ S and Dn
e (Γ

n, 0) ⇒ D(γ, 0) in R as n→ ∞. The limit process
D(γ, ·) is the FTSP, an irreducible pure-jump (time homogeneous) Markov
process having transition rates that are the limit of the instantaneous rates of
Dn

1,2(t0) at time t0 (given the state of the CTMC Xn
6 (t0)), divided by n. Since

the distribution of the FTSP is determined by γ, we obtain a different FTSP
D(γ, ·) for each γ ∈ S, and thus for each t ≥ 0. The name “FTSP” becomes
clear when observing that it arises as the limit in (5) achieved by “slowing”
time in the neighborhood of each time point t0 in Dn

1,2(t0).
As explained in §2.3, the purpose of the FQR-T control during overload

periods (with class 1 receiving help) is to keep the two queues approximately
fixed at the target ratio r. In this paper we will be concerned with the region
of the state space in which q1 = rq2 and the FTSP is positive recurrent. In
particular, for γ ≡ (q1, q2, z1,2) we let

Sb ≡ {γ ∈ S : q1 = rq2}
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denote the ‘boundary’ set of points in S which is part of the state space to which
the control drives the process. We then let A denote the set of all γ ∈ Sb, such
that D(γ, ·) is positive recurrent, with D(γ,∞) denoting a random variable
distributed as the stationary distribution of the FTSP D(γ, ·). For each γ ∈ Sb,
let

π1,2(γ) ≡ P (D(γ,∞) > 0). (7)

By Lemma 3.1 in [24], π1,2(γ) is well defined for all γ ∈ S, but D(γ, ·) is
positive recurrent if and only if 0 < π1,2(γ) < 1 and γ ∈ Sb. By Theorem 6.1
of [23],

A = {γ ∈ Sb : 0 < π1,2(γ) < 1} = {γ ∈ Sb : δ+(γ) < 0 and δ−(γ) > 0},
(8)

where δ+(γ) and δ−(γ), respectively, are the constant drift rates in the positive
region {s : D(γ, s) > 0} and the non-positive region {s : D(γ, s) ≤ 0}.

Both the FWLLN and the FCLT depend critically on distributional and
topological characteristics of the FTSP’s. A simplification is achieved by repre-
senting the FTSP as a quasi-birth-and-death (QBD) process, which can be done
by assuming that r1,2 is rational. The QBD representation is not straightfor-
ward, thus we refer to §6.2 in [23] for more details on the QBD representation
of the FTSP, and to [18] for the general theory of QBD processes. See also The-
orem 6.1 and Equation (7.2) in [23] for how the QBD representation simplifies
the characterization of A, as well as §11 in [23], where an efficient algorithm
for computing the fluid limit numerically is developed, based on that QBD
representation. For our purposes here, it only matters that the FTSP can be
analyzed as a QBD, provided that the queue ratios are rational number. We
thus make the following assumption.

Assumption 4 (queue ratios parameters) The queue ratios r1,2 and r2,1 are
positive rational numbers.

Since we are considering the case when sharing is taking place with class-
1 customers receiving help, we essentially need only consider r1,2, which we
henceforth denote by r, i.e., r ≡ r1,2.

3 The Fluid Limit

We now review the FWLLN for the process X̄n
6 in (2) and the WLLN for

the associated sequence of stationary random variables X̄n
6 (∞), established in

[24]. For these, we assume that the fluid x(t) is in the set A, where the FTSP
is positive recurrent. We conclude by reviewing a result stating that the fluid
model eventually remains in A.

3.1 The FWLLN

We now describe the fluid limit, i.e., the limit of X̄n
6 forXn

6 in (2). The FWLLN
requires an assumption about the initial conditions. In [24] we considered a
(more general) version of the following.
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Assumption 5 Assume that

P (Zn
2,1(0) = 0, Qn

i (0) > an, i = 1, 2) = 1 for all n ≥ 1,

X̄n(0) ⇒ x(0) ∈ A and Dn
1,2(0) ⇒ L as n→ ∞,

where L is a finite random variable, x(0) is deterministic and {an : n ≥ 1} is a
sequence of numbers satisfying an/cn → a, 0 < a ≤ ∞, for cn in Assumption
3.

We note that in [24] x(0) was not necessarily in A. The following theorem is a
version of the main result - Theorem 4.1 - in [24], adapted to our needs here.

Theorem 1 (FWLLN) Under Assumptions 1-5,

X̄n
6 ⇒ x6 in D6([0,∞)) as n→ ∞,

for Xn
6 in (2), where x6 ≡ (qi, zi,j ; i, j = 1, 2), is a deterministic element of

C6, with z1,1 = m1e, z2,1 = 0e and z2,2 = m2e − z1,2 and x ≡ (q1, q2, z1,2)
being the unique solution to the three-dimensional ODE

q̇1(t) ≡ λ1 −m1µ1,1 − π1,2(x(t)) [z1,2(t)µ1,2 + z2,2(t)µ2,2]− θ1q1(t)

q̇2(t) ≡ λ2 − (1− π1,2(x(t))) [z2,2(t)µ2,2 + z1,2(t)µ1,2]− θ2q2(t)

ż1,2(t) ≡ π1,2(x(t))z2,2(t)µ2,2 − (1− π1,2(x(t)))z1,2(t)µ1,2,

(9)

for π1,2(x(t)) ≡ P (D(x(t),∞) > 0) in (7). Moreover, there exists δ, 0 < δ ≤
∞, such that x(t) ∈ A, so that 0 < π1,2(x(t)) < 1 and q1(t) = rq2(t), for all
t ∈ [0, δ).

Just as the routing of customers at each time t ≥ 0 in the prelimit is de-
termined by whether Dn

1,2(t) > 0 or ≤ 0, so also the instantaneous future
evolution of the fluid limit x(t) at time t ≥ 0, is determined by whether the
FTSP corresponding to x(t), D(x(t), ·), is positive or nonpositive. However,
that evolution is determined by the long-run average behavior of the FTSP
corresponding to time t, i.e., by π1,2(x(t)), giving rise to the term “averaging
principle”. Loosely speaking, Dn

1,2(t) achieves a local steady state (the steady
state of the FTSP) instantaneously as n→ ∞, at each time t ≥ 0.

Observe that Theorem 1 concludes that if x(0) ∈ A, then x(t) ∈ A for all t
over some interval [0, δ) (that part of the theorem follows from Theorem 4.5 in
[24]), so that we have SSC in the sense that the original six-dimensional process
is a deterministic function of a two-dimensional process. More importantly for
the FCLT, we also have that Qn

1 (t)− kn1,2 − rQn
2 (t) = o(

√
n) for t ∈ (t1, t2) if

x(t) ∈ A over [t1, t2), so the SSC to two dimensions holds in diffusion scale as
well; see Lemma 2 below.
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3.2 The Stationary Fluid Limit

Our main theorem here will be establishing the FCLT about the fluid trajec-
tory, given that the trajectory is in A. An important consequence will be the
BOU limit when the fluid limit is stationary. Since the fluid limit of X̄n in (4)
is the unique solution to the ODE (9), there is an immediate equivalence be-
tween stationarity of the fluid limit and stationarity of the dynamical system
in (9), and we do not distinguish between the two.

Definition 1 (fluid stationarity) A point x∗ ∈ S is a stationary point of the
unique solution x ≡ {x(t) : t ≥ 0} to the ODE (9) if x(0) = x∗ implies x = x∗e.
If x = x∗e, then x is said to be stationary.

Since the ODE is autonomous (i.e., time invariant), we can replace time 0
with any t > 0 in the definition 1. That is, if x(T ) = x∗ for some T > 0, then
x(t) = x∗ for all t > T . Time invariance also implies that x(t) is stationary at
time t (x(t) = x∗) if and only if ẋ(t) ≡ (q̇1(t), q̇2(t), ż1,2(t)) = (0, 0, 0); see §8
of [23].

There are several issues regarding stationarity, which we addressed in [23].
In advance, neither existence of a stationary point to the fluid limit nor unique-
ness are immediate. Even if there exists a unique stationary point, it needs
to be identified. Moreover, it must be shown that the fluid limit converges to
a stationary point as t → ∞. (There are still other issues regarding stability
of the dynamical system in (9), and we refer to §8.3 in [23] for a discussion.)
Finally, the fluid limit of X̄n

6 in (2) is characterized by the fluid limit of the
three-dimensional X̄n in (4), but that does not directly imply any relation
between the stationary fluid limit and the stationary stochastic prelimit.

We now present the most relevant results for the FCLT regarding fluid
stationarity.

Theorem 2 (fluid stationarity) Under Assumptions 1-5, the following hold:
(i) For each n, X̄n

6 (t) ⇒ X̄n
6 (∞) in R as t → ∞, with X̄n

6 (∞) being the
unique stationary distribution of the CTMC, and X̄n

6 (∞) ⇒ x∗6 in R as n→ ∞
for

x∗6 ≡ (q∗1 , q
∗
2 ,m1, z

∗
1,2, 0,m2 − z∗1,2), (10)

where

z∗1,2 =
θ2(λ1 −m1µ1,1)− rθ1(λ2 −m2µ2,2)

rθ1µ2,2 + θ2µ1,2
∧m2,

q∗1 =
λ1 −m1µ1,1 − µ1,2z

∗
1,2

θ1
and q∗2 =

λ2 − µ2,2(m2 − z∗1,2)

θ2
.

(ii) x∗ ≡ (q∗1 , q
∗
2 , z

∗
1,2) is the unique stationary point of x, the unique solu-

tion to the ODE (9).
(iii) π1,2(x

∗) ≡ P (D(x∗,∞) > 0) = π∗
1,2, where D(x∗,∞) is a random

variable with the stationary distribution of the FTSP D(x∗, ·) and

π∗
1,2 ≡

µ1,2z
∗
1,2

µ1,2z∗1,2 + (m2 − z∗1,2)µ2,2
. (11)
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(iv) x(t) → x∗ as t→ ∞ exponentially fast.

Proof Parts (i), (ii) and (iii), and (iv), respectively, are covered by Theorem
4.2 in [24], §8 of [23] and Theorem 9.2 in [23]. Explicit exponential bounds
on the rate of convergence to stationarity in (iv) are given in [23]. We now
elaborate on (ii) and (iii). First, if x∗ /∈ A, then the fact that x∗ is a stationary
point of x follows immediately from the fact that π1,2(x

∗) = 0 or = 1. In that
case, it is also easy to see that π∗

1,2 in (11) is equal to π1,2(x
∗); see Corollary

8.1 in [23]. It is the unique stationary point by Theorem 8.1 in [23]. The more
challenging case, in which x∗ ∈ A and the existence of a stationary point is
nontrivial, is proved in Theorem 8.2 in [23]. ⊓⊔

3.3 Eventually Remaining in the Set where the FTSP is Positive Recurrent

The FCLT will be stated under the assumption that the associated fluid limit
lies in the set A. Thus we now explain why this makes sense and introduce an
additional assumption.

Note that x∗6 in (10) is completely characterized by x∗, which involves only
the rates in the system, and does not require any knowledge of the transient
fluid limit or the initial condition. (In particular, SSC to three dimensions
holds for the WLLN of the stationary distributions.) Simple algebra shows
that if 0 < z∗1,2 < m2, then q

∗
1 = rq∗2 . Together with (8) and (11) we see that

x∗ ∈ A if and only if 0 < z∗1,2 < m2. It follows from Assumption 2 and (10)
that z∗1,2 > 0 (see also Corollary 8.2 in [23]), so that, under Assumption 2,

x∗ ∈ A if and only if z∗1,2 < m2. (12)

The next theorem, which follows from Theorem 10.2 in [23], shows that there is
not much loss in assuming that the limit x lies entirely in A whenever x∗ ∈ A.
Theorem 3 If x∗ ∈ A then there exists TA < ∞ such that x(t) ∈ A for all
t ≥ TA.

Since we are interested in the case x∗ ∈ A, which is the main case, as is
clear from (12), we make the following assumption

Assumption 6 For all t ≥ 0, x(t) ∈ A.
Assumption 6 is not essential for our results; we make it only for simplicity

of the exposition. Without this assumption, the FCLT can be proved over a
finite interval over which x ∈ A. In applications, the fluid limit is likely to hit
A immediately after the overload begins, and remain in A thereafter; see §11.3
in [23].

4 The Main Results

In preparation for the FCLT, we indicate how the limit is affected by the FTSP
in §4.1. We then state the main FCLT and important corollaries in §4.2 and
§4.3. We conclude in §4.4 by indicating how the results simplify in the special
case r ≡ r1,2 = 1, where FQR reduces to serving the longer queue.
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4.1 The Role of the FTSP’s in the Stochastic Limit

Just as the limiting ODE in (9) arising in the FWLLN depends on the FTSP’s
D(γ, ·) (through the probability π1,2(x(t))), so too the stochastic limit process
arising in the FCLT refinement depends on these same FTSP’s. Since the
FTSP D(γ, ·) depending on the state γ is a positive recurrent QBD under the
assumption that γ ∈ A, the stochastic refinement depends on the asymptotic
variability of the FTSP. In particular, since the FTSP D(γ, ·) is a regenerative
process (which can be represented as a QBD whenever the ratio r is ratio-
nal), the associated cumulative process obtained by integrating the indicator
functions 1{D(γ,s)>0} obeys a FCLT; i.e.,

Ĉn
QBD(t; γ) ≡ n−1/2

∫ nt

0

(
1{D(γ,s)>0} − π1,2(γ)

)
ds⇒ B(σ2(γ)t) (13)

in the functions space D as n → ∞, where B is a standard Brownian motion
(BM) for each γ ∈ A.

The constant σ2(γ) appearing inside the BM on the right in (13) is often
called the asymptotic variance (see [3,9,31]) of the regenerative processD(γ, s)
(and the function f with f(D(γ, s)) ≡ 1{D(γ,s)>0}). For each γ ∈ A, it is
defined as the limit

σ2(γ) ≡ lim
t→∞

1

t
V ar

(∫ t

0

1{D(γ,s)>0}ds

)
.

In this paper we will be making extensive use of the regenerative structure;
see [3,9] for background. In our QBD context, the underlying regenerative
cycles can be determined by successive visits of D(γ, ·) to any fixed state, i.e.,
starting at a transition into the state and ending at the next transition into
that state after first leaving that state. (The next transition into the state
after leaving is the beginning of the next cycle; the cycles are closed on the
left and open on the right.) The asymptotic behavior is determined by the
random length of a cycle, τ(γ), and either the random integral over a cycle,
Ỹ (γ), or the random centered integral over a cycle, Y (γ), where

Ỹ (γ) ≡
∫ τ(γ)

0

1{D(γ,s)>0} ds and Y (γ) ≡
∫ τ(γ)

0

(1{D(γ,s)>0} − π1,2(γ)) ds.

The key asymptotic quantities here can be expressed in terms of the means of
the first two variables and the variance of Y (γ) via

π1,2(γ) =
E[Ỹ (γ)]

E[τ(γ)]
and σ2(γ) =

V ar(Y (γ))

E[τ(γ)]
; (14)

see [3,9]. Of course, Y (γ) = Ỹ (γ) − π1,2(γ)τ(γ), so that V ar(Y (γ)) can be
expressed in terms the means, variances and the covariance of the variables
τ(γ) and Ỹ (γ), where 0 ≤ Ỹ (γ) ≤ τ(γ) w.p.1. Here we have strong regularity,
with the random variable τ(γ) having a finite moment generating function
and all these quantities being continuous functions of the state γ, by virtue of
Lemma C.5 of [24].
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4.2 The FCLT

Let An
i (t) count the number of class-i customer arrivals, let Sn

i,j(t) count the
number of service completions of class-i customers by agents in pool j, an
let Un

i (t) count the number of class-i customers to abandon from queue, all
in model n during the time interval [0, t]. Let Dn

1,2(t) be the queue-difference
process in (1) and let Qn

s (t) ≡ Qn
1 (t) +Qn

2 (t), all at time t. Let p1 ≡ r/(1 + r)
and p2 ≡ 1− p1 = 1/(1 + r), where r ≡ r1,2. For t ≥ 0 and i, j = 1, 2, let the
diffusion-scaled processes be

Ân
i (t) ≡

An
i (t)− nλi(t)√

n
, Ûn

i (t) ≡
Un
i (t)− nθi

∫ t

0
qi(s) ds√

n
,

Ẑn
i,j(t) ≡

Zn
i,j(t)− nzi,j(t)√

n
, Ŝn

i,j(t) ≡
Sn
i,j(t)− nµi,j

∫ t

0
zi,j(s) ds√

n
,

Q̂n
1 (t) ≡

Qn
1 (t)− nq1(t)√

n
, Q̂n

2 (t) ≡
Qn

2 (t)− nq2(t)√
n

,

Q̂n
s (t) ≡

Qn
s (t)− nqs(t)√

n
, D̂n(t) ≡

Dn
1,2(t)√
n

În(t) ≡
√
n

∫ t

0

(1{Dn
1,2(s)>0} − π1,2(x(s)))ds, t ≥ 0,

(15)

where x ≡ (q1, q2, z1,2) is the customary three-dimensional representation of
the fluid limit, z1,1 ≡ m1e, z2,1 = 0e z2,2 ≡ m2e − z1,2, qs ≡ q1 + q2 and
π1,2(x(s)) ≡ P (D(x(s),∞) > 0), with D(x(s),∞) being a random variable
with the steady-state distribution of the FTSP {D(x(s), t) : t ≥ 0} associated
with the fluid limit x(s) at time s.

Here is the main result of this paper: the FCLT for the overloaded X
model operating under FQR-T. Since the limit is clearly a Markov process
with continuous sample paths, it is by definition a diffusion process. Most of
the rest of the paper is devoted to its proof.

Theorem 4 (FCLT) If, in addition to Assumptions 1–6,(
Q̂n

s (0), Ẑ
n
1,2(0)

)
⇒
(
Q̂s(0), Ẑ1,2(0)

)
∈ R2 as n→ ∞,

then, for i, j = 1, 2,(
Ân

i , Û
n
i , Ŝ

n
i,j , D̂

n, În, Q̂n
i , Q̂

n
s , Ẑ

n
i,j

)
⇒
(
Âi, Ûi, Ŝi,j , D̂, Î, Q̂i, Q̂s, Ẑi,j

)
(16)

in D17, where the processes depending on n on the left are defined in (15)
and the limit process has continuous paths w.p.1. The initial 10-dimensional
component (Âi, Ûi, Ŝi,j , D̂, Î) is a vector of independent Brownian motions,
time scaled by increasing continuous deterministic functions (for the first 8, the
fluid limits in the translation terms of (15)), with two null components Ŝ2,1 ≡
0e and D̂ ≡ 0e. Five components of the limit are determined by the relations
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Q̂i
d
= piQ̂s, Ẑ2,1 ≡ Ẑ1,1 ≡ 0e and Ẑ2,2 ≡ −Ẑ1,2. Finally, (Q̂s, Ẑ1,2) is the

unique solution of the following two-dimensional stochastic integral equation:

Q̂s(t) = Q̂s(0) + (µ2,2 − µ1,2)

∫ t

0

Ẑ1,2(s) ds− (p1θ1 + p2θ2)

∫ t

0

Q̂s(s) ds

+ L̂1(t)− L̂1,2(t)− Ŝ1,2(t)− L̂2,2(t)− Ŝ2,2(t),

Ẑ1,2(t) = Ẑ1,2(0)−
∫ t

0

[(µ2,2 − µ1,2)π1,2(x(s)) + µ1,2] Ẑ1,2(s) ds

− L̂1,2(t) + L̂2,2(t) + L̂2(t),

(17)

where, for i = 1, 2,

L̂1 ≡ Â1 + Â2 − Û1 − Û2 − Ŝ1,1
d
= {B1 (γ1(t)) : t ≥ 0},

L̂i,2 ≡ {Bi,2(ϕi,2(t)) : t ≥ 0}, Ŝi,2 ≡ {Bi,3 (γi,2(t)) : t ≥ 0},
L̂2 ≡ {B2 (γ2(t)) : t ≥ 0} and Î ≡ {B2 (γ3(t)) : t ≥ 0},

(18)

with B1, B1,2, B2,2, B1,3, B2,3 and B2 being six independent standard BM’s,
while γi, γi,2 and ϕi,2 are strictly increasing continuous deterministic func-
tions. Specifically,

γ1(t) ≡ (λ1 + λ2 +m1µ1,1)t+ (p1θ1 + p2θ2)

∫ t

0

qs(u) du

ϕ1,2(t) ≡ µ1,2

∫ t

0

(1− π1,2(x(u)))z1,2(u) du,

ϕ2,2(t) ≡ µ2,2

∫ t

0

π1,2(x(u))(m2 − z1,2(u)) du,

γ1,2(t) ≡ µ1,2

∫ t

0

π1,2(x(u))z1,2(u) du

γ2,2(t) ≡ µ2,2

∫ t

0

(1− π1,2(x(u)))(m2 − z1,2(u)) du,

γ2(t) ≡
∫ t

0

ψ2(x(u))σ2(x(u)) du, γ3(t) ≡
∫ t

0

σ2(x(u)) du,

(19)

where

ψ(x(u)) ≡ µ2,2(m2 − z1,2(u)) + µ1,2z1,2(u), u ≥ 0, (20)

with π1,2(x(u)) and σ2(x(u)) being the quantities associated with the FTSP
D(x(u), ·), defined in (7) and (13), respectively, and characterized in (14).

Since the FCLT describes a refinement of the transient behavior of the
fluid limit, it should not be surprising that the limiting stochastic process
(Q̂s, Ẑ1,2) would be difficult to analyze. On the positive side, we can solve for

Ẑ1,2 in (17) without having to simultaneously solve for Q̂s, but we need Ẑ1,2
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to solve for Q̂s. An additional complication for Q̂s is the dependence between
the driving Brownian motions for the two processes Q̂s and Ẑ1,2; note that

the time-transformed Brownian terms L̂i,2 appear in both.

The FCLT shows the impact of system variability on the stochastic limit.

First, and perhaps of greatest interest, there is a Brownian contribution L̂2
d
=

B2 (γ2(t)) from the FTSP appearing in the equation for Ẑ1,2; note the depen-

dence between L̂2 and Î. However, (L̂2, Î) is independent of all other Brownian
terms. We thus see that the fluctuations about the fixed target ratio r in the
queue-difference process (1) due to FQR do have an impact on the stochastic
limit.

On the other hand, we see that the stochastic fluctuations associated with
external arrivals and abandonments only affect Q̂s; they have no impact on
Ẑ1,2. The same is true for the stochastic fluctuations of service facility 1, which
is always busy, without any sharing. These fluctuations are captured by the

Brownian term L̂1
d
= B1 (γ1(t)). However, as noted above, in distinct contrast,

the stochastic fluctuations in the service processes at service facilty 2 have
a more complicated impact, because they appear in the Brownian driving
processes of both equations.

4.3 Important Corollaries

The stochastic limit in the FCLT depends critically on the fluid limit x, which
typically must be computed numerically, but an efficient algorithm was de-
veloped in [23], exploiting the QBD structure of the FTSP D when r1,2 is
rational. Since we are mainly interested in the steady state variance of the
diffusion limits, and since the stochastic fluctuations become more significant
when the fluid is nearly constant (which happens when it is close to its station-
ary point) it is reasonable to initialize the fluid model at this fluid stationary
point in order to simplify the expressions in (17) and (19). We do this in the
next corollary.

From an application point of view, the fluid limit is “more important” than
the refined stochastic limit during the fluid transient period, since then the
changes in the prelimit are of order O(n). It follows from Theorem 2 that after
some (relatively short) time, the fluid stabilizes close to its unique stationary
point x∗6 in (10). After that happens, the refined stochastic limits become the
significant approximation to consider.

When we consider the stochastic refinement of the stationary fluid limit
x∗, the stochastic limit process becomes much more tractable: it is a bivari-
ate Ornstein-Uhlenbeck (BOU) process centered at the origin, as in [2,30].
Consequently, the random vector (Q̂s(t), Ẑ1,2(t)) has a bivariate normal dis-
tribution with zero means for all t, and the associated steady-state random
vector (Q̂s(∞), Ẑ1,2(∞)) can be very useful in applications. It is characterized
by three parameters: the two variances and the covariance, which we exhibit
explicitly in (24) below.
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For a matrixM , letM t denote its transpose. The following is the key result
for applications. It gives explicit Gaussian approximations for the steady-state
distributions of all quantities of interest.

Corollary 1 (FCLT with a stationary fluid) If, in addition to the conditions
of Theorem 4, x(0) = x∗ for the stationary point x∗ in (10) so that x is
stationary, then the time transformations in (19) simplify by having γi(t) =
ξit, γi,2(t) = ξi,2t, and ϕi,2(t) = ηi,2t, i = 1, 2, where

ξ1 ≡ 2(λ1 + λ2)− µ1,2z
∗
1,2 − µ2,2(m2 − z∗1,2),

ξ1,2 ≡ µ1,2π1,2(x
∗)z∗1,2, ξ2,2 ≡ µ2,2(1− π1,2(x

∗)(m2 − z∗1,2),

η1,2 ≡ µ1,2(1− π1,2(x
∗))z∗1,2,

η2,2 ≡ µ2,2π1,2(x
∗)(m2 − z∗1,2),

ξ2 ≡ ψ2(x∗)σ2(x∗) and ξ3 ≡ σ2(x∗),

(21)

for σ2(x∗) and ψ(x∗) defined in (13) and (20) with x(u) = x∗. Then (Q̂s, Ẑ1,2)
becomes a BOU process, satisfying the two-dimensional stochastic differential
equation (sde)

dX = MX + SdB, (22)

where X ≡ (Q̂s, Ẑ1,2)
t, B ≡ (B1, B2)

t, with B1 and B2 being two independent
standard BM’s, and

M1,1 ≡ −(p1θ1 + p2θ2), M1,2 ≡ (µ2,2 − µ1,2), M2,1 ≡ 0,

M2,2 ≡
−µ1,2µ2,2m2z

∗
1,2

µ1,2z∗1,2 + µ2,2(m2 − z∗1,2)
< 0,

S2
1,1 ≡ ξ1 + ξ1,2 + ξ2,2 + η1,2 + η2,2 = 2(λ1 + λ2),

S1,2 ≡ S2,1 ≡ η1,2 − η2,1 = 0, S2
2,2 ≡ ξ2 + ξ4,

ξ4 ≡ η1,2 + η2,2 =
2µ1,2µ2,2z

∗
1,2(m2 − z∗1,2)

µ1,2z∗1,2 + (m2 − z∗1,2)µ2,2
.

(23)

As a consequence, (Q̂s(t), Ẑ1,2(t)) has a bivariate normal distribution with zero
means for each t. The covariance matrix of the steady-state random vector
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(Q̂s(∞), Ẑ1,2(∞)) has elements

σ2
Qs

(∞) ≡ V ar(Q̂s) = Q1 +Q2,

Q1 ≡
S2
1,1

2|M1,1|
=

(
λ1 + λ2

p1θ1 + p2θ2

)
,

Q2 ≡
M1,2σ

2
Qs,Z1,2

(∞)

|M1,1|
=

(
(µ2,2 − µ1,2)σ

2
Qs,Z1,2

(∞)

p1θ1 + p2θ2

)
,

σ2
Z1,2

(∞) ≡
S2
2,2

2|M2,2|
≡ Z1 + Z2,

Z1 ≡ ξ4
2|M2,2|

= 1−
z∗1,2
m2

, Z2 ≡ ξ2
2|M2,2|

=
ψ2(x∗)σ2(x∗)

2|M2,2|
,

σ2
Qs,Z1,2

(∞) ≡ Cov(Q̂s, Ẑ1,2) = ξ5σ
2
Z1,2

(∞), ξ5 ≡
(

M1,2

|M1,1 +M2,2|

)
.

(24)

Proof By the definition of a stationary point, if x(0) = x∗ then x(t) = x∗ for
all t > 0 given in (10); then π1,2(x

∗) appears in (11). The expressions in (21)
follow directly from the expressions in (19), by replacing the time-dependent
fluid quantities by their stationary counterparts. The resulting pair of integral
equations for (Q̂s(t), Ẑ1,2(t)) is known to be equivalent to the BOU sde in (22).
The covariance matrix of the stationary distribution, Σ, is known to satisfy the
matrix equation MΣ+ΣMt = −V, where V ≡ SSt, from which (24) follows;
e.g., see [2] and [16]. Algebra shows that ξ4/2|M2,2| = (1− (z∗1,2/m2)). ⊓⊔

Remark 1 (when components become null) Notice that the results in Corollary
1 simplify greatly with pool-dependent service rates, i.e., when M1,2 ≡ µ2,2 −
µ1,2 = 0. Then Q2 = 0 and ξ5 = 0, so that σ2

Qs,Z1,2
(∞) = 0.

We now see how Theorem 4 simplifies under the condition of pool-dependent
service rates (no longer assuming that x(0) = x∗).

Corollary 2 (FCLT with pool-dependent service rates) If, in addition to the
assumptions of Theorem 4, µ2,2 = µ1,2 ≡ ν, then the two diffusion-limit pro-

cesses Q̂s and Ẑ1,2 can both be represented as separate one-dimensional pro-
cesses, which satisfy the following integral equations

Q̂s(t) = Q̂s(0)− η̃2

∫ t

0

Q̂s(s) ds+B1 (γ̃1(t)) ,

Ẑ1,2(t) = Ẑ1,2(0)− ν

∫ t

0

Ẑ1,2(s) ds+B2 (γ̃2(t)) ,

where

γ̃1(t) ≡ 2(λ1 + λ2)t+

(
η̃1
η̃2

− qs(0)

)
(1− e−η̃2t)

γ̃2(t) ≡ ν

(∫ t

0

[m2π1,2(x(u)) + z1,2(u)− 2π1,2(x(u))z1,2(u)] du

)
+ γ2(t),
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with γ2(t) defined in (19),

η̃1 ≡ λ1 + λ2 −m1µ1,1 −m2ν, η̃2 ≡ p1θ1 + p2θ2,

but B1 and B2 are dependent standard BM’s.

Proof It is immediate from the expression for Q̂s in (17) that when µ1,2 = µ2,2

the diffusion process Q̂s can be analyzed separately from Ẑ1,2. Since qi = piqs
and µ1,2 = µ2,2, it follows from (9) that q̇s(t) satisfies the simple ordinary
differential equation

q̇s(t) = (λ1 + λ2 −m1µ1,1 −m2µ2,2)− (p1θ1 + p2θ2)qs(t) ≡ η̃1 − η̃2qs(t),

whose solution is

qs(t) =
η̃1
η̃2

+

(
q(0)− η̃1

η̃2

)
e−η̃2t

for η̃1 and η̃2 in the statement of the lemma. Notice that γ̃1(t) here corresponds
to γ1(t)+ γ1,2(t)+ γ2,2(t) in (19). Inserting qs(t) above into γ1(t) in (19) gives
γ̃1(t). Notice that γ̃2(t) corresponds to ϕ1,2(t) + ϕ2,2(t) + γ2(t) in (19). Again
substituting yields the conclusion.

Remark 2 (Equivalence with the single-class model.) If, in addition to the
conditions of both Corollaries 1 and 2, we also have θ1 = θ2 ≡ θ, then the
diffusion-limit process Q̂s is the same as the limit obtained for theM/M/n+M
model in the efficiency-driven (ED) regime, see [33]. That is, Q̂s is an Ornstein-
Uhlenbeck process with infinitesimal mean equal to θ and infinitesimal variance
2λ ≡ 2(λ1 + λ2). Thus, its steady-state distribution is normal with mean
zero and variance λ/θ. However, Ẑ1,2 remains somewhat complicated involving
γ2(t) in (19).

4.4 The Case r = 1: Longer Queue First (LQF)

The most complicated feature in the FWLLN and FCLT asymptotic results
in the previous two sections, inhibiting application, is the need to analyze
the FTSP. Specifically, both the approximating fluid model and the stochastic
refinement depend critically on the FTSP D ≡ D(γ) ≡ {D(γ, s) : s ≥ 0} at
each point γ ∈ A. In particular, both limits depend on D(γ) through the two
functions π1,2(γ) and σ

2(γ). These two functions can be computed numerically,
as indicated above. For the stationary fluid point x∗, π1,2(x

∗) is given explicitly
in (11).

However, there is an important special case, itself of practical value, in
which the analysis simplifies greatly, which can provide insight more generally.
When the target queue ratio is r = 1, the FTSP D(γ) becomes an ordinary
birth-and-death (BD) process for each γ ∈ A. Then the quantities π1,2(γ) and
σ2(γ) are both easily expressed. It turns out that they can be expressed in
terms of the first two moments of the busy-period distributions of twoM/M/1
queues. We consider that case now.
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We now assume that r = 1, and take γ ∈ A. In this case, the FTSP evolves
as one BD process when D(γ) > 0 and evolves as another BD process when
D(γ) ≤ 0. We call 0 the boundary state. Let λ1(γ) denote the constant rate up
(away from the boundary) and let µ1(γ) denote the constant rate down (toward
the boundary) of D(γ) when D(γ) > 0. Focusing on the movement relative
to the boundary, let λ2(γ) denote the constant rate down (away from the
boundary) and let µ2(γ) denote the constant rate up (toward the boundary)
of D(γ) when D(γ) ≤ 0.

Note that we need to analyze D(γ) only through the associated stochastic
process

X(γ, t) ≡ 1{D(γ,t)>0}, t ≥ 0,

which records which region D(γ, t) is in at each time t. The stochastic process
X ≡ X(γ) ≡ {X(γ, t) : t ≥ 0} is a {0, 1}-valued process associated with
an alternating renewal process. Let T1(γ) denote a time interval between the
instant of a state change from state 0 to state 1 until the next instant of a
state change from state 1 back to state 0. Similarly, let T2(γ) denote a time
interval between instant of a state change from state 1 to state 0 until the
next instant of a state change from state 0 back to state 1. The successive
times in the alternating renewal process are independent random variables
distributed as T1(γ) and T2(γ). The process X(γ) is a regenerative process in
which the regeneration times can be the successive instant of a state change
from state 0 to state 1 until the next instant of the same state change again
at a later time. The intervals between successive regenerations are distributed
as T1(γ) + T2(γ).

Now observe that Ti(γ) is distributed as a busy period in anM/M/1 queue
with arrival rate λi(γ) and service rate µi(γ), i = 1, 2. In this context, the
condition γ ∈ A is equivalent to λi(γ) < µi(γ), i = 1, 2. Under this condition,
Ti(γ) is known to have a finite moment generating function with a positive
radius of convergence, so that all moments of Ti(γ) are finite. Let

mi(γ) ≡ 1/µi(γ) and ρi(γ) ≡ λi(γ)/µi(γ), i = 1, 2. (25)

Then, from basic M/M/1 theory, we have

E[Ti(γ)] =
mi(γ)

1− ρi(γ)
and E[Ti(γ)

2] =
2mi(γ)

2

(1− ρi(γ))3
. (26)

Finally, we are interested in the cumulative process associated with X(γ),

C(γ, t) ≡
∫ t

0

X(γ, s) ds ≡
∫ t

0

1{D(γ,s)>0} ds, t ≥ 0.

We can apply (14) to obtain the following result.

Theorem 5 (the FTSP when r = 1 ) When r = 1 and γ ∈ A, the FTSP be-
comes a recurrent BD process. Hence the key FTSP quantities can be expressed
directly in terms of the four BD rates λi(γ) and µi(γ) via

π1,2(γ) =
E[T1(γ)]

E[T1(γ)] + E[T2(γ)]
, σ2(γ) =

V ar(T1(γ))

E[T1(γ)] + E[T2(γ)]
(27)
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for E[Ti(γ)] and E[Ti(γ)
2] in (26) and (25), i = 1, 2.

In the more general QBD setting arising with r ̸= 1, the analysis is more
complicated, because the excursions of

∫ t

0
1{D(γ,s)>0} above and below 0 de-

pend on the entering and exit states from level 0; thus these excursions are
not simply independent. Theorem 5 can be the basis for heuristic extensions
to non-Markovian models in which the arrival, service and abandonment pro-
cesses are non-Markovian. We may then exploit approximations for the busy
period in GI/GI/1 queues, e.g., [1] and [25].

5 Proof of Theorem 4

First observe that the assumed convergence in R2 at time 0 is actually equiv-
alent to the full convergence in R17 of the process in (16) at time 0 because of
Assumption 5. Our proof has four main steps: The first step is to exploit SSC
results established in [24]. In particular, we first give an asymptotically equiv-
alent three-dimensional representation of Xn

6 (without any scaling) involving
rate-1 Poisson processes. Then we observe that the essential dimension is ac-
tually two (when scaling by

√
n) because the queue lengths are asymptotically

in the fixed ratio. Thus we deduce that it is sufficient to directly prove con-
vergence of the 2-dimensional process (Q̂n

s , Ẑ
n
1,2).

The second step is to facilitate application of the continuous mapping the-
orem by showing that an essential mapping is continuous. The third step is
to construct appropriate martingale representations, allowing application of
the continuous mapping theorem. The fourth and final hardest step is to show
that the driving stochastic terms in this martingale representation converge to
the specified limits. This final step uses a new result of independent interest,
Theorem 6, the generalization of the classical FCLT for cumulative processes
in (13) to the case where the QBD parameters at time t are given by the fluid
limit x(t), which in general is time-varying.

5.1 Representation and SSC

Following common practice, as reviewed in §2 of [20], we represent the pro-
cesses An

i (t), S
n
i,j(t) and U

n
i (t) introduced at the beginning of §4.2 in terms of

mutually independent rate-1 Poisson processes; let

An
i (t) ≡ Na

i (λ
n
i t),

Sn
i,j(t) ≡ Ns

i,j

(
µi,j

∫ t

0

Zn
i,j(s) ds

)
and Sn ≡

2∑
j=1

2∑
i=1

Sn
i,j ,

Un
i (t) ≡ Nu

i

(
θi

∫ t

0

Qn
i (s) ds

)
, t ≥ 0,

where Na
i , N

s
i,j and Nu

i for i = 1, 2; j = 1, 2 are eight mutually independent
rate-1 Poisson processes. Theorem 5.1 of [24] gives a representation of the
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CTMC in terms of these processes. Corollaries 6.1-6.3 plus Theorem 6.4 of [24]
then establish state space collapse (SSC) results yielding an asymptotically
equivalent three-dimensional representation of Xn

6 involving these mutually
independent rate-1 Poisson processes plus two others. Since we exploit that
representation, we state it here. Directly, the representation of Zn

1,2 below keeps
it in the interval [0,mn

2 ]. However, the representation directly allows the queue
lengths Qn

i to become negative. The results in [24] show that the occurrence
(anywhere in a a bounded interval) is asymptotically negligible. Recall that
dJ1 denotes the Skorohod J1 metric.

Lemma 1 (Representation via SSC of the service process) Under the assump-
tions in Theorem 1, dJ1(X

n
6 , X

n,∗
6 ) ⇒ 0 in D6 as n → ∞, with the three de-

termining components of Xn,∗
6 in (3), i.e., in Xn in (4), being represented

via

Zn
1,2(t) ≡ Zn

1,2(0) +

∫ t

0

1{Dn
1,2(s−)>0} dS

n
2,2(s)−

∫ t

0

1{Dn
1,2(s−)≤0} dS

n
1,2(s)

d
= Zn

1,2(0) +Ns
2,2

(
µ2,2

∫ t

0

1{Dn
1,2(s)>0}(m

n
2 − Zn

1,2(s)) ds

)
−Ns

1,2

(
µ1,2

∫ t

0

1{Dn
1,2(s)≤0}Z

n
1,2(s) ds

)
,

Qn
1 (t) ≡ Qn

1 (0) +An
1 (t)−

∫ t

0

1{Dn
1,2(s−)>0} dS

n(s)−
∫ t

0

1{Dn
1,2(s−)≤0} dS

n
1,1(s)− Un

1 (t)

d
= Qn

1 (0) +Na
1 (λ

n
1 t)−Ns

1,1(µ1,1m
n
1 t)−Ns,2

1,2

(
µ1,2

∫ t

0

1{Dn
1,2(s)>0}Z

n
1,2(s)) ds

)
−Ns

2,2

(
µ2,2

∫ t

0

1{Dn
1,2(s)>0}(m

n
2 − Zn

1,2(s)) ds

)
−Nu

1

(
θ1

∫ t

0

Qn
1 (s) ds

)
,

Qn
2 (t) ≡ Qn

2 (0) +An
2 (t)−

∫ t

0

1{Dn
1,2(s−)≤0} dS

n
2,2(s)−

∫ t

0

1{Dn
1,2(s−)≤0} dS

n
1,2(s)− Un

2 (t)

d
= Qn

2 (0) +Na
2 (λ

n
2 t)−Ns,2

2,2

(
µ2,2

∫ t

0

1{Dn
1,2(s)≤0}(m

n
2 − Zn

1,2(s)) ds

)
−Ns

1,2

(
µ1,2

∫ t

0

1{Dn
1,2(s)≤0}Z

n
1,2(s) ds

)
−Nu

2

(
θ2

∫ t

0

Qn
2 (s) ds

)
.

where Ns,2
1,2 and Ns,2

2,2 are two additional rate-1 Poisson processes, independent
of the others.

The representation in Lemma 1 provides important simplification, but it also
shows the difficulty in proving heavy traffic limit theorems; the integrals con-
tain the indicator functions depending onDn

1,2. We now show that the essential
dimension can be reduced from three to two when we introduce scaling. The
next result follows from Corollary 4.1 of [24].
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Lemma 2 (SSC to two dimensions) Under the conditions of Theorem 1, the
essential dimension can be reduced from 3 established in Lemma 1 to 2, because
dJ1(Q

n
1 , rQ

n
2 )/an ⇒ 0 in D([0, δ)) for δ in Theorem 1 whenever an/ log n→ ∞

as n → ∞. If x ∈ A over an interval [t1, t2), 0 < t1 < t2 ≤ ∞, then the
conclusion holds in D((t1, t2)).

Due to Assumption 6 and Lemma 2, it is sufficient to directly prove conver-
gence of the 2-dimensional process (Q̂n

s , Ẑ
n
1,2); the more general 16-dimensional

limit in (16) can be obtained as a byproduct of the analysis, and in particular,

Q̂i
d
= piQ̂s, i = 1, 2.

5.2 A Continuous Mapping

As in [20], our proof exploits the continuous mapping theorem. However, in our
case, the stochastic processes describing the evolution of the system (the queue
length and service processes) cannot be expressed directly as a continuous
mapping of the primitive processes. We next establish the continuity of the
mapping that we will eventually apply.

Lemma 3 (Continuity of the two-dimensional integral representation) Con-
sider the two-dimensional integral representation

x1(t) = b1 + y1(t) + α2

∫ t

0

x2(s) ds+ α1

∫ t

0

x1(s) ds

x2(t) = b2 + y2(t) +

∫ t

0

g(s)x2(s) ds

where g : R → R satisfies g(0) = 0 and is Lipschitz continuous with a Lipschitz
constant cg. That integral representation has a unique solution (x1, x2), so that
the integral representation constitutes a function f : D2 × R2 → D2 mapping
(y1, y2, b1, b2) into (x1, x2) ≡ f(y1, y2, b1, b2). In addition, the function f is a
continuous mapping from D2 × R2 to D2. Moreover, if y2 is continuous then
x2 is continuous. If both y1 and y2 are continuous, then x1 is also continuous.

Proof By the conditions on the function g we have for all T ≥ 0

∥g∥T ≤ g(0) + ∥g(u)− g(0)∥T ≤ g(0) + cgT = cgT.

Note that x2 does not depend on x1, hence we can prove the lemma iteratively
by first showing that the function f2 : D × R mapping (y2, b2) into x2 ≡
f2(y2, b2) is continuous, and then use this result to show that the function
f1 : D2 × R mapping (y1, x2, b1) into x1 ≡ f1(y1, x2, b1) is continuous.

To show that f2 is continuous we use Theorem 2.11 in [27] with h(x2(u), u) ≡
g(u)x2(u). For that purpose, choose T > 0 and let λ be a homeomorphism on
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[0, T ] with strictly positive derivative λ̇. Then, for every φ1, φ2 ∈ D∫ t

0

|g(u)φ1(u)− g(λ(u))φ2(λ(u))| du

≤
∫ t

0

|g(u)φ1(u)− g(u)φ2(λ(u))| du+

∫ t

0

|g(u)φ2(λ(u))− g(λ(u))φ2(λ(u))| du

≤ ∥g∥T
∫ t

0

|φ1(u)− φ2(λ(u))| du+ ∥φ2∥T
∫ t

0

|g(u)− g(λ(u))| du

≤ ∥g∥T
∫ t

0

|φ1(u)− φ2(λ(u))| du+ cgT∥φ2∥T ∥λ− e∥T

= c1∥λ− e∥T + c2

∫ t

0

|φ1(u)− φ2(λ(u))| du.

where c1 ≡ cgT∥φ2∥T and c2 ≡ ∥g∥T .
For x1 = f1(y1, x2, b1) we can apply Theorem 4.1 in [20] with input y ≡

y1+α2

∫ t

0
x2(u) du. It follows from Theorem 2.11 in [27] that if y2 is continuous

then so is x2. If, in addition, y1 is continuous, then y is continuous and, by
Theorem 4.1 in [20], so is x1. ⊓⊔

5.3 Martingale Representations

As in Theorem 6.3 of [24], we next apply the representation in Lemmas 1 and 2
to obtain martingale representations for Q̂n

s and Ẑn
1,2, but now we are interested

in the FCLT instead of the FWLLN. We exploit martingale representations
for the counting processes appearing in lemma 1 constructed from the rate-1
Poisson processes Na

i , N
s
i,2, N

s,2
i,2 and Nu

i , i = 1, 2, in particular,

Mn
1,1(t) ≡ Ns

1,1(m
n
1µ1,1t)−mn

1µ1,1t,

Mn
1,2(t) ≡ Ns

1,2

(
µ1,2

∫ t

0

1{Dn
1,2(s)≤0}Z

n
1,2(s) ds

)
− µ1,2

∫ t

0

1{Dn
1,2(s)≤0}Z

n
1,2(s) ds,

Mn
2,2(t) ≡ Ns

2,2

(
µ2,2

∫ t

0

1{Dn
1,2(s)>0}(m

n
2 − Zn

1,2(s)) ds

)
− µ2,2

∫ t

0

1{Dn
1,2(s)>0}(m

n
2 − Zn

1,2(s)) ds,

Mn
1,3(t) ≡ Ns,2

1,2

(
µ1,2

∫ t

0

1{Dn
1,2(s)>0}Z

n
1,2(s) ds

)
− µ1,2

∫ t

0

1{Dn
1,2(s)>0}Z

n
1,2(s) ds,

(28)

Mn
2,3(t) ≡ Ns,2

2,2

(
µ2,2

∫ t

0

1{Dn
1,2(s)≤0}(m

n
2 − Zn

1,2(s)) ds

)
− µ2,2

∫ t

0

1{Dn
1,2(s)≤0}(m

n
2 − Zn

1,2(s)) ds,

Mn
ai
(t) ≡ Na

i (λ
n
i t)− λni t, i = 1, 2,
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Mn
ui
(t) ≡ Nu

i

(
θi

∫ t

0

Qn
i (s)ds

)
− θi

∫ t

0

Qn
i (s)ds, i = 1, 2.

Lemma 4 (martingale representation for Q̂n
s )

Q̂n
s (t) = Q̂n

s (0) + (µ2,2 − µ1,2)

∫ t

0

Ẑn
1,2(s) ds− (p1θ1 + p2θ2)

∫ t

0

Q̂n
s (s) ds

+ M̂n
s (t) + oP (1) as n→ ∞,

where M̂n
s ≡Mn

s /
√
n for the martingale

Mn
s (t) ≡

2∑
i=1

Mn
ai
(t)−

2∑
i=1

Mn
ui
(t)−

2∑
i=1

Mn
i,2(t)−

2∑
i=1

Mn
i,3(t)−Mn

1,1(t). (29)

with respect to the natural filtration.

Proof By Theorem 1,

Qn
s (t) = Qn

s (0) + (λn1 + λn2 )t−mn
1µ1,1t− µ1,2

∫ t

0

Zn
1,2(s) ds− µ2,2

∫ t

0

Zn
2,2(s) ds

− θ1

∫ t

0

Qn
1 (s) ds− θ2

∫ t

0

Qn
2 (s) ds+Mn

s (t),

forMn
s (t) in (29). Observe that the indicator functions in the representation of

Xn in Lemma 1 do not appear in the representation of Qn
s (t). That simplifies

the analysis.
From (9) it follows that qs ≡ q1 + q2, the fluid counterpart of Qn

s , evolves
according to the integral equation:

qs(t) = qs(0) + (λ1 + λ2)t− µ1,1m1t− µ1,2

∫ t

0

z1,2(u) du− µ2,2

∫ t

0

z2,2(u) du

− θ1

∫ t

0

q1(u) du− θ2

∫ t

0

q2(u) du,

so that, substituting q1 with p1qs(u) and q2(u) with p2qs(u),

qs(t) = qs(0) + (λ1 + λ2)t− µ1,1m1t− µ2,2m2t

+ (µ2,2 − µ1,2)

∫ t

0

z1,2(u) du− (p1θ1 + p2θ2)

∫ t

0

qs(u) du.

Then, by centering about nqs and dividing by
√
n as in (15), we have

Q̂n
s (t) = Q̂n

s (0) +
[(λn1 + λn2 )− n(λ1 + λ2)]t√

n
− µ1,1(m

n
1 − nm1)t√
n

−
µ1,2

∫ t

0
(Zn

1,2(s)− nz1,2(s)) ds√
n

−
µ2,2

∫ t

0
(Zn

2,2(s)− nz2,2(s)) ds√
n

−
θ1
∫ t

0
(Qn

1 (s)− nq1(s)) ds√
n

−
θ2
∫ t

0
(Qn

2 (s)− nq2(s)) ds√
n

+
Mn

s (t)√
n

.

(30)
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By Assumption 1, the second and third terms in the expression above converge
to zero. By Corollary 6.2 and Theorem 6.4 in [24], n−1/2∥Zn

2,2−(mn
2−Zn

1,2)∥ ⇒
0 in D as n → ∞ so that z2,2 = m2 − z1,2. Also, (mn

2 − nm2)/
√
n → 0 as

n→ ∞ by Assumption 1. Hence,

Q̂n
s = Q̂n

s (0) + (µ2,2 − µ1,2)

∫ t

0

Ẑn
1,2(s) ds

− θ1

∫ t

0

Q̂n
1 (s) ds− θ2

∫ t

0

Q̂n
2 (s) ds+ M̂n

s (t) + oP (1).

Define

Q̂n
a,s(t) ≡ Q̂n

s (0) + (µ2,2 − µ1,2)

∫ t

0

Ẑn
1,2(s) ds− p1θ1

∫ t

0

Q̂n
s (s) ds

− p2θ2

∫ t

0

Q̂n
s (s) ds+ M̂n

s (t)

By applying the SSC result in Lemma 2, we conclude that ∥Q̂n
s − Q̂n

a,s∥T ⇒ 0
in D as n→ ∞ for any T > 0. That completes the proof. ⊓⊔

We now turn to the process Zn
1,2.

Lemma 5 (martingale representation for Ẑn
1,2)

Ẑn
1,2(t) = Ẑn

1,2(0)−
∫ t

0

[(µ2,2 − µ1,2)π1,2(x(s)) + µ1,2] Ẑ
n
1,2(s) ds

+ L̂n + M̂n
Z + o(1),

(31)

where L̂n ≡ Ln/
√
n, M̂n

Z ≡Mn
Z/

√
n,

Ln(t) ≡
∫ t

0

[1{Dn
1,2(s)>0} − π1,2(x(s))]Ψ

n(s) ds,

Ψn(s) ≡ µ2,2(m
n
2 − Zn

1,2(s)) + µ1,2Z
n
1,2(s)

(32)

and Mn
Z is the martingale

Mn
Z(t) ≡Mn

2,2(t)−Mn
1,2(t). (33)

with respect to the natural filtration, where Mn
2,2 and Mn

1,2 the martingales in
(28).

Proof We start by rewriting the representation of Zn
1,2 in Lemma 1 as

Zn
1,2(t) = Zn

1,2(0)− µ1,2

∫ t

0

(1− π1,2(x(s)))Z
n
1,2(s) ds

+ µ2,2

∫ t

0

π1,2(x(s))(m
n
2 − Zn

1,2(s)) ds+ Ln +Mn
Z .
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To achieve the diffusion-scaled process, we center Zn
1,2 about nz1,2 and divide

by
√
n, where, by (9), the fluid limit z1,2 satisfies the equation

z1,2(t) = z1,2(0) + µ2,2

∫ t

0

π1,2(x(s))(m2 − z1,2(s)) ds

− µ1,2

∫ t

0

(1− π1,2(x(s)))z1,2(s) ds.

We get the representation (31) with the o(1) term replacing the deterministic

term [(mn
2 − nm2)

∫ t

0
π1,2(x(s)) ds]/

√
n ≤ (mn

2 − nm2)t/
√
n, which converges

to zero by Assumption 1. ⊓⊔

5.4 Convergence of Stochastic Driving Terms

Given the representations in Lemmas 4 and 5, we can complete the proof of
the convergence of (Q̂n

s , Ẑ
n
1,2) in Theorem 4 by establishing convergence of the

driving terms and applying the continuous mapping theorem with the mapping
in Lemma 3, i.e., with the following lemma, proved in the next section. We
add an extra process, În, also defined in (15), which is closely related to L̂n,
but not directly needed to treat (Q̂n

s , Ẑ
n
1,2).

Lemma 6 (convergence of driving terms) Under the assumptions of Theorem
4,

(M̂n
s , M̂

n
Z , L̂

n, În) ⇒ (M̂s, M̂Z , L̂2, Î) in D4, (34)

where

M̂s(t) ≡ B1 (γ1(t))−B1,2 (γ1,2(t))−B2,2 (γ2,2(t))

−B1,3 (ϕ1,2(t))−B2,3 (ϕ2,2(t)) ,

M̂Z(t) ≡ B2,2 (ϕ2,2(t))−B1,2(ϕ1,2(t)),

L̂2(t) ≡ B2(γ2(t)) and Î(t) ≡ B2(γ3(t)), t ≥ 0,

B1, B1,2, B2,2, B1,3, B2,3 and B2 are independent standard BM’s as in the
statement of Theorem 4 and γ1(t), γ2(t), γ3(t), γ1,2(t), γ2,2(t), ϕ1,2(t) and
ϕ2,2(t) are the increasing continuous functions defined in (19).

5.5 Overall Proof of Theorem 4

We prove convergence of (Q̂n, Ẑn
1,2) by applying the continuous mapping the-

orem with the continuous function in Lemma 3, exploiting the representations
in Lemmas 4 and 5 and the convergence established in Lemma 6. In applying
Lemma 3, we rely heavily on Theorem 7.1 in [23], which establishes that π1,2(·)
is locally Lipschitz continuous in A as a function of the fluid state x and is
thus Lipschitz continuous over compact sets. Moreover, x(·) is itself Lipschitz
continuous, as a function of the time argument s by Corollary 5.1 in [24]. It
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follows that π1,2(x(s)) is Lipschitz continuous as a function of the time argu-
ment s as well (using Assumption 6 implying that x lies entirely in A). Thus
the proof of Theorem 4 is complete with the exception of the proof of Lemma
6. The next four sections are devoted to that proof.

6 Proof of Lemma 6

This section is devoted to proving Lemma 6. In §6.1 we apply standard argu-
ments to establish the convergence of the first two martingale terms (M̂n

s , M̂
n
Z).

In preparation for treating the last two terms, in §6.2 we state two key results
that we will use; they are proved in the following three sections. In §6.3 we
establish convergence of the last two terms (L̂n, În). Finally, in §6.4 we estab-
lish joint convergence of all four terms by proving asymptotic independence of
the last two terms from the first two terms.

6.1 The First Two Terms in (34)

We start by establishing convergence of the first two terms in Lemma 6, the
two martingale terms.

Lemma 7 There is joint convergence of the martingale processes

(M̂n
s , M̂

n
Z) ⇒ (M̂s, M̂Z) in D2,

where the processes are defined in (29), (33) and Lemma 6.

Proof Let

M̂n
S (t) =

(
M̂n

1,1(t), M̂
n
1,2(t), M̂

n
2,2(t), M̂

n
1,3(t), M̂

n
2,3(t)

)
in D5,

M̂n
A(t) =

(
M̂a1(t), M̂a2(t)

)
and M̂n

U (t) =
(
M̂n

u1
(t), M̂n

u2
(t)
)

in D2

for the martingale processes in (28). To compress the notation, for x ∈ Dk and
t ∈ [0,∞)k, let x(t) ≡ (x1(t1), x2(t2), . . . , xk(tk)). We start by proving that(
M̂n

A(t), M̂
n
S (t), M̂

n
U (t)

)
⇒
(
BA(λt), BS(ϕ(t)), BU

(
θ

∫ t

0

q(s) ds

))
in D9

(35)
as n→ ∞, where

ϕ(t) ≡ (ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t), ϕ5(t)),

ϕ1(t) ≡ m1µ1,1(t), ϕ2(t) ≡ ϕ1,2(t), ϕ3(t) ≡ ϕ2,2(t),

ϕ4(t) ≡ γ1,2(t), ϕ5(t) ≡ γ2,2(t),

(36)

for ϕi,2 and γi,2 defined in (19). Here BA(t), BS(t) and BU (t) are vectors of
independent standard Brownian motions. Using our compressed notation, we
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have λt ≡ (λ1t, λ2t) and θq(s) ≡ (θ1q1(s), θ2q2(s)). For example, BA(λt) =
(BA1(λ1t), BA2(λ2t)), and similarly for BS(·) and BU (·).

To prove (35), we apply the FCLT for Poisson processes. For the Poisson
processes in Lemma 1, let

M̃n
ai

=
Na

i (nt)− nt√
n

, M̃n
i,j =

Ns
i,j(nt)− nt

√
n

and

M̃n
ui

=
Nu

i (nt)− nt√
n

, i = 1, 2; j = 1, 2, 3.

Let M̃n
A(t), M̃

n
S (t) and M̃n

U (t) be the corresponding vector-valued processes.
By the independence of all the unit-rate Poisson processes Na

i (·), Ns
i,j(·) and

Nu
i (·), and the FCLT for a Poisson process, the following joint convergence

holds:(
M̃n

A(t), M̃
n
S (t), M̃

n
U (t)

)
⇒
(
B̃A(t), B̃S(t), B̃U (t)

)
in D9 as n→ ∞, (37)

where B̃A, B̃S and B̃U are, respectively, 2-dimensional, 5-dimensional and 2-
dimensional independent Brownian motions; see Theorem 4.2 and §9.1 in [20].

We now introduce random time changes. Let

Φn
A,i(t) ≡ n−1λni t, Φn

S,1(t) ≡ n−1µ1,1m
n
1 t,

Φn
S,2(t) ≡ n−1µ1,2

∫ t

0

1{Dn
1,2(s)≤0}Z

n
1,2(s) ds,

Φn
S,3(t) ≡ n−1µ2,2

∫ t

0

1{Dn
1,2(s)>0}(m

n
2 − Zn

1,2(s)) ds,

Φn
S,4(t) ≡ n−1µ1,2

∫ t

0

1{Dn
1,2(s)>0}Z

n
1,2(s) ds,

Φn
S,5(t) ≡ n−1µ2,2

∫ t

0

1{Dn
1,2(s)≤0}(m

n
2 − Zn

1,2(s)) ds,

Φn
U,i(t) ≡ n−1θi

∫ t

0

Qn
i (s) ds, i, j = 1, 2. (38)

By Assumption 1 on the arrival rates, Φn
Ai

→ λie in D, i = 1, 2. From the initial
conditions in the statement of Theorem 4, the fluid limit and the continuity
of the integral mapping, it follows that Φn

S,i ⇒ ϕi, 1 ≤ i ≤ 5, and Φn
U,i(t) ⇒

θi
∫ t

0
qi(s) ds in D as n→ ∞.

Let Φn
A(t), Φ

n
S(t) and Φ

n
U (t) be the corresponding vector-valued processes.

By Theorem 11.4.5 of [32], these limits hold jointly, yielding

(Φn
A(t), Φ

n
S(t), Φ

n
U (t)) ⇒

(
λt, ϕ(t), θ

∫ t

0

q(s) ds

)
in D9 (39)

as n → ∞. By Theorem 11.4.5 of [32], the limits in (37) and (39) also hold
jointly. By definition,(

M̂n
A(t), M̂

n
S (t), M̂

n
U (t)

)
=
(
M̃n

A

(
Φn
A(t)

)
, M̃n

S

(
Φn
S(t)

)
, M̃n

U

(
Φn
U (t)

))
.
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Thus, the convergence in (35) follows from the continuity of the composition
mapping at continuous limits, Theorem 13.2.1 in [32]. Finally, the conclusion
of the lemma itself then follows from the definition of M̂n

s and M̂n
Z in (29) and

(33), and the continuity of addition under continuous limits, e.g., Corollary
12.7.1 in [32]. ⊓⊔

6.2 Key Supporting Results for the Last Two Terms

In §4.1 we indicated that the stochastic limit will depend on the FCLT for
cumulative processes associated with the FTSP, as stated in (13). As indicated
in §6 of [23], the FTSP with fixed state γ is a QBD; its parameters (transition
rates) are given explicitly in (13)-(16) of [24]. Since the FTSP D(γ, ·) is a
QBD for each state γ, it is a relatively simple regenerative stochastic process
for each state γ, assuming that γ makes the QBD positive recurrent. However,
in our application, the fluid state is not fixed at γ, but is instead given by the
fluid limit x(t), which is a function of time t. That means that the parameters
of the FTSP are actually time-varying. By Assumption 6, the FTSP with fluid
state x(t) is a positive recurrent QBD for all states x(t) considered. Moreover,
by Lemma C.5 of [24], the infinitesimal generator and the asymptotic variance
of the QBD are continuous functions of the underlying state x(t). Since the
essential matrix structure (e.g., the dimension of the matrices) of the QBD’s
depends only on the rational ratio parameter r1,2, and thus does not change,
the QBD is characterized by only finitely many parameters. As a consequence,
we can establish a variant of the FCLT in (13), allowing the FTSP to have a
time-varying state.

In our remaining proof of Lemma 6, in particular for Lemma 8 below, we
will want to generalize the state of the QBD. The parameters of the QBD
depend on the fluid state γ ≡ (q1, q2, z1,2), but also on the rest of the QBD pa-
rameters, in particular, also upon ζ ≡ (λi,mj ; i, j = 1, 2). In order to establish
Lemma 8 below, we will want to allow the parameters λi and mj to vary, be-
cause they vary with n in the many-server heavy-traffic scaling in Assumption
1. The QBD also depends on the other model parameters θi and µi,j , but they
are fixed, so we do not include them. Thus, we will consider the more general
“full” parameter state function η ≡ (ζ, γ) for η ≡ η(t) and γ ≡ γ(t) above,
which we understand to be an element of the functions space D. We obtain a
conventional stationary QBD model for each full parameter state η(t).

Now we will establish a FCLT for

Ĉn(t; η) ≡ n−1/2

∫ nt

0

(
1{D(η(s/n),s)>0} − π1,2(η(s/n))

)
ds, t ≥ 0, (40)

where the state function η is an element of D and D(η(0), 0) is some fixed
finite initial value. Note that in the special case of a constant parameter state
function, with η(t) = γ, 0 ≤ t ≤ T , this new process reduces to the previous
one in §4.1; i.e.,

Ĉn(t; η) = Ĉn
QBD(t; γ), 0 ≤ t ≤ T.
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for Ĉn
QBD(t; γ) in (13).

However, more generally, the process Ĉn(t; η) in (40) is more complicated,
so that the new FCLT is by no means immediate. The non-constant function
η makes the new process {D(η(s/n), s) : s ≥ 0} appearing in the integrand of
(40) neither a QBD nor a regenerative process. Nevertheless, we establish the
following generalization of the FCLT in (13). The proof is given in §7.
Theorem 6 (FCLT for FTSP with time-varying parameter state) Consider
the FTSP D as a function of its parameter state function η specified above,
where η is a function in D. Suppose that the QBD D(η(t), ·) is positive recur-
rent for all η(t), 0 ≤ t ≤ T . Then

Ĉn(·; η) ⇒ Ĉ(·; η) in D([0, T ]) as n→ ∞,

where Ĉn(·; η) is given in (40) and

Ĉ(t; η) ≡ B

(∫ t

0

σ2(η(u)) du

)
, t ≥ 0,

with B being a standard BM and, for each u, σ2(η(u)) is the asymptotic vari-
ance of the cumulative process with constant full parameter state η(u), as in
(13)-(14).

For Lemma 8 below, we will also want to extend the FCLT in Theorem 6
to full parameter state functions that are suitably near a given deterministic
one. For that purpose, we use the following elementary corollary to Theorem 6
and its proof. (Also see §6 of [23] and §C.3 of[24]. We use the Prohorov metric
dP,T (Y1, Y2) characterizing convergence in distribution in D([0, T ]); see p. 77
of [32]. We say that a parameter-state function η is positive recurrent if the
associated FTSP D(η, ·) is positive recurrent.

Corollary 3 (continuity of the FCLT for the FTSP with time-varying param-
eter state) Consider the FTSP D as a function of its parameter state function
η specified above, where the parameter state function η is a positive-recurrent
element of D. For all ϵ > 0 and T > 0, there exists δ > 0 such that, if η′ is
a parametric state function satisfying ∥η− η′∥T < δ, then η′ is positive recur-
rent for all t in [0, T ] and dP,T (Ĉ(·; η), Ĉ(·, η′)) < ϵ where Ĉ(·; η) is the limit
process associated with D(η, ·) in Theorem 6.

Proof We exploit the criterion for recurrence in terms of the drift rates given in
(8). The drift rates δ+(η) and δ−(η) for constant η in the regions {s : D(η, s) >
0} and {s : D(η, s) ≤ 0}, respectively, are linear functions of the components
of the vector η. We can thus express the drifts as the inner products δ±(η) =
a± · η, where a+ and a− are constant vectors. Hence, if |η − η′| ≤ ϵ, then
|δ±(η)− δ±(η′)| ≤ ϵ(|a±| · 1), where here 1 is a vector of 1′s of the appropriate
dimension. This property for constant parameter states extends immediately to
more general state functions in D using the uniform norm; i.e., if ∥η−η′∥T ≤ ϵ,
then ∥δ±(η) − δ±(η

′)∥T ≤ ϵ(|a±| · 1). Thus, for any positive recurrent state
function η, there exists ϵ > 0 such that δ+(η

′) < 0 and δ−(η
′) > 0 if ∥η−η∥T <

ϵ, implying that η′ is also positive recurrent. ⊓⊔
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In Lemma 8 below, we will apply Corollary 3 to random state functions
η̃n which converge weakly to η as n → ∞, i.e., for which η̃n ⇒ η in D as
n → ∞. To do so, we need to connect the queue-difference processes Dn

1,2

appearing in În in (15) to the FTSP. We do that via the associated frozen
processes, introduced in §A.1 of [24]. The frozen process {Dn

f (X
n(t), s) : s ≥ 0}

corresponds to the queue-difference processDn
1,2 starting at time t, conditioned

on the state Xn(t) at time t under the assumption that the transition rates
are fixed (“frozen”) at the rates associated with the initial state Xn(t). A key
property, for applying Theorem 6 and Corollary 3 above, is that the frozen
process can be represented as the FTSP with modified parameters. To express
the connection, we write the frozen process and the FTSP as functions of the
parameters (λi,mj , γ, s). As in equation (74) of [24], we have the representation

{Dn
f (λ

n
i ,m

n
j , X

n(t), s) : s ≥ 0} d
= {D(λni /n,m

n
j /n,X

n(t)/n, ns) : s ≥ 0},
(41)

where Dn
f on the left of (41) is the frozen process described above, and D on

the right of (41) is the FTSP.
Like the queue-difference process, the frozen process has O(n) transition

rates, whereas the FTSP has O(1) transition rates, because of the time scaling
in (5). Thus the time variable s on the right in (41) is scaled by n.

However, we need to construct a process that is made up of different frozen
processes over different subintervals. Thus, for each n ≥ 1, we will construct a
process that is a different frozen process over each successive interval of length
1/n, but identical to the queue-difference process at each interval endpoint. In
particular, we will construct the overall frozen process by setting

D̃n
f (t) ≡ Dn

f (X
n((k − 1)/n), t− (k − 1)/n),

k − 1

n
≤ t <

k

n
, (42)

0 ≤ t ≤ T , where Dn
f is the frozen process defined above. That is, we use a

different frozen state and thus frozen process for each interval [(k− 1)/n, k/n)
in [0, T ]. As a consequence, the frozen process state for the process D̃n

f as a
function of t is thus

Xn
f (t) ≡ Xn(⌊nt⌋/n), 0 ≤ t ≤ T. (43)

As a consequence of (41)-(43) above, we can simply write

{D̃n
f (t) : t ≥ 0} d

= {D(η̃n(t), nt) : t ≥ 0}, (44)

where η̃n is a random full parameter state function with the special parameter
function given in (41) above, with the frozen state at time t given by (43).
Corollary 3 is relevant because, by virtue of Assumption 1 and Theorem 1, for
each T > 0, we have

∥η̃n − η∥T ⇒ 0 as n→ ∞,

where η has fixed components λi, mj and x(t), t ≥ 0.
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Hence, the FCLT for fixed positive recurrent state function η, which holds
by Theorem 6, also holds with η replaced by η̃n by virtue of Corollary 3.
However, it remains to show that the newly constructed frozen processes ap-
proximate the queue-difference processes suitably well. For that, we will use
a special coupling construction, similar to the coupling constructions used in
[24]. The following result is proved in §10.

Lemma 8 For each n, we can construct the new frozen processes D̃n
f defined

by (41)-(44) on the same underlying probability space with the queue-difference
processes Dn

1,2 so that, ∆n ⇒ 0 in D as n→ ∞, where

∆n(t) ≡
√
n

∫ t

0

(
1{Dn

1,2(s)>0} − 1{D̃n
f (s)>0}

)
ds, t ≥ 0. (45)

6.3 The Last Two Terms in (34)

We now establish joint convergence of the last two terms in Lemma 6.

Lemma 9 There is joint convergence of the last two terms in Lemma 6, i.e.,

(L̂n, În) ⇒ (L̂2, Î) in D2,

where the converging processes L̂n and În are defined, respectively, in (32) and
(15), while the vector limit process is (L̂2(t), Î(t)) ≡ (B2(γ2(t), B2(γ3(t)) for
B2 a standard Brownian motion and (γ2(t), γ3(t)) in (19), as in (18).

Proof We start by considering just În. We make a change of variables in (15)
to get

În(t) ≡ 1√
n

∫ nt

0

[1{Dn
1,2(s/n)>0} − π1,2(x(s/n))] ds, 0 ≤ t ≤ T. (46)

From either the original representation of În in (15) or the equivalent al-
ternative expression in (46), the main line of the proof should be evident: We
show that the time-scaled queue-difference process Dn

1,2(s/n) in (46) is asymp-
totically equivalent to the scaled FTSP D(x(s/n), s), making the expression
in (46) be essentially of the form of Ĉn in (40). If we could just directly
make that substitution, then the desired limit În ⇒ Î would be an immedi-
ate consequence of Theorem 6. However, the desired substitution is only valid
asymptotically. We actually achieve the desired approximation by the FTSP
indirectly by approximating the queue-difference process and applying Lemma
8 and Corollary 3 in addition to Theorem 6. In particular, we can write

1√
n

∫ nt

0

[1{Dn
1,2(s/n)>0} − π1,2(x(s/n))] ds =

√
n

∫ t

0

[1{Dn
1,2(s)>0} − π1,2(x(s))] ds

=
√
n

∫ t

0

(
1{Dn

1,2(s)>0} − 1{D̃n
f (s)>0}

)
ds
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+
1√
n

∫ nt

0

1{D̃n
f (s/n)>0} − π1,2(x(s/n))] ds.

We then apply Lemma 8 to the first component in the RHS of the equality,
and Corollary 3 to the second component, using (44).

Having established the limit for În, we turn to L̂n. From (32), we know that
Ln differs from In by having the extra term Ψn in the integrand. However,
by the FWLLN, Theorem 1, Ψn ⇒ ψ as n → ∞, where ψ(t) ≡ µ2,2(m2 −
z1,2(t)) + µ1,2z1,2(t). Hence, we first write

L̂n
1 (t) ≡

√
n

∫ t

0

[1{Dn
1,2(s)>0} − π1,2(x(s))]ψ(s) ds, t ≥ 0.

Since ψ is continuous, we can approximate it uniformly closely by a piecewise
constant function, with all discontinuities occurring at multiples of a small
positive ϵ. Hence, by approximation, we can assume without loss of generality
that

L̂n
1 (t) ≡

⌊t/ϵ⌋+1∑
j=1

ψj Î
n
j (t),

where ψj is a constant for each j and Înj (t) has the structure of În over
the subinterval [(j − 1)ϵ, jϵ) and is 0 outside that interval. Hence, we have
convergence of L̂n

1 , jointly with În, by essentially the same argument as for
În. Finally, we can write

∥L̂n − L̂n
1∥T ≤ ∥Ψ̄n − ψ∥T ∥În∥T ⇒ 0 as n→ ∞,

because ∥Ψ̄n−ψ∥T ⇒ 0 and În ⇒ Î as n→ ∞, so that ∥În∥T ⇒ ∥Î∥T , where
∥Î∥T is finite by the continuous mapping theorem with the function ∥ · ∥T .
Hence, we obtain the claimed joint limit for (L̂n, În). ⊓⊔

6.4 Joint Convergence in Lemma 6

To complete the proof of Lemma 6, it remains to show that the two limits
established in Lemmas 7 and 9 actually hold jointly. The two separate limits
directly imply the associated tightness, which in turn implies the tightness
for the sequence of four-dimensional processes. Thus, to prove convergence it
suffices to show that the limits of all converging subsequences coincide. We
uniquely characterize the joint limit by showing that the limit for every con-
vergent subsequence of the sequence {(M̂n

s , M̂
n
Z , L̂

n, În)} must be of the form

(M̂s, M̂Z , L̂, Î), where (M̂s, M̂Z) is independent of (L̂, Î), having distributions
as determined above. Thus it suffices to establish the following lemma.

Lemma 10 (independent limits) The limits (M̂s, M̂Z) and (L̂, Î) for every
convergent subsequence of the sequence {(M̂n

s , M̂
n
Z , L̂

n, În)} are independent.

In order to prove Lemma 10, we use the following lemma.
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Lemma 11 (basis for independent limits) If D̂n ⇒ 0e, În ⇒ Î and V̂ n ⇒ V̂
as n → ∞ for random vectors (În, D̂n, V̂ n) in D3, where D̂n = f(V̂ n) for
some function f and P (În ∈ B|V̂ n = v) = P (În ∈ B|D̂n = f(v)) for all Borel
sets B almost surely with respect to dP (V̂ n = v), then Î is independent of V̂ .

Proof Let gi be a continuous bounded real-valued function on D for i = 1, 2, 3.
By the assumptions above,

E[g1(Î
n)g2(D̂

n)g3(V̂
n)] = E[E[g1(Î

n)g2(D̂
n)|V̂ n]g3(V̂

n)]

= E[E[g1(Î
n)g2(D̂

n)|D̂n]g3(V̂
n)]

= E[E[g1(Î
n)|D̂n]g2(D̂

n)g3(V̂
n)]. (47)

Since În ⇒ Î and D̂n ⇒ 0e, we also have (În, D̂n) ⇒ (Î , 0e) by Theorem
11.4.5 of [32]. Thus, E[g1(Î

n)g2(D̂
n)] ⇒ E[g1(Î)g2(D̂)] = g2(0e)E[g1(Î)] as

n→ ∞, so that În is asymptotically independent of D̂n and

E[g1(Î
n)|D̂n]g2(D̂

n) ⇒ E[g1(Î)]g2(0e) ∈ R as n→ ∞.

By Theorem 11.4.5 of [32] once again,

(E[g1(Î
n)|D̂n]g2(D̂

n), V̂ n) ⇒ (E[g1(Î)]g2(0e), V̂ ) in R×D as n→ ∞,

so that, applying the continuous mapping theorem with the function h : R ×
D → R defined by h(x, y) ≡ xg3(y), we obtain

E[g1(Î
n)|D̂n]g2(D̂

n)g3(V̂
n) ⇒ E[g1(Î)]g2(0e)g3(V̂ ) in R. (48)

Since the random variables in (48) are bounded, we can apply the bounded
convergence theorem, combined with (47) and (48), to get

E[g1(Î
n)g2(D̂

n)g3(V̂
n)] → E[g1(Î)]g2(0e)E[g3(V̂ )] as n→ ∞.

From the special case g2 ≡ 1e, E[g1(Î
n)g3(V̂

n)] → E[g1(Î)]E[g3(V̂ )] as n →
∞. Since the product g1g3 is a continuous bounded real-valued function, we
also have E[g1(Î

n)g3(V̂
n)] → E[g1(Î)g3(V̂ )] as n→ ∞. Hence, E[g1(Î)g3(V̂ )] =

E[g1(Î)]E[g3(V̂ )] for all continuous bounded real-valued functions g1 and g3,
so that Î is independent of V̂ . ⊓⊔

Proof of Lemma 10 We show that the conditions of Lemma 11 are satisfied
in our case. For that, we rely strongly on the SSC result in Corollary 4.1 of
[24]. We first observe that, for each n, the stochastic process {Dn

1,2(t) : t ≥
0}, and thus also the stochastic processes {1{Dn

1,2(t)>0} : t ≥ 0} and În in

(15) are directly functions of D̂n in (15). Thus, for each n, the conditional

distribution of În in D conditional on V̂ n ≡
(
Ân

i , Û
n
i , Ŝ

n
i,j , D̂

n, Q̂n
i , Q̂

n
s , Ẑ

n
i,j

)
in (15) coincides with the conditional distribution of În in D conditional on
D̂n. Moreover, D̂n is scaled in the same way as the other processes in V̂ n in
(15). However, Theorem 4.5 (iii) and its corollary 4.1, both from [24], imply
that D̂n ⇒ 0e. Thus all the conditions of Lemma 11 are satisfied, and the
statement of the Lemma follows. ⊓⊔
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7 Proof of Theorem 6

First, if the parameter state function η is a constant function, with η(t) = γ,
0 ≤ t ≤ T , then Ĉn(t; η) = Ĉn

QBD(t, γ) for Ĉn(t; η) in (40) and Ĉn
QBD(t, γ) in

(13), as noted in §6.2. Moreover, if the QBD D(γ, ·) is positive recurrent, then
the conclusion in Theorem 6 reduces to the standard FCLT for a cumulative
process in (13). To consider more general time-varying parameter state func-
tions η ≡ {η(u) : 0 ≤ u ≤ T}, we require that η be positive recurrent where,
as before, we say that a state function η is positive recurrent if the associated
FTSP D(η(t), ·) is positive recurrent for all t, 0 ≤ t ≤ T .

Next, we observe that the conclusion in Theorem 6 is also valid for all
positive-recurrent piecewise constant parameter state functions, where we in-
clude the condition that there be only finitely many discontinuities in each
bounded interval. Let Dpc be the subspace of D containing all such piecewise
constant functions. To see that the conclusion holds for each positive recur-
rent η ∈ Dpc, note that, because of the time scaling, each subinterval [a, b) of
length O(1) for the state function η corresponds to an interval of length O(n)
for the stochastic process {D(η(s/n), s) : s ≥ 0}, which has transition rates of
O(1). Moreover, the convergence on each successive interval implies that the
initial distributions converge on the next interval. Hence, the initial conditions
on each subinterval do not alter the limit. Thus, the separate subintervals can
be treated separately, as if we were considering the first case of a constant
parameter state function.

Intuitively, it should be evident that the result extends to positive recurrent
state functions η in D because each such function is the uniform limit over
bounded intervals of piecewise-constant state functions; see p. 393 of [32].
However, a complete proof for this seemingly minor extension seems quite
complicated. The remaining proof will be based on a series of lemmas, which
are proved in the next section.

First, we exploit Corollary 3 showing that the subset of positive recurrent
state functions in D is an open subset. With Corollary 3, we then exploit the
continuity of QBD’s established in Lemma C.5 of [24] to complete the proof.
We complete the proof in several steps, requiring further lemmas. In doing
so, we will exploit frozen processes to simplify the argument. As before, we
use a coupling construction to show that they serve as suitable asymptotic
approximations.

Here we consider a modification of the process Ĉn in (40), having a param-
eter state that is frozen over each successive cycle, where as before a cycle is
the period between successive visits to a fixed state. As remarked before, in the
case of a constant parameter state function η, with η(t) = γ, 0 ≤ t ≤ T , these
are the regeneration cycles associated with the regenerative process D(γ, ·), as
in §4.1, but here we have a more general case. For each n, let Ĉn

f denote this

modification of Ĉn, having a parameter state that is frozen over each succes-
sive cycle. We use a coupling construction to show that it suffices to consider
Ĉn

f in order to establish the desired convergence of Ĉn in (40).
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Lemma 12 (frozen cumulative processes) The processes Ĉn
f and Ĉn can be

constructed on the same underlying space so that dJ1(Ĉ
n
f , Ĉ

n) ⇒ 0.

Now we want to establish the convergence Ĉn
f ⇒ Ĉ as n → ∞. To do so,

we apply modified versions of the reasoning used to prove the FCLT in (13),
as given in [9]. In particular, as in (1.1)-(1.4) of [9], we observe that Ĉn

f is
asymptotically equivalent to a random sum, ignoring remainder terms, and
we then establish convergence for the sequence of random sums. To set the
stage, let the ith full cycle in system n end at time Tn

i . (Recall that the cycle
begins upon transition into the designated state, while the next cycle begins
upon first returning to that state after first leaving the state, which is well
defined because the processes are pure-jump processes.)

As in §4.1, the key random variables associated with these cycles are the
cycle lengths

τni ≡ Tn
i − Tn

i−1, i ≥ 1, (49)

and the integrals of the centered process over the cycle, which we call the cycle
variables,

Y n
i ≡

∫ Tn
i

Tn
i−1

(
1{D(γi,s)>0} − π1,2(γi)

)
ds, i ≥ 0, (50)

where γi ≡ η(Tn
i−1), with Tn

i−1 being the random time at which the ith full
cycle begins and Tn

0 = 0, so that Y n
0 is the cycle variable for the first partial

cycle. We do not need to make additional assumptions for the analog of the
variables Wi(f) in (1.2) of [9] because

Wn
i ≡

∫ Tn
i

Tn
i−1

∣∣1{D(γi,s)>0} − π1,2(γi)
∣∣ ds ≤ τni . (51)

With this construction, we can write

Ĉn
f (T

n
i ; η) = Ĉn(Tn

i ; η̃
n
f ), i ≥ 0,

for

η̃nf (t) = γi, Tn
i−1 ≤ t < Tn

i , t <≥ 0.

Unlike for a regenerative process, as in [9], here the random cycle vec-
tors (τni , Y

n
i ) are in general neither independent nor identically distributed.

However, the sequence of cycle variables {(τnj , Y n
j ) : j ≥ i} is conditionally

independent of the entire system history up to time Tn
i−1, which we denote by

Fn
i−1, given only Tn

i−1, for each i ≥ 0 and n ≥ 1. Of course, in general these
conditional distributions vary with i because the parameter state function η is
not constant, but they change little if η changes little, by the QBD continuity.

Let Nn(t) count the number of full cycles up to time t. As in (1.4) of [9],
we can write

Ĉn
f (t) = R̂n(t) + R̂n

1 (t) + R̂n
2 (t), t ≥ 0,
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where R̂n(t) is the random sum

R̂n(t) ≡ n−1/2

Nn(t)∑
i=1

Y n
i , t ≥ 0,

while R̂n
1 (t) and R̂n

2 (t) are remainder terms involving the initial and final
partial cycle, if any, also scaled by dividing by

√
n.

Just as in the standard regenerative setting, we are able to show that Ĉn
f

is asymptotically equivalent to R̂n, so that it suffices to work with R̂n.

Lemma 13 (reduction to random sums) As n→ ∞, R̂n
1 ⇒ 0e and R̂n

2 ⇒ 0e,
so that dJ1(R̂

n, Ĉn
f ) ⇒ 0.

It now suffices to show that R̂n(·; η) ⇒ Ĉ(·; η) as n→ ∞ for each positive
recurrent η in D. By virtue of Corollary 3, given such an η, we can find a
sequence of piecewise-constant state functions {ηmpc : m ≥ 1} where ∥ηmpc −
η∥T → 0 as m→ ∞ with ηmpc being positive recurrent for all sufficiently large

m. For those m, we have the desired convergence Ĉn(·; ηmpc) ⇒ Ĉ(·; ηmpc) as
n → ∞, as observed in the beginning of the proof. Thus, by Lemma 12 and
13 above, we also have R̂n(·; ηmpc) ⇒ Ĉ(·; ηmpc) as n → ∞ for these m as well.
We now want to show that the established convergence also holds when ηmpc is
replaced by η. For that purpose, we need to establish convergence as n → ∞
and m → ∞ jointly. In order to justify that joint convergence, we establish
the following result.

Lemma 14 (tightness and bounds for the random sums) Consider a param-
eter state function η in D and a piecewise-constant parameter state function
ηpc, where both η and ηpc are positive recurrent. Let T > 0 and δ > 0 be such

that ∥η − ηpc∥T < δ. Then the sequence {R̂n(·, η)} is C-tight in D([0, T ∗]) for
some constant T ∗ > 0 and there exist functions σl(ηpc(·), δ) and σu(ηpc(·), δ)
such that the limit, say R̂(·, η), of any convergent subsequence of {R̂n(·, η)}
can be represented as

R̂(t, η) = B(W̄ (t), η), 0 ≤ t ≤ T ∗, (52)

where B is standard BM and W̄ can be bounded above and below by∫ t2

t1

σ2
l (ηpc(s), δ) ds ≤ W̄ (t2, η)− W̄ (t1, η) ≤

∫ t2

t1

σ2
u(ηpc(s), δ) ds (53)

for all t1 and t2 with 0 ≤ t1 < t2 ≤ T ∗, where 0 ≤ σ2
l (ηpc(s), δ) ≤ σ2

u(ηpc(s), δ) <
∞ for all s, 0 ≤ s ≤ T , and having the form in (14) determined by the state
ηpc(s). Moreover, for any ϵ > 0 and T ∗ > 0, there exist δ > 0 and T > 0 as
above, such that

∥σ2
u(ηpc(·), δ)− σ2

l (ηpc(·), δ)∥T∗ < ϵ. (54)
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Lemma 14 is based on associated lemmas for partial sums from triangular
arrays of the cycle lengths and cycle variables τni and Y n

i , exploiting mar-
tingale structure; these results are stated in §8 and proved in §9. Given these
lemmas, we now can complete the proof of Theorem 6. First, we have observed
that Ĉn(·, ηpc) ⇒ Ĉ(·, ηpc) in D for any positive-recurrent piecewise-constant

parameter state function ηpc. By Lemmas 12 and 13, R̂n(·, ηpc) ⇒ Ĉ(·, ηpc)
in D as well. We can then apply Lemma 14 to deduce that the sequence of
random sums {R̂n(·, η)} is tight. Hence, each subsequence has a convergent
subsequence. Let R̂(·, η) be the limit of such a convergent subsequence. Next
we construct a sequence {ηmpc} of positive-recurrent piecewise-constant state
functions with ∥ηmpc − η∥T → 0 as m→ ∞. As shown above, for each of them,

we have {R̂n(·, ηmpc)} ⇒ Ĉ(·, ηmpc) as n → ∞. However, again by Lemma 14,

we have R̂(·, η) bounded above and below by the limits Ĉ(·, ηmpc) which con-

verge to {Ĉ(·, η)} as m→ ∞. Hence, we must have R̂(·, η) = {Ĉ(·, η)}. Hence
all convergent subsequences must have the same limit, which implies that we
must have the full convergence, R̂n(·, η) ⇒ Ĉ(·, η) in D as n→ ∞. By Lemmas
12 and 13, we must also have Ĉn(·, η) ⇒ Ĉ(·, η) in D. Hence, Theorem 6 is
proved. ⊓⊔

8 Proof of Lemma 14: Using the Martingale FCLT

We have indicated that Lemma 14 is based on associated lemmas for partial
sums from triangular arrays of the cycle lengths and cycle variables τni and
Y n
i , exploiting martingale structure; in particular, we apply the martingale

FCLT for triangular arrays. We can treat these two components of R̂n(·, η)
separately because, just as in the familiar setting of renewal reward processes
discussed in §§7.4 and 13.2 of [32], the FCLT for R̂n(·, η) depends on a FCLT
for partial sums of Y n

i and a FWLLN for Nn(t) separately. By the inverse
relation discussed in §§7.3 and 13.6 of [32], a FWLLN for Nn(t) is equivalent
to a corresponding FWLLN for the partial sums of τni . Since we can reduce
the case of piecewise-constant ηpc to the case of constant ηc by focusing on
the subintervals separately, we now relate the given η to a constant ηc.

Consider the cycle variables Y n
i in (50) associated with a parameter state

function η. Let Fn
k be the σ-field generated by Xn

6 (t) : 0 ≤ t ≤ Tn
k , k ≥ −1.

Let

Mn
Y (k) ≡

k∑
i=1

Y n
i , k ≥ 1, and M̂n

Y (t) ≡ n−1/2Mn
Y (⌊nt⌋), t ≥ 0. (55)

For i ≥ 0, let

σ2
n,i ≡ E[(Y n

i )2|Fn
i−1],

V̄ n(t) ≡ n−1

⌊nt⌋∑
i=1

σ2
n,i and Vn(t) ≡ sup {s : V̄ n(s) ≤ t}, t ≥ 0.

(56)
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We will be strongly exploiting the QBD continuity to obtain regularity in the
variables Y n

i .

Lemma 15 (sums of cycle variables) Consider a parameter state function η in
D and an associated constant parameter state function ηc, where ∥η−ηc∥T < δ
for some T > 0 and δ > 0, and both η and ηc are positive recurrent. Consider
the cycle variables Y n

i in (50) and the associated variables in (55) and (56),
all associated with η. Then there exist constants σ2

l (ηc, δ), σ
2
u(ηc, δ) and δ

′ > 0
such that, for all i and n,

σ2
l (ηc, δ) ≤ σ2

n,i ≤ σ2
u(ηc, δ) and σ2

u(ηc, δ)− σ2
l (ηc, δ) < δ′, (57)

for σ2
n,i in (56), associated with η, so that

σ2
l (ηc, δ)(t2 − t1) ≤ V̄ n(t2)− V̄ n(t1) ≤ σ2

u(ηc, δ)(t2 − t1) (58)

for all n ≥ 1 and 0 ≤ t1 < t2 ≤ T , for V̄ n in (56). As a consequence,

(t2 − t1)

σ2
u(ηc, δ)

≤ Vn(t2)− Vn(t1) ≤
(t2 − t1)

σ2
l (ηc, δ)

(59)

for all n ≥ 1 and 0 ≤ t1 < t2 ≤ T ′ for T ′ ≡ T/σ2
u(η, δ). Hence, the sequences

{V̄ n} and {Vn} associated with η, defined in (56), are C-tight in D([0, T ]) and
D([0, T ′]), respectively. Moreover, the limits of convergent subsequences, say
V̄ and V must satisfy corresponding inequalities, i.e.,

σ2
l (ηc, δ)(t2 − t1) ≤ V̄ (t2)− V̄ (t1) ≤ σ2

u(ηc, δ)(t2 − t1) and

(t2 − t1)

σ2
u(ηc, δ)

≤ V(t2)− V(t1) ≤
(t2 − t1)

σ2
l (ηc, δ)

(60)

for the same ranges of t1 and t2 above, so that V̄ and V are both continuous
and strictly increasing. In addition,

M̂n
Y ◦ Vn ⇒ B in D([0, T ′]) (61)

for M̂n
Y in (55), where B is standard Brownian motion. Thus, the sequence

{M̂n
Y } is C-tight in D([0, T ]) with the limit of any convergent subsequence, say

M̂Y , being of the form

M̂Y (t) = B(V̄ (t)), 0 ≤ t ≤ T, (62)

where V̄ is bounded above and below over all subintervals as in (60). If we are
free to choose the bounding constant δ above, then for any ϵ > 0, we can find
δ > 0 so that δ′ < ϵ for δ′ in (57).

We now state the corresponding result for the partial sums of the cycle
lengths.
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Lemma 16 (sums of cycle lengths) Consider a parameter state function η in
D and a constant state function ηc, where both η and ηc are positive recurrent.
Let T > 0 and δ > 0 be such that ∥η−ηc∥T < δ. Consider the cycle lengths τni
in (49) associated with η. Let Un

k ≡ τn1 +· · ·+τnk , k ≥ 1, and Ūn(t) ≡ n−1Un
⌊nt⌋,

t ≥ 0. Let Mn
U,i ≡ E[τni |Fn

i−1], M̄
n
U (t) ≡ n−1(Mn

U,1 + · · ·+Mn
U,⌊nt⌋). Then the

sequence {Ūn} is C-tight in D([0, T ′′]) for an appropriate time T ′′ > 0, and if
Ū is the limit of a convergent subsequence, then necessarily it is bounded above
and below with probability 1 by linear functions, i.e.,

P (ml(ηc, δ)t ≤ Ū(t) ≤ mu(ηc, δ)t, 0 ≤ t ≤ T ′′) = 1.

where ml(ηc, δ) and mu(ηc, δ) are constants depending on δ such that 0 <
ml(ηc, δ) ≤ mu(ηc, δ) < ∞. If we are free to choose the time T > 0 and the
bounding constant δ above, then for any ϵ > 0 and T ′′, 0 < T ′′ < ∞, we can
find δ > 0 so that the conclusions above hold with mu(ηc, δ)−ml(ηc, δ) < ϵ.

As a consequence of the inverse relation between the partial sums and
the associated counting processes, as in Chapter 13 of [32], we obtain the
following corollary for the counting processes associated with the partial sums.
Let N̄n(t) ≡ n−1Nn(nt), t ≥ 0. In the next section we combine Corollary 4
below with Lemma 15 to prove Lemma 14.

Corollary 4 (counting process for cycle lengths) Under the assumptions of
Lemma 16, the sequence of scaled counting processes {N̄n} is C-tight in D([0, T ′′′])
for any time T ′′′ < T ′′/ml(δ), where T

′′ is as in Lemma 16. If N̄ is the limit
of a convergent subsequence of {N̄n}, then necessarily it is bounded above and
below with probability 1 by linear functions, i.e.,

P (t/mu(ηc, δ) ≤ N̄(t) ≤ t/ml(ηc, δ), 0 ≤ t ≤ T ′′′) = 1. (63)

where ml(ηc, δ) and mu(ηc, δ) are the constants depending on δ from Lemma
16 above. If we are free to choose the time T > 0 and the bounding constant δ
above, then for any ϵ > 0 and T ′′′, we can find δ > 0 so that the conclusions
above hold with mu(ηc, δ)−ml(ηc, δ) < ϵ.

9 Remaining Proofs of Lemmas in §§7 and 8

In this section we prove five lemmas in the previous two sections, which were
used in the proof of Theorem 6. We prove them in the order needed for the
proof. We prove the one remaining lemma, Lemma 12 justifying the approxi-
mation by the frozen process Ĉn

f , afterwards in §10.

Proof of Lemma 15 The key observation is that the sequence of random vectors
{(τnj , Y n

j ) : j ≥ i} associated with the general parametric state function η is
conditionally independent of the entire system history up to time Tn

i−1 for
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each i, which we have denoted by Fn
i−1, given only Tn

i−1. As a consequence,
paralleling the regenerative case in [9] and (14),

E

[∫ Tn
i

Tn
i−1

(
1{D(ηi,s)>0}

)
ds|Fn

i−1

]
= π1,2(ηi)E[τni |Fn

i−1]

for i ≥ 1, where ηi ≡ η(Tn
i−1), so that E[Y n

i |Fn
i−1] = 0 for each i. Hence, the

stochastic process {Mn
Y (k) : k ≥ 1} is a square integrable martingale with

respect to the filtration {Fn
k : k ≥ 1}.

Moreover, by the QBD continuity, the variances σ2
n,i ≡ E[(Y n

i )2|Fn
i−1] in

(56) cannot differ too much from the corresponding variance for the constant
parameter function ηc. For a fixed t ≥ 0, let σ2

Y (η(t)) be σ
2
n,i under the condi-

tion that Tn
i−1 = t, so that ηi ≡ η(Tn

i−1) = η(t). Since ∥η − ηc∥T < δ, we can
apply the QBD continuity to obtain the relations in (57), where

σ2
l (ηc, δ) ≡ min {σ2

Y (η(t)) : η ∈ A(ηc, δ)} and

σ2
u(ηc, δ) ≡ max {σ2

Y (η(t)) : η ∈ A(ηc, δ)} with

A(ηc, δ) ≡ {η : ∥η − ηc∥T ≤ δ}. (64)

These in turn imply that the inequalities in (58) and (59) hold for V̄ n and
Vn for all n, implying the tightness of the sequences {V̄ n} and {Vn} and
the inequalities stated in (60) for the limits of all convergent subsequences.
However, we cannot conclude that in general either V̄ n or Vn converges.

Nevertheless, we can apply an appropriate martingale FCLT to deduce that
the limit in (61) holds; e.g., see Theorems 2.1 and 2.2 of [5], Theorem 5 of [26]
and p. 98 of [14]. The QBD continuity and the bounds in (57) imply that the
technical regularity conditions are satisfied in this case. Hence, for any δ > 0,
we can apply the martingale FCLT to get the convergence in (61).

Given that V is a strictly increasing continuous function with bounded
slope, as in (60), we can deduce from the tightness of {M̂n

Y ◦Vn}, which follows

from the convergence in (61), that the sequence {M̂n
Y } itself must be tight.

That is most easily done by letting Vn be a continuous function constructed by
linear interpolation under which we still have the convergence in (61). Then,
V̄ n itself is a continuous strictly increasing function with modulus bounds in
(60). Hence, we can deduce that the sequence {M̂n

Y } must be tight.

The sequence {(M̂n
Y ,Vn, V̄ n)} is tight because the component sequences are

all tight. Starting from the joint convergence (M̂n
Y ,Vn, V̄ n) ⇒ (M̂Y ,V, V̄ ) in

D3 for any convergent subsequence, we can deduce from (61) that M̂Y = B◦V̄ ,
as claimed in (62). The final ϵ bound follows from the QBD continuity in
Lemma C.5 of [24]. ⊓⊔

Proof of Lemma 16 The proof is similar to the proof of Lemma 15 above, but
now we need a FWLLN instead of a FCLT. However, it is convenient to apply
the FCLT in order to deduce the FWLLN. Indeed, by the same reasoning
used to prove Lemma 15 above, we can obtain a martingale FCLT for the
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sums of the centered variables τni − E[τni |Fn
i−1], paralleling (61). Here we use

the conditional variances and their sums, defined by

σ2
n,i ≡ E[(τni − E[τni |Fn

i−1])
2|Fn

i−1], V̄ n(t) ≡ n−1

⌊nt⌋∑
i=1

σ2
n,i.

instead of (56). We then obtain analogs of (57), (58) and (60).

Given that FCLT, we scale further, essentially dividing by
√
n, to get the

associated FWLLN for the centered variables. As a consequence, we obtain
the FWLLN Ūn − M̄n

U ⇒ 0e in D([0, T ′′]) as n → ∞, for an appropriate
finite time T ′′, not necessarily equal to T or T ′ in the previous proof above.
Then, in direct analogy with (64), we apply the QBD continuity to obtain
ml(ηc, δ) ≤ Mn

U,i ≤ mu(ηc, δ) for all i and n. Hence, ml(ηc, δ)t ≤ M̄n
U (t) ≤

mu(ηc, δ)t for all n and t, 0 ≤ t ≤ T . We can then combine these bounds
with the FWLLN to obtain the conclusions stated in the lemma. By the QBD
continuity, mu(ηc, δ)−ml(ηc, δ) → 0 as δ ↓ 0. ⊓⊔

Proof of Lemma 14 First, Lemmas 15 and 16 and Corollary 4 can be extended
directly to piecewise-constant state functions as well as constant state func-
tions. Thus, for η in D, they imply that the sequences {M̂n

Y } and {N̄n} are
each C-tight in D. Consequently, the associated sequence of vector processes
{(M̂n

Y , N̄
n)} is C-tight in D2. Hence, every subsequence has a further con-

vergent subsequence. Moreover, by Lemma 15 and Corollary 4, any limit, say
(M̂Y , N̄), can be represented as (B ◦ V̄ , N̄), where V̄ and N̄ are bounded as
in (60) and (63) over each subinterval where the piecewise-constant paramet-
ric state function is constant. Hence, overall they can be bounded above and
below by

(V̄Y,l, N̄l) ≤ (V̄Y , N̄) ≤ (V̄Y,u, N̄u),

where (V̄Y,l(0), N̄l(0)) = (V̄Y,u(0), N̄u(0)) = (0, 0) and

(V̄Y,l(t), N̄l(t)) ≡ (V̄Y,l(ti−1) + σ2
l,i(t− ti−1), N̄l(ti−1) + (1/mu,i)(t− ti−1)),

(V̄Y,u(t), N̄u(t)) ≡ (V̄Y,u(ti−1) + σ2
u,i(t− ti−1), N̄u(ti−1) + (1/ml,i)(t− ti−1)),

for ti−1 ≤ t < ti, where 0 ≡ t0 < t1 < . . . < tk ≡ T , so that ti are the endpoints
of a piecewise constant state function ηpc, with σ

2
l,i and 1/mu,i being the lower

bounds and σ2
u,i and 1/ml,i being the upper bounds on the ith subinterval,

depending on ηpc and δ. Hence, we can apply the continuous mapping theorem
to obtain the corresponding convergence for the random sum for all convergent
subsequences, with the limit of all convergent subsequences represented as
claimed in (52) with W̄ there bounded as in (53). The bounding variance
functions are given explicitly by σ2

u(ηpc(s), δ) = σ2
u,i/ml,i and σ

2
l (ηpc(s), δ) =

σ2
l,i/mu,i for ti−1 ≤ s < ti. Thus, by having ∥η − ηpc∥T < δ and choosing δ

sufficiently small, we can obtain the desired variance inequality (54). ⊓⊔
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Proof of Lemma 13 The reasoning follows the regenerative case as in [9]. First,
the remainder term R̂n

1 (t) is relatively easy to treat since it involves the initial
cycle and is thus independent of t. Since D(η(0), 0) has been specified as
some fixed state after (40), the initial partial cycle until hitting time of the
designated state is clearly O(1) and becomes asymptotically negligible when
we divide by

√
n.

As in [9], to treat the second remainder term, we exploit the representation

|R̂n
2 (t)| ≤ n−1/2Wn

Nn(t)+1 ≤ n−1/2τnNn(t)+1

≤ n−1/2 max {τni : 1 ≤ i ≤ Nn(t) + 1}, t ≥ 0, (65)

for Wn
i and τni defined in (51) and (49). However, the last term in (65) is

asymptotically negligible because of the FCLT for the cycle lengths used in
the proof of Lemma 16 above. The last term is the maximum discontinuity in
the prelimit process indexed by n. Since the limit is continuous, that term is
asymptotically negligible. ⊓⊔

10 Proof of Lemmas 8 and 12: Coupling Constructions

In this section we prove the two lemmas justifying approximation by frozen
processes, using coupling constructions.

Proof of Lemma 8 By the construction in (42), we have forced the new frozen
processes D̃n

f to coincide with the queue-difference processes Dn
1,2 for all time

points t of the form k/n. To complete the proof, we employ a special coupling
construction to construct these two processes on the same underlying probabil-
ity space to make the processes have the same transitions within each interval
[(k − 1)/n, k/n) with high probability. As usual [19] [29], this coupling con-
struction produces an artificial joint distribution, but leaves the distributions
of each of the two processes individually unchanged.

We start by focusing on a single interval [(k−1)/n, k/n). It suffices to focus
on any one interval, because we will show that the construction is uniform over
the n intervals. Since the transition rates in system n are of order O(n) and
the interval is of length 1/n, it is convenient to start by rescaling time as in
the fluid limit in Theorem 1. By doing a change of variables, we have

√
n

∫ k/n

(k−1)/n

(
1{Dn

1,2(s)>0} − 1{D̃n
f (s)>0}

)
ds,

=
1√
n

∫ 1

0

(
1{Dn

1,2((k−1)/n+s/n)>0} − 1{D̃n
f ((k−1)/n+s/n)>0}

)
ds.

Then recall that both processes inside the integral converge appropriately to
the FTSP. To expose the connection, let k go to infinity with n so that k/n→ t
as n → ∞. First, by Theorem 1, X̄n((k − 1)/n) ⇒ x6(t). Then, by Theorem
4.4 of [24],

Dn
1,2((k − 1)/n+ s/n) ≡ Dn

e (X
n((k − 1)/n), s) ⇒ D(x6(t), s).
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Second, by (41),

{D̃n
f ((k − 1)/n+ s/n) : 0 ≤ s ≤ 1}
d
= {D(λni /n,m

n
j /n,X

n((k − 1)/n), s) : 0 ≤ s ≤ 1}
⇒ {D(x6(t), s) : 0 ≤ s ≤ 1}.

The main point for the coupling is that, after the change of time scale, both
processes have transition rates of order O(1) that differ by O(1/n). Moreover,
the processes are identical w.p.1 at the left end point of the interval [0, 1].

However, we need to apply the argument above to all n intervals, where
n → ∞. It is thus important that the conclusions are valid uniformly over
the n subintervals. Those conclusions are justified because the fluid limit in
Theorem 1 implies that X̄n

6 ⇒ x6 uniformly over each finite interval. Moreover,
the limit x6 is a continuous function over a bounded interval with values in in
a compact subset of A. Finally, the limiting transition rates are a continuous
function of the state.

Let νn(T ) be the number of k for which the nk ≤ T and the sample paths
of D̃n

f and Dn
1,2 fail to be identical over the interval [(k − 1)/n, k/n). As a

consequence of the asymptotically equivalent transition rates after changing
the time scale above, we show below that νn(T ) = O(1) as n → ∞. Thus, to
complete the proof, we use the elementary bound ∥∆n∥T ≤ νn(T + ϵ)/

√
n for

all n ≥ 1/ϵ, where T > 0 and ϵ > 0 are arbitrary constants.
We now discuss the coupling in more detail. Since the transitions in the

queue-difference process Dn
1,2 are generated from state changes in the CTMC

Xn
6 , we do the special construction from the perspective of the CTMC Xn

6 .
We use the device of uniformization to generate the transitions of the CTMC;
i.e., we construct the transitions by thinning a Poisson process. Without loss of
generality, we use different independent Poisson processes to generate potential
transitions for each kind of transition, each interval [(k− 1)/n, k/n) and each
n. Since the transition rate of the CTMC is not uniformly bounded, there
is a possibility that this direct construction will be invalid, but by choosing
these Poisson process rates sufficiently high, we can make the likelihood of a
violation asymptotically negligible. In the actual construction, we can change
the Poisson process when the constructed process hits a state from which a
further transition could lead to a violation. The detailed construction does
not matter because we declare a difference occurring throughout the entire
subinterval if the Poisson rate needs to be adjusted, thus contributing the
maximum possible to the bound above. Since the integrand in (45) is bounded
by 1, the total impact upon (45) by such rate violations can clearly be made
asymptotically negligible.

The coupling is achieved by using the same Poisson processes to generate
the transitions in both Dn

1,2 and D̃n
f over each subinterval [(k − 1)/n, k/n).

These are done with respect to the states of Xn
6 (t) and Xn

6 ((k − 1)/n). For
Dn

1,2, the transitions rates of the various transitions (arrivals, abandonments
from each queue and service completions of each class from each pool) are
determined by the actual state Xn

6 (t), which changes throughout the interval
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[(k− 1)/n, k/n). For, D̃n
f , we do the same construction, but we leave the state

fixed at its initial value Xn
6 ((k−1)/n) throughout the interval [(k−1)/n, k/n),

so that the transition rates do not change. However, we match the transitions
in the two systems as much as possible. We make the transitions differ only
to the extent that the state of Xn

6 (t) differs from Xn
6 ((k − 1)/n).

As stated above, we use different independent Poisson processes for each
kind of transition. We have one Poisson process generate potential arrivals for
each n. Since the arrival rates are unaffected by the state, the Poisson process
for generating potential arrivals of class i can have rate λni , so that every
potential arrival corresponds to an actual arrival in both systems. Thus no
difference is caused by any arrival. That arrival in turn affects the constructed
processes Dn

1,2 and D̃n
f in the obvious way: an arrival of class 1 increases them

by 1, while an arrival of class 2 decreases them by r.

For service completions of class 1 by pool 2, we let the Poisson process
generating potential transitions have rate µ1,2m

n
2 . The actual transition rate

at time t for Xn
6 (t) is µ1,2Z

n
1,2(t), so that the Poisson rate is an upper bound

on the actual transition rate for all states. If the Poisson process with rate
µ1,2m

n
2 has a transition at time t, where (k−1)/n ≤ t < k/n, then we let both

systems have an actual service completion of class 1 by pool 2 at time t with
probability (Zn

1,2(t) ∧ Zn
1,2((k − 1)/n)/mn

2 ; we let only the system associated
with Dn

1,2 have an actual service completion of class 1 by pool 2 at time t with
probability [Zn

1,2(t) − (Zn
1,2(t) ∧ Zn

1,2((k − 1)/n)]/mn
2 ; we let only the system

associated with Dn
f have an actual service completion of class 1 by pool 2 at

time t with probability [Zn
1,2((k− 1)/n)− (Zn

1,2(t)∧Zn
1,2((k− 1)/n)]/mn

2 ; and
we let neither system have an actual service completion of class 1 by pool 2
with probability [mn

2−(Zn
1,2(t)∨Zn

1,2((k−1))/n)]/mn
2 . Thus, a difference in the

sample path is caused by this transition with probability [(Zn
1,2(t)∨Zn

1,2((k−
1)/n)− (Zn

1,2(t) ∧ Zn
1,2((k − 1)/n)]/mn

2 , which clearly is of order O(1/n).

We do similar constructions with independent Poisson processes for each
of the other transitions. The abandonments are where the transition rate is
unbounded, because the queue lengths Qn

i (t) are unbounded above. However,
the maximum queue length over the interval is bounded above by the ini-
tial queue length plus the number of arrivals over the interval, so that the
probability of violation is easily controlled by the Poisson arrival process for
that class. Hence, for the Poisson process generating potential abandonments
from the class-i queue over the interval [(k − 1)/n, k/n), we can give it rate
(Qn

i ((k − 1)/n) + cn3)θi for c > λi. (The exponent 3 is chosen to make care-
ful calculations unnecessary.) This is sufficient, because the initial number in
queue i is Qn

i ((k − 1)/n) and new class-i arrivals occur at rate λni , which is
O(n). The higher power of n ensures that a violation of the rate-order uni-
formization condition is asymptotically negligible as n → ∞. If the Poisson
process generates a potential abandonment at time t, then it is a real aban-
donment for at least one system with probability an/cn = O(1/n2), a real
abandonment for both systems with probability bn/cn = O(1/n2) and a real
abandonment for only one of the two systems with probability (an− bn)/cn =
O(1/n3), where an ≡ Qn

i ((k− 1)/n)∨Qn
i (t), bn ≡ Qn

i ((k− 1)/n)∧Qn
i (t) and
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cn ≡ Qn
i ((k−1)/n)+cn3. The main point is that (an−bn) = O(1) because the

two queues differ by arrivals at rate O(n) over the interval of length 1/n. Hence,
the probability that a real transition at t (not counting transitions from a
state to itself, which are generated by the common Poisson process) produces
an abandonment for only one of the two systems is (an−bn)/an = O(1/n). At
the same time, the probability that the uniformization condition is violated
during the entire interval is o(1/n), so that it is asymptotically negligible in
the relevant scale.

We now assess the impact of this construction. Both processes have tran-
sition rates of order O(n) because the relevant processes Qn

i and Zn
i,j in Xn

6

are O(n). Thus, the processes Dn
1,2 and D̃n

f have O(1) transitions over each
interval of length 1/n. Hence, the state of Xn(t) will only change an amount of
order O(1) within each interval [(k−1)/n, k/n). Consequently, the probability
of any one transition being different is O(1/n), and the probability that there
is any difference over the interval [(k − 1)/n, k/n) is also of O(1/n). Hence,
νn(T ) – the total number of intervals having any difference over the interval
[0, T ] – will be of order O(1), as claimed at the beginning of the proof.

Elaborating on the last step, observe that conditional upon X̄n
6 , which con-

verges to x6, we can regard νn(T ) as the sum of at most ⌊nT ⌋+1 independent
Bernoulli random variable, assuming the value 1 with probability pn,i and 0
otherwise, where pl/n ≤ pn,i ≤ pu/n for all i = 1, . . . , ⌊nT ⌋ + 1, provided
that n is suitably large, where pl/n and pu/n are the minimum and maximum
“success probabilities” among those Bernoulli random variables. The bounds
hold because t 7→ x6(t) is a continuous function that is considered over a com-
pact interval. Hence, all the transition rates described above, producing the
probabilities pn,i over each interval i, also have continuous limits which can
be bounded uniformly for all n large enough. Using the upper bound, we can
bound νn(T ) above stochastically by νnu (T ), defined as the partial sum of i.i.d.
Bernoulli random variables. taking the value 1 with probability pu/n. By the
LLN for partial sums from triangular arrays νnu (T ) ⇒ puT as n → ∞, which
implies that νn(T ) is indeed properly O(1) as n → ∞. Hence the proof is
complete. ⊓⊔

Proof of Lemma 12 The reasoning here is similar to the proof of Lemma 8.
As before, we can use a coupling construction to make the two processes have
identical sample paths over the vast majority of the cycles. We exploit the
oscillation property for functions in D([0, T ]), Corollary 12.2 of [32], concluding
that, for any ϵ > 0, there are k time points ti with 0 ≡ t0 < t1 < · · · < tk−1 <
tk ≡ T such that |η(s1) − η(s2)| < ϵ for all s1, s2 ∈ [ti−1, ti) for all i. Hence,
with the time scaling by 1/n in (40), we see that, except for at most k cycles in
[0, T ] containing the k boundary points ti, the oscillation of η over the cycle is
at most ϵ/n. Hence, the coupling can be performed as in the proof of Lemma 8,
making the probability that the sample paths differ over any one cycle among
all except the k be of order O(1/n). Since there are O(n) cycles in [0, T ], as
substantiated by Corollary 4, there are order O(1) among the O(n) cycles that
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have any difference in the sample paths. Hence, with the spatial scaling by
√
n,

we clearly have dJ1(Ĉ
n
f , Ĉ

n) ⇒ 0 as n→ ∞ as claimed. ⊓⊔

11 Comparisons with Simulation

To both support the validity of the theorems and their applicability to the in-
tended engineering problems, we now compare the approximations stemming
from the FWLLN and the FCLT to the results of simulation experiments.
Specifically, we will compare the Gaussian approximations for the steady-state
queue lengths with simulation estimates of these quantities, obtained by simu-
lating the actual queueing model over a large time interval. The approximate
mean values come directly from the stationary point of the fluid limit, x∗

in Theorem 2; the approximate variances come from Corollary 1, specifically,
from (24).

Our simulation examples will have parameters related to a base case. First,
scale is described by the parameter n, which is the scaling parameter in our
limit theorems. The abandonment and service rate parameters, which describe
the behavior of individual customers and servers, are independent of n: θ1 =
θ2 = 0.2, µ1,1 = µ2,2 = 1.0 and µ1,2 = µ2,1 = 0.8. The service rates are chosen
so that it is less efficient to serve a customer from a different class.

The parameters that scale as the service system grows depend on n; they

are chosen to be directly proportional to n: m
(n)
i ≡ nmi, λ

(n)
i ≡ nλi and

k
(n)
1,2 ≡ nk1,2. We take kn1,2 to be order O(n) so it is easy to compare different

system sizes. Our base case then has m1 ≡ m2 ≡ 1, λ1 = 1.3, λ2 = 0.9 and
k1,2 = 0.1. The arrival rates are chosen to put class 1 in a focused overload,
while class 2 is initially normally loaded or slightly underloaded, but becomes
overloaded too after the sharing. (These model parameters satisfy case 1 of
Assumption 3.1 of [24].) We use the FQR-T control with ratio parameter
r = 1.0, which allows us to apply the simple asymptotic formulas from §4.4.

From (10) and (11), we see that the stationary fluid solution for this base
case yields z∗1,2 = 0.2111, q∗1 = 0.6556, q∗2 = 0.5556 and π∗

1,2 ≡ π1,2(x
∗) =

0.1763. Without any sharing, the fluid approximation for queue 1 would be
1.5000. Hence the sharing reduces the first fluid queue from 1.5000 to 0.6556,
at the expense of causing the second class to have a fluid queue of 0.5556.

We now turn to the variances, for which we need to analyze the FTSP more
carefully. The FTSP has BD parameters: λ1(x

∗) = 1.411, µ1(x
∗) = 2.989,

λ2(x
∗) = 2.031 and µ2(x

∗) = 2.369. The associated M/M/1 traffic intensities
are ρ1(x

∗) = 0.472 and ρ2(x
∗) = 0.8574. The associated mean busy periods are

E[T1(x
∗)] = 0.6338 and E[T2(x

∗)] = 2.9603. Hence, the alternative formula for
π1,2(x

∗) in (27) agrees with the value 0.1763 given above (providing a check
on our calculations).

Turning to the FCLT, from (20), we see that ψ(x∗) = 0.6200, so that
ψ2(x∗) = 0.3844. For σ2(x∗), from (26), we see that E[T1(x

∗)2] = 1.5218,
so that V ar(T1(x

∗)) = 1.1201, and σ2(x∗) = 1.1201/3.5941 = 0.3116. Then
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ξ2 ≡ ψ2(x∗)σ2(x∗) = 0.1198. Since |M2,2| = 0.176, Z2 = 0.3403. Hence,
σ2
Z1,2

(∞) = 1− 0.2111 + 0.3403 = 1.1292.

As a consequence, σ2
Qs,Z1,2

(∞) = (1.1292)(0.5319) = 0.6006. Since µ2,2 −
µ1,2 = p1θ1 + p2θ2 = 0.2, Q2 = σ2

Qs,Z1,2
(∞) = 0.6006. Since Q1 = 11.0, we

have σ2
Qs

(∞) = 11.6006, so that the associated standard deviation is 3.41.

(Without Q2, we would approximate the standard deviation by
√
11 = 3.32,

so Q2 contributes only 3% to the standard deviation approximation in this
case.)

By the SSC, the diffusion approximations for Q1 and Q2 are linearly related
to Qs; in particular, σ2

Qi
(∞) = (pi)

2σ2
Qs

(∞), so that σ2
Qi
(∞) = 11.6006/4 =

2.900 and the associated standard deviation is 1.70.

We now turn to the simulations. We simulate the actual queueing system
obtained by scaling up the appropriate parameters by n. We consider three
cases: n = 25, n = 100, and n = 400. (Since kn1,2 must be an integer, we let
kn1,2 = 3 when n = 25.)

In all our simulation experiments, we used 5 independent runs, each with
300, 000 arrivals. We report averages together with the half widths of the
95% confidence intervals, based on a t statistic with four degrees of freedom.
Simulation results for the base case above are presented in Table 1 below.

The first four rows of Table 1 show mean values. We display both the
steady-state mean values and the associated scaled values (i.e., divided by n).
The unscaled values helps us evaluate the performance of the actual system,
while the scaled values show the convergence in the FWLLN. Table 1 clearly
shows that the accuracy improves as n gets larger, but even for relatively small
systems, the fluid approximation gives reasonable results.

Rows 5 − 10 of Table 1 show the standard-deviations of the total queue
length Qs = Q1 +Q2 as well as the two queues. As before, we treat both the
actual values and the scaled values, but now we are scaling in diffusion scale
(dividing by

√
n after subtracting the order-O(n) mean), as in (15), so that

we will be substantiating the FCLT, specifically Corollary 1 and the variance
formulas in (24). To save space, we omit the confidence intervals for the scaled
standard deviations; these can be computed from the confidence intervals of
the actual queues by dividing the half widths by

√
n.

Overall, we conclude that Table 1 shows that the approximations are re-
markably accurate.
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n=25 n=100 n=400

perf. meas. Approx. Sim. Approx. Sim. Approx. Sim.
E[Q1] 16.6 15.7 65.6 63.6 262.2 258.3

±0.3 ±1.9 ±5.0
E[Q1/n] 0.656 0.629 0.656 0.636 0.656 0.646

±0.013 ±0.019 ±0.013
E[Q2] 13.6 15.9 55.6 58.6 222.2 223.9

±0.4 ±1.8 ±5.0
E[Q2/n] 0.556 0.636 0.556 0.586 0.556 0.560

±0.016 ±0.018 ±0.013

std(Qs) 17.1 16.0 34.1 33.7 68.2 67.6
±0.3 ±1.4 ±2.9

std(Q̂s) 3.41 3.21 3.41 3.37 3.41 3.38

std(Q1) 8.5 8.8 17.0 17.2 34.0 33.9
±0.1 ±0.7 ±1.4

std(Q̂1) 1.70 1.75 1.70 1.72 1.70 1.70

std(Q2) 8.5 8.6 17.0 17.1 34.0 33.9
±0.1 ±0.7 ±1.5

std(Q̂2) 1.70 1.73 1.70 1.71 1.70 1.69

Table 1 A comparison of approximations to simulation results for the means and standard
deviations of the steady-state queue lengths as a function of the scale parameter n in the
base case with λn

1 = 1.3n, λn
2 = 0.9n, kn1,2 = 0.1n, r = 1 and other parameters defined

above.
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